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The biomechanical properties of the brain microenvironment, which is

composed of different neural cell types, the extracellular matrix, and blood

vessels, are critical for normal brain development and neural functioning.

Stiffness, viscoelasticity and spatial organization of brain tissue modulate

proliferation, migration, differentiation, and cell function. However, the

mechanical aspects of the neural microenvironment are largely ignored in

current cell culture systems. Considering the high promises of human

induced pluripotent stem cell- (iPSC-) based models for disease modelling

and new treatment development, and in light of the physiological relevance of

neuromechanobiological features, applications of in vitro engineered neuronal

microenvironments should be explored thoroughly to develop more

representative in vitro brain models. In this context, recently developed

biomaterials in combination with micro- and nanofabrication techniques 1)

allow investigating how mechanical properties affect neural cell development

and functioning; 2) enable optimal cell microenvironment engineering

strategies to advance neural cell models; and 3) provide a quantitative tool

to assess changes in the neuromechanobiological properties of the brain

microenvironment induced by pathology. In this review, we discuss the

biological and engineering aspects involved in studying

neuromechanobiology within scaffold-free and scaffold-based 2D and 3D

iPSC-based brain models and approaches employing primary lineages

(neural/glial), cell lines and other stem cells. Finally, we discuss future

experimental directions of engineered microenvironments in neuroscience.
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Introduction

The brain is comprised of highly organized architectures (Sapir

et al, 2022) that are subjected to and exercise various physical cues at

different scales. At the nanoscale, for example, nanometric properties

such as the composition and organization of the extracellular matrix

provide cues to brain cells. These cues include mechanical stimuli,

such as the forces exerted by different neural cell types, and

topographical cues such as the biomechanical properties of the

neural microenvironment (e.g., porosity, roughness, rigidity,

viscoelasticity, etc.) (Yu et al, 2022). The resulting bidirectional

physical interactions and the mechanobiology features in the

brain microenvironment are translated into biochemical signals

through mechanotransduction, subsequently eliciting various

cellular responses to guide brain development and neural network

functioning (Ingber, 2003; Jaalouk and Lammerding, 2009; Samanta

et al, 2022). Notably, the composition, topography and mechanical

properties of neural tissue vary between different brain regions,

change during development, and contribute to themanifestation and

progression of neurological diseases (Jain et al, 2020). For instance,

neurodevelopmental defects linked to improper force distribution

are observed in disorders such as autism, schizophrenia, and

Williams syndrome. In the latter, improper force distribution

could lead to cortical folding abnormalities (Franze, 2013). Taken

together, this highlights the relevance of the mechanobiology

properties of the neural microenvironment for brain (dys)

functioning.

Since the advent of induced pluripotent stem cell (iPSC)

technology, and its prospects for translational research, there has

been an increase in the number of investigations leading to the

development of physiologically relevant models (Vadodaria et al,

2020). iPSCs can be generated from human somatic cells and

turned into any cell type of interest (Dolmetsch and Geschwind,

2011), allowing to study how human-, disease- or patient-specific

genetics influence cell behaviour or result in neural abnormalities

leading to specific pathological states. Mice, classically employed

for these experiments, typically carry one or two genetic changes

associated with a disease. However, the risk of developing a

disease, the progression of a disease, and the response of a patient

to drugs are influenced by a multitude of complex genetic

changes or are human-specific. In addition, iPSCs also have a

major advantage over human embryonic stem cells (ESCs), as

ESC lines are obtained from early-stage embryos, and new line

generation comes with ethical dilemmas (Rabeling and Goolam,

2022). Compared to primary cells, adult neural stem cells can be

hindered by their limited capacity to proliferate and difficulties in

primary isolation (Nam, 2015), while iPSCs provide an unlimited

cell source for differentiation into any specialized cell type. In

recent years, there has been an increasing interest in more

sophisticated iPSC-based culture systems to better recapitulate

the in vivo three-dimensional (3D) microenvironment, giving

rise to brain organoids and assembloids. Compared to

conventional 2D cell monolayer approaches, these 3D

structures provide a more accurate representation of the

brain’s in vivo topographical organization and cell-cell

interaction. However, there is still a need for iPSC-based

cultures that feature more advanced maturation and increased

standardization (Andrews and Kriegstein, 2022). Considering the

mechanobiological aspects during the development of new brain

models, engineering approaches have prospects for improving

current systems by fine-tuning the cell microenvironment

(Tortorella et al, 2022). Additionally, they allow studying the

biological relevance of mechanical interactions between cells and

their environment to investigate healthy brain development,

disease mechanisms and drug screening of treatments that

target mechano-related signalling pathways (Avior et al, 2016).

The field of mechanobiology examines the influence of

mechanical cues on the behaviour and phenotype of neural

cells in both physiological and pathological circumstances

(Lemma et al, 2019). Despite the accumulating body of

evidence that illustrates the crucial role of mechanical cues in

modulating neural cell behaviour (Motz et al, 2021), the

mechanical aspects of the neural microenvironment are still

largely ignored in current cell culture systems. Engineers and

physicists have started to explore various techniques tomimic the

microenvironment of cells to obtain tissue-inspired 3D cell

cultures. In particular, 2D and 3D micro and nanofabrication

techniques experienced rapid development and have been

applied for in vitro cell research (Li et al, 2003). With these

techniques, complex geometries can be manufactured with high

resolution, and a wide range of materials can be employed.

Additive manufacturing is one of the methods that can be

employed to manufacture engineered cell environments.

Examples of additive manufacturing techniques are two-

photon polymerization (Accardo et al, 2018a; Lemma et al,

2019; Weisgrab et al, 2020; Akolawala et al, 2022; Barin et al,

2022; Sharaf et al, 2022), bioprinting (Rider et al, 2018),

stereolithography apparatus (SLA, Qiu et al, 2020), and digital

light processing (DLP, Qiu et al, 2020). Other techniques used to

recreate microenvironments are (optical) lithography techniques

(Pardo-Figuerez et al, 2018), chemical synthesis (Marcus et al,

2017), electrospinning (Honkamäki et al, 2021), salt leaching

(Worthington et al, 2017), and foaming (D’Abaco et al, 2018).

Various 2D, 2.5D, and 3D geometries with varying mechanical

properties can be achieved by employing these techniques.

Currently, the study of the mechanobiology of the brain has

gained the interest of biologists, engineers, and physicists,

making it now a highly multidisciplinary field (Hall et al, 2021).

This review investigates different approaches employed for

mimicking the microenvironment of neural cells derived from

human and rodent stem cells to develop advanced neural cell

models, with a particular focus on neuro-mechanobiological

properties and the different techniques to study them.

Scaffold-free and scaffold-based techniques have been used to

create brain models and steer neural development (Accardo et al,

2019; Valdoz et al, 2021). Scaffold-free 3D approaches employ
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bottom-up (de novo) formation and cell self-assembly to obtain

multicellular 3D tissue-like cell aggregates such as spheroids and

organoids (Accardo et al, 2019; Valdoz et al, 2021). On the other

hand, scaffold-based techniques use biomaterials to promote the

formation of 3D cell networks by providing instructive cues to the

cells (Valdoz et al, 2021). The scaffold-free and scaffold-based

techniques have been used with a variety of materials featuring

various mechanical properties. These materials include, but are not

limited to, natural ECMmaterials, hydrogels, and polymers (Accardo

et al, 2019). The scaffolds provide a niche for the cells, support,

guidance, and mechanical cues for 3D tissue formation. The

following sections will discuss the fabrication and design of 2D/

2.5D and 3D cell culture substrates. An overview of the advantages

and limitations will be given, focusing on scaffold-based approaches.

Further, we will provide an survey of the different methods for

studying the mechanobiological properties of (neural) cells. This

section includes a summary of the approaches used for measuring

the forces that are applied by cells on their surrounding for studying

mechanobiological properties. Finally, an outlook will be provided to

highlight possible future strategies of 3D cultures for iPSC-derived

neural cells and the possibilities of neuromechanobiological research.

Physical properties of the brain

The brain consists of exceptionally soft tissue featuring

viscoelastic properties. Furthermore, the combination of cell

types, neural cell structures and extracellular matrix

composition in the various regions of the brain lead to

variable mechanical properties across the whole tissue (Barnes

et al, 2017). This section will present an overview of the brain’s

topography, stiffness and viscoelasticity as well as its relevance

for neural function.

Topography

The brain topography is complex and highly organized.

Different anatomic structures can be distinguished at the

macroscale level, such as the brain ventricles (cavities within the

parenchyma filled with cerebrospinal fluid) and the different brain

regions (cerebral hemispheres, diencephalon, cerebellum and brain

stem). The latter display a complex cytoarchitecture at the

microscale (cellular level) leading to a broad distinction between

grey and white matter. Grey matter is mainly formed by neuronal

somas, accompanied by glial cells, some axons and capillary blood

vessels. White matter is composed of myelinated and unmyelinated

axons, along with oligodendrocytes, astrocytes and microglia cells.

(Mercadante and Tadi, 2021). The topographic organization of

each region is crucial for its functionality, and disruptions of this

cytoarchitecture can lead to different pathologies. For example,

cortical malformations may arise from alterations of the neuronal

orientation and lamination (disposition on cortical layers). This

change in brain cytoarchitecture can lead to pathologies such as

cortical dysplasia, which usually manifests with epilepsy (Thom,

2014). Brain tissue accommodates components of different sizes

and shapes, as shown in Figure 1A. The neuronal cell body, a more

or less rounded structure, features approximately a diameter of

10–50 μm, while radial glial cells form fibres of 1 µm diameter.

These radial glial cells serve as a scaffold for migrating neural

progenitor cells during development (Cembran et al, 2020).

Capillaries, veins and arteries also present a fibre-like shape,

with diameters varying between 4 and 8 µm for the former and

reaching a few millimetres for the latter (Mahumane et al, 2018).

The capillaries, veins and arteries also serve as scaffolds for neuronal

and oligodendrocyte progenitor migration (Czeisler et al, 2016).

The voids between all these components form the brain’s

extracellular space (Figure 1AIII), which has been described as a

foam-like porous structure formed by an irregular network of

highly connected cavities of various sizes and shapes (Nicholson

and Syková, 1998). These voids are occupied by fluid, various

solutes, and a non-cellular macromolecular framework called the

extracellular matrix (ECM, Figure 1AIV). The ECM is a highly

organized structure composed of several classes of macromolecules:

glycosaminoglycans, proteoglycans, glycoproteins, and fibrous

proteins, resembling a lattice of amorphous aggregates (Mouw

et al, 2014; Roth et al, 2021). Furthermore, the ECM can be

divided in different compartments with a unique composition:

the basement membrane that surrounds blood vessels, the

perineuronal nets that surrounds dendrites and neuronal cell

bodies and the interstitial matrix that is diffusely distributed

between brain cells (Kajtez et al, 2021). The ECM components

present a diameter of tens to hundreds of nanometers and together

form specific topographies of less than 10 μm in diameter (Jain et al,

2020). The brain ECM can thus be seen as a 3D macromolecular

network that physically supports cells, fosters cell growth,maintains

cell viability and has a crucial role in homeostasis and neurological

diseases (Frantz et al, 2010; Rauti et al, 2020). Interestingly, the

ECM composition is formed during development and is relatively

stable during adulthood. For example, fibrous proteins are present

in low quantities in the adult brain but are highly expressed during

development (Kajtez et al, 2021). For recreating the brain ECM

in vitro, it is crucial to take into account how specific ECM

components modulate parameters such as stiffness, fibre

orientation, ligand presentation and dimensionality, as they can

result in specific cellular behaviour (Frantz et al, 2010). The work of

Rauti et al (Rauti et al, 2020) and Frantz et al (Frantz et al, 2010)

cover the chemical, structural and mechanical properties of the

brain ECMand discuss the properties that in vitromodels should be

able to recapitulate. The reader is referred to their works which

describe the methodologies and challenges involved in creating a

synthetic brain ECM in more detail.

Another relevant topographical feature of the brain tissue is

its structural anisotropic nature. This anisotropy is one of its

most distinctive features and originates from the alignment of

neuronal axons in the white matter. This directionality does not
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prevail in the grey matter, which contains relatively few

myelinated axons and is mainly occupied by cell bodies (Ayad

et al, 2019).

Stiffness or elasticity

The stiffness of the brain, measured by the Young’s modulus

(also called the elastic modulus, i.e. the resistance of the material

to elastic deformation), is quite heterogeneous, ranging between

0.1 and 1 kPa in healthy brain tissue (Figure 1BI) and reaching

values of 10–16 kPa in diseased states (Bizanti et al, 2021). This

low stiffness results in part from the specific composition of the

brain extracellular matrix, which is mainly made up of

glycosaminoglycans (e.g., hyaluronic acid), proteoglycans (e.g.,

aggrecan), glycoproteins (e.g., tenascin-R) and low levels of

fibrous proteins (e.g., collagen and fibronectin). The lack of

fibrous proteins is responsible for the low stiffness of the

brain compared to other tissues (Motz et al, 2021).

Comparing different neural cell types, glial cells are generally

less stiff than neurons (Lu et al, 2006). Interestingly, a closer look

at different neuronal cell types reveals varying stiffness. For

example, cortical neurons are softer than hippocampal

neurons (30–500 Pa vs. 480–970 Pa) (Procès et al, 2022).

Similarly, different stiffness values can be found among glial

cells and brain regions. For example, white-matter-derived

microglia and astrocytes are softer than their grey-matter-

derived counterparts (842 vs. 1439 Pa for microglial cells and

1.5 vs. 2.7 kPa for astrocytes) (Antonovaite et al, 2020; van

Wageningen et al, 2021). The importance of tissue stiffness is

especially clear during brain development when stiffness

gradients guide axon growth, and unusual tissue stiffness can

lead to aberrant axon growth (Koser et al, 2016). The stiffness can

thus play a crucial role in disease states as well, which is

FIGURE 1
Topography (A) and mechanical properties (B) of brain tissue. Images from panel A are adapted from (I) Microvascular networks in the human
brain (Peyrounette et al, 2018), (II) Schematic representation of the developing cortical plate (Barry et al, 2014), (III) Electron micrograph of mouse
cerebral cortex where the extracellular space is coloured in blue (left) ((Korogod et al, 2015) and computer generated configurations of the brain
extracellular space (right) (Chen and Nicholson, 2000); (IV) Scanning electron micrograph of the brain ECM (left) (Tajerian et al, 2018) and
schematic representation of the ECM (right) (Odackal et al, 2017). (B) represents the stiffness range (I) and viscoelasticity (II) of brain tissue.
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exemplified by brain tumours, where the progression is related to

an increase in the stiffness of the tumour-associated ECM (Ayad

et al, 2019). Thus, the cellular composition of brain networks and

their extracellular matrix are distinct for different brain regions

and is influenced by age, developmental state, and pathological

state. Measuring the elastic modulus allows to monitor these

changes closely related to cellular function.

Viscosity

Brain tissue also displays viscous characteristics

(Figure 1BII), which, together with its elastic properties,

confers the viscoelastic behaviour to the brain. Viscoelastic

properties allow brain tissue to withstand deformation upon

applied forces by dissipating the forced-derived energy and

reorganizing its structure (Kratochvil et al, 2019). In other

words, in response to a mechanical perturbation, like

compression, the brain tissue first deforms (elastic response)

and then dissipates part of this energy in a process called

“stress-relaxation”. For example, the lipid bilayer that forms

the membrane of neurons and glial cells can deform and regain

its shape in response to physical forces, allowing cells to extend

and retract protrusions necessary for cell migration or

withstand the forces generated during a traumatic brain

injury (Tyler, 2018). Similarly, the brain’s extracellular

matrix can rearrange its structure after being deformed by

forces imposed by neural cells (Procès et al, 2022).

Differences in the neural tissue’s viscoelastic properties are

also found throughout the brain. For example, white matter

is, in general, more viscous and exhibits longer relaxation times

compared to grey matter (stress relaxation times of white

matter ≥600s vs. grey matter = 400s) (Budday et al, 2015).

Since the plasma membrane of neuronal and glial cells also

displays viscoelastic features, this property is also observable at

the microscale. Interestingly, glial cells are more viscous than

neuronal cells, suggesting they could provide a compliant

embedding for neurons (Lu et al, 2006). Furthermore,

differences in the viscoelastic properties of grey and white

matter microglia have been found in response to an

inflammatory stimulus (van Wageningen et al, 2021),

highlighting the role of brain viscoelasticity in neuropathology

as well. The viscoelasticity of brain tissue also affects brain function

at many other levels (Tyler, 2018). For example, the viscoelasticity

of the neuronal plasma membrane can modulate the opening of

stretched-activated ion channels, influencing neuronal excitability

(Tyler, 2018). In conclusion, brain tissue mechanics are crucial to

brain function and can contribute to the emergence and

development of neurological diseases. Therefore, introducing

these parameters in current in vitro brain models is essential to

recapitulate the in vivo neural environments and investigate cell-

environment interactions, which will be examined in the following

section.

Cell-environment interactions:
Mechanotransduction

Along with the mechanical and topographical cues

mentioned in the previous section, the neural environment

presents other mechanical cues to neural cells, including

physical forces exerted by the neighbouring cells, compression

loading, and shear stress caused by cerebrospinal fluid flow

(Gargalionis et al, 2022). The process through which cells

integrate these mechanical cues is called mechanotransduction

and is mediated by specific intramembrane protein structures

called mechanosensors (Gargalionis et al, 2022). These, in turn,

transduce the stimuli to intracellular adaptor proteins, which can

interact with downstream intracellular and nuclear signalling

molecules or the actomyosin cytoskeleton. In the end, these

signalling cascades lead to cell morphology and gene

expression changes, modulating cell behaviour (Marinval and

Chew, 2021). A simplified scheme of these mechanisms is

depicted in Figure 2B.

Integrin proteins are the main mechanosensors that mediate

cell-substrate interactions and are essential for axonal

pathfinding and dendritic spine and synapse formation

(Kajtez et al, 2021). Upon their stimulation, integrins activate

adaptor proteins, such as those of the focal adhesion complex

(FA): vinculin, talin, paxillin, and focal adhesion kinase (FAK).

Interestingly, the recruitment of these proteins to the FA is

majorly regulated by the forces exerted on the integrins. For

example, vinculin recruitment is favoured by applying tensile

forces (Stukel and Willits, 2016). Proteins from the FA link the β

subunit of integrins to the actin cytoskeleton, leading to dynamic

modifications of the cytoskeleton organization and tension

(Eyckmans et al, 2011). They also trigger numerous

intracellular signalling cascades upon phosphorylation of FAK,

such as the Rho/ROCK and the ERK1/2 signalling pathways, in

addition to other cascades involving proteins like Src family

kinases, Rac or Cdc42, which are involved in numerous cell

functions including migration, differentiation and proliferation

(Stukel & Willits, 2016). Cell-substrate interactions can also be

mediated by stretch-activated ion channels, like Piezo-1. These

channels can detect mechanical forces and displacements and

allow the entry of ions into the cell, activating a series of

downstream signalling pathways that will modify cell

behaviour (Rocha et al, 2022). Two examples are Piezo 1 and

Piezo 2 cation channels that can open in response to mechanical

forces. These cues can be generated either inside the cell, as

changes in cell membrane tension, or externally, due to variations

of the microenvironment stiffness (Hall et al, 2021). Interestingly,

Piezo1 has been proven to mediate lineage specification of neural

stem cells (Pathak et al, 2014) and axonal growth patterns (Motz

et al, 2021) in response to substrate stiffness. Furthermore, Piezo

channels allow neurons to sense astrocyte stiffness, thereby

mediating neuron-astrocyte interactions (Motz et al, 2021).

Cells also interact with other neighbouring cells and do so
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mainly through cadherins. These mechanosensory proteins

interact with several adaptor molecules, typically proteins

from the catenin family. As before, adaptor proteins bind to

the cytoskeleton, which is linked to the nuclear membrane,

eventually modifying gene expression. The cytoskeleton is

essential in mediating force transmission and constitutes a

dynamic structure that can modify its organization, allowing

cells to adapt and respond to their surroundings and connect

with other mechanosensing structures (Eyckmans et al, 2011).

Also important are nuclear mechanotransducers, such as YAP

(Yes-associated protein). YAP and its homolog TAZ are key

mediators of the effects of mechanical stimuli on cell behaviour

(Motz et al, 2021). A better understanding of how neural cells

interact with their environment, the molecular players and

signalling pathways that translate mechanical inputs into cell

behaviour is key to designing engineered culture systems that can

steer cell phenotype in the desired direction (e.g., neuronal

differentiation, increased myelination, etc.).

Mimicking the brain
microenvironment in vitro

Mimicking the natural microenvironment in cell culture

systems makes models more physiologically relevant. Therefore,

providing biochemical and geometrical cues comparable to the

natural environment is essential for realistic tissue development

and cell behaviour. During the past two decades, researchers aimed

at the optimal synergy between engineered scaffolds and cells by

testing different biomechanical, biochemical and biophysical cues

that support the cell’s maintenance, function, proliferation, and

differentiation (Batorsky et al, 2005; Bambole and Yakhmi, 2016).

Current in vitro models

Most of the current cell research is being performed using 2D

culture platforms. These are easy to handle, inexpensive, and

FIGURE 2
Overview of relevant cues (A) for neural cells and mechanotransduction pathways (B).
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offer better accessibility for observation and manipulation. In

addition, they offer higher reproducibility and are well suited for

simple comparative functional tests (Duval et al, 2017;

Kapałczyńska et al, 2018), often leading to relatively

homogeneous cultures with few cell types (Sun et al, 2018).

Conversely, 3D models better resemble cellular heterogeneity,

spatial organization and temporal development of neural tissue

(Kajtez et al, 2021). Nevertheless, they are hampered by reduced

reproducibility, extensive culture times and complicated analysis

and manipulation (Pampaloni et al, 2007). Table 1 presents an

overview of the advantages and disadvantages of 2D and 3D

culture systems.

Most of our knowledge of mechanobiological interactions

between neural cells and engineered microenvironments comes

from studies of cells cultured on 2D platforms. These 2D

platforms help us understand basic cellular interactions with a

material but do not resemble the 3D environment cells encounter

in vivo (Stukel and Willits, 2016). Most importantly, there are

differences in how mechanical and topographical cues are sensed

by cells in 2D and 3D environments (Baker and Chen, 2012).

TABLE 1 Overview of 2D vs. 3D in vitro brain models with related advantages (+) and disadvantages (-) (Baker and Chen, 2012; Kapałczyńska et al, 2018; Sun
et al, 2018).

2D neural cell culture 3D neural cell culture

In vivo imitation - Cannot recapitulate 3D natural structure or organization + Can mimic 3D natural structure or organization

- No in vivo-like 3D microenvironment + In vivo-like 3D microenvironment possible

- No niche formation + Niche formation

- Simple 2D neural circuits can be investigated + Complex 3D neural network formation

- Altered morphology + In vivo morphology maintained

- Changes in gene expression + Similar gene expression as in vivo

- Loss of phenotype and polarity + Diverse phenotype and polarity

- Functional maturity after long cultures + Enhanced functional maturity

- Unconstrained spreading and migration in x-y + Spreading and migration partially hindered and in 3D

- Soluble gradients absent + Soluble gradients can be present (e.g. organoids and gel cultures)

Cues - Simple and limited cell-cell and cell-ECM interaction, reduced to 2D + Proper cell-cell and cell-ECM interaction possible in 3D

- Limited Physical and mechanical cues reduced to 2D + Physical and mechanical cues possible in 3D

- Only 2D mechanotransduction + Realistic 3D mechanotransduction

Culture + Fast (culture formation within a few minutes to a few hours) - Slow (culture formation within a few hours to a few days)

+ Reproducible - Lower reproducibility

+ High throughput possible - Low throughput compared to 2D cultures

+ Cheap - Expensive

+ Less laborious - Laborious

+ Simple culture steps, analysis and interpretation - Complex culture steps, analysis and interpretation

+ Simple cell isolation - More complex cell isolation and smaller yield in scaffold-based cultures
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Cells cultured on 2D substrates can deform in the out-of-plane

axis, perpendicular to the surface, and are free of physical or

mechanical constrains. In contrast, cells may be constrained by

3D constructs, which influence cell deformation and how forces

are transmitted to cells, depending on the material’s scale and

mechanical properties (Baker and Chen, 2012).

Cell-material interactions also differ at the integrin level in

2D and 3D cultures. In 2D cultures, adhesions to the substrate are

formed only on one side of the cell (x-y plane), leading to a force

transmission along the cytoskeleton stress fibres located on that

side of the cell. In 3D cultures, these adhesions can be found all

over the cell’s surface, causing forces to convey along the cell’s

midline. This differential spatial distribution of adhesions could

lead to different cellular responses (Baker and Chen, 2012). 2D

platforms also lead to a flattened and altered morphology of cells,

which restricts cell-cell interactions mainly to side-by-side

contact with consequent relevant modifications of gene

expression and network activity (Kajtez et al, 2021).

Furthermore, forces exerted by cells on their surroundings

have different results in 2D and 3D settings, as the adhesion

in 2D cultures is restricted in the x-y plane, while in 3D, the

adhesion is distributed in all directions (Baker and Chen, 2012).

Thereby, traditional 2D culture settings can provide basic

information regarding how cells sense and respond to

different mechanical cues. However, the differences in cell

behaviour in 2D and 3D environments and the fact that the

latter grants a more physiologically relevant representation of the

geometrical and mechanical features of the in vivo cell niche

emphasize the need to investigate how our current

understanding of mechanobiology translates to a 3D settings.

Scaffold-free vs. scaffold-based 3D cell
cultures

3D cell culture techniques can be divided into scaffold-free

and scaffold-based techniques. Scaffold-free techniques (also

referred to as “anchorage-independent technologies”) are

based on de novo formation of 3D cell clusters through self-

aggregation (Langhans, 2018; Accardo et al, 2019; Valdoz et al,

2021). Special culture plates/techniques are used for scaffold-free

cultures, such as hanging drop microplates, ultra-low adhesion

plates, micropatterned plates and magnetic levitation. These

plates promote the formation of spheroids and organoids

(Langhans, 2018). The formed cell clusters can capture the

cell-cell interaction between different cell types and have been

used to perform drug screening tests (Langhans, 2018).

Additionally, they resemble the cells’ physiological conditions

much better than the monolayers regarding both the nutrient

supply and the spatially defined differentiation. However,

culturing these organoids requires extensive optimization of

the culture conditions and has a relatively low reproducibility.

In addition, when the cell cluster becomes too large, the nutrient

supply can become insufficient, resulting in an early necrotic

core, which is detrimental, especially in view of long-term

(weeks/months) cultures (Grebenyuk and Ranga, 2019).

Scaffold-based culture techniques use (simple) mechanical

structures to physically support and guide 3D neural cell growth

and network formation. The structures provide mechanical

support and form a matrix into and onto which the cells are

cultured. As the cells receive cues from the microenvironment,

the physical and chemical properties of the scaffold will influence

the cell’s behaviour, differentiation, migration and proliferation.

Researchers aim to create 3D scaffolds from polymeric

biomaterials that are analogous to the natural ECM (Bambole

and Yakhmi, 2016). The scaffolds can be biologically active and

provide structural and physical support to cells by serving as a

matrix, which allows cells to adhere, proliferate and differentiate,

enabling neo-tissue genesis and natural ECM deposition

(Bambole and Yakhmi, 2016). Engineered scaffolds often

require a coating, such as a protein or peptides, to improve

cell interactions (e.g. cell attachment) and matrix degradation

(Bertucci and Dai, 2018).

Incorporating physical cues within in vitro
models

In vivo cell migration, proliferation and differentiation are

continuously influenced by environmental cues, which must be

considered when replicating the environment for in vitro studies.

The cues can be split into two groups: static cues and dynamic

cues. Figure 2 schematically shows the cues acting on cells

in vitro. By considering both the static and dynamic cues

during the development of cell culture environments, it is

possible to create highly biomimetic microenvironments.

Static cues
The engineered microenvironments’ static cues (Figure 2A)

can be designed and tuned during fabrication. These cues include

substrate stiffness, surface topography, and the (3D) geometry.

The stiffness of the substrate can influence the differentiation of

iPSCs towards different lineages (Macrí-Pellizzeri et al, 2015). In

addition, substrate stiffness affects cell spreading and the shape of

a cell, with higher stiffness generally promoting cell spreading

and lower stiffness leading to more rounded cells (Knothe Tate

et al, 2008; McBride and Knothe Tate, 2008; Petzold and

Gentleman, 2021). Stiffer substrates generally increase the

tension in the cell as the cells cannot deform the matrix. The

cells react to the internal tension by spreading over the substrate

(McBride and Knothe Tate, 2008). With soft substrates, the cells

can deform it and thus do not need to generate large tension

forces. Therefore, they can retain their round shape (Knothe Tate

et al, 2008; Petzold and Gentleman, 2021). Selecting tissue-

specific properties is, therefore, essential in choosing the

matrix stiffness for cell cultures that mimic the in vivo
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environment, resulting in a more realistic cell phenotype and

cytoskeletal organization. For neural studies, this means that a

stiffness of 0.5 kPa would be optimal, as it resembles the stiffness

of the brain tissue (Rehfeldt et al, 2007). However, the surface

topography can alter the cell’s perceived stiffness of its substrate.

For example, cells cultured on high aspect-ratio and bendable

pillars behave similarly to those on soft ECMs (Nikkhah et al,

2012; Petzold and Gentleman, 2021; Sharaf et al, 2022). The

interaction between cells but also between cells and their

environment in vitro can alter the cell phenotype and ECM

structure (Holle et al, 2018). For example, when a cell binds to an

ECM fibre, it transmits a force to the ECM fibre. The matrix can

be rearranged by the cells binding to it and pulling on it. Though,

the resulting tension in the fibre can also be sensed by another cell

at a distance, which shows that the cell-ECM interaction can also

influence cell-cell communication (Holle et al, 2018).

The cells and the components of the ECM can also impose

confinement on the cells, which occurs both in vitro and in vivo.

The cells respond to the physical constraints by altering their

migration, signalling pathways, intracellular cytoskeleton, and

adhesion organization (Paul et al, 2016). The physical

confinement typically causes changes in the cytoskeletal

architecture, such as the alignment of cytoskeletal components

in the direction of cell migration. If a microchannel confines a

cell, actin can accumulate around the cell cortex, and stress fibres

can be suppressed (Paul et al, 2016). Studying the effect of

confinement on cell migration in 2D does not recapitulate the

complex topographies found in the body. Recapitulation of the

key static cues of the in vivo microenvironment is, therefore,

essential to obtain physiological-relevant results.

Dynamic cues
In contrast to the static cues, dynamic cues (Figure 2A) can

be altered during the cell culture. These cues include fluid flow,

(hydro) static pressure and forces on the cell (compression and

tension), and can influence the cell’s fate, mobility, behaviour,

and shape. It was shown that in response to fluid flow, electrical

stimulation and culturing on scaffolds, the mechanotransduction

pathway gets activated, modulating changes in the cytoskeletal

tension and gene activity and subsequently leading to increased

differentiation of neural cells (Grossemy et al, 2021).

Several other studies investigated the effects of dynamic cues

on cell maturation in vitro, even though there are limited

biophysical tools available. For example, by applying

stretching cues (different stretching modes) combined with

micropatterning and microfluidics, neural stem cells showed

increased differentiation towards neurons with enhanced

neurite extension, axon elongation, and neurite alignment

(Chang et al, 2013). Arulmoli et al (Arulmoli et al, 2015)

found that statically stressed membranes increased the

differentiation of neural stem cells and neural progenitor cells

into oligodendrocytes. Magnetic manipulation, another

technique to investigate the effect of stretching and resulting

nano-pulling, promoted neural differentiation, axonal

elongation, sprouting, and neuron maturation (Vincentiis

et al, 2022). In addition, Vincentiis et al (Vincentiis et al,

2022) showed that the nano-pulling stimulation led to a

reorganization of the neural network and remodelling at the

level of synapse density, halving the required time for maturation

of neural precursors into neurons.

Recent bioengineered microfluidic organ-on-chip-based

models investigated the effects of flow-induced shear stress on

iPSCs (Workman and Svendsen, 2020). Here the focus has been

on the blood-brain barrier function, as flow-induced shear stress

can promote ESC differentiation towards hematopoietic and

endothelial cells. In combination with surface patterning, it

was shown that flow-induced shear stress also improved

neuronal differentiation (Jeon et al, 2014). Riehl et al (Riehl

et al, 2015) showed that fluid shear promoted neural cell

migration in the direction of the flow and that this was

proportional to the stress. Their results indicate that focal

adhesion kinase (FAK) and RhoA kinase (ROCK) play an

important role in this process. Kim et al (Kim et al, 2006)

combined mechanical stimuli with micropatterned substrates

by employing a flow chamber to apply shear stress on

micropatterned substrates. This technique could apply

continuous or intermittent shear stress on the cells. They

found that a shear stress of 0.5 Pa resulted in a high degree of

alignment with the microfibers, while the neurite outgrowth was

largest at a shear stress of 0.25 Pa.

The aforementioned cues do not only affect neural

development at the cell level. Organoids are also affected by

cues from their environment. Karzbrun et al (Karzbrun et al,

2018) showed that folding and wrinkling of a lissencephalic

organoid occurred as a result of the strain caused by

compression. They captured the physics behind the folding

phenomenon, indicating that cues should be considered at the

multiscale. In summary, the development of new engineered

scaffolds and chip technologies will help to explore the role of

dynamic cues in advancing brain model systems.

Fabrication techniques and materials
for scaffold-based 3D cell culture

Ideally, 3D scaffolds for cell culture are biocompatible and

have mechanical properties similar to the specific type of natural

tissue (Bambole and Yakhmi, 2016). Several fabrication

techniques have been employed to satisfy these requirements.

Figure 3 shows the large variety of approaches employed to

fabricate scaffolds for 2.5D and 3D cell cultures. The materials

that can be used differ for each technique. In addition, some

techniques have full control over the feature geometry, others

have limited feature resolution (tens of micrometres), while

others enable the fabrication of very complex and accurate

geometries (submicrometric feature size). The detailed
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explanation of the working principle of these techniques goes

beyond the scope of this review, but the basic mechanisms of the

techniques that have been employed for neural cultures will be

summarized.

Chemical synthesis and gelation employ chemical reactions

or the formation of a gel from a system containing monomers

and polymers, respectively (Figure 3A). However, these

techniques have no to poor control over the spatial or

geometrical configuration of the final structure.

Electrospinning is an often-used technique to create micro

and nano fibres for 3D cell culture (Figure 3B). Electrospinning

uses high electric voltages (exceeding tens of kilovolts) to create a

potential difference between a spinneret and a collector (Smith

and Mele, 2021). This results in an electrified polymer jetting

from the tip of the spinneret. As the polymer stretches while

jetting, the fibre’s diameter decreases, resulting in ultra-thin

fibres. By altering the setup, the fibres can be randomly

deposited, have a high degree of alignment, and have varying

porosity and chemical composition. Electrospinning has also

been combined with 3D printing to create multiscale

composite scaffolds (Smith and Mele, 2021). The fibres can

either have random directions or be aligned in a specific

direction.

Lithography and micromachining techniques (Figure 3C)

have been used to create 2.5D scaffolds, patterns and pillars. To

create the structures, a pattern is transferred from a mask to a

photosensitive polymer layer (Hines et al, 2011). According to the

nature of the photopolymer (negative or positive tone), it is

possible to obtain either polymeric 2.5D scaffolds (Accardo

et al, 2018b) or silicon ones (Limongi et al, 2013). Repeating

this 2D process allows various structures to be fabricated in 2.5D or

3D with limited design freedom. The lithography and

micromachining steps are often combined with micro moulding

(Figure 3D), which was recently employed for neural implants

(Vaysse et al, 2015). The negative mould, which is used to transfer

a pattern onto a surface for micro moulding, is often fabricated

using micromachining techniques. Next to lithographic methods,

replication methods and material removal methods can be used to

create the moulds (Yao, 2009). Additive manufacturing techniques

have also been used to create moulds that can then be used to

fabricate larger batches by replication. The main limitation of

micro moulding is that the mould must be released after stamping.

This limits the 3D design freedom considerably.

Chemical (vapour) deposition (CVD, Figure 3E) uses reactive

species that are deposited on a surface. By using masks and

templates, specific areas can be coated with the desired material.

Depending on this material, solid and porous structures can be

created. As the technique is multidirectional, the design freedom

is limited. However, by combining CVD with a template, 3D

structures can be created (template-directed chemical vapour

deposition). Chen et al (Chen et al, 2011) employed this method

to create graphene foams, which are flexible and electrically

conductive. D’Abaco et al employed similar graphene foams

to culture neural cells (derived from ESCs) and proved that

FIGURE 3
Overview of fabrication techniques employed for the realization of neural scaffolds.
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they maintain their viability and that neuronal differentiation is

similar to 2D cultures (D’Abaco et al, 2018).

The bead (self) assembly principle (Figure 3F) employs

particles (with sizes ranging from several nanometres to

hundreds of micrometres in diameter) that assemble on a

surface. The self-assembly process relies on the spontaneous

organization of microbeads on a surface. By rubbing the beads

in a specific direction, an organized pattern of microbeads is

formed on a surface (Kang et al, 2014).

3D printing (Figures 3G, H) experienced a huge increase in

interest over the past decades. Both light-based and extrusion-

based techniques have been employed to create substrates and

niches for cells. 3D printing allows for a high freedom of design

and fast iterations at low cost. The 3D printing technique with the

highest freedom and feature resolution is two-photon

polymerization (2 PP). This technique employs non-linear

photon absorption to cure a photoresist and create a 3D

geometry by scanning through the resin. To achieve this high

resolution, a near-infrared (NIR) femtosecond laser source is

used. At the location where two photons are absorbed, a small

volume (voxel) of photosensitive resist is polymerized. By

scanning the voxel through the photosensitive resist, a 3D

structure can be obtained. Depending on the methods and

materials used, features can be achieved with 100 nm

resolution (Qiu et al, 2020). The high resolution provides a

good level of reproducibility and facilitates the reliability of

cell culture experiments. Koroleva et al employed 2 PP

printing to culture neural cells from iPSCs (Koroleva et al,

2021), which is discussed in more detail in 3D Architectures

Section.

Another technique that has been used to create 3D

microenvironments is bioprinting (Figure 3H). This method

creates 3D structures consisting of biomaterials integrating

cells, and biomolecules (Rider et al, 2018). Bioprinting can be

based on various additive manufacturing techniques such as

extrusion-, inkjet-, and optical-based systems (Rider et al,

2018). These techniques enable the printing of gels at low

temperatures, but have a limited resolution (resolution of tens

to hundreds of micrometres). Both bioprinting (Sharma et al,

2020) and 2 PP printing can be performed with (iPSC) cells

embedded in the resin (Tromayer et al, 2017, 2018; Dobos et al,

2020). Bioprinting iPSCs is challenging as they are sensitive to

environmental parameters (Koch et al, 2018). Koch et al showed

that iPSC cells died in some printing materials regularly used for

printing other cell types. However, they demonstrated that laser

bioprinting of iPSCs is possible and that the cells maintain their

differentiation potential. An extensive review of 3D printing

techniques for engineered polymer and hydrogel

microenvironments has been performed by Fan et al (Fan

et al, 2019).

Salt leaching (Figure 3I) can be used to fabricate random

porous scaffolds. One of the possible configurations for this

technique employs a polymer mixed with salt crystals. After

melting the polymer mixed with salt into a mould, the salt can be

removed by submerging it in deionised water. The water then

leaches out the salt, leaving a porous geometry (Cho et al, 2014).

The limiting factor is the random distribution of salt crystals.

This results in a random distribution of pores, which can be

favourable depending on the type of research. However, it can

affect the reproducibility of the experiment.

Techniques to measure cell
mechanical properties

Besides fabricating biomimetic scaffolds to foster the creation

of physiologically relevant neural networks, it is also important to

develop approaches enabling the measurement of cellular forces,

thus unveiling neuromechanobiology properties. Themechanical

properties of cells can be studied in 2D and 3D cell culture

platforms. Figure 4 shows various techniques that can be applied

for studying the mechanical properties of cells and their response

to different material properties of the substrate or (artificial)

ECM. Two main groups can be distinguished: direct and indirect

mechanical property measurements. The direct measurement

techniques probe the cell itself to determine its mechanical

properties. The indirect measurement techniques, on the other

hand, use the deformation of the substrate or a structure, caused

by the cell, to determine its mechanical properties. These

techniques can be used to determine the response of the cell

to various cues, such as substrate stiffness.

Direct mechanical property
measurements

Among the direct measurement techniques, another

subdivision can be made, namely: contact- and non-contact-

based methods. The contact-based methods, such as atomic force

microscopy, optical and magnetic tweezers, and

nanoindentation, apply forces on the cell. The forces, in

combination with the deformation and geometry of the device

that indents/interacts the cell, can be used to calculate its

mechanical properties of cells. The non-contact-based method,

such as Brillouin microscopy, does not apply forces on the cell.

All these techniques can be used to characterize both the cells and

the substrates (Narasimhan et al, 2020).

Contact based methods
Atomic force microscopy (AFM) employs the deflection of a

sharp-tipped cantilever to probe the mechanical properties of a

cell (Figure 4A). The cantilever tip scans the sample’s surface to

extract 3D topographic information and Young’s moduli of the

surface (Jazvinšcak Jembrek et al, 2015). AFM techniques have

also been combined with hollow microfluidic cantilevers called

FluidFM (Meister et al, 2009), which can, for example, be
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employed to determine the adhesion forces between a cell and the

substrate. AFM techniques have been used to study the

nanostructural, morphology and biomechanical properties of

neurons (Jazvinšcak Jembrek et al, 2015), such as nanoscopic

changes in the plasma membrane caused by oxidative damage.

This oxidative damage is a hallmark of some neurodegenerative

diseases (Uttara et al, 2009; Jazvinšcak Jembrek et al, 2015). AFM

measurements have also expanded our understanding of the

processes occurring in neurodegenerative diseases and showed

the (mechanical) response of neurons to different drugs and

neurotoxins (Jazvinšcak Jembrek et al, 2015). Additionally, AFM

has been used to correlate the elastic behaviour to cell migration

and division (Jazvinšcak Jembrek et al, 2015).

Two other methods that can be used to determine the

mechanical properties of neurons are optical and magnetic

tweezers (Chen et al, 2016; Lenton et al, 2020). Optical

tweezers (Figure 4B) use light to trap micrometric particles.

The particles become trapped at the beam focus if the optical

forces are larger than the other acting forces. This technique has

been used to trap silica beads to deform glial cell surfaces and

measure their stiffness and elasticity (Dagro et al, 2019). The

main advantage of this technique is that it can be used in a 3D

scaffold environment and measure forces in a 3D space (Lenton

et al, 2020). However, forces that can be applied are limited to the

piconewton range (Marti and Hübner, 2010).

Magnetic tweezers apply a similar concept as optical tweezers

but use a gradient of the magnetic field to trap a magnetic bead

(Chen et al, 2016; Sarkar and Rybenkov, 2016). The bead can

then be used to indent a neural cell and determine themechanical

properties of the cells (Chen et al, 2016). Magnetic tweezers track

the position of magnetic beads in a 3D space and perform better

in the presence of a homogeneous field (Sarkar and Rybenkov,

2016).

Nanoindentation (Figure 4C) can be performed using either

a force sensor or a cantilever linked to an interferometer. The

former can employ micro-electro-mechanical systems (MEMS)

technology to fabricate highly sensitive load cells (measuring the

capacitance change of interdigitated electrodes) to measure the

forces during nano-indentation (e.g. Femtotools, Switzerland).

The interferometer-based system, such as the Piuma (Optics11,

Netherlands), measures the deflection of a cantilever with a

spherical glass tip. If the cantilever deflects, the interference

pattern changes. The measured deflection, in combination

with the known displacement of the probe and the

characteristics of the cantilever and tip, can then be used to

calculate the Young’s modulus of a material. The indentation

depth of this system can range from hundreds of nanometres to

several micrometres. The main difference with AFM systems is

that an AFM is based on the tip-surface interactions and has a

much higher lateral resolution (can measure in the piconewton

FIGURE 4
Overview of the techniques employed to measure cell mechanical properties.
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range). Next to measuring the Young’s modulus, it can also map

the surface topography. However, the nanoindenter setups

typically require less sample preparation, less alignment, can

apply larger forces and can provide fast measurements (Kong

et al, 2021).

Non-contact-based methods
Non-contact-based methods do not use any solid parts that

come into contact with the cells. An example is (confocal)

Brillouin optical microscopy (see Figure 4D). Brillouin

microscopy employs Brillouin scattering of a monochromatic

laser light arising from the interaction of light with spontaneous,

thermally induced density fluctuations in a cell (Prevedel et al,

2019; Zhang and Scarcelli, 2021). The interaction between the

incident laser light and the acoustic waves introduces a frequency

shift (Brillouin shift) to the scattered radiation due to the Doppler

effect (Prevedel et al, 2019). As the propagation of the acoustic

wave is dependent on the properties of the material, it is possible

to deduce these properties by analysing the frequency shift

(Prevedel et al, 2019; Zhang and Scarcelli, 2021).

Indirect force measurements

The indirect force measurement techniques are used to

characterize the cell-structure interaction (Narasimhan et al,

2020). Figure 4 shows three different methods used to

determine the interaction between the cells, the substrate or

the surroundings. All these techniques measure the deformation

of the environment, with a known stiffness, for determining the

properties of the cell.

Structure deformation of 3D scaffolds has been used to

determine the interaction of cells with elastic 3D structures

(Klein et al, 2010). An illustration of this principle is shown

in Figure 4E. By printing structures with beams featuring a

known cross-section and Young’s modulus, the forces of the

cell on the structure can be determined measuring the deflection

of the beams. The latter can be quantified by employing analytical

and numerical tools. The structures of Klein et al were printed

using two-photon polymerization, which allows for the

fabrication of accurate beam sizes (Klein et al, 2010). The

deformation of the structure can be measured in a stressed

state (with cells) and compared to the relaxed state (without

cells) either with optical tools (e.g. confocal microscope) or by

using a scanning electron microscope (SEM). To measure the

deflection of the substrate, a comparison needs to be made

between the relaxed state and the stressed state (without and

with cells, respectively).

Similarly, pillar deformation (see Figure 4F) employs the

deformation of pillars on a substrate to determine the forces of

the cell on the underlying pillars (Xiao et al, 2018). The well-

defined shape of the pillars allows for easy computation of the

forces applied by the cells. However, this technique cannot be

used for 3D cell force measurements as the pillars are only 2.5D,

and the deflections are in 2D. The forces on each pillar can be

calculated bymapping the deformation of an array of pillars. This

requires the pillars to have a known aspect ratio and Young’s

modulus. Again, analytical and numerical methods can be

employed to predict and verify the results.

Traction force microscopy (see Figure 4G) on the other hand,

is based on the use of fluorescent beads inside an elastic substrate

to assess the forces that cells apply to the ECM (Narasimhan et al,

2020). The cells can either grow on the substrate (2D force

measurement) or grow in the substrate (3D force measurement).

The position of the fluorescent beads compared to reference

points can then be used to calculate the displacement and, thus,

the forces of the cells. Optical fluorescence imaging techniques

can be employed for the analysis of the samples.

Applications of engineered
microenvironments in
neuromechanobiology

Understanding the cellular mechanisms of neuronal and glial

cells and their role in the physiology and pathophysiology of the

brain has represented a major challenge due to the lack of

appropriate models/platforms to study mechanobiological

processes. Nevertheless, remarkable progress has been

achieved in the development of in vitro engineering cell

culture systems, allowing a better understanding of

neuromechanobiology. These platforms offer the possibility to

tune the stiffness, viscoelasticity and topography of the culture

environment, and to apply external forces to cells and examine

their contribution to cell behaviours such as motility,

proliferation, adhesion and proliferation (Marinval and Chew,

2021). In this section, we will discuss several research studies that

illustrate the influence of stiffness, viscoelasticity and topography

of in vitro engineered culture systems along with mechanical

stresses on neuronal and glial cell phenotypes. These studies are

summarized in Supplementary Tables S1, S2 and Figures 5–7.

Topography of engineered
microenvironments

The response of neural cells to surface topography has been

extensively studied. Numerous in vitro studies have shown that

topographical cues strongly influence cell fate, morphology,

migration and function (Leclech and Villard, 2020). Patterned

surface substrates can be classified into three large groups:

continuous, discontinuous, and random topographies

(Figure 5A). Grooves, ridges, gratings, and fibres can be

classified as continuous features, while pillars, cones, holes,

and posts constitute to discontinuous patterns. Lastly, micro

and nano roughness comprise random topographies.
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Continuous and discontinuous patterns are further classified

based on their directionality in anisotropic and isotropic

features. The former provides cues along a single axis. In

contrast, isotropic patterned substrates provide cues along

multiple axes. For this reason, they can also be named

unidirectional or multidirectional features, respectively

(Leclech and Villard, 2020). Along with patterned substrates,

fibrous scaffolds and 3D structures are also used (Figures 5B, C).

There is already an extensive body of literature reviewing the

effect of surface topography on neural cell differentiation and

phenotype. Therefore, in this review, we will focus on the most

relevant findings regarding this topic. For greater detail, the

reader is referred to previous reviews (Simitzi et al, 2018;

Eftekhari et al, 2020; Leclech and Villard, 2020; Sirkkunan

et al, 2021). The results described in this section are

summarized in Supplementary Table S1.

Continuous topographies
Several studies agree on the role of continuous anisotropic

cues promoting neuronal over astroglial cell fate, either in the

absence or presence of differentiation media. This effect was

observed for both nano and micro-gratings, although it was more

remarkable on nano-topographies (Ankam et al, 2013) and

seems to be regulated by integrin-mediated activation of focal

adhesion kinase. Human mesenchymal cells upregulated

neuronal marker expression when cultured on nanogratings

(250 nm), an effect that was abolished when using Rho or

actomyosin contractility inhibitors. Remarkably, focal

adhesions were significantly smaller and more elongated on

grooves in the nanometric range than those on unpatterned

substrates (Teo et al, 2013). In addition to an increase in neuronal

cell fate, an increase in oligodendrocyte differentiation was

observed on linear and circular micro-grooves (Qi et al, 2013).

Nevertheless, the physical dimensions of grooves and ridges

(depth, spacing and width) proved to be important for the

morphology, branching and alignment of neural cells. Primary

human neural progenitors cultured on deep (25 μm) gratings

aligned along the topography but showed a different neurite

response in terms of alignment and branching depending on the

specific groove width. Narrow (5–10 μm) grooves constrain cells

FIGURE 5
Representative SEM pictures of different topographies employed for neuromechanobiological studies (adapted end reproduced with
permission from the mentioned references). (A) Patterned 2.5 substrates. (I) Continuous topographies (Fozdar et al, 2010), (II) Discontinuous
topographies (Limongi et al, 2013; Sharaf et al, 2022) and (III) Random topographies (Cesca et al, 2014). (B) 3D architectures. (I) 3D random porous
architectures (a) Li et al, 2013; (b) Sandhurst et al, 2022 (II) 3D ordered architectures (a) Harberts et al, 2020; (b) Sharaf et al, 2022; (c) Agrawal
et al, 2021; (d) Turunen et al, 2017; (e) Left (phase contrast image): Huang et al, 2021 and middle and right: Koroleva et al, 2021. (C). Fibrous scaffolds
(Czeisler et al, 2016).
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leading to unfavourable conditions for neuronal differentiation

and fewer neurites, which are highly aligned. In contrast,

culturing cells on wider (20–60 μm) grooves of the same

depth resulted in higher neurite branching but less alignment,

being comparable to that of cells cultured on flat surfaces (Béduer

et al, 2012). Alternatively, narrower (300 nm and 2 μm) and

shallow (450 nm) grooves (Figure 5AI) also favoured a more

perpendicular alignment of neurons (Fozdar et al, 2010). This last

type of guidance offers neurites multiple points of contact,

similar to the guidance offered by continuous multidirectional

and discontinuous topographies (Leclech and Villard, 2020).

These studies indicate that neuronal phenotypes are favoured

by topographies that present a clear directionality, such as

grooves or ridges (Figure 6).

Biomimetic nanofibrous scaffolds, resembling the

architecture of the natural extracellular matrix, have also been

employed for many in vitro studies. Mouse neural stem cells

cultured on aligned and randomly oriented electrospun

nanofibers (Ø = 735 nm) showed an increase in cell viability

and proliferation compared to unpatterned surfaces of the same

material and glass coverslips (Hajiali et al, 2018). Moreover, these

cells migrated following the fibres at a speed that was maximized

in the direction of these cues, leading to a faster organization of

3D cellular networks. Additionally, they found an increased

expression of neuronal markers and enhanced activity on

neural progenitors cultured on fibrous scaffolds, indicating a

greater neuronal differentiation (Hajiali et al, 2018).

Interestingly, other studies showed that neural stem cells

respond differently to random or aligned fibre organization.

Culturing rodent adult neural stem cells on aligned nanofibers

significantly enhances neuronal fate specification over randomly

oriented fibres. Here, the relevance of fibre size was also

emphasized, with the highest portion of neuronal

differentiation found at 480 nm (Lim et al, 2010). Fiber-

diameter dependent effects might be derived from different

interaction mechanisms between cells and scaffold. Rodent

neurons cultured on aligned ultrathin nanofibers (60 nm)

expressed β1-integrin focal adhesions throughout the entire

cell surface (cell soma and neurites), while those growing on

aligned submicron-fibres (300 nm) formed these structures only

on the cell soma (Mori et al, 2021). Czeisler et al showed how

fibres (Figure 5C) with dimensions similar to radial glia (Ø =

1 μm) and small blood vessels (Ø = 10 μm), mimicking

anatomical features that neural cells encounter during

development, resulted in differential responses from rodent

neural stem cells. Neurospheres plated on large fibers coated

with Poly-D-lysine barely interacted with fibres and preserved a

spherical morphology, while those plated onto small fibres with

the same coating extended cellular processes showing a

migratory morphology. Interestingly, they also observed that

FIGURE 6
Overview of the effects induced by different features of engineered microenvironments on neuronal cells.
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Rho inhibition reverses the anti-migratory effect of large fibres

(Czeisler et al, 2016). Glial phenotypes seem to be affected by

fibrous topographies as well. Rodent neural progenitor cells

cultured on a commercial fibrous 3D scaffold composed of

randomly distributed microfibers (Ø = 1,7 μm; mean inter

distance = 10 μm) showed increased differentiation towards

neurons, astrocytes and oligodendrocytes and increased

promyelinating phenotype of the latter, compared to cells

cultured on glass (Flagelli et al, 2021). Based on these results,

it seems that fibres, similarly to grooves or ridges, offer

directionality to neural stem cells, favouring neuronal

differentiation. Interestingly, fibres also seem to promote glial

differentiation in contrast to grooves o ridges (Figure 7).

Discontinuous topographies
Discontinuous topographies, such as pillars and wells with a

size in the nano and micrometre range, have been proven to

promote astrocyte differentiation while reducing neuronal and

oligodendroglial fates (Ankam et al, 2013). Here again, the

physical dimensions of discontinuous features, such as shape

and distribution, are key to understanding the effect of these

structures on cell phenotype. The results of this study

demonstrate that discontinuous topographies mainly promote

astroglia differentiation. However, their precise dimensions,

number, and distribution are relevant to this effect, and

depending on them, discontinuous topographies might

promote neuronal differentiation as well (Figures 6, 7). For

example, Park et al (Park et al, 2016) demonstrated that

homogenously distributed micropillar arrays promoted neurite

extension in several directions, while if micropillars are spaced so

that they line up in parallel rows, a rather unidirectional guidance

of neurite outgrowth was observed. Another relevant aspect to

consider is the spacing between these features: sparse arrays of

pillars allow neurites to grow between them, while on dense

FIGURE 7
Overview of the effects induced by different features of engineered microenvironments on glial cells.

Frontiers in Bioengineering and Biotechnology frontiersin.org16

Castillo Ransanz et al. 10.3389/fbioe.2022.1096054

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1096054


arrays, cells and their neurites will navigate on top of the

structure (Leclech and Villard, 2020). In fact, rodent neural

stem cells cultured on dense nanopillar arrays grew and

extended their neurites over these structures. Notably, neurite

outgrowth did not show any directionality, but neuronal

differentiation was promoted on nanopillar arrays over

control flat surfaces (Lee et al, 2020). Limongi et al (Limongi

et al, 2013) showed that neurons grown on pillars with

nanopattered sidewalls displayed a higher survival rate

compared to standard cultures and that they developed

mature networks with physiological excitability (Figure 5AII,

top). Lastly, the microglia phenotype seems also to be modulated

by discontinuous topographies. Sharaf et al demonstrated that

primary primate microglia displayed an increased ramified

resting phenotype when cultured on micropillars arrays

(Figure 5AII, bottom) when compared to stiff, flat surfaces

(Sharaf et al, 2022).

Random topographies
Little research has been conducted to study the effect of

random topographies on neural fate and behaviour. Random

topographies are stochastic surfaces defined by roughness

parameters (Rq) (Simitzi et al, 2018). Differentiation of human

iPSCs towards a neuronal fate was promoted on intermediate

micro-roughness surfaces (Rq = 6 μm), compared to flat (Rq =

0.3 μm) or more rough (Rq = 38 μm) surfaces (Li et al, 2016).

Human stem cells are also sensitive to nanoscale roughness

surfaces: smooth surfaces (Rq = 1 nm) favoured adhesion and

self-renewal of human ESCs, while rough surfaces (Rq = 70 and

150 nm) promoted their spontaneous differentiation. These

events were linked to a differential distribution of focal

adhesions, which were observed on the periphery of cells on

smooth surfaces and throughout the complete cell spreading area

on patterns creating a nano-roughness (Chen et al, 2012). The

involvement of focal adhesions in nano-roughness surfaces-

mediated neural differentiation was also demonstrated by

Chen et al They observed that ultra-nanocrystalline diamond

sheets induced the spontaneous differentiation of rodent neural

stem cells into neurons, astrocytes and oligodendrocytes, an

effect that was abolished after blocking integrin β1 (Chen

et al, 2010). Cesca et al (Cesca et al, 2014) showed that

randomly nanopatterned 3D poly-ε-caprolactone (PCL) film

with poly-D-lysine coating improves the differentiation of

neurons compared to flat PCL films (Figure 5AIII).

Lastly, stretch-activated cation channels like Piezo-1 have

also proved to be relevant for nano-roughness mechanosensing,

as shown by Blumenthal et al (Blumenthal et al, 2014). They

mimicked random ECM nanoroughness using an assembly of

monodispersed silica colloids of increasing size (Rq from 12 to

80 nm). Neuronal morphology and function of PC12 cells, as well

as neuronal linage commitment of rodent neural stem cells, were

favoured at a surface roughness of Rq = 32 μm; while the

interaction between primary rodent neurons and astrocytes

was promoted on roughness higher and lower than 32 μm.

Notably, all these effects were abolished after the inhibition of

Piezo-1 (Blumenthal et al, 2014) (Figures 6, 7). Simitzi et al

(Simitzi et al, 2015) found that low and intermediate rough

microcone surfaces supported PC12 cell differentiation, whereas

highly rough ones (large distances between microcones) did not.

This highlights the relevance of surface roughness optimization.

In conclusion, random topographies can promote both

neuronal and glial fates. Their specific effect could depend on

the degree of roughness of the surface, but further studies are

needed to evaluate this.

3D architectures
More complex 3D architectures, mainly porous scaffolds,

have been employed to study the interaction of neural cells with

their physical environment. 3D graphene porous scaffolds

(Figure 5BIa) promoted the proliferation and differentiation of

rodent neural stem cells towards neurons and astrocytes, while

no significant difference in oligodendrocyte differentiation was

observed when compared to cells cultured on 2D graphene films

(Li et al, 2013). Similarly, Guo et al (Guo et al, 2021) cultured

rodent neural stem cells on 3D graphene porous scaffolds

embedded in a cellulose polymer. Notably, they observed an

enhanced proliferation when these cells were cultured in

proliferation media on graphene-cellulose scaffolds, compared

to graphene scaffolds only. They also observed an increase in

neuronal differentiation when cultured in differentiation

conditions on graphene-cellulose scaffolds. Interestingly this

was accompanied by a reduced expression of focal adhesion

proteins mRNA on these scaffolds, compared with analogous

structures without cellulose (Guo et al, 2021). Likewise,

microspheres scaffolds (Figure 5BIb) have been employed to

culture human iPSC-derived neural progenitor cells and were

found to promote both neuronal and glial differentiation

(Sandhurst et al, 2022). Silk fibroid-based biomaterials also

present an opportunity for in vitro 3D neural cultures. 3D

neuronal networks were achieved using a doughnut-shaped

porous silk sponge, where neuronal projections grew within a

collagen-filled central region (Chwalek et al, 2015). Therefore,

random 3D structures seem to promote neuronal and glial

differentiation equally (Figures 6, 7).

In contrast to these random, porous microstructures,

engineers have designed ordered structures that are highly

reproducible. Using direct laser writing by two-photon

polymerization, Fendler et al (Fendler et al, 2019) fabricated a

circuit of micro towers connected through free-standing

microtubes, resembling the configuration of myelin sheets

with areas of high and low confinement alternatively. They

were able to guide neurite outgrowth of cultured primary

rodent neuronal cells along established paths on the scaffolds,

building tailor-made neuronal networks. Furthermore, they

showed that these cells display electrophysiological activities

similar to those cultured on control substrates (Fendler et al,
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2019). Similarly, Harberts et al used a comparable scaffold

(Figure 5BIIa) to culture human iPSC-derived neurons,

observing guided neurite outgrowth and neuronal

electrophysiological activity as well (Harberts et al, 2020,

2021). Huang et al (Huang et al, 2021) also created neural

networks with the aid of ordered scaffolds. They seeded

human iPSC-derived neural progenitors and human

endothelial cells in a honeycomb micro-frame (Figure 5BIIe,

left) covered with gelatin microfibers and observed the formation

of interconnected 3D neural clusters with high expression of

neuronal, astrocytic and synaptic markers that displayed spatially

correlated neuronal activity (Huang et al, 2021). Honeycomb-

based scaffolds (Figure 5BIIe, middle and right) were also used by

Koroleva et al (Koroleva et al, 2021), who created complex

neuron-glia networks containing neurons of all six cortical

layers, different types of interneurons and astrocytes derived

from human iPSCs. These networks were viable for long periods

of time, in contrast to their 2D counterparts, and presented

spontaneous neuronal activity. Likewise, Turunen et al (Turunen

et al, 2017) built tubular microtowers that supported neuronal

network formation and neurite orientation of human iPSC-

derived neurons (Figure 5BIId). Guided neurite outgrowth

was also observed on primary rodent neurons cultured on 3D

nanogrids (Agrawal et al, 2021). Finally, 3D structures have also

been employed to study the phenotype of primary primate

microglial cells. Sharaf et al (Sharaf et al, 2022) observed that

microglia presented various morphologies when cultured on 3D

cages (Figure 5BIIb) and the colonization of the cages was more

homogeneous in the presence of nano and micropillars

decoration. In summary, the easy tuning of their geometrical

features has proved the versatility of designed ordered 3D

scaffolds. These structures have shown to be able to steer

in vitro neuronal circuits and promote the maturation of

neuron-astrocyte networks (Figures 6, 7). Nevertheless, further

work is needed to understand their effect on other glial cell types.

Ultimately, the combination of physical dimensions of each

scaffold might initiate specific downstream signalling pathways

and regulate cell phenotype in different ways. Consequently,

comparisons of different studies need to consider the specific

physical dimensions of apparently similar topographies since

these can be key for explaining the differences in cell behaviour. It

is also worth mentioning that different topographies may have

distinct effects on the initial lineage commitment and subsequent

maturation stages of neural cells. Micro-grating surfaces showed

to be favourable for the initial neuronal lineage commitment of

human iPSCs, while micropillar arrays promoted a greater

branching complexity and neuronal activity, being beneficial

for later maturation stages (Tan et al, 2018). In line with the

consecutive application of topographies, the mechanical memory

of cells must also be considered. This property allows cells to

store information about their past mechanical environment

(Kanoldt et al, 2019). The mechanical memory of neural cells

is illustrated by the preservation of the neuronal morphology and

functional phenotype of human neural stem cells cultured on

patterned substrates and transferred to a flat surface (Yang et al,

2014). Therefore, when examining the interaction between cells

and the scaffold’s topographical features, it is essential to

consider their specific combination of shapes, dimensions and

distribution and the particular stage of differentiation or

maturation that neural cells are at.

Mechanical properties of engineered
microenvironments

Stiffness
As mentioned before, the stiffness of cells and their

environment are major regulators of cell behaviour (Marinval

and Chew, 2021). In fact, substrate stiffness acts as an instructive

cue for lineage commitment. Keung et al (Keung et al, 2012)

cultured human ESCs and iPSCs in polyacrylamide gels of

different stiffness and found that a higher proportion of cells

differentiated towards a neuroectodermal and neuronal lineage

when cultured on substrates with stiffness values similar to those

of the brain (100 and 700 Pa). These results are in line with other

work performed on human stem cells. Human ESCs were found

to differentiate into neurons in polyacrylamide gels of 700 Pa in

the presence of soluble factors that promote a pluripotent cell

state. Neuronal differentiation was, therefore, mediated

exclusively by mechanical cues, and it was linked to a

decrease in the polymerization of F-actin and translocation of

YAP to the cytoplasm (Musah et al, 2014). Similarly, human

ESCs cultured on PDMS substrates showed increased neuronal

differentiation on compliant surfaces. Again, YAP cytoplasmic

location and depolymerization of the cell actin cytoskeleton were

linked to neuronal differentiation. Furthermore, this study

showed that the Hippo-pathway mediated YAP location.

Additionally, they found evidence of mechanoregulation of

neural subtypes since the expression of anterior and posterior

patterning genes was responsive to varying stiffness (Sun et al,

2014). Studies on rodent cells support these findings and link

other mechanotransducer molecules to stiffness-mediated cell

fate decisions, such as β1 integrin (Du et al, 2011), the RhoA

protein and CDC42 (Keung et al, 2011) (Figure 6). These studies

also identified substrate stiffness as a modulator of astrocytic

differentiation, with stiffer substrates promoting astrocytic

differentiation and survival (Saha et al, 2008; Keung et al,

2012). The stretch-activated ion channel Piezo 1 has also been

linked to cell fate decisions. On the other hand, primary human

neural progenitor cells (NPCs) cultured on stiff silicone gels were

found to promote differentiation into neurons more than softer

substrates. Cells cultured on stiff substrates displayed a higher

Piezo 1 activity and nuclear location of YAP. Interestingly,

pharmacological or genetic inhibition of Piezo 1 resulted in

increased astrocytic differentiation (Pathak et al, 2014). These

results oppose the observations of the abovementioned studies,
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where neuronal differentiation was promoted on compliant

substrates. Differentiation of neural stem cells into

oligodendrocytes also seems to be related to substrate stiffness.

Rodent primary oligodendrocyte precursor cells (OPCs) culture

on polyacrylamide gels differentiated into mature

oligodendrocytes on stiffer substrates. Notably, OPCs stiffen

during differentiation, regardless of substrate stiffness

(Jagielska et al, 2012). These cells showed the same response

when cultured on fibrous substrates of different stiffness,

differentiating into mature oligodendrocytes with increased

intrinsic fibre stiffness. It is worth mentioning that YAP was

not involved in oligodendrocyte differentiation (Ong et al, 2020).

Contrary to these results, other studies found soft substrates to

promote oligodendrocyte differentiation. They also highlighted

the potential role of YAP in oligodendrocyte differentiation, as

this protein is mainly located in the nucleus when cells are

cultured on stiff substrates (Lourenço et al, 2016; Urbanski

et al, 2016). Lastly, Sharaf et al (Sharaf et al, 2022) observed

that microglia morphology was affected by the effective shear

module of pillar-arrays, being the morphology of these cells more

ramified when cultured on low effective shear stress modulus

surfaces (Figure 7).

Mechanical cues are known not only to modulate cell

differentiation but also cell function and morphology. Human

iPSC (hiPSC)-derived neural stem cells cultured on polyethylene

glycol (PEG) hydrogels extend longer neurites in softer substrates,

but no discrepancies were found in the expression of neuronal

differentiation markers across stiffness (Mosley et al, 2017).

Remarkably, specific subtypes of neurons respond differently to

substrate stiffness. While hiPSC-derived forebrain neurons prefer

softer substrates to extend their neurites, hiPSC-derived motor

neurons do it preferentially in stiffer substrates. For the latter, this

behaviour was linked to increased activity of RhoA, myosin and

FAK proteins (Nichol IV et al, 2019). Neuronal activity is also

regulated by this mechanical cue. Human ESC displayed

electrophysiological activities comparable to those of primary

neurons in vivo when cultured on soft PDMS substrates (Sun

et al, 2014). Similarly, human ESCs cultured on soft

polyacrylamide gels showed spontaneous postsynaptic currents

and action potentials earlier than those cultured by standard

protocols (Musah et al, 2014) (Figure 6).

Substrate stiffness can also influence the morphology and

reactive state of astrocytes. Human astrocytes exhibit an

extended morphology with increased substrate stiffness, along

with increased traction, strain energy and intracellular stress

(Bizanti et al, 2021). These results are in accordance with

observations on rodent astrocytes. The latter also displayed an

extended and hypertrophic morphology on stiff substrates, where

they also upregulated the expression of inflammatory genes and

proteins. Higher expression and nuclear localization of YAP were

found in astrocytes cultured on stiff substrates. Thus, YAP was

hypothesized as the mediator between substrate stiffness and

astrocytic activation (Moshayedi et al, 2014; Hu et al, 2021).

Moshayedi et al also observed a comparable performance on rat

primary microglia cultured on polyacrylamide gels: these cells

upregulated their inflammatory phenotype on stiff substrates. In

line with these findings, rat primary microglia presented a round

morphology and upregulated the expression of anti-

inflammatory makers when culture on compliant substrates

via the activation of stretch-dependent chloride channels

(Blaschke et al, 2020). Remarkably, rat primary microglia

migrate preferentially towards stiff substrates and exert forces

on the substrate that increase with substrate stiffness (Bollmann

et al, 2015). Finally, hiPSC-derived oligodendrocytes displayed

increased migration with increased stiffness (Espinosa-Hoyos

et al, 2020). The myelinating capacity of rat primary OPC was

also found to be modulated by substrate stiffness, decreasing on

stiff substrates (Ong et al, 2020) (Figure 7). The results described

in this section are summarized in Supplementary Table S2.

The variations between the reported effects of substrate

compliance on cell fate, morphology and function among

different studies might be due to differences in cell culture

materials (substrate composition, tested range of stiffness, cell

culture media) and the cells employed (human or rodent origin,

maturation stage). A better understanding of the molecular players

and pathways involved in stiffnessmechanotransduction on different

brain cell types might help to elucidate these disagreements.

Viscosity
The effect of substrate viscosity on the behaviour of brain

cells is largely unexplored, especially compared to substrate

stiffness and topography. Chen et al (Chen et al, 2021)

cultured rat neuronal lineage cells on hyaluronan hydrogels

with different relaxation times. Enhanced neurogenesis and

increased axonal length were observed when neuronal cells

were cultured on substrates with shorter relaxation times.

These changes were related to larger FAs, decreased Piezo-1

expression and cytoplasmic location of YAP (Chen et al, 2021)

(Figure 6). Similarly, the expression of GFAP of primary human

fetal-derived astrocytes cultured on collagen/hyaluronic acid

hydrogels was strongly correlated with the gel’s relaxation rate

(Placone et al, 2015) (Figure 7). The remarkable lack of literature

on this topic points out the opportunity for research in this field

that will bring us closer to understanding brain cells’ interaction

with their biophysical microenvironment. A summary of these

studies can be found in Supplementary Table S2.

Mechanical stress
Applied mechanical forces have been demonstrated to

influence neuronal and glial cell behaviour. Makhija et al

cultured rat OPCs on PDMS elastomeric plates and applied

uniaxial strain to these cells. They demonstrated that

mechanical strain decreased biophysical markers of

oligodendrocyte differentiation, such as nuclear fluctuations

and cell migration, along with increased expression of tubulin,

which is also related to OPC differentiation (Makhija et al, 2018).
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The uniaxial strain was also proved to induce nuclear localization of

YAP as well as assembly of focal adhesions on rat OPC cultured on

silicone elastomeric plates. YAP was not related, in this case, to

oligodendrocyte differentiation. The same authors tested the effect

of shear stress on rat OPC and observed a decrease in the

oligodendrocyte primary process mediated by YAP (Shimizu

et al, 2017). Similarly, Arulmoli et al (Arulmoli et al, 2015)

applied static stress to rodent neural progenitor cells plated on

rubber membranes coated with laminin and observed a reduced

oligodendrocytic differentiationmediated by integrin binding to the

culture surface. Rat astrocytes are also susceptible to mechanical

stresses. Pérez et al (Pérez et al, 2021) used a pull-up traction assay

based on magnetic beads coated with integrin-ligand proteins. The

application of traction forces on astrocytes led to an increase in

integrin surface expression, focal adhesions and stress fibres. They

also found that the rearrangement of the cytoskeleton of astrocytes

was able to generate traction forces on the substrate fromwithin the

cell, using integrins as mediators. Likewise, Li et al (Li et al, 2022)

applied biaxial stretch to primary rodent astrocytes and observed

changes in protein expression and signalling pathways thatmight be

associated with astrocyte activation (Figure 7). Furthermore, the

uniaxial strain was found to modulate the mechanical properties

and behaviour of hiPSC-derived motor neurons. These cells were

subject to strain forces on a PDMS stretching device, inducing the

fluidization of cell membranes as well as a decrease in spontaneous

neuronal activity (Bianchi et al, 2019). Conversely, Chang et al

(Chang et al, 2013) observed that uniaxial strain increases neuronal

differentiation and maturation of rat neural stem cells, along with

the alignment of their neurites on a PDMS stretching device.

Similarly, PC12 cells reoriented themselves to the perpendicular

direction of the applied stretch forces (Lin et al, 2020). Interestingly,

Minegishi et al found that traction forces on the growth cone of

primary rodent neurons induce the advance of this leading process,

which was mediated by the axonal clutch molecule Shootin1b

(Minegishi et al, 2018).

Lastly, the uniaxial strain was found to stimulate rapid

amyloidogenic processing of the amyloid precursor protein on

human iPSC-derived neurons form cognitively unimpaired

individuals (Chaves et al, 2021) (Figure 6). The results of these

studies highlight mechanical forces imposed on neural cells as

significant modulators of their behaviour. Notably, many of these

studies focus on oligodendroglia cells, while the effect of

mechanical stresses on neurons, astrocytes and microglia have

been studied to a lesser extent. Importantly, the majority of these

conclusions have been drawn from studies on rodent cells, which

emphasizes the relevance of analysing these events on human cells.

Refer to Supplementary Table S1 for a summary of these studies.

Discussion

A growing body of evidence draws attention to the strong

influence of mechanical and topographical cues on neural cell

behaviour, and its ability to modulate cell morphology,

differentiation and phenotype. Progress in biomaterial

engineering and microfabrication methods has created the

opportunity to design and customize architectures to

recapitulate some of the in vivo brain’s features, providing

cells with a more physiologically relevant microenvironment.

This enables to study the two-way interaction between cells and

their physical surroundings.

Interestingly, most of our current understanding of how

neural cells sense and respond to mechanical and

topographical cues comes from cells in 2D culture modes.

Nevertheless, it is widely recognized that neural cell behaviour

in 2D culture formats presents an altered morphology and gene

expression, which differs significantly from that displayed in

more physiological 2.5D and 3D environments. Furthermore,

2.5D and 3D-engineered culture systems were recently employed

to identify important mechano-related signalling pathways and

to study differential cell behaviours elicited by diverse physical

cues. Consequently, although some mechanobiological processes

may carry over from 2D to 2.5D or 3D environments, validating

the findings in a 3D setting is necessary.

In light of this, recent efforts in the field have focussed on

addressing biomechanical studies with 3D culture platforms that

more closely resemble the mechanical and topographical

conditions of the in vivo neural environment. Unordered-

porous scaffolds, such as hydrogels, have been widely

employed for this purpose. Although they provide a very

relevant and physiological culture platform, these scaffolds are

hindered by reduced reproducibility due to variability in their

structure. The advent of microfabrication techniques, such as 3D

printing, allows to manufacture ordered and reproducible

scaffolds, which may help to overcome these limitations. 3D

structures with an ordered geometry can provide the biological

relevance of 3D cultures together with the high reproducibility

characteristic of 2D settings. Hence, a major challenge for future

works is the design of multiscale 3D structures with tuneable

stiffness that incorporate and combine the micro and nano-

topographical features already studied on 2.5D platforms to

evoke the desired response on neural cells. The (nano)

mechanical properties of the (micro) environment, in which

neural cells grow, deterministically influence their phenotype and

can help us model different aspects of the brain in health and

disease. Therefore, it is important to consider how the different

properties of the scaffold would influence cell function and

understand what combination of mechanical cues would be

sufficient to recapitulate key aspects of the brain. Altogether,

this will enable us to design scaffolds according to a targeted

application (disease modelling, tissue regeneration, etc.).

Similarly, the study of cell mechanical properties and the

forces exerted by cells on their surroundings are usually

performed on single cells on 2D substrates, which might not

be a faithful representation of how forces are transmitted within

the in vivo 3D microenvironment. Again, future research is
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required to bridge our current knowledge from 2D studies

with neural cells cultured on more complex 3D-engineered

scaffolds.

Furthermore, a large number of neuromechanobiological

studies have been performed with animal cells, while only a

few have used human stem cells. Notably, combining human

stem cells and biomaterial engineering methods will open unique

opportunities to build relevant human brain models. In any case,

the variability of stem cell types, origin and differentiation

methods used in previous neuromechanobiology studies

hinders the comparability of their findings, leading to

contradictory results on some occasions. Therefore, having

more comparable conditions would help to advance our

understanding of the biomechanical interactions of neural

cells and their environment. Of particular interest are iPSCs,

which, in contrast to ESCs, are generated from adult human

somatic cells, thus having very little or no ethical drawbacks. In

addition, iPSCs allow the derivation of any specific relevant cell

type from both healthy and diseased individuals, maintaining the

genetic information. Therefore, iPSCs are promising to be a

powerful tool for studying mechano-related disease

mechanisms and identifying potential therapeutic targets.

Interestingly, measurements of the forces of the cells on

microfabricated structures could be performed to determine

the difference in mechanobiology of both healthy and diseased

cells.

Lastly, an appealing research path to be explored in the near

future is the combination of scaffold-free models such as iPSC-

derived brain organoids and scaffold-based strategies. The self-

organizing properties of organoids, which create brain tissue-

like structures, can be merged with designed

microenvironments providing biomechanical constraints.

Importantly, 3D-engineered scaffolds can help to address

two of the main challenges in human iPSC-derived brain

organoids technology: the cell population heterogeneity

derived from differentiation protocols that mainly rely on

biochemical cues, and the formation of early necrotic cores,

which are detrimental for long-term studies. Reproducible 3D

engineered structures could help, therefore, by guiding linage

specification.

In conclusion, engineered neural microenvironments, in

combination with iPSC technology, can be used as tools to

build more complex brain models of higher physiological

relevance, helping to identify new targets for therapeutic

intervention and serving as drug-testing platforms to validate

these findings. We envision that two pathways for iPSC-derived

neural cell studies can be explored in the future. First, we envision

that engineered scaffolds can mimic the 3D microenvironment

while promoting faster differentiation to create improved human

and disease model systems. Second, the manufactured structures

can be used to measure the biomechanical properties of healthy

versus diseased neural cell types, potentially providing new

approaches to identify disease-specific markers that are

predictive for pathological states. Thus, recapitulation of key

aspects of in vivo neural microenvironment in 3D culture models

is essential to provide physiologically relevant results, which can

be employed for diagnostic purposes and finding new therapeutic

targets.
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