
 
 

Delft University of Technology

How Does This New Developer Test Fit In? A Visualization to Understand Amplified Test
Cases

Brandt, C.E.; Zaidman, A.E.

DOI
10.1109/VISSOFT55257.2022.00011
Publication date
2022
Document Version
Final published version
Published in
IEEE Working Conference on Software Visualization (VISSOFT)

Citation (APA)
Brandt, C. E., & Zaidman, A. E. (2022). How Does This New Developer Test Fit In? A Visualization to
Understand Amplified Test Cases. In IEEE Working Conference on Software Visualization (VISSOFT) (pp.
17-28). IEEE. https://doi.org/10.1109/VISSOFT55257.2022.00011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/VISSOFT55257.2022.00011
https://doi.org/10.1109/VISSOFT55257.2022.00011


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



How Does This New Developer Test Fit In?
A Visualization to Understand Amplified Test Cases

Carolin Brandt
Delft University of Technology, The Netherlands

c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology, The Netherlands

a.e.zaidman@tudelft.nl

Abstract—Developer testing, the practice of software engineers
programmatically checking that their own components behave as
they expect, has become the norm in today’s software projects.
With the constantly growing size and complexity of software
projects and with the rise of automated test generation tools,
understanding a test case is becoming more and more important
compared to writing test cases from scratch.

This holds especially in the area of developer-centric test
amplification, where a tool automatically generates new test cases
to improve a developer-maintained test suite. To investigate how
visualization can help developers understand and judge test cases,
we present the TESTIMPACTGRAPH, a visualization of the call
tree and coverage impact of a JUnit test case proposed for
amplification. It empowers the developer to drill down into the
behavior of a test case, as well as providing them a clear view
on how the proposed test case contributes to the coverage of the
overall test suite. In a think-aloud study we investigate which
information developers seek from the TESTIMPACTGRAPH, how
its features can support them in accessing this information, and
observations regarding the coverage impact of test cases. We
infer ten actionable recommendations on how developer tests
can be visualized to help developers understand their behavior
and impact.

Index Terms—Software Testing, Test Amplification, Test Re-
view, Test Visualization, Test Understanding

I. INTRODUCTION

Developer tests—xUnit test programs which developers
use to check the behavior of their code [1]—have become
a cornerstone in assuring the quality of today’s software
systems [2]. As test suites are growing in number and size,
understanding test cases one has not written themselves is
becoming more and more important, for example, (a) when
trying to understand a failing test [3], (b) when using developer
tests as a form of executable documentation [4]–[6], (c) when
test cases are submitted for code review [7], or (d) when
determining whether to add an automatically generated test
case to the test suite, e.g., checking whether the captured
behavior is correct [8]–[10].

Point (d) is especially important in the area of developer-
centric test amplification [10]. Test amplification is the pro-
cess of improving an existing test suite with the help of
automated tooling [11], in our case automatically generating
new test cases that strengthen a manually written test suite.
In developer-centric test amplification the goal is to partially

This work was sponsored by the Dutch science foundation NWO through
the Vici “TestShift” project (No. VI.C.182.032).

relieve the developer’s effort in writing test cases by generating
ones that the developer subsequently takes over into their
maintained test suite [10]. In this process, it is important that
the developer understands the new test cases, and subsequently
accepts or rejects them based on their understanding of the
added value. We want to illustrate this with an example:

Sara is a software developer who wants to im-
prove her test suite with the help of an automated
tool. The tool that she uses generates a few new
test cases that supposedly improve the coverage of
her test suite. Next, Sara browses through these test
cases to determine whether they make sense and test
behavior that is correct and relevant for the software
under test. She does not only want to understand
what the test case does, but also how it improves
her current test suite. Even though the tool tells
her in which lines new instructions are covered, she
has to click and search through the called methods
one by one to understand how the test case reaches
these new instructions. Sara wishes that there was an
easier, less time-intense way to understand the test
cases.

To help developers such as Sara explore, understand, and
judge test cases that amplify an existing test suite, this paper
presents the TESTIMPACTGRAPH. It enables developers to
drill down into the methods called by a test case without
having to jump from file to file and risk loosing their mental
context. A clear indication of where the test case contributes
additional code coverage, helps the user judge whether includ-
ing the test case improves their test suite.

With the help of the TESTIMPACTGRAPH we conduct a
think-aloud [12] study to investigate what software developers
expect from such a visualization of developer tests. In this
paper, we present our results, focusing on the information de-
velopers seek from the TESTIMPACTGRAPH, features that help
developers access this information and observations related to
test coverage that arise from inspecting a test case through
the TESTIMPACTGRAPH. We discuss how the TESTIMPACT-
GRAPH could be applied in further scenarios, like inspecting
a proposed test from a pull request, and give ten actionable
recommendations on how tools should visualize the behavior
and impact of developer tests to aid the software developers
exploring and understanding them.

1



Test

    public void modifyAnnotations_4() throws Exception {

        ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

        builder.annotations.remove(1);

        ParameterSpec parameterSpec = builder.build();

        Truth.assertThat(((ParameterSpec) (parameterSpec)).toString()).isEqualTo("@java.lang.Override int foo");

com.squareup.javapoet.ParameterSpec

  @Override public String toString() {

    StringBuilder out = new StringBuilder();

    try {

      CodeWriter codeWriter = new CodeWriter(out);

      emit(codeWriter, false);

      return out.toString();

    } catch (IOException e) {

      throw new AssertionError();

    }

com.squareup.javapoet.ParameterSpec

  void emit(CodeWriter codeWriter, boolean varargs) throws IOException {

    codeWriter.emitAnnotations(annotations, true);

    codeWriter.emitModifiers(modifiers);

    if (varargs) {

      TypeName.asArray(type).emit(codeWriter, true);

    } else {

      type.emit(codeWriter);

    }

    codeWriter.emit(" $L", name);

com.squareup.javapoet.CodeWriter

  public void emitAnnotations(List<annotationspec> annotations, boolean inline) throws IOException {

    for (AnnotationSpec annotationSpec : annotations) {

      annotationSpec.emit(this, inline);

      emit(inline ? " " : "\n");

    }

Fig. 1. An example TESTIMPACTGRAPH, visualizing the second test case in our study.

II. DEVELOPER-CENTRIC TEST AMPLIFICATION

Our work builds upon Brandt and Zaidman’s proposal of
developer-centric test amplification [10]. To generate test cases
that are accepted by developers into their manually maintained
test suite, they adapted Danglot et. al.’s [13] test amplification
approach to produce simple, focused new test cases that
improve the instruction coverage of a test suite. In addition,
they prototyped a test exploration tool which facilitates the
interaction between the developer and the automatic generation
tool. The process of using a test exploration tool is illustrated
in Figure 2. Brandt and Zaidman conducted semi-structured
interviews to uncover what factors are important for their
approach and the test exploration tool to be successful. They
especially focused which information the developers looked
for when judging whether it is worth to accept a test case.

① Test ExplorationTool
Developer who
wants to improve start Test
their test suite ② Amplifications Test

• Amplification¥¥¥- Tool

Presents Tests and

Related information⑤ Returns④
Amplified Tests

⑥ E×pLodf• @ Test . . . { Executes
+ coverage

to @ •Judge Proposed
}
:: :

. . . Information
Test cases

• • •

Improves
Test Suite at Add Ignore

Integrate Selected •

Test cases into : : : Prev
.
Next

Manually Maintained . . .

Test suite

Fig. 2. An overview of using a test exploration tool [10].

Two key concerns for the study participants were the
behavior and intent of the test case: What does it (aim to) test?
Likewise, they wanted to know the test case’s impact on the
coverage of the test suite. During the interviews, the authors
observed that the participants used the newly covered lines to
infer the intent of the test case: The instructions that only the
new test case covers must be what the test case is testing. In
some cases, the methods with new coverage were not called
directly by the test case, but only indirectly through changes
in the input to other methods. The developers struggled to
connect these test cases to the coverage impact they provided.

To augment this central interaction in developer-centric test
amplification, we aim to develop a visualization that supports
developers when inspecting the behavior and coverage of an
amplified test case. The goal of this visualization is to:

• connect a test case to the methods it is executing,
• present which parts of the code are covered only by this

test case, and with that
• effectively let the developer understand the behavior,

intent and coverage of the test case.
Overall, the visualization could be part of Brandt and

Zaidman’s test exploration tool, serving as one of several com-
ponents that help the developers browse and judge amplified
test cases to decide which ones to take over into their test
suite.

III. THE TEST IMPACT GRAPH

In this section, we present the design of the TESTIMPACT-
GRAPH, a visualization that supports developers in understand-
ing the behavior and the coverage impact of a developer test.
The graph consists of nodes, which represent the test case
and the methods under test, as well as edges which represent
method calls. The default layout helps developers directly
focus on the additional coverage a test provides, while the
interactivity lets them explore the behavior of the test case.
Figure 1 shows an example of a TESTIMPACTGRAPH.

A. Method Nodes

Each method, including the developer test which is visual-
ized by the TESTIMPACTGRAPH, is presented as a node. A
node consists of the fully qualified class name, the signature
of the method and its source code. Figure 3 shows an example
of a node presenting a method under test. The background of
each source code line is colored depending on its coverage:

• grey: Not covered by this test case or belongs to the test
code.

• dark green: Covered by this test case and already by
another test case.

• bright green: Contains instructions only covered by this
test case, which we call additional coverage.

With the term additional coverage we refer to those code
elements that are covered by the inspected test case, but
not by the other tests in the test suite.

B. Call Edges

For each line with one or more method calls, the TEST-
IMPACTGRAPH shows a small plus marker at the end. When
the user clicks on this marker, they expand the edges connected
to that line of code, showing all method nodes called by that
line. The marker transforms into a minus icon, which lets the
user collapse this part of the call tree again.

2



Test

    public void modifyAnnotations_5() throws Exception {

        ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

        AnnotationSpec annotationSpec = builder.annotations.remove(1);

        Truth.assertThat(((AnnotationSpec) (annotationSpec)).toString()).isEqualTo("@java.lang.SuppressWarnings");

com.squareup.javapoet.AnnotationSpec

  @Override public String toString() {

    StringBuilder out = new StringBuilder();

    try {

      CodeWriter codeWriter = new CodeWriter(out);

      codeWriter.emit("$L", this);

      return out.toString();

    } catch (IOException e) {

      throw new AssertionError();

    }

com.squareup.javapoet.CodeWriter

  public CodeWriter emit(String format, Object... args) throws IOException {

    return emit(CodeBlock.of(format, args));

com.squareup.javapoet.CodeWriter

  public CodeWriter emit(CodeBlock codeBlock) throws IOException {

    return emit(codeBlock, false);

com.squareup.javapoet.CodeWriter

  public CodeWriter emit(CodeBlock codeBlock, boolean ensureTrailingNewline) throws IOException {

    int a = 0;

    ClassName deferredTypeName = null; // used by "import static" logic

    ListIterator

    while (partIterator.hasNext()) {

      String part = partIterator.next();

      switch (part) {

        case "$L":

          emitLiteral(codeBlock.args.get(a++));

          break;

        case "$N":

          emitAndIndent((String) codeBlock.args.get(a++));

          break;

        case "$S":

          String string = (String) codeBlock.args.get(a++);

          // Emit null as a literal null: no quotes.

          emitAndIndent(string != null

              ? stringLiteralWithDoubleQuotes(string, indent)

              : "null");

          break;

        case "$T":

          TypeName typeName = (TypeName) codeBlock.args.get(a++);

          // defer "typeName.emit(this)" if next format part will be handled by the default case

          if (typeName instanceof ClassName && partIterator.hasNext()) {

            if (!codeBlock.formatParts.get(partIterator.nextIndex()).startsWith("$")) {

              ClassName candidate = (ClassName) typeName;

              if (staticImportClassNames.contains(candidate.canonicalName)) {

                checkState(deferredTypeName == null, "pending type for static import?!");

                deferredTypeName = candidate;

                break;

              }

            }

          }

          typeName.emit(this);

          break;

        case "$$":

          emitAndIndent("$");

          break;

        case "$>":

          indent();

          break;

        case "$<":

          unindent();

          break;

        case "$[":

          checkState(statementLine == -1, "statement enter $[ followed by statement enter $[");

          statementLine = 0;

          break;

        case "$]":

          checkState(statementLine != -1, "statement exit $] has no matching statement enter $[");

          if (statementLine > 0) {

            unindent(2); // End a multi-line statement. Decrease the indentation level.

          }

          statementLine = -1;

          break;

        case "$W":

          out.wrappingSpace(indentLevel + 2);

          break;

        case "$Z":

          out.zeroWidthSpace(indentLevel + 2);

          break;

        default:

          // handle deferred type

          if (deferredTypeName != null) {

            if (part.startsWith(".")) {

              if (emitStaticImportMember(deferredTypeName.canonicalName, part)) {

                // okay, static import hit and all was emitted, so clean-up and jump to next part

                deferredTypeName = null;

                break;

              }

            }

            deferredTypeName.emit(this);

            deferredTypeName = null;

          }

          emitAndIndent(part);

          break;

      }

    }

    if (ensureTrailingNewline && out.lastChar() != '\n') {

      emit("\n");

    }

    return this;

com.squareup.javapoet.CodeWriter

  private void emitLiteral(Object o) throws IOException {

    if (o instanceof TypeSpec) {

      TypeSpec typeSpec = (TypeSpec) o;

      typeSpec.emit(this, null, Collections.emptySet());

    } else if (o instanceof AnnotationSpec) {

      AnnotationSpec annotationSpec = (AnnotationSpec) o;

      annotationSpec.emit(this, true);

    } else if (o instanceof CodeBlock) {

      CodeBlock codeBlock = (CodeBlock) o;

      emit(codeBlock);

    } else {

      emitAndIndent(String.valueOf(o));

    }

com.squareup.javapoet.ClassName

  @Override CodeWriter emit(CodeWriter out) throws IOException {

    boolean charsEmitted = false;

    for (ClassName className : enclosingClasses()) {

      String simpleName;

      if (charsEmitted) {

        // We've already emitted an enclosing class. Emit as we go.

        out.emit(".");

        simpleName = className.simpleName;

      } else if (className.isAnnotated() || className == this) {

        // We encountered the first enclosing class that must be emitted.

        String qualifiedName = out.lookupName(className);

        int dot = qualifiedName.lastIndexOf('.');

        if (dot != -1) {

          out.emitAndIndent(qualifiedName.substring(0, dot + 1));

          simpleName = qualifiedName.substring(dot + 1);

          charsEmitted = true;

        } else {

          simpleName = qualifiedName;

        }

      } else {

        // Don't emit this enclosing type. Keep going so we can be more precise.

        continue;

      }

      if (className.isAnnotated()) {

        if (charsEmitted) out.emit(" ");

        className.emitAnnotations(out);

      }

      out.emit(simpleName);

      charsEmitted = true;

    }

    return out;

Fig. 3. A node in the TESTIMPACTGRAPH.

Apart from opening and closing call edges, the user can
freely rearrange nodes, as well as drag and zoom the canvas
to explore the TESTIMPACTGRAPH. Initially, the nodes are
presented in a hierarchical tree layout from left to right, with
the inspected developer test as the root on the left.

C. Default Layout

As it is common for developer tests to execute a not-small
number of methods [14], [15], the visualization we describe
up until now can get quite large—and therefore overwhelming
for the user. To clarify how the inspected test case improves
the existing test suite, we want to let the developer focus
on what distinguishes the test case from the rest of the test
suite. We use additional coverage for this. By default, the
TESTIMPACTGRAPH shows all methods under test that contain
instructions that are covered by the inspected test case, but are
not covered by the rest of the test suite. To give context on how
these methods are called by the developer test, we also show
all the method nodes on the call chains from the developer
test to the methods with additional coverage. Figure 1 shows
and example of this: the methods leading to the additional
coverage are visible, while all other edges are collapsed.

D. Design Rationale

The design of the TESTIMPACTGRAPH is based on various
well-established visualization metaphors. To ease the adoption
by software developers, we apply as many familiar visual
components as possible and strive for a simple design that
can fit within an IDE environment.

From related works, we know that developers who inspect
a test case during code review are interested in the code under
test [7]. They rely on source code to understand the system
under test [16], [17] and should be supported while building up
the mental context between test code and code under test [18].
This is why we present the developer test alongside the code
under test.

We choose to directly show source code to the user, as
this provides the highest code proximity [19]. In their inter-
views, Brandt and Zaidman observed the developers navigating

through the code using “jump-to-definition”, a common strat-
egy during code comprehension [20]–[23]. To let the develop-
ers keep the mental context of the methods they viewed, we
show methods as rectangular nodes on a plane and use arrows
to show calling relationships, similar to the Code Bubbles
metaphor [24]. Just as Bragdon et al. observed with Code
Bubbles, we want to support developers in “understanding a
call graph encompassing a handful of functions” [25].

To visualize code coverage in an intuitively understandable
way, we use the established notion of lines highlighted in
green [26]. As many developer tests execute several meth-
ods [14], [15], presenting this large amount of information
at once could be overwhelming for the user [19]. This is
why we provide a default view focused on the most rel-
evant methods—the ones with new coverage—and include
interactive features [17], [27], letting the user zoom and pan
to get an overview or a detailed look on items of interest.
Markers to open and close branches indicate options for further
exploration [19], [28], enabling the developer to access more
details on demand or to filter out uninteresting elements.

E. Implementation

We implemented the TESTIMPACTGRAPH as an extension
to the TestCube plugin1, which generates JUnit tests with
the help of the test amplification tool DSpot2. We collect
the method calls to build the TESTIMPACTGRAPH based
on a static analysis, using the IntelliJ PSI support3. The
coverage information is provided by Jacoco4 and obtained by
DSpot during the test generation. The visualization itself is
implemented with the G6 framework by antv5 and can be
found on GitHub6 together with the exemplary graphs we used
for our evaluation.

IV. THINK-ALOUD STUDY

To understand the current state of the TESTIMPACTGRAPH
and collect feedback on what to improve and develop further to
effectively help developers explore and understand test cases,
we perform a preliminary think-aloud study. We aim to an-
swer which information developers seek while they explore a
proposed test case and judge whether it improves their current
test suite (RQ1). Further, we want to know which existing
and potential future features of the TESTIMPACTGRAPH help
developers effectively and efficiently access the information
they are seeking (RQ2). Finally, we conjecture that the novel
view TESTIMPACTGRAPH provides at developer tests, will
raise observations reflecting on the (additional) coverage of
test cases (RQ3).

In summary, our preliminary think-aloud study intends to
answer the following research questions:

1https://github.com/TestShiftProject/test-cube/tree/v1.0.3-tig.1
2https://github.com/STAMP-project/dspot
3https://plugins.jetbrains.com/docs/intellij/psi.html
4https://www.jacoco.org/
5https://g6.antv.vision/en
6https://github.com/TestShiftProject/test-impact-graph/tree/v0.1.0

3



RQ1: Which information do developers seek from the
TESTIMPACTGRAPH?

RQ2: Which features of the TESTIMPACTGRAPH help
developers access this information?

RQ3: What observations related to test coverage arise
when inspecting a developer test through the
TESTIMPACTGRAPH?

A. Study Design

In our think-aloud study, we invite participants familiar with
Java to inspect example test cases with the TESTIMPACT-
GRAPH.

During the study, we go through three example test
cases with each participant. The examples are amplified test
cases which were generated by the test amplification plugin
TestCube7 to improve the test suite of the project javapoet8.
We select this project for our study as we expect our par-
ticipants to be familiar with its domain: generating Java
source files. We aim to broadly explore the capabilities of the
TESTIMPACTGRAPH and therefore select three proposed test
cases that show different patterns in terms of their additional
coverage:

• The first proposed test case covers additional instructions
in several lines, but not all lines, of a method that is
directly called from the developer test. Its TESTIMPACT-
GRAPH is shown in Figure 4.

• The second proposed test case (Figure 1) covers addi-
tional lines in a method that is three calls away from the
developer test.

• The third proposed test case has the most complex addi-
tional coverage pattern. It covers additional instructions
in a directly called method, but also several method
calls further away and on more than one branch of
the TESTIMPACTGRAPH. The TESTIMPACTGRAPH in
Figure 5 shows how scattered the additional coverage of
our third test case is.

All three of these example test cases can be found on
GitHub9, their TESTIMPACTGRAPHs can be explored as part
of our replication package10.

Generating meaningful names for automatically generated
test cases and the variables used in them is a challenging
and actively researched topic [29]–[31]. As test names and
variable identifiers play a big role in understanding code [32],
we do not want our study to be influenced by the quality of
the automatically generated names. Therefore, we choose to
simplify the test names to the name of the original test case
and a number and to simplify the variable names to lowercase
variants of their class.

7https://github.com/TestShiftProject/test-cube
8https://github.com/square/javapoet
9L.68, L.92, and L.199 in https://github.com/lacinoire/javapoet/blob/

2cbb3084c15a209d28fc8c5fd7472dd695c22591/src/test/java/com/squareup/
javapoet/generated/ParameterSpecTest.java

10https://doi.org/10.5281/zenodo.6644723

B. Study Execution

We used convenience sampling to recruit our participants:
Four PhD Students from the field of computer science and
one industrial software developer, all with two to five years
of experience in software development and testing. They
were unfamiliar with the example project javapoet. Before
each session, we asked the participant for informed consent
according to the ethics guidelines of our university.

Then, we gave a short introduction about the aim and
the features of the TESTIMPACTGRAPH. The TESTIMPACT-
GRAPH is built to help developers understand an amplified
test case, and especially the value it adds to the existing test
suite, similarly to Sara in Section I. This is why we ask the
participants to answer the following task for each test case:
“What scenario is newly covered by this test case?”.

While they browse through the visualization, we ask them
to think aloud about their expectations and experiences. They
stopped thinking aloud often during the experiment, as they
sunk into understanding the code in front of them. After
stimulating them with questions, they provided us with rich
insights about the TESTIMPACTGRAPH.

After the sessions, we analyzed the observer’s notes using
open and axial coding [33]. The results presented in Sec-
tions V, VI and VII are grouped along the resulting axial
codes. All codes and groups, as well as which participant
mentioned them, can be found in our replication package.

C. General Observations

The participants liked interacting with the TESTIMPACT-
GRAPH and appreciated a tool that lets them dig deep into the
behavior of one test case. Overall, most of them intuitively
understood the different components of our visualization:
method nodes, call edges, the coverage highlights, and the
default view of all additionally covered lines. One participant
reported that such a visualization would let them be more
confident in automatically generated code because they could
retrace its behavior.

V. RQ1: WHICH INFORMATION DO DEVELOPERS SEEK
FROM THE TESTIMPACTGRAPH?

In this section, we discuss our observations related to the
kinds of information our participants sought while inspecting
the developer tests to answer which additional scenario is
covered by them.

A. What Does It Do? Understanding the Test Case

From observing our participants, we learned that different
developers focus on different parts of a test case or its
execution when they explore the test case and determine its
behavior or its impact:

• Test names: Several participants based their judgment
on the names of the test class or the test case. As we
simplified the variable names (see Section IV-A) these
could not be used as a source of additional information.

• Test code: Several times throughout the study, the par-
ticipants studied the lines of code of the test case or

4



Test

    public void modifyAnnotations_3() throws Exception {

        Object object = new Object();

        ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

        AnnotationSpec annotationSpec = builder.annotations.remove(1);

        boolean booleanValue = annotationSpec.equals(object);

        Truth.assertThat(booleanValue).isFalse();

com.squareup.javapoet.AnnotationSpec

  @Override public boolean equals(Object o) {

    if (this == o) return true;

    if (o == null) return false;

    if (getClass() != o.getClass()) return false;

    return toString().equals(o.toString());

Fig. 4. The TESTIMPACTGRAPH for the first test case in our study.

Test

    public void modifyAnnotations_5() throws Exception {

        ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

        AnnotationSpec annotationSpec = builder.annotations.remove(1);

        Truth.assertThat(((AnnotationSpec) (annotationSpec)).toString()).isEqualTo("@java.lang.SuppressWarnings");

com.squareup.javapoet.AnnotationSpec

  @Override public String toString() {

    StringBuilder out = new StringBuilder();

    try {

      CodeWriter codeWriter = new CodeWriter(out);

      codeWriter.emit("$L", this);

      return out.toString();

    } catch (IOException e) {

      throw new AssertionError();

    }

com.squareup.javapoet.CodeWriter

  public CodeWriter emit(String format, Object... args) throws IOException {

    return emit(CodeBlock.of(format, args));

com.squareup.javapoet.CodeWriter

  public CodeWriter emit(CodeBlock codeBlock) throws IOException {

    return emit(codeBlock, false);

com.squareup.javapoet.CodeWriter

  public CodeWriter emit(CodeBlock codeBlock, boolean ensureTrailingNewline) throws IOException {

    int a = 0;

    ClassName deferredTypeName = null; // used by "import static" logic

    ListIterator

    while (partIterator.hasNext()) {

      String part = partIterator.next();

      switch (part) {

        case "$L":

          emitLiteral(codeBlock.args.get(a++));

          break;

        case "$N":

          emitAndIndent((String) codeBlock.args.get(a++));

          break;

        case "$S":

          String string = (String) codeBlock.args.get(a++);

          // Emit null as a literal null: no quotes.

          emitAndIndent(string != null

              ? stringLiteralWithDoubleQuotes(string, indent)

              : "null");

          break;

        case "$T":

          TypeName typeName = (TypeName) codeBlock.args.get(a++);

          // defer "typeName.emit(this)" if next format part will be handled by the default case

          if (typeName instanceof ClassName && partIterator.hasNext()) {

            if (!codeBlock.formatParts.get(partIterator.nextIndex()).startsWith("$")) {

              ClassName candidate = (ClassName) typeName;

              if (staticImportClassNames.contains(candidate.canonicalName)) {

                checkState(deferredTypeName == null, "pending type for static import?!");

                deferredTypeName = candidate;

                break;

              }

            }

          }

          typeName.emit(this);

          break;

        case "$$":

          emitAndIndent("$");

          break;

        case "$>":

          indent();

          break;

        case "$<":

          unindent();

          break;

        case "$[":

          checkState(statementLine == -1, "statement enter $[ followed by statement enter $[");

          statementLine = 0;

          break;

        case "$]":

          checkState(statementLine != -1, "statement exit $] has no matching statement enter $[");

          if (statementLine > 0) {

            unindent(2); // End a multi-line statement. Decrease the indentation level.

          }

          statementLine = -1;

          break;

        case "$W":

          out.wrappingSpace(indentLevel + 2);

          break;

        case "$Z":

          out.zeroWidthSpace(indentLevel + 2);

          break;

        default:

          // handle deferred type

          if (deferredTypeName != null) {

            if (part.startsWith(".")) {

              if (emitStaticImportMember(deferredTypeName.canonicalName, part)) {

                // okay, static import hit and all was emitted, so clean-up and jump to next part

                deferredTypeName = null;

                break;

              }

            }

            deferredTypeName.emit(this);

            deferredTypeName = null;

          }

          emitAndIndent(part);

          break;

      }

    }

    if (ensureTrailingNewline && out.lastChar() != '\n') {

      emit("\n");

    }

    return this;

com.squareup.javapoet.CodeWriter

  private void emitLiteral(Object o) throws IOException {

    if (o instanceof TypeSpec) {

      TypeSpec typeSpec = (TypeSpec) o;

      typeSpec.emit(this, null, Collections.emptySet());

    } else if (o instanceof AnnotationSpec) {

      AnnotationSpec annotationSpec = (AnnotationSpec) o;

      annotationSpec.emit(this, true);

    } else if (o instanceof CodeBlock) {

      CodeBlock codeBlock = (CodeBlock) o;

      emit(codeBlock);

    } else {

      emitAndIndent(String.valueOf(o));

    }

com.squareup.javapoet.ClassName

  @Override CodeWriter emit(CodeWriter out) throws IOException {

    boolean charsEmitted = false;

    for (ClassName className : enclosingClasses()) {

      String simpleName;

      if (charsEmitted) {

        // We've already emitted an enclosing class. Emit as we go.

        out.emit(".");

        simpleName = className.simpleName;

      } else if (className.isAnnotated() || className == this) {

        // We encountered the first enclosing class that must be emitted.

        String qualifiedName = out.lookupName(className);

        int dot = qualifiedName.lastIndexOf('.');

        if (dot != -1) {

          out.emitAndIndent(qualifiedName.substring(0, dot + 1));

          simpleName = qualifiedName.substring(dot + 1);

          charsEmitted = true;

        } else {

          simpleName = qualifiedName;

        }

      } else {

        // Don't emit this enclosing type. Keep going so we can be more precise.

        continue;

      }

      if (className.isAnnotated()) {

        if (charsEmitted) out.emit(" ");

        className.emitAnnotations(out);

      }

      out.emit(simpleName);

      charsEmitted = true;

    }

    return out;

Fig. 5. The scattered coverage highlights of the TESTIMPACTGRAPH for the third test case in our study. To show more within the figure, we rearranged the
first four nodes and cropped the fifth node.

the methods under test to understand their behavior or
determine the values of test objects. This connects to
existing evidence that understanding the setup and input
of a test case is central for developer comprehension [34].

• Method calls: The participants used the branches of
the graph to inspect the behavior of statements that call
methods by drilling deeper into the behavior of these
methods.

• Additional coverage: Through the bright green high-
lighting and the initial layout showing all lines with addi-
tional coverage, some participants focused their analysis
on these lines. They analyzed the proposed test case to
infer how its statements and the methods they call lead
to the execution of the highlighted lines.

• Inner-method control flow: Some participants tried to
retrace the control flow inside of the methods under test.
They made use of the coverage highlights to determine
which lines were executed and inferred the outcome of
conditional statements.

• Actual values: Our participants indicated that access to
the actual values of variables and method parameters
would help them retrace the behavior of the test execution
even better, similar to debugging a test failure [16].
During our study, the participants manually went through
the code of the test case and the methods under test to

infer the actual values of variables.
• Natural language explanation: A participant wished

that the tool should give a textual, more abstract descrip-
tion of the new input provided to the method under test,
compared to the input other tests provide to the same
method, e.g., “Other tests cover this method with an
empty list, this test additionally executes it with a non-
empty list”.

We saw that different developers take different approaches
to understand a developer test. A suitable visualization should
provide information that supports many of these approaches.

Recommendation 1A
A developer test visualization should provide access to
the wide variety of information sought by developers
to understand the inspected test case. Under this fall
the test name and the source code, the execution flow
between and inside of methods, the values of variables
and parameters, as well as the coverage and the high-
level behavior of the test case.

B. Should I Test This? Provide Scope of Where Code Is From

Surprisingly, many of our participants used the TEST-
IMPACTGRAPH in a very similar way to common code cov-
erage tools, a popular means of developers to inspire new test

5



cases [16]. They inspected which lines were covered by the
test, but also focused on the lines not covered. Several of them
pointed out grey lines, which the assumed to be not covered
and stated that they would write additional tests for them.

In this context, it is important that the visualization does not
mislead the developers, as the grey lines in the TESTIMPACT-
GRAPH are simply not covered by the proposed test case.

Recommendation 1B
A developer test visualization that presents coverage
information to developers should be careful when dis-
playing code as not covered, as developers might use
the visualization to identify code to cover in additional
test cases.

In addition, some participants asked if certain methods
were part of a library or the code of the project itself. They
considered it relevant to cover methods of the project itself,
but not code that is part of a library.

Similar to this, one participant wished that the test method,
i.e., the JUnit method which defines the developer test, as
well as any helper methods are visually distinguished from
the system code. Their reasoning was that while test helper
methods are executed by the test case, they do not need to be
covered and would not contribute to describing the additionally
tested scenario.

Recommendation 1C
A developer test visualization should distinguish the
origin of presented code pieces: the system under test,
dependencies, or the test code. This helps developers
judge if a certain piece of code should be tested and if
the coverage of this code is relevant for the strength of
the test suite.

C. Who Tests This Already? Support Exploring Other Tests

When presented with dark green highlighted lines in the
methods under test, i.e., lines that are already covered by
other tests in the test suite, several participants wondered
which other test case was executing these lines already. They
wished for functionality to inspect for each line the set of test
cases that covers this line, a kind of line-based code-to-test
traceability [35].

There were several reasons for the different participants to
seek this kind of reverse coverage information [36]: looking at
and understanding the other test cases which execute the same
lines of code could help the users understand the developer test
they currently inspect. When the dark green lines appeared in
combination with bright green ones, i.e., indicating that the
bright green code is only covered by the inspected test case,
the developers wondered about the difference between the test
case they currently inspect and the ones already covering the
dark green lines. They were interested in why the current test
case executed the additional instructions, why the other test

cases did not. A different consideration was to minimize either
the current or the other test cases, to not unnecessarily cover
code parts twice. Similarly, Panichella et al. [3] found that
developers would want to be notified if a part of the behavior
of a generated test case is already checked in a previous
method.

Recommendation 1D
A developer test visualization which indicates that code
parts are already covered by another test, should provide
information on which other tests already cover a line
under test. This can help the developer to take refactoring
decisions to improve the focus of their test cases.

VI. RQ2: WHICH FEATURES OF THE TESTIMPACTGRAPH
HELP DEVELOPERS ACCESS THIS INFORMATION?

To answer our second research question, we collected
observations and feedback from the participants to gauge
which existing and potential features help them access the
information they seek through the TESTIMPACTGRAPH.

A. Code Nodes: As Close to the IDE as Possible

We received several points of feedback concerning the
method nodes in the TESTIMPACTGRAPH. The participants
inspected the statements in several method nodes closely, e.g.,
to reconstruct the behavior of a method or determine the
value of an object under test. When presenting source code,
the users expected syntax highlighting as it would help them
“spot variables being reused throughout the method”. The full
signatures of the methods under test helped them to reconstruct
the behavior of a method and the values returned. As our
participants were unfamiliar with the example project from
which they inspected test cases, they wished for access to
the documentation of several methods they encountered in the
TESTIMPACTGRAPH.

Recommendation 2A
Developers expect a direct presentation of source code
to be as similar as possible to their familiar IDE envi-
ronment. In our study, this included syntax highlighting,
the whole signature and source code of the method and
access to its documentation.

B. Default View: Provide Confidence to See Everything Rele-
vant

Showing all code with additionally covered lines right away
was a big success with the developers that participated in our
study. They were glad not to have to search through the graph
for more newly covered lines and that they could focus on
what is presented at the beginning. After exploring the graph
and opening many branches, a participant wished for an easy
possibility to return to the default view, so they could re-
focus on the relevant code paths. Others proposed to highlight

6



the methods leading to additional coverage, so they could be
distinguished even while other nodes and branches are opened.

Recommendation 2B
A developer test visualization should help the developer
focus on the central and unique parts of the execution
of a test case. This prevents overwhelming the user with
less relevant behavior details, e.g., details in the methods
setting up test objects.

C. Where Was I? Providing and Keeping Context

Our participants were thankful for the flat visualization of
all methods relevant to the execution of this test case. This
let them focus on the methods under test, as well as their
connection, better than in an IDE, where they have to switch
back and forth between source files to inspect the methods
under test.

During our evaluation, we saw that it was important to let
the developers maintain their mental context of the nodes vi-
sualized on the screen. This includes maintaining the previous
layout when new branches are opened and new methods are
inspected, even if it required manual zooming and panning
from the user to see the new nodes.

Recommendation 2C
The layout of the method nodes in a developer test
visualization should stay consistent while the developer
interacts with the visualization. This lets the user build
up and maintain a mental context between the developer
test and the code under test.

D. Where Does This Connect? Clarifying Edges

We also learned that the default layout of the graph con-
tributes heavily to the interaction of the developer with the
graph. In the case of our TESTIMPACTGRAPH prototype,
some call edges were overlapping with each other or partially
covered by unrelated method nodes, meaning the participants
had to move the nodes around to identify which code line
was calling which method node. Similarly, there were cases
in which the method nodes overlapped, requiring interaction
from the user to make all nodes they found relevant visible.
The participants wished for a clearer layout that does not
require their interaction, giving them more time to focus on
the presented test case.

We discuss this and the previous aspects because they con-
firm existing results from the field of information visualization.
In a study about visualizations for software exploration, Storey
et al. [28] name the reduction of user effort in adjusting
interfaces as an important design element. Guidelines for UML
class diagrams [37], [38] recommend to avoid edge crossings
or overlapping nodes, to support users in recognizing the
presented objects.

We observed another visualization challenge more specific
to the TESTIMPACTGRAPH. As the method calls are connected

to a particular line, when multiple methods are called it was
difficult to distinguish for a participant which method nodes
correspond to which method call. One participant resorted to
comparing the names of the methods, noticing that this falls
short if two have the same name or one method is called,
possibly with different parameter values. One way to address
this could be the use of color on the method calls and edges,
similar to the “smart step into” feature of IntelliJ11.

Recommendation 2D
The layout of developer test visualization should show
clearly which method call and method node the ends of
an edge connect to and should not require the interaction
of the user to clarify the presented information.

VII. RQ3: WHAT OBSERVATIONS RELATED TO TEST
COVERAGE ARISE WHEN INSPECTING A DEVELOPER TEST

THROUGH THE TESTIMPACTGRAPH?

Inspecting test cases through the TESTIMPACTGRAPH gives
the developer the chance to take a novel look at the behavior
and especially the additional coverage of a developer test.
We want to report on a few interesting observations our
participants made while using the TESTIMPACTGRAPH on the
three examples we provided.

A. Should This Not Already Be Unit-Tested? Deep And Acci-
dental Coverage

As shown in Figure 5, our third example shows a rather
large TESTIMPACTGRAPH, because some of the additionally
covered lines are multiple method calls away from the devel-
oper test. Two of our participants noted this and wondered
whether these methods should not be covered more directly
by a unit test, instead of by the more integration-style test
they were inspecting. As there was also a whole new method
covered directly through a call from the developer test, one
participant even wondered if these further methods were
covered “accidentally” by a test meant to test the directly
called method. The participant said to not trust this accidental
coverage and built their answer to what the test is newly testing
solely on the directly called and newly covered method.

A participant also pointed to similar issues if a method
would lead to additional coverage in several different, uncon-
nected areas of the code under test. This would give them
the impression that it is not clear what the test case is really
intending to test.

11https://www.jetbrains.com/help/idea/stepping-through-the-program.html#
smart-step-into Accessed: June 1st, 2021

7



Recommendation 3A
According to our participants, additional coverage that
is several method calls away could point to a lack
of unit testing or be considered accidental. Accidental
coverage was deemed less relevant to determine the
impact of a test case.

B. What Is Executed Here? Instruction Coverage Visualized
Per Line

As described before, several of our participants approached
understanding the methods under test by going through their
statements one by one. Where possible, they made use of
the line highlighting that indicates which lines were executed.
However, the common practice of visualizing instruction cov-
erage as a highlight of a whole line led to confusion in some
cases. In the first example test case (see Figure 4), there are
three one-line if statements with return statements in their
bodies. All three lines are highlighted in bright green, i.e.,
indicating that there were additional instructions covered on
these lines. The participants were confused how all of these
return statements could be executed in one method call.

While there are newly covered instructions on these lines
of code—namely the conditions of the if statements—the
highlight’s indication that the whole line is executed was
confusing. A participant reflected, that it would be better to
indicate that while additional instructions are covered, not all
instructions on these lines are covered by the inspected test
case. They added that this would also depend on the code
style of the code under test, e.g., whether the if and else
blocks of a conditional statement are on separate lines from
the conditions.

We made a similar observation in the second example test
case (Figure 1), where seemingly a whole new method is
covered: all lines in the method are bright green. The method
only consists of a for loop with statements in it. However, our
participants wondered why the statement calling this method
was dark green, indicating that it was already executed by
another test case. Upon closer inspection, we determined that
the previous callers executed the method in question with
an empty list, therefore the first instruction of the for loop
was executed. In the new, inspected test case, the method in
question was called with a filled list, leading to the execution
of the statements in the for loop, as well as the increment
statement in the for loop’s header. A participant noted that
it would help to indicate that some of the instructions on the
header line are already executed by other test cases.

Recommendation 3B
When instruction coverage is visualized at the line level,
it should be indicated whether instructions on a line
were previously covered, and whether there are still
uncovered instructions on a line.

VIII. DISCUSSION

Our exploratory think-aloud study resulted in a range of
10 actionable recommendations regarding the information de-
velopers seek from the TESTIMPACTGRAPH, features to help
them access this information and observations based on the
new view angle on additional coverage of developer tests.
Several of them confirm existing knowledge from information
visualization (2A, 2C, 2D), extend existing intuitions for the
area of developer test inspection (1A, 1C, 2B), and others
point to novel challenges special to developer test inspection
(1B, 1D, 3A, 3B). In this section we discuss why our results
can also be applied to the area of test code review, due
to the large similarities between inspecting a test case for
amplification and for test review. Furthermore, we illustrate
how the TESTIMPACTGRAPH can provide insights that lead
to a more fine-grained coverage understanding related to test
directness and redundancy.

A. Test Review

The review of test code during traditional code review has
many parallels to the inspection of proposed test cases during
test amplification. In both cases, developers judge whether
a new developer test is adequate and should be included
into the test suite. Our results also show these parallels to
previous work on test review by Spadini et al. [7]. Similar to
our observations that developers use the TESTIMPACTGRAPH
as a coverage tool to spot uncovered lines (Section V-B), a
central concern in code review is to understand whether the test
covers all paths [7]. None of our participants asked whether
they could inspect the presented code in their IDE, a typical
behavior of developers to gain a complete picture of the code
during test review [7]. Therefore, we hypothesize that if test
reviews are performed inside the TESTIMPACTGRAPH tool,
Spadini et al.’s recommendation to provide better navigation
between the developer test and the code under test would be
addressed.

B. Differential Code Coverage

A tool dedicated to surface coverage changes during code
review is Codecov12. It provides high level, aggregated cover-
age information about the whole project, but also differential
coverage introduced by a commit or a pull request. Their
differential coverage indicates how much of the code diff
is covered an how the change impacts the overall project
coverage. In their source code view13, developers can inspect
the code under test enriched with highlights that show how the
coverage of single lines change through the inspected commit
or pull request. While Codecov provides a coverage diff for
any kind of code change, i.e., to the test code and the code
under test, the TESTIMPACTGRAPH focuses on the addition
of one test case, while the code under test stays constant.
Furthermore, the TESTIMPACTGRAPH is showing the method
call connections between the developer test and the methods

12https://about.codecov.io/
13https://docs.codecov.io/docs/viewing-source-code

8



under test, letting the developer retrace the execution of the
test case. This addresses an important point in test coverage
evolution: helping developers understand better why a change
in the code leads to a change in coverage [39].

When inspecting a test case that is proposed to amplify a
test suite, or an added test case in traditional code review,
a tool like Codecov would give quick feedback on how the
test case impacts the coverage of the test suite, while the
TESTIMPACTGRAPH would give more detailed insights to the
developer on where and why the test case impacts the code
coverage.

C. Refined Coverage Insights
From our observations about already covered code

(Recommendation 1D), as well as deep and accidental
coverage (Recommendation 3A), we see a chance for the
TESTIMPACTGRAPH to give developer’s a deeper insight into
how their tests cover the code under test. The reflections of
the participants show that coverage could be interpreted as
more than just covered or not covered. Instead, the partici-
pants also considered how directly test cases are covering a
specific method. Test directness is important to help developers
pinpoint the fault in the code when a test is failing [40]. It also
impacts how well a test case can serve as documentation of
the code under test [15].

Whether these insights lead developers to adapt their test
suite to be more direct, will depend on the needs of the
software project and their testing culture, e.g., the relative
value of unit and integration tests for the project. Independent
from the testing culture of a project, the TESTIMPACTGRAPH
can give the developers deeper insight into the coverage that
single test cases contribute, enabling them to take informed
decisions about the design of their test suites.

D. Relevance of Deep Coverage For Test Descriptions
Current techniques to automatically generate names for unit

test cases use, beneath other information, the names of the
methods executed by a test case as basis for the generated
names [29]. The automatic test generation community is
moving towards generating integration tests that check the
interaction of multiple classes [41]–[43], and the amplified test
cases from our study were also integration test that executed
several methods. Based on the feedback we got regarding deep
and accidental coverage (Section VII-A), the question becomes
whether methods that are executed, but further away from the
developer test in the call chain, are relevant to generate test
names that are meaningful for developers. Similarly, we should
investigate, whether or how deep coverage can be used for
natural language test descriptions, such as those generated by
Panichella et al. [3] or Roy et al. [30].

E. Threats To Validity
In the following, we discuss several threats to the validity

of our results.
With regards to construct validity, the amplified test cases

we chose for our study might be favorable for the TEST-
IMPACTGRAPH. Long, complex test cases that additionally

cover a large part of the source code would be difficult to
inspect with the current design. Similarly, for simple test cases
it might feel unnecessary to use more than the tools available
in an IDE. To mitigate this threat, we picked a variety of
test cases that represents the types of coverage we see when
amplifying test suites with TestCube. All the tools we used14,
as well as our experiment data15 are openly available and we
encourage others to explore them to retrace our observations.

We assume a broad target audience for the TESTIMPACT-
GRAPH, novices as well as experienced software developers.
However, our participants might not match this audience, as
we used convenience sampling to select participants. The
reflective insights about test directness and accidental coverage
might stem from the fact that our participants are mainly PhD
students and therefore more aware about software quality than
other software developers. Future work is needed to investigate
how professional experience impacts developer’s interaction
with the TESTIMPACTGRAPH.

As we used convenience sampling, the researcher and the
participants knew each other personally, however the partici-
pants had not been involved in the researcher’s work before
the study. The participants were motivated to participate to
support the author’s research work and could have been biased
to give more positive feedback during the study. We mitigated
this threat by emphasizing the value of critical and opinion-
rich comments, and focusing our results on the concrete
recommendations rather than ratings of the existing design.

A threat to the external validity of our study might be the
underlying test amplification approach we used to generate
the test cases for our study. The TestCube tool selects which
test cases to propose based on whether they cover additional
instructions in the code under test. One could choose other
selection criteria, e.g., whether a new edge case is checked,
which would call for another kind of visualization, e.g.,
because no additional instructions are covered. Another threat
is the selection of the example project, or the test cases we
inspected. We aimed for a middle-sized project and a variety
of test cases with respect to their coverage characteristics. This
lead to a variety of visualization in the TESTIMPACTGRAPH,
and let us widely explore visualizations from an average Java
project. We do not claim our findings to be applicable to
every software project, and their relative importance will vary
depending on the developer interacting with our tool.

IX. RELATED WORK: TEST VISUALIZATIONS

In this section we present related scientific works in the area
of visualizing software test cases or associated metrics.

Visualizations are used to judge the quality of a whole test
suite, visualizing test metrics, including code coverage, in con-
junction with the system under test. Borg et al. [44] visualize
historical test outcomes in a code city of the system under
tests. Their goal is to help identify error-prone components and
potential coverage holes, i.e., components that are not covered

14https://github.com/TestShiftProject/test-cube/tree/test-impact-graph,
https://github.com/TestShiftProject/test-impact-graph

15https://doi.org/10.5281/zenodo.6644723

9



enough by the test suite. Balogh et at. [45] extend a different
code city framework to visualize test-related metrics together
with the components of the system under test. Perscheid
et al. [46] use a variety of tree maps, presenting different
quality aspects of a test suite. They aim to help developers
pinpoint untested code and improve time or memory intensive
test cases. Opmanis et al. [47] present a dashboard that
visualizes the test results of large systems, helping managers
and quality engineers to identify the origin of deteriorations
or improvements. The TESTQ tool by Breugelmans and Van
Rompaey [48] presents a tree-like overview over the structure
of a whole test suite. For a closer inspection, singular test cases
are presented as a hierarchical structure of the test components
like fixture and test helpers, annotated with instances of test
smells. A separate window provides an overview over all
smells appearing in the test suite and lets the developer spot
very smelly tests. While these visualizations aim to give an
overview of the whole test suite, the TESTIMPACTGRAPH is
geared towards visualizing the execution of a single test case
and visualizing it coverage, focusing on the impact it makes
on the coverage of the whole test suite.

Other approaches visualize the current coverage of a test
suite to aid developers in achieving better coverage. Vanessa
Peña Araya [49] proposes Test Blueprints, a hierarchical visu-
alization of the structure of the code under test in conjunction
with how often its methods are executed by the test suite.
Lawrance et al. [26] highlight lines in the code under test
to indicate the existing quality of a test suite and investigate
whether this leads developers to create more effective tests.
With a similar goal, Rahmani et al. [50] create a control
flow graph showing the current branch coverage. Among our
participants, we observed a similar, intuitive strive to write
additional test cases for lines that were not marked as covered.

Previous work investigated visualizing the software com-
ponents, methods or lines that are executed by a test case
or an interaction with the system to aid understanding of
the behavior of the system under test. Cornelissen et al. [51]
visualize tests as abstracted scenario diagrams, Arthur-Jozsef
Molnar [52] visualizes the components executed by a sequence
of GUI interactions, and Gestwicki and Jayaraman [53] present
the structure of live object and values as well as method
invocations during the execution of a java program.

The research area of test-to-code traceability is similar to
our effort to connect a developer test to the code it tests.
The IDE extension EZUNIT by Bouillon et al. [54] creates
links to jump from a test case to the methods under test.
Aljawabrah et al. [55], [56] visualize the connection between
unit tests and the code under test with the TCTRACVIS
tool. Their tools shows traceability links in a hierarchical tree
graph in both directions: from test to code and from code to
test. While TCTRACVIS is built to support different methods
to retrieve traceability links and visualizes the connection
of high-level code structures like classes and methods, the
TESTIMPACTGRAPH relies purely on coverage information
and visualizes the connection of test and code under test
on a line granularity. Furthermore, the TESTIMPACTGRAPH

presents the source code directly to the developers, keeping
the visualization as close as possible to the source code [19].

Vidaure et al. [57] use visualizations to shed light on the
internal processes of automated test generation. Their tool
TestEvoViz lets developers examine the process behind a
genetic algorithm to see the impact their configuration has
on the test generation. While the TESTIMPACTGRAPH also
works with automatically generated test cases, its design is
in principle independent from the specific test generation
approach. The TESTIMPACTGRAPH steps in after the test
cases are generated, with the aim to help the developer inspect
one specific new test case at a time.

X. CONCLUSION

In this paper we present the TESTIMPACTGRAPH, a vi-
sualization of developer tests to aid understanding of their
behavior and impact. Through an exploratory think-aloud
study we identify a range of ten recommendations for future
visualizations of developer tests.

We discuss how the TESTIMPACTGRAPH can give devel-
opers a better context of the code under test during code
review, how it complements differential coverage and how
developers can use it to gain a more fine grained understanding
of the coverage their test cases provide. In future work
we aim to apply the recommendations we presented to the
TESTIMPACTGRAPH itself and study in-depth how much it
helps developers explore automatically generated test cases,
as well as test cases written by their colleagues. In addition,
we intend to compare how understanding test cases with the
specialized TESTIMPACTGRAPH compares to using standard
debuggers, IDE features like jump-to-definition, or general-
purpose visualizations of the tests’ call graphs. We want to
investigate other means to convey the behavior and impact
of a test case, e.g., through test names or textual descrip-
tions, leveraging our observations about deep and accidental
coverage. Further, we will explore ways to help developers
understand test cases that improve the test suite in other
ways than instruction coverage, such as covering edge cases,
reproducing known bugs or killing artificial mutants of the
system under test.

In short, this paper contributes:
• The design and a prototypical implementation of the

TESTIMPACTGRAPH, a visualization to help developers
understand the behavior and impact of a test case gener-
ated to amplify an existing test suite.

• Ten actionable recommendations on how tools with a
similar aim should visualize developer tests.

Our vision is that tools like the TESTIMPACTGRAPH will
enable developers to dive deep into new test cases and help
them understand how and why these test cases amplify the
power of their test suite.

REFERENCES

[1] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Pearson
Education, 2007.

10



[2] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[3] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance: An
empirical investigation,” in Proceedings of the 38th International Con-
ference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016, L. K. Dillon, W. Visser, and L. Williams, Eds. ACM,
2016, pp. 547–558.

[4] D. Hoffman and P. Strooper, “API documentation with executable
examples,” Journal of Systems and Software, vol. 66, no. 2, pp. 143–156,
2003.

[5] K. L. Beck, Test-Driven Development - By Example, ser. The Addison-
Wesley signature series. Addison-Wesley, 2003.

[6] P. S. Kochhar, X. Xia, and D. Lo, “Practitioners’ views on good
software testing practices,” in Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice,
ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019, H. Sharp
and M. Whalen, Eds. IEEE / ACM, 2019, pp. 61–70.

[7] D. Spadini, M. F. Aniche, M. D. Storey, M. Bruntink, and A. Bacchelli,
“When testing meets code review: Why and how developers review
tests,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM,
2018, pp. 677–687.

[8] G. Fraser and A. Arcuri, “EvoSuite: On the challenges of test case
generation in the real world,” in Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013. IEEE Computer Society, 2013, pp.
362–369.

[9] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” in 39th IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice Track, ICSE-
SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE Computer
Society, 2017, pp. 263–272.

[10] C. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, p. 96, 2022.

[11] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,” Jour-
nal of Systems and Software, vol. 157, p. 110398, 2019.

[12] K. A. Ericsson and H. A. Simon, “How to study thinking in everyday
life: Contrasting think-aloud protocols with descriptions and explana-
tions of thinking,” Mind, Culture, and Activity, vol. 5, no. 3, pp. 178–
186, 1998.

[13] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: A study with ten mature open-source
projects,” Empirical Software Engineering, vol. 24, no. 4, pp. 2603–
2635, 2019.

[14] F. Trautsch, S. Herbold, and J. Grabowski, “Are unit and integration test
definitions still valid for modern java projects? an empirical study on
open-source projects,” J. Syst. Softw., vol. 159, 2020.

[15] J. Van Geet and A. Zaidman, “A lightweight approach to determining the
adequacy of tests as documentation,” Proc. PCODA, vol. 6, pp. 21–26,
2006.

[16] M. F. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Transactions on Software
Engineering, -.

[17] P. K. Linos, P. Aubet, L. Dumas, Y. Helleboid, P. Lejeune, and P. Tulula,
“Facilitating the comprehension of c-programs: An experimental study,”
in IEEE Second Workshop on Program Comprehension, WPC 1993,
Capri, Italy, 8-9 July 1993. IEEE, 1993, pp. 55–63.

[18] M. P. Prado and A. M. R. Vincenzi, “Towards cognitive support for unit
testing: A qualitative study with practitioners,” J. Syst. Softw., vol. 141,
pp. 66–84, 2018.

[19] H. M. Kienle and H. A. Müller, “Requirements of software visualization
tools: A literature survey,” in Proceedings of the 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis,
VISSOFT 2007, Banff, Alberta, Canada, June 25-26, 2007, J. I. Maletic,
A. C. Telea, and A. Marcus, Eds. IEEE Computer Society, 2007, pp.
2–9.

[20] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the elipse IDE?” IEEE software, vol. 23, no. 4, pp.
76–83, 2006.

[21] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software
engineering, no. 12, pp. 971–987, 2006.

[22] M. Desmond, M. D. Storey, and C. Exton, “Fluid source code views,”
in 14th International Conference on Program Comprehension (ICPC
2006), 14-16 June 2006, Athens, Greece. IEEE Computer Society,
2006, pp. 260–263.

[23] T. Karrer, J. Krämer, J. Diehl, B. Hartmann, and J. O. Borchers,
“Stacksplorer: call graph navigation helps increasing code maintenance
efficiency,” in Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, Santa Barbara, CA, USA, October
16-19, 2011, J. S. Pierce, M. Agrawala, and S. R. Klemmer, Eds. ACM,
2011, pp. 217–224.

[24] A. Bragdon, R. C. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. L. Jr., “Code bubbles: A
working set-based interface for code understanding and maintenance,”
in Proceedings of the 28th International Conference on Human Factors
in Computing Systems, CHI 2010, Atlanta, Georgia, USA, April 10-15,
2010, E. D. Mynatt, D. Schoner, G. Fitzpatrick, S. E. Hudson, W. K.
Edwards, and T. Rodden, Eds. ACM, 2010, pp. 2503–2512.

[25] A. Bragdon, S. P. Reiss, R. C. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. L. Jr., “Code bub-
bles: Rethinking the user interface paradigm of integrated development
environments,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, J. Kramer, J. Bishop, P. T. Devanbu,
and S. Uchitel, Eds. ACM, 2010, pp. 455–464.

[26] J. Lawrance, S. Clarke, M. Burnett, and G. Rothermel, “How well
do professional developers test with code coverage visualizations? an
empirical study,” in 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05). IEEE, 2005, pp. 53–60.

[27] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Proceedings 1996 IEEE symposium on
visual languages. IEEE, 1996, pp. 336–343.

[28] M. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” J. Syst. Softw., vol. 44, no. 3, pp. 171–185, 1999.

[29] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with de-
scriptive names or: Would you name your children thing1 and thing2?”
in Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14,
2017, T. Bultan and K. Sen, Eds. ACM, 2017, pp. 57–67.

[30] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella,
D. Gonzalez, and M. Mirakhorli, “DeepTC-Enhancer: Improving the
readability of automatically generated tests,” in 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020. IEEE, 2020, pp. 287–
298.

[31] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE
2016, Singapore, September 3-7, 2016, D. Lo, S. Apel, and S. Khurshid,
Eds. ACM, 2016, pp. 625–636.

[32] F. Salviulo and G. Scanniello, “Dealing with identifiers and com-
ments in source code comprehension and maintenance: Results from
an ethnographically-informed study with students and professionals,”
in 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’14, London, England, United Kingdom,
May 13-14, 2014, M. J. Shepperd, T. Hall, and I. Myrtveit, Eds. ACM,
2014, pp. 48:1–48:10.

[33] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative sociology, vol. 13, no. 1,
pp. 3–21, 1990.

[34] C. S. Yu, C. Treude, and M. F. Aniche, “Comprehending test code:
An empirical study,” in 2019 IEEE International Conference on Soft-
ware Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA,
September 29 - October 4, 2019. IEEE, 2019, pp. 501–512.

[35] B. V. Rompaey and S. Demeyer, “Establishing traceability links between
unit test cases and units under test,” in 13th European Conference on
Software Maintenance and Reengineering, CSMR 2009, Architecture-
Centric Maintenance of Large-SCale Software Systems, Kaiserslautern,
Germany, 24-27 March 2009, A. Winter, R. Ferenc, and J. Knodel, Eds.
IEEE Computer Society, 2009, pp. 209–218.

11



[36] V. Hurdugaci and A. Zaidman, “Aiding software developers to maintain
developer tests,” in 16th European Conference on Software Maintenance
and Reengineering, CSMR 2012, Szeged, Hungary, March 27-30, 2012,
T. Mens, A. Cleve, and R. Ferenc, Eds. IEEE Computer Society, 2012,
pp. 11–20.

[37] D. Sun and K. Wong, “On evaluating the layout of UML class diagrams
for program comprehension,” in 13th International Workshop on Pro-
gram Comprehension (IWPC 2005), 15-16 May 2005, St. Louis, MO,
USA. IEEE Computer Society, 2005, pp. 317–326.

[38] C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch, “The aesthetics of
graph visualization,” in 3rd International Symposium on Computational
Aesthetics in Graphics, Visualization, and Imaging, CAe 2007, Banff,
AB, Canada, June 20-22, 2007, Proceedings, D. W. Cunningham, G. W.
Meyer, L. Neumann, A. Dunning, and R. Paricio, Eds. Eurographics
Association, 2007, pp. 57–64.

[39] M. Hilton, J. Bell, and D. Marinov, “A large-scale study of test
coverage evolution,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, M. Huchard, C. Kästner, and G. Fraser,
Eds. ACM, 2018, pp. 53–63.

[40] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” IEEE Trans.
Software Eng., vol. 40, no. 11, pp. 1100–1125, 2014.

[41] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and A. van
Deursen, “Presentation abstract: Generating class integration tests using
call site information,” in 18th Belgium-Netherlands Software Evolution
Workshop (BENEVOL’19), Brussels, 2019.

[42] M. Grechanik and G. Devanla, “Generating integration tests automat-
ically using frequent patterns of method execution sequences,” in The
31st International Conference on Software Engineering and Knowledge
Engineering, SEKE 2019, Hotel Tivoli, Lisbon, Portugal, July 10-12,
2019, A. Perkusich, Ed. KSI Research Inc. and Knowledge Systems
Institute Graduate School, 2019, pp. 209–280.

[43] M. Pezzè, K. Rubinov, and J. Wuttke, “Generating effective integration
test cases from unit ones,” in Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013. IEEE Computer Society, 2013, pp.
11–20.

[44] M. Borg, A. Brytting, and D. Hansson, “An analytical view of test results
using cityscapes,” in Proc. of the Design and Verification Conf. and
Exhibition United States (DVCON US), 2018.

[45] G. Balogh, T. Gergely, Á. Beszédes, and T. Gyimóthy, “Using the
city metaphor for visualizing test-related metrics,” in First International
Workshop on Validating Software Tests, VST@SANER 2016, Osaka,
Japan, March 15, 2016. IEEE Computer Society, 2016, pp. 17–20.

[46] M. Perscheid, D. Cassou, and R. Hirschfeld, “Test quality feedback
improving effectivity and efficiency of unit testing,” in 2012 10th

[53] P. V. Gestwicki and B. Jayaraman, “Interactive visualization of java
programs,” in 2002 IEEE CS International Symposium on Human-
Centric Computing Languages and Environments (HCC 2002), 3-6

International Conference on Creating, Connecting and Collaborating
through Computing. IEEE, 2012, pp. 60–67.

[47] R. Opmanis, P. Kikusts, and M. Opmanis, “Visualization of large-scale
application testing results,” Baltic Journal of Modern Computing, vol. 4,
no. 1, p. 34, 2016.

[48] M. Breugelmans and B. Van Rompaey, “TestQ: Exploring structural
and maintenance characteristics of unit test suites,” in WASDeTT-1: 1st
International Workshop on Advanced Software Development Tools and
Techniques. Citeseer, 2008.

[49] V. P. Araya, “Test blueprint: An effective visual support for test cover-
age,” in Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011,
R. N. Taylor, H. C. Gall, and N. Medvidovic, Eds. ACM, 2011, pp.
1140–1142.

[50] A. Rahmani, J. L. Min, and A. Maspupah, “An evaluation of code
coverage adequacy in automatic testing using control flow graph vi-
sualization,” in 2020 IEEE 10th Symposium on Computer Applications
& Industrial Electronics (ISCAIE). IEEE, 2020, pp. 239–244.

[51] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman, “Visu-
alizing testsuites to aid in software understanding,” in 11th European
Conference on Software Maintenance and Reengineering (CSMR’07).
IEEE, 2007, pp. 213–222.

[52] A. Molnar, “Live visualization of GUI application code coverage with
GUITracer,” CoRR, vol. abs/1702.08013, 2017.
September 2002, Arlington, VA, USA. IEEE Computer Society, 2002,
pp. 226–235.

[54] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann, “EzUnit: A frame-
work for associating failed unit tests with potential programming errors,”
in Agile Processes in Software Engineering and Extreme Programming,
8th International Conference, XP 2007, Como, Italy, June 18-22, 2007,
Proceedings, ser. Lecture Notes in Computer Science, G. Concas,
E. Damiani, M. Scotto, and G. Succi, Eds., vol. 4536. Springer, 2007,
pp. 101–104.

[55] N. Aljawabrah, T. Gergely, S. Misra, and L. F. Sanz, “Automated
recovery and visualization of test-to-code traceability (TCT) links: An
evaluation,” IEEE Access, vol. 9, pp. 40 111–40 123, 2021.

[56] N. Aljawabrah, T. Gergely, and M. Kharabsheh, “Understanding test-
to-code traceability links: The need for a better visualizing model,”
in Computational Science and Its Applications - ICCSA 2019 - 19th
International Conference, Saint Petersburg, Russia, July 1-4, 2019,
Proceedings, Part IV, ser. Lecture Notes in Computer Science, S. Misra,
O. Gervasi, B. Murgante, E. N. Stankova, V. Korkhov, C. M. Torre,
A. M. A. C. Rocha, D. Taniar, B. O. Apduhan, and E. Tarantino, Eds.,
vol. 11622. Springer, 2019, pp. 428–441.

[57] A. C. Vidaure, E. C. Lopez, J. P. S. Alcocer, and A. Bergel, “TestEvoViz:
Visual introspection for genetically-based test coverage evolution,” in
2020 Working Conference on Software Visualization (VISSOFT). IEEE
Computer Society, 2020, pp. 1–11.

12


