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Effect ofmatrix and fibre cracks on static and
fatigue strength of composite laminates

Carlo Alberto Socci1 and Christos Kassapoglou2

Abstract
The effect of matrix and fibre cracks on the static strength and stiffness of uni-directional plies and cross-ply laminates under
tensile loads was examined with the goal of understanding the main damage mechanisms. The size of matrix cracks
emanating from cracked fibres was determined and found to be in excellent agreement with test results. This was used to
predict static tensile failure of uni-directional laminates and was shown to be in good to excellent agreement with test
results for six different materials. The approach was extended to fatigue loading by determining the number of cycles for the
plastic zone ahead of a matrix crack tip to fail. It was combined with an approach to quantify the effect of matrix cracks
under any in-plane loading previously developed by the authors to predict changes in laminate stiffness as a function of
cycles. Comparisons with test results showed good to excellent agreement between predicted and measured laminate
stiffness as a function of fatigue cycles.
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Introduction

Understanding the mechanisms of damage creation and
evolution during fatigue loading of composite structures
requires modelling the basic types of damage, fibre cracks,
matrix cracks and delaminations. Over the years, attempts in
that direction ranged from curve fits and phenomenological
models relating fatigue performance to a macroscopic
property such as residual strength or stiffness, to detailed
simulations of the different types of damage. Very good
overviews of these areas were presented by Degrieck and
van Paepegem1 and Passipoularidis and Brønsted.2 Phe-
nomenological models3,4 tend to be simpler and easier to
implement but do not explicitly model damage creation and
evolution. A number of tests is needed to determine model
parameters and the range of applicability of the models may
be limited. The approaches simulating damage in detail are
of primary interest here because they attempt to relate
physical phenomena with damage creation. In earlier work,
Talreja5,6 modelled inter-laminar and intra-laminar cracks
using continuum mechanics. Stiffness degradation was a
function of the amount of damage present. Tests were
needed to link residual stiffness to crack density.

Deviating from more traditional approaches which
model stiffness degradation, Aboudi et al.7 suggested that
the Poisson’s ratio is a good indicator of the state of damage
in a cross-ply laminate. They solved the elasticity equations

in a three dimensional context using a repeating unit cell.
Van Paepegem et al.8 also used the Poisson’s ratio to in-
directly monitor evolution of fatigue damage.

A two-dimensional model was used by Berthelot and Le
Corre9 to model transverse matrix cracks in cross-ply
laminates under static loads. Under fatigue loading, when
the transverse cracks do not extend to the full width of the
specimen, they combined their two-dimensional model with
finite element analysis to create a quasi-three-dimensional
model for matrix crack evolution. Montesano et al.10

combined finite element modelling with a statistical
model for the variation of the critical strain energy release
rate to predict matrix crack evolution and stiffness degra-
dation for laminates under multi-axial loading.

Shokrieh and Lessard,11 combined finite element-based
stress analysis with models for material degradation to set
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up a progressive damage model for laminates under fatigue
loading. Ladeveze and Le Dantec,12 used damage variables
at the ply level to quantify matrix micro-cracking and fibre-
matrix debonding. Maimı́ et al.,13 also used damage vari-
ables to determine intralaminar failure mechanisms.

More recently, Breite et al.,14 evaluated six models for
the tensile failure of uni-directional composites. They found
that the load distribution in the vicinity of broken fibres and
subsequent crack creation in them plays a big role making it
hard to obtain accurate predictions for the ultimate strain
and stress of a ply. Bonora et al.15 used Talreja’s continuum
mechanics model5,6 to relate stiffness degradation to density
of matrix cracks in the 90° plies. They related crack density
to applied cycles, maximum cyclic stress, specimen ge-
ometry and certain constants, one of which is a function of
applied load level. As alluded to, in much of previous work,
knowledge of crack density is a necessary intermediate step
in predicting residual stiffness of a laminate under fatigue
loading. Mohammadi and Pakdel16 used a variational ap-
proach and a Paris-type growth law to predict crack density.
The two parameters in the growth lawwere determined from
tests on two different laminates.

Depending on the approach used, previous work has
focused mostly on phenomenological, semi-empirical,
and simulation models. Accordingly, some methods
depend on curve fitting, extensive testing, or indirectly
determined parameters which allow modelling of damage
creation and evolution. As a result, the applicability and
accuracy of many of these methods as well as the
computational cost of the more elaborate ones point to the
need for a generalized approach which accounts for the
major damage mechanisms, does not rely on extensive
testing to obtain model parameters and accurately pre-
dicts static and fatigue behaviour both in terms of strength
an stiffness.

The present work aims at providing a general ana-
lytical approach for predicting the static and fatigue
strength and stiffness of uni-directional plies without the
need for additional testing or curve fitting. In addition, it
is very efficient and is able to capture the basic physics of
damage formation and evolution under static and fatigue
loads. It models the creation and evolution of fibre cracks
in the 0 plies and fibre/matrix interface or transverse
matrix cracks in the 90 plies. At the same time it addresses
failure mechanisms and their interactions under static
loads allowing accurate determination of uni-directional
ply strength using individual fibre and matrix properties.
One of its added features is the ability to determine under
what conditions matrix cracks will develop parallel or
perpendicular to the fibres. The approach is also applied
to fatigue loading where it is combined with a model to
predict ply crack evolution in order to accurately deter-
mine cycles to failure and stiffness reduction as a function
of cycles.

Approach

Strength and stiffness of a 0° unidirectional tape
ply

Stress field around fibre crack. A 0° ply under uni-axial load
will develop cracks in the fibres. The location of these
cracks is, at the beginning, random. For a given applied
tensile strain, some fibres may develop multiple cracks
which, at lower strains, are not evenly spaced, while other
fibres may remain intact. The case of a cracked fibre in a ply
is shown in Figure 1. Depending on the situation, as the
applied strain increases, in addition to more fibre cracks
appearing in various fibres, some of the cracks transition to
fibre/matrix interface cracks or matrix radial inter-fibre
cracks. These are also manifested during fatigue
loading.17,18 Which type of crack will appear in a particular
situation depends mostly on the fibre volume fraction as will
be shown later.

When a fibre first cracks and before the matrix fails
locally, the load in the fibre shears into the matrix around the
fibre crack and the fibre can still carry load effectively. The
(shear lag) distance on either side of the fibre crack over
which the stress in the fibre goes from 0 at the crack tip to the
far-field applied stress, is denoted by the ratio deff/2. The
matrix near the cracked fibre is assumed to be in pure shear.
By balancing an element of length dx along the cracked fibre
and recovering uniform axial extension at the far field, the
governing equation is obtained:

d2σ
dx2

� 4Gm

Ef hdf
σ ¼ �8Gmuo

hdf deff
(1)

where σ is the axial stress in the fibre, uo is the applied
displacement on fibre and matrix at deff/2, Gm is the
matrix shear modulus, Ef is the fibre longitudinal
Young’s modulus, h is the radial distance from the
cracked fibre over which the matrix is in pure shear and df
is the fibre diameter. These quantities are visualized in
Figures 2 and 4 below. Many authors have proposed
different versions of equation (1) in the past [for
example].19–21 More recently, the work by Sørensen22

for single fibres in a matrix should be noted because it
included the effect of friction at the fibre/matrix inter-
face. The main differences in the present formulation are
in the non-homogenous term on the right hand side of
equation (1), which is based on fibre strains, and in the
use of the length scale h (see below) which represents the
portion of the matrix under pure shear. It should also be
noted that, once a (radial) matrix crack appears, the
matrix is no longer assumed to be under pure shear and
the complete three-dimensional state of stress in the
matrix is accounted for through the use of the Nied-
Erdogan solution23 (see equation (24)). Equation (1) is
solved with boundary conditions of σ = 0 at x = 0
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(crack location) and u = uo at x = deff/2 where the far-field
stress in the fibre is recovered. The solution is:

σ ¼ 2uo
deff

Ef

�
1� eαx

1þ eαdeff
� eαdeff e�αx

1þ eαdeff

�
(2)

where,

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4Gm

Ef hdf

s
(3)

The shear stress τ in the matrix is obtained from
equilibrium:

τ ¼ df
4

dσx
dx

¼ �df
4

2uo
deff

αEf
eαx � eαdeff e�αx

1þ eαdeff
(4)

For the radial distance h from the center of the cracked
fibre over which the matrix is in pure shear the expression
by Budiansky et al.24 is used:

h ¼ df
2

2
64e�

2lnvf þ
�
1� vf

��
3� vf

�
4
�
1� vf

�2
� 1

3
75 (5)

where vf is the fibre volume fraction. The effective length of
fibre deff can now be obtained by finding the length deff/2
needed for the stress to reach 99% of its nominal uncracked
fibre value. Using εaEf as the stress in the uncracked fibre
with εa the applied strain, equation (2) gives:

1� 2e
αdeff
2 þ eαdeff ¼ 0:99þ 0:99eαdeff (6)

where the fact that εa = 2uo/deff was used. Equation (6) is
quadratic in eαdeff =2. Solving for deff, leads to:

deff ¼ 10:5966

α
(7)

Fibre/matrix interface crack. If the fibre/matrix interface bond
is not sufficiently strong, the shear stress from equation (4)
will lead to cracking of the fibre/matrix interface. This is
shown in the second image of Figure 1. At this point, the
matrix shear stress-strain curve is assumed to be linear to
failure and to have the same ultimate strength as obtained by
tests and with the same area under the curve as the non-
linear shear stress-strain curve. This is an approximation
and a limitation to be relaxed during further future model
development. If τult is the shear failure strength of the
matrix, for sufficiently high applied strain, there will be a
length L1 measured from the crack location, parallel to the
fibre over which the shear stress in the matrix exceeds τult.
This is shown in Figure 2. The length L1 is found by setting
τ = τult in equation (4).

Figure 1. Fibre crack transitioning to fibre/matrix interface or matrix inter-fibre radial crack.

Figure 2. Distance along which shear stress at the fibre/matrix
interface exceeds matrix shear strength.
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L1 ¼ 1

α
ln

"
�H þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ 4eαdeff
p

2

#
(8)

With,

H ¼ τult4ð1þ eαdeff Þ
df α

2uo
deff

Ef

(9)

A measure of the energy that would be released if such a
longitudinal crack were created can be obtained by calculating
the energy corresponding to shear stress in excess of τult over a
length L1. Assuming that the matrix at the fibre/matrix in-
terface is mostly in shear, failure of the interface would occur
when the shear stress in the matrix exceeds τult. The region
along the fibre over which this ultimate shear strength would
be exceeded if there were no failure corresponds to the size of a
longitudinal crack, if dynamic effects are excluded. This
approach has been applied successfully by Huo et al.25 to
determine delamination size of laminates under static in-
dentation and by Esrail and Kassapoglou26 to determine
delamination sizes of laminates under low speed impact
damage. Denoting by Γ inf the fracture energy per unit area
of interface crack created and by L the length of interface
crack resulting by this released energy, the energy to create
a crack can be set equal to that released due to the shear
stress exceeding its ultimate value. This gives:

Γinf πdf L ¼ π
��
df þ 2h

�2 � df
2
�

4

	 Z L1

0

τ2

2Gm
dx�τult2L1

2Gm



(10)

Using equation (4) to substitute for τ and solving for the
interface crack length L gives:

L ¼ h
�
df þ h

�
2GmΓinf

	
df α
32

�
2uo
deff

�2 Ef
2

ð1þ eαdeff Þ2�
e2αL1 � e2αde�2αL1 � 4αL1e

αd � 1þ e2αd
�� τult2L1

df



(11)

Equation (11) gives an estimate of the length of the
fibre/matrix interface crack. The accuracy of this equation
is evaluated by comparing its predictions to measure-
ments done by Kim and Nairn27 for individual AS4 and

E-glass fibres embedded in epoxy. In that work, the length
was measured under load and included the fibre crack
opening. The latter can be estimated by combining
equations (2) and (4) to calculate the displacement u (0)
(at x = 0 in Figure 1):

uð0Þ ¼ hdf α
4Gm

ð� 1þ eαdeff Þ
ð1þ eαdeff Þ

2uo
deff

Ef

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hdf Ef

4Gm

s
ð� 1þ eαdeff Þ
ð1þ eαdeff Þ

2uo
deff

(12)

In comparing with the results by Kim and Nairn in ref. 27
the results of equations (10) and (12) are multiplied by 2 to
account for the interface crack extending to both sides of the
fibre crack (above and below the crack in Figure 1). Also,
for high applied strains, exceeding 0.0175 for AS4 and
0.025 for E-glass, the crack spacing is less than deff. In such
cases, the measured crack spacing from Figure 9 in ref. 27
was used. For Γ inf, the measured values of 220 J/m2 for
AS4 and 105 J/m2 for E-glass from27 were used here. Any
needed material properties were obtained from27 and
Table 1 below. Comparison of the predictions of the present
method to results in Figures 23 and 24 in ref. 27 are shown
in Figure 3. There is significant scatter in the test data but for
both materials, very good agreement is observed.

Inter-fibre radial matrix crack. If the fibre/matrix interface
bond is stronger than the tensile strength of the matrix, a
radial crack will form when the shear strength of the matrix
is exceeded. Which of the two types of cracks is preferred is
determined in the next section using an energy approach.
For now the focus is a radial crack which will start at the tip
of the fibre crack and will have length Lr as shown in the
third image of Figure 1. The length Lr is estimated as the
distance over which the energy from the shear stress ex-
ceeding the shear strength (shaded area in Figure 2) can be
distributed using the critical energy release rate corre-
sponding to the radial crack growth. As the critical energy
release rate, GIcm, the mode 1 critical energy release rate for
the matrix is used. Then, analogous to equation (10):

GIcmπ

�
df þ 2Lr

�2 � df
2

4
¼ π

��
df þ 2h

�2 � df
2
�

4	 Z L1

0

τ2

2Gm
dx�τult2L1

2Gm


 (13)

With L1 given by equation (8). Solving for Lr gives:

Lr¼df
2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2h

�
dfþh

�
GmGIcm

	
α
32

�
2uo
deff

�2 Ef
2

ð1þeαdeff Þ2ðe
2αL1�e2αde�2αL1�4αL1eαd�1þe2αdÞ�τult2L1

df
2


s
�1

#
(14)
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Fibre/matrix cracks versus inter-fibre radial matrix
cracks. Equations (11) and (14) give the estimated crack
sizes for the two extreme cases of creating an interface crack
or a radial crack. Situations where a crack might start in one
direction and branch out at some angle, see for example the
work by Huang and Talreja31 which numerically modelled
the problem for short fibre composites, are not discussed
here. Within the context of the present discussion, inter-
mediate cases are possible, where both types of cracks are
present, with fibre/matrix interface cracks in one region of
the ply and inter-fibre radial cracks in another see for ex-
ample,32 Here, conditions under which one type of crack
would be preferred over the other are discussed.

If a crack forms at the fibre/matrix interface, the portion
of the fibre between the crack in the fibre and the tip of the
interface crack is not loaded. The load in the fibre shears into
the matrix. This situation is shown in Figure 4. There is a
length L of the matrix which transfers the load, from shear
load at the crack tip defined by the circumference AB, to

axial tensile load at the tip of the crack interface along CD.
This means that the normal stress in the fibre is zero from the
fibre crack to the section AB. Effectively, the shear lag
problem solved in the “Stress field around fibre crack”
section has been moved to a new origin at section AB.
Starting at that location, the solutions from the “Stress field
around fibre crack” section for the normal stress in the fibre
and the shear stress in the matrix are still valid. Thus, the
superposition of two problems is shown in Figure 4: a
cracked fibre at AB, with corresponding deflection uo, and
matrix under tension along the interface crack between AB
and CD, with corresponding deflection u1. The total de-
flection utot is the sum of u0 and u1.

The situation, however, differs from that in the “Stress
field around fibre crack” section in that the matrix portion
between the crack in the fibre and the section AB un-
dergoes combined loading. Thus, a given applied dis-
placement to the composite consists of two contributions, a
uo displacement in the fibre at distance deff/2 from AB, and

Table 1. Material properties used to predict strain and stress to failure for four different uni-directional materials (all data from28 unless
otherwise noted).

Property AS4/3501-6 IM7/8552
G40-800/
5260

Glass/
LY556 34-700/736LT(3)

T700SC-12/
SR8500-KTA315(3)

Fibre diameter df (μm) 7 4.5 8 11 6.5 6.8
Fibre Young’s modulus, Ef (GPa) 231 276 290 74 234 230
Fibre mean strain to failure, εfm 0.01515 0.0187 0.0202 0.02905 0.01691 0.01666
Fibre std dev, of strain distr, sf 0.00237(1) 0.00293(1) 0.00316(1) 0.00617(2) 0.00380(1) 0.00453(1)

Matrix shear modulus, Gm (GPa) 1.567 1.478 1.28 1.24 0.904 0.989
Matrix Young’s modulus, Em, (GPa) 4.2 4.08 3.45 3.35 3.15 3.36
Matrix Poisson’s ratio ν 0.34 0.38 0.35 0.35 0.39 0.42
Matrix ultimate shear strength τult (MPa) 50 57 57 54 60.4 63.3
Mode I critical energy release rate GIcm = Γ inf (J/m

2) 220 200 240 165 220(4) 220(4)

(1) Based on AS4 data in ref. 29 and keeping the same coefficient of variation for all carbon fibres.
(2) From30 using the shape parameter of the equivalent Weibull distribution.
(3) From14 except for GIC which was not reported there.
(4) Estimated based on AS4/3501-6 data.

Figure 3. Interface crack length for AS4 (a) and E-glass (b) fragmentation tests compared to tests in ref. 27.
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a matrix displacement u1 at circumference AB. It is as-
sumed that the displacement of the matrix at CD is zero by
symmetry.

A representative volume element (RVE) is considered
consisting of a portion of the cracked fibre of length deff/2 +
L with L the length of the interface crack given by equation
(11) and matrix surrounding it extending radially to the
length h of equation (5) also shown in Figure 4. The energy
stored in this RVE after an interface crack of length L is
created can be calculated by computing the work done when
ply stress σply is applied. The total force acting on the RVE is
obtained by multiplying the ply stress by the cross-sectional
area of the RVE:

Ftot ¼ σplyπ

	
h
�
df þ h

�þ df
2

4



(15)

The total displacement of the RVE at L + deff/2 is given by:

utot ¼ uo þ u1 (16)

Treating the situation as a one-dimensional problem, the
strain uo/(deff/2) can be related to the applied stress and, from
that, the displacement uo can be obtained:

uo ¼ Ftot

Ef Afe

deff
2

(17)

Note that the area Afe accounts for the fact that the stress
in the fibre is evaluated at deff/2 where, as shown in the
“Stress field around fibre crack” section, 99% of the (un-
cracked) fibre stress is recovered. Thus, evaluating equation
(2) at x=deff/2:

Ftot

π df
2

4

¼ 2uo
deff

Ef

	
1� eαdeff =2 þ e�αdeff =2eαdeff

1þ eαdeff



(18)

which, after some rearranging, leads to:

uo ¼ Ftot

Ef

deff
2

1

π
df

2

4

�
1� 2eαdeff =2

1þ eαdeff

� (19)

Comparing with equation (17):

Afe ¼ π
df

2

4

�
1� 2eαdeff =2

1þ eαdeff

�
(20)

Now the matrix displacement u1 is given by:

u1 ¼ FtotL

EmAm
¼ FtotL

Emπh
�
df þ h

� (21)

With L the interfacial crack length given by equation (11)
and Em is the matrix Young’s modulus. Combining:

utot ¼ Ftot

π

2
664 2deff

Ef df
2

�
1� 2eαdeff =2

1þ eαdeff

�þ L

Emh
�
df þ h

�
3
775 (22)

Therefore, the energy stored in the RVE when σply is
applied right after an interface crack of length L is created, is
equal to the work done by the applied force:

URVE ¼ Ftotutot
2

(23)

For an inter-fibre crack, the situation is analogous with
Ftot the same as in equation (15) but utot now given by:

utot ¼ uo þ δ (24)

Here δ is the crack mouth opening displacement for the
radial matrix crack emanating from the fibre crack. This is
shown in Figure 5 where it is assumed that the fibres
surrounding the cracked fibre do not have cracks lining up
with the radial crack shown in the Figure. For the case of an
axially loaded cylinder with a crack, the displacement δwas
calculated by Nied and Erdogan.23 The present case is not
exactly the same because the load from the fibre is applied to
the matrix through shear and causes a small local bending
moment. However, the Nied-Erdogan result will be used as
an approximation. The tabulated values reported in ref. 23
are interpolated here in determining δ.

For a given value of σply, the displacement uo changes
when a crack appears. It can be computed by accounting
for the fact that some fibres in the ply are cracked and
some are not. Denoting by f the fraction of cracked
fibres:

Figure 4. Region of unloading in the vicinity of a fibre/matrix
interface crack.
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σply ¼ vf

"
f
2uo
deff

Ef

�
1� eαdeff =2

�2
1þ eαdeff

þ ð1� f ÞEf
2ðuo þ δÞ

deff

#

(25)

In this relation, the first term in brackets is the stress in
the cracked fibres obtained using equation (2) and the
second term is the stress in the intact fibres obtained by
multiplying the Young’s modulus by the strain utot/(deff/2).
The fibre volume fraction vf in front of the brackets is used to
go from fibre stresses to ply stresses. Solving equation (25)
for uo:

uo ¼
σply
vf Ef

deff
2

ð1� eαdeff =2Þ2
1þ eαdeff

2
664f þ ð1� f Þkoð1�νÞEf

4Gm

2ac
deff

df
2�

h1
2� df

2

4

�
3
775þ1� f

(26)

The fraction of cracked fibres f in equation (26) is found
by assuming that the strain-to-failure of dry fibres is nor-
mally distributed with known mean and standard deviation
(see next section). This fraction f can be applied to any
region of the material which contains a sufficiently large
number of fibres which represent the statistical distribution
of fibre strain to failure. In equation (26), ac = Lr is the crack
length and ko is a constant of proportionality in the Nied-
Erdogan relation:23

δ ¼ ko
ac�

h1 � df
2

� ð1� νÞ
Gm

�
h1 � df

2

�
P∞

π

�
h1

2 � df
2

4

�
(27)

The length h1 is the radius of the “cylinder” of interest
which, here, is taken to be the center-to-center distance
between adjacent fibres. P∞ in equation (27) is the load
applied on the fibre and is given by:

P∞ ¼ σf π
df

2

4
(28)

Then, placing equations (15) and (26) in equation (23)
gives the energy URVE stored in an RVE with a radial inter-
fibre crack.

A comparison ofURVE values for interface and inter-fibre
cracks is in order. This is done by applying the above
equations to the cases of the AS4/3501-6 carbon/epoxy and
E-glass/epoxy materials for varying fibre volume fraction.
For these materials, properties were obtained from Kaddour
et al.28 shown in Table 1 and from Kim and Nairn.27 The
ratio of the RVE energy for interface crack divided by that
for an inter-fibre crack is shown in Figure 6 as a function of
fibre volume fraction vf.

According to Figure 6, for fibre volume fractions higher
than, approximately, 0.26 the carbon/epoxy, and 0.34 for the
glass epoxy material, the energy in a RVE with interface
crack is higher so it is not the preferred configuration.
Therefore, in this case, for fibre volumes higher than these
values, inter-fibre cracks will be the mode of energy dis-
sipation. For lower fibre volumes, interface cracks will be
preferred. Obviously, as shown by the differences between
the two materials used in Figure 6, the changeover value
will be different for different fibre-matrix combinations.

It is important to keep in mind that, in an actual ply, the
fibre array is not regular. There are regions where fibres are
close together, exceeding the average inter-fibre spacing,
and regions where they are far apart where the local inter-
fibre spacing may be significantly lower than the average.
Thus, there will be situations where interface and inter-fibre

Figure 5. Inter-fibre crack emanating from cracked fibre in a uni-directional composite.
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cracks will both be present at different locations depending
on how the fibres are distributed.

Stiffness of a 0° uni-directional ply after fibre cracking. The
Young’s modulus of a 0° ply after fibres start to crack can
now be determined. For low fibre volume fractions, where,
as demonstrated in the previous section, interface cracks
between fibre and matrix are favoured, the residual Young’s
modulus Eplyr for a ply under stress σply is given by:

Eplyr ¼ σply
εa

¼ σply
utot

Lþ deff
2

(29)

With utot given by equation (16) and L given by equation
(11). For high fibre volume fractions, where inter-fibre
radial matrix cracks are favoured, using utot from equa-
tion (24), the Young’s modulus is shown to be:

Eplyr ¼ σply

εa
¼ σply

utot
deff
2

(30)

Strength of a 0° uni-directional ply. The details of load re-
distribution in the vicinity of a broken fibre and subsequent
load increase have been addressed by Zhuang et al.33

However, that work did not give detailed comparisons of
predictions of ply strength to test results. In another multi-
scale numerical approach, Qian et al.34 have started from
single failed fibres and numerically scaled predictions through
different unit cells to simulate static and fatigue failure of uni-
directional plies. In that work, the positions of the fibres
surrounding the broken fibre were chosen randomly to better
represent actual fibre distributions in a ply. It should be noted
that, in all these cases, the stress concentration factor on fibres
next to a broken fibre was low, never exceeding 1.13.

Here, the analytical approach presented in previous
sections is used to predict tensile failure of a 0° uni-

directional ply and compare with test results. This is
done using, exclusively, properties of the individual
constituents, the fibre and matrix. For the relatively
high fibre volume fractions of interest here, greater than
0.45, it is assumed that the fibres are arranged in a
hexagonal array as shown in Figure 7. Under tensile load,
perpendicular to the page in Figure 7, some fibres will
crack.

The strain to failure of dry fibres is normally distributed
with mean εfm and standard deviation sf. Since, in a typical
ply, there are billions of fibres, it is reasonable to assume that
fibres of all strains to failure, covering the complete sta-
tistical distribution, are present in the array. Then, the
fraction of cracked fibres f when strain εa is applied can be
determined as the probability that the strain of any given
fibre be lower than εa:

f ¼ 1

sf
ffiffiffiffiffi
2π

p
Z εa

�∞
e
�

�
x� εfm

�2
2sf 2 dx (31)

It should be noted that, for typical materials (see Table 1)
with typical ply thicknesses, equation (31) predicts that at
least 0.004 strain must be applied before one fibre per unit of
ply width cracks for carbon/epoxy materials while one fibre
per unit of ply width will be cracked during manufacturing
(zero applied strain) for the glass/epoxy. Having a small
number of cracked fibres in the as manufactured state is not
uncommon. Therefore, the approximation in equation (31)
of using minus infinity as the lower limit and allowing zero
strains to crack fibres has negligible effect on the fraction f
predicted by equation (31). It is recognized here that the
fibre failure strain is a function of gauge length. In this work,
the mean and standard deviation values typical of longer
fibres (longer than 5–10 cm) are used since they represent
the fibre lengths used in the test specimens with which the
predictions will be compared.

As the strain applied to the ply increases, the size of the
inter-fibre radial crack created increases and is given by
equation (14). For low applied strains, f is small and the
cracked fibres are very sparsely distributed within the ply.
For higher strains, f increases and a situation is reached
where, on an average sense, one fibre in every repeating
unit cell is cracked. Two such cracked fibres, representing

Figure 6. Comparison of energy stored in RVE for interface and
inter-fibre cracks for two materials.

Figure 7. Hexagonal fibre array for uni-directional material.
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the two extremes, are shown as filled circles in Figure 7.
There are two possibilities; either the cracked fibre will be
at the center of the unit cell as shown on the left of Figure 7,
or on the boundary as shown on the right of the Figure. The
unit cell consists of one full fibre and one third portions of
six surrounding fibres forming a regular hexagon, for a
total fibre area corresponding to the area of three fibres. So
for the first case, where the fibre at the center has cracked,
1/3 or 33% of the fibres are cracked on an average sense.
For the second case, where the cracked fibre is on the
boundary, one third of that fibre belongs to the unit cell so
1/9 or 11% of the fibres are cracked. These percentages,
even though they represent average behaviour and not the
typical random behaviour of a ply are important in pre-
dicting ply failure.

A strain εa, corresponding to a given ply stress is ap-
plied to the ply. A fraction f of the fibres given by equation
(31) develops cracks. If that strain is such that the max-
imum shear stress in equation (4) exceeds the shear
strength of the matrix, then interface or inter-fibre cracks
develop as discussed in the “Fibre/matrix cracks versus
inter-fibre radial matrix cracks” section. For typical
materials with high fibre volume fractions, inter-fibre
cracks will develop as was shown in Figure 6. The
length of these cracks Lr is determined from equation (14).
Let the average distance between the edge of one fibre and
that of the next be 2 cif, as seen in Figure 7. For hexagonal
arrays, half that distance is:

cif ¼ df
2

2
4

ffiffiffiffiffiffiffiffiffiffiffiffi
3

p
π

6vf

s
� 1

3
5 (32)

Then, the following cases are distinguished using the
11% (one cracked fibre per unit cell) and 22% (two cracked
fibres per unit cell) determined above:

(a) εa is lower than the strain for which maximum shear
stress in the matrix exceeds τult in the matrix: f fibres
have cracked but there is no ply failure.

(b) εa is such that the maximum shear stress in the
matrix exceeds τult. The fraction f and the inter-fibre
crack length Lr are calculated.
1. If f < 0.11 and Lr < cif there is no failure because

the cracked fibres are very few and isolated and
even if they are ineffective in carrying load
when Lr ≥ cif, there are still enough fibres
effective.

2. If 0.11 ≤ f ≤ 0.22, the situation is as in Figure 7
where, on the average, at least one fibre in each
unit cell is cracked. If Lr ≥ 2cif the cracked fibre
is ineffective in carrying load and, with the
matrix crack extending to the adjacent fibres,
the adjacent fibres are also (partially)

ineffective. The ply fails. If Lr < cif there is no
failure and the applied strain can be increased.

3. If f ≥ 0.22, on the average, at least two fibres per
unit cell have cracked. Then, if Lr ≥ cif the
matrix crack extends to, at least, the half-way
point between adjacent fibres. With, on the
average, two fibres cracked per unit cell, there is
a high probability that the matrix crack ema-
nating from one fibre will meet that emanating
from the other again rendering them ineffective
in carrying load. The ply fails. Note that in this
case, the strain must be high enough such that
there is a good chance that at least one crack in
one cracked fibre (nearly) aligns with one crack
in the other cracked fibre.

4. Once the strain causing failure εaf has been
reached, in cases (b2) or (b3) above, the cor-
responding ply stress is obtained from:

σplyf ¼ vf Ef εaf (33)

Note that equation (33) is only valid at failure where the
inter-fibre crack forms and instantaneously grows across the
ply. If there is no failure, equation (25) is valid. This
procedure is summarized in Figure 8 and was applied to four
different uni-directional materials, three carbon/epoxy and
one glass/epoxy, and the strain and stress to failure were
calculated. The fibre volume fraction in all cases was 0.6 so,
according to Figure 6, inter-fibre cracks are favoured. The
data needed for the calculations and the experimental results
to compare to were taken from Kaddour et al.28 Greenfield
et al.29 and Qian.30 The relevant values and their source are
given in columns 2–5 of Table 1.

For each laminate, a strain was applied (=uo/(deff/2)) and
equation (31) was used to determine the fraction of cracked
fibres f. Also, equation (14) was used to determine the inter-
fibre radial crack length Lr. Then, the logic just described
was applied to estimate the failure stress and strain of each
material.

The predictions are compared to test results from28 in
Table 2. The fifth column in Table 2 shows the failure
scenario, with (b2) and (b3) corresponding to the two
possibilities described above: If the fraction f of cracked
fibres, in column two, is less than 0.22, the inter-fibre crack
length Lr, shown in the fourth column of the Table must be
at least equal to the distance between adjacent fibres, 2cif,
with half that value shown in the third column. If f is greater
than 0.22, the crack length must be at least equal to cif, half
the distance between fibres. It is seen that there is excellent
agreement between predictions and test for failure strain and
stress for the three carbon/epoxy materials (first three rows
in Table 2) with biggest discrepancy 6.3%. For the case of
glass/epoxy (fourth row in Table 2) the agreement is good
with 15.7% difference between test and prediction.
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Inaccuracies in the mean and standard deviation of the fibre
failure strain used in equation (31) could be a reason for the
bigger discrepancy for glass/epoxy.

A further comparison was done with the test results and
predictions from six models in ref. 14 These are a 3D pro-
gressive failure model (3PFM), an analytically based strength
simulation (ABS), a dispersed fibre breaks model (DFBM), a
dynamic spring element model (DYSEM), a finite element
imposed stress model (FEISM) and a hierarchical scaling law
model (HSL). The results for ultimate strains for two different
materials are shown in Figure 9. For both materials, the present
model is in good agreement with test and the third best among
the seven models shown in Figure 9 in terms of accuracy.

Extension to fatigue

Fatigue of 0° ply. Load control is assumed. With minor
modifications the approach can also be applied to stroke
control cases. During the first cycle, with no matrix cracks,
the strain corresponding to the constant stress σply is given by:

εa ¼ σply
vf Ef

¼ 2uo
deff

(34)

Under this stress, if the shear strength of the matrix is
locally exceeded, a radial inter-fibre crack will be created of
length Lr given by equation (14). As the second cycle is
applied, a plastic zone of dimension trp forms ahead of the

Figure 8. Flowchart for the approach for static and fatigue analysis.

Table 2. Failure state and failure predictions for four composite materials (test results from)28.

Material f cif (μm) Lr (μm) Case εaf (pred) εaf (test) Δ (%) σplyf pred (MPa) σplyf test (MPa) Δ (%)

AS4/3501-6 0.349 0.803 0.803 b3 0.0142 0.0138 +3.1 1972 1950 +1.1
IM7/8552 0.220 0.516 0.642 b3 0.0164 0.0155 +5.8 2722 2560 +6.3
G40-800/5260 0.122 0.918 1.833 b2 0.0165 0.0159 +3.8 2875 2750 +4.5
Glass/LY556 0.221 1.262 1.510 b3 0.0243 0.0281 �13.5 1079 1280 �15.7

Figure 9. Ultimate strain predictions from present model (green bar) compared to test results (horizontal line) and six other models
from.14
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crack tip as shown in Figure 10. Using plain strain con-
ditions, the size of the plastic zone is given by:

trp ¼ ð1� 2νÞ2 K1
2

πσy2
(35)

With ν, σy the Poisson’s ratio and yield stress of the
matrix and K1 the stress intensity factor. K1 is obtained by
doing a best fit of the constant k shown in equation (36)
below, which is tabulated in ref. 23

K1 ¼ k
P∞

ffiffiffiffiffi
ac

p
π
�
b2 � a2

� ¼ k
P∞

ffiffiffiffiffi
ac

p

π

�
h1

2 � df
2

4

� (36)

In equation (36), ac is the running crack size with starting
value Lr. P∞ is the far field axial load given by equation (28),
a is the fibre radius and b is half of h1 the radius of matrix
material analysed around the fibre shown in Figure 5. Note
that here the term “crack size” refers to the radial length of the
crack from the fibre surface to the crack front. The total fibre
displacement at deff/2 is given by equation (24) with uo and δ
given by equations (26) and (27). The fibre stress needed in
equation (28) is given by equation (2) evaluated at deff/2:

σf ¼ 2uo
deff

Ef

�
1� eαdeff =2

�2
1þ eαdeff

(37)

Note that, here, 2uo/deff is used instead of εa from
equation (34) because, during fatigue cycling with constant
maximum stress, the two are no longer equal. Combining
with equation (24), εa during fatigue cycling is given by:

εa ¼ 2utot
deff

¼ 2ðuo þ δÞ
deff

(38)

Thus, if uo and δ are known, the size of the plastic zone
trp can be determined. It can be seen from equations (27) and
(28) that δ is a function of uo through equation (37).
Therefore, to determine trp, it suffices to determine uo. This
is done by requiring that the ply stress remains constant and
equal to σply. The ply stress will be a combination of the
stress in the cracked fibres and the stress in the un-cracked
fibres multiplied by the fibre volume fraction. The stress in
cracked fibres is given by σf from equation (37) and the
stress in un-cracked fibres is given by Efεa with εa given by
equation (38). Combining and using f for the cracked fibre
ratio and (1-f) for the un-cracked, gives σply and uo as
obtained in equations (25) and (26). Substituting back in
equation (35) gives the size of the plastic zone:

trp¼k2ð1�2νÞ2
16π

df
4

�
h1

2�df
2

4

�2
� σply
vf σy

�2
ac

2
664fþð1�f Þk1ð1�νÞEf

4Gm

2ac
deff

df
2

�
h1

2�df
2

4

�þð1�f Þ 1þeαdeff

ð1�eαdeff =2Þ2
3
775
2

(39)

Now the stress in the plastic zone is equal to the yield
stress of the matrix if we model it as elastic-perfectly plastic.
Beyond the plastic zone the stress is lower than the yield
stress and drops relatively quickly with distance. During
subsequent cycles, there is no damage mechanism at the
length scales discussed so far. At shorter scales, voids will
be created and will coalesce inside the plastic zone but there
is no mechanism presented here that can describe that
process. Such mechanisms may be represented by a mac-
roscopic model which covers them and relates the macro-
scopic applied stress σply and the static failure strength of the
ply to the cycles to failure:35

N ¼
�
σfail
σply

�αw
(40)

where αw, is the shape parameter of the two parameterWeibull
distribution describing the strength of the ply corrected for
stress ratio R,35 and σfail is the static failure strength of the ply.
Equation (40) is meant to capture shorter scale phenomena
occurring in the region of highest stress in the matrix. So N
represents the number of cycles to crack the plastic zone and
extend the crack over a length equal to the plastic zone size.

Therefore, starting with the second cycle, and pro-
vided the applied shear stress in the matrix exceeds the
matrix yield strength, N cycles will take place and the

Figure 10. Matrix plastic zone forming ahead of an inter-fibre
crack.
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plastic zone size will extend by the amount of equation
(39). Then, the new crack size is ac + trp. With this new
crack size, a new plastic zone size is computed and an-
other N cycles can be expended. Every time, the crack is
extended by trp and the process is repeated. It should be
noted that trp is not constant because the crack size in-
creases and that affects the crack mouth displacement δ,
the stress intensity factor K1 and the fibre displacement
uo. Failure is assumed to occur when the crack reaches the
center of the adjacent fibre. It is assumed that the
toughness of the fibre is higher than that of the matrix and
the inter-fibre crack goes around the adjacent fibre. Re-
tardation effects due to the proximity of the adjacent fibre
are not accounted for.

This radial crack is not growing in one location only.
There will be multiple locations throughout the ply, first
indicated by the fraction f of equation (31) and then, as
cycling progresses, additional locations will develop similar
damage zones due to wear-out and load redistribution from
cracked to uncracked fibres. From the point of view of the
creation of multiple damage zones leading to final failure
when they grow to a critical size, the present method is, to an
extent, analogous to the model proposed by Sørensen et al.36

where damage zones created by longitudinal cracks reach a
critical size. The difference is that the present method
predicts either longitudinal or radial cracks depending on
the local fibre volume (see Figure 6).

The above approach was applied to a uni-directional
ply of the AS4/3501-6 material. For that material, the
coefficient of variation for tensile strength is reported in
ref. 37 as 5.62%. This can be translated to a shape pa-
rameter of a Weibull distribution using, for example the
approximate expression in ref. 38. This, in turn, is cor-
rected to account for stress ratio R = 0.1 instead of R = 0
with the approximation given in ref. 35. This gives αw =
24.7051.

A note about the effect of the 3501-6 matrix yield stress
is in order. For this material, there is a disagreement on its
value between refs. 28,39,40. This may have to do with
different batches of material being tested at different times.
In the results presented below, the value 165.8MPa reported
in ref. 39,40. was used. However, the sensitivity of the
predictions to that value was checked by also using the
value of 69 MPa in ref. 28. It was found that the predicted
cycles to failure change by about half a decade, which is
well within typical experimental scatter in composites fa-
tigue. More importantly, when the results are normalized by
the predicted life, there is no discernible effect on the
stiffness degradation curves of Figure 14.

Fitting the tabulated data in Nied and Erdogan,23 the
following expressions are obtained for the coefficients in the
displacement δ and stress intensity factor K1:

ko
ac
he

¼ 2:7344
ac
he

(41)

with “goodness of fit” R2 = 0.9925
From which ko in equation (27) equals 2.7344 and he =

h1-(df/2). Also,

k ¼ 51:04

�
ac
he

�4

� 60:431

�
ac
he

�3

þ 25:81

�
ac
he

�2

� 4:7236

�
ac
he

�
þ 1:3125

(42)

With R2 = 0.9976 and k the constant in equation (36).
Note that equations (41) and (42) are only valid for the
parameter ratio a/b = 0.4 which is the case for AS4/3501-
6 with fibre volume fraction equal to 0.6. Applying this
approach and comparing to tests from Lee et al. in ref. 41 the
results in Figure 11 are obtained. For each applied maxi-
mum cyclic stress, the cycles to failure are obtained by
calculating the plastic zone size ahead of an inter-fibre crack
using equation (39), determining the number of cycles to
crack that plastic zone using equation (40), extending the
crack and repeating the process until the crack has reached
the nearest neighbour and the RVE can no longer carry load.
Excellent agreement is observed. Only at high cycles, the
predictions are on the conservative side.

Also of interest are graphs of crack size and Young’s
modulus as a function of cycles. These are shown in Figures
12 and 13 for R = 0.1 and applied stress of 1880 MPa. It is
seen from Figure 12 that the crack increases almost linearly
for most of the life and, near the end, growth becomes
unstable. This “sudden death” behaviour is not uncommon.
The ply Young’s modulus is shown in Figure 13 as a
function of cycles for two different applied maximum
stresses, 1880 (lower curve) and 1386 MPa (upper curve). It
is interesting to note that, for higher applied stress, there is a
sharp drop in stiffness at the beginning, which has been
reported by many investigators [for example]42–44 while for
lower applied stress the reduction is less and more gradual.
Near the end of life, the beginning of a sharp decrease in
stiffness is observed for the lower curve, also reported by the
same investigators. Such a decrease is not evident on the
upper curve because failure at the end of life is sudden.

Fatigue of 90° ply. As illustrated in ref. 45 when loaded in
transverse tension, plies will develop matrix cracks parallel
to the fibres and perpendicular to the transverse direction.
These cracks are randomly distributed at first, and as the
strain increases and more cracks appear, their spacing be-
comes more uniform. Matrix cracks diminish the residual
stiffness of the ply in the transverse direction, which can be
expressed as:
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Eyr ¼
�
σyav

�
d0=2

εya
(43)

where Eyr is the residual E2 modulus of the ply, εya is the
applied transverse strain, and ðσyavÞd0=2 is the transverse
tensile stress, averaged through the thickness at the mid-
point between adjacent cracks.45 The Poisson’s ratio ν21will
also degrade at the same rate as Eyr, such that ν21 = ν12 Eyr/
E11. Following the model in ref. 45 matrix cracks will first
appear when the transverse tensile stress in the ply matches
the in situ transverse tensile strength Y t

is.
Consider a pristine ply, subject to a transverse tensile

load low enough that σy < Y t
is. A single application of such a

load will only lead to the creation of few randomly dis-
tributed cracks, usually at the location of pre-existing de-
fects (e.g. voids). If the same load is applied for a sufficient

amount of cycles, the number of cracks will grow until they
start forming regular, evenly distributed patterns. Further
application of the same load over more cycles will increase
the density of the evenly distributed matrix cracks.43,46

As shown in ref. 45 for a single static load, a monotonic
increase in crack density requires a monotonic increase in
the applied load. If the load is constant, even after cracks
have appeared in the first cycle, there is no damage
mechanism at the length scales discussed here that could
induce further cracking. It follows that the increase in crack
density, seen in experiments43,46 for a constant cyclic load
must be governed by mechanisms at smaller scales. Such
mechanisms can be represented by the macroscopic model
from,35 which this time relates the macroscopic transverse
tensile stress ðσyavÞd0=2 and the static in situ transverse
tensile strength Y t

is of the ply to the cycles to failure:

N ¼
 

βw�
σyav
�
d0=2

!αw
(44)

where N represents the number of cycles to generate new
matrix cracks. The variables αw and βw are, respectively,
the shape and scale parameters of the two parameter
Weibull distribution describing the in situ transverse
tensile strength Y t

is of the ply, corrected for the stress-ratio
R.35 Equation (43) can also be used for a pristine ply, in
which case ðσyavÞd0=2 would simply be replaced by σy. In
essence, cyclic loading that does not immediately cause
the appearance of new cracks within a single cycle, will
cause the in situ transverse tensile strength Y t

is to degrade
at a rate such that, after N cycles, it matches the transverse
applied stress,35 which is σy for a pristine ply or ðσyavÞd0=2
for a cracked ply. By solving equation (44) for ðσyavÞd0=2
and filling in the result in equation (43), the residual

Figure 11. Fatigue curve for 0 ply of AS4-3501-6 material.
Predictions compared to test results from.41

Figure 12. Typical inter-fibre crack size versus cycles curve.

Figure 13. Ply Young’s modulus ratio (EX=EX0Þ versus cycles for
two load levels.
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transverse modulus Eyr of a ply as a function of the
applied cycles N is defined.

Eyr ¼ βw

εya Nð1=αwÞ with
�
σyav

�
d0=2

¼ βw

Nð1=αwÞ (45)

where εya should take into account the most “current”
damage state, due to either static or fatigue loading,
meaning that the residual stiffness of the laminate should,
for example, be updated after some of its plies develop
cracks in the 1st cycle. It is important to use a realistic and
updated εya since the intensity of the applied load and the
extent of existing damage are implicitly included in its
value.

Fatigue of cross-ply laminates. The methods shown in the
“Fatigue of 0° ply” and “Fatigue of 90° ply” sections can
be combined to predict the residual stiffness and failure of
cross-ply laminates under cyclic uniaxial tension. First-
cycle damage in the 0° plies can be predicted through the
approach illustrated in the “Strength and stiffness of a 0°
unidirectional tape ply”, while for the 90° plies the ap-
proach from45 should be used. It is assumed that there is
no damage interaction between the 0° and 90° plies
during the first cycle. After first-cycle damage is esti-
mated, the ply and laminate stiffnesses are updated ac-
cordingly, followed by the laminate strain and ply strains
and stresses. The method from the “Fatigue of 0° ply”
section is used to calculate how many cycles will be
necessary for the plastic zone in the 0° plies to fail. The
resulting inter-fibre crack growth and residual stiffness
are also calculated.

The stiffness of the 0° plies changes every time the
plastic zone fails. The stiffness in the 90° plies on the other
hand changes with every cycle, as can be inferred from
equation (45), so “90° cycle blocks” or arbitrary number of
cycles can be selected as long as they are shorter in duration
than the 0° cycle block which fails the plastic zone. This
way, when the end of a 0° ply block is reached, the stiffness
of the 0° plies can be changed using the most up-to-date
damage (and stiffness) state of the 90° plies. The residual
stiffness of the 90° is updated at each block, together with
the resulting laminate stiffness and applied strain. This
allows the stress used in the 0° ply for the next 0° cycle
block to be updated to account for all damage present in the
90° and 0° plies at the instant that the inter-fibre crack grows
and the new plastic zone is formed.

The stress amplitude in the 0° plies is held constant
throughout each 0° cycle block even when the stiffness of
the 90° plies is changing. The effect of this simplifying
assumption should be negligible, since for lower cyclic
loads the stiffness of the 0° plies will barely degrade over the
entirety of fatigue life, while for higher loads, the 90° plies
will lose most of their stiffness immediately and keep losing

the rest more gradually. In addition, the 0° cycle blocks for
higher loads (where damage in the 0° plies drives laminate
stiffness degradation) have the plastic zone growing every
few cycles and thus the 0° cycle blocks are short enough to
minimize the effect of this assumption. If cracks have
formed in the 90° plies during the first cycle, their presence
should be accounted for when using equation (45) to predict
the residual stiffness in the 90° plies, since they will slow
down the appearance of additional cracks. This is done by
not allowing any further cracking (stiffness degradation) in
the 90° plies until the number of cycles N representative of
the first-cycle damage state has been applied. This number is
obtained from equation (44) where (σyav)do/2 is the average
tensile stress between matrix cracks after the first cycle,
determined in ref. 45.

It should be noted that the model at this stage neglects the
fact that transverse cracks in a 90 °ply can cause fibre cracks
in the 0° plies (and delaminations at 0/90° ply interfaces).
This can be of significance when the first cracks in the 90°
plies are created which have irregular crack spacing. This is
a topic for future extensions of the model. For higher ap-
plied loads or number of fatigue cycles, the spacing of
matrix cracks in the 90° plies and fibre cracks in the 0° plies
become more uniform and the model can be used as pre-
sented above.

The approach just described was applied to a [0/902]s
graphite/epoxy laminate to determine axial stiffness as a
function of cycles for three different applied loads: 85%,
53% and 28% of the static failure strength of 779 MPa47

with R = 0.1. The predictions are compared to test data
from.48 The material is AS4/3501-6 with mean Yis

t =
49.31 MPa48 and coefficient of variation of 12.1%.37 After
adjusting for R = 0.1,35 the resulting Weibull distribution
has shape and scale parameters of 11.34 and 55.23 MPa
respectively. The predictions from the present method are
compared to the test results in ref. 48 in Figure 14.

In Figure 14, consistent with how the results were
presented in ref. 48 the x axis has the ratio of the logarithm
of the cycles divided by the logarithm of the cycles to
failure. Note that in Figures 14(b) and (c) the test data stop
before final failure and, hence, the x axis does not extend to
the value of 1. For the cycles to failure, the life predicted by
the present method with inter-fibre cracks in the 0° plies
reaching the center of the nearest fibre was used. It can be
seen from Figure 14 that the predictions are in excellent
agreement with test results and only for the 28% applied
load case, Figure 14(c), the predictions are slightly con-
servative. It should be pointed out that the present method
accurately predicts the initial steep drop of stiffness for the
85% and 53% load cases and shows only a gradual stiffness
drop for the first few cycles for the 28% in very good
agreement with the test results. It should be noted that, at
this stage of its development, the present method does not
account for delaminations. In these tests, delaminations
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were reported towards the end of life and there are plans to
include them in future work.

Discussion and conclusions

The stresses in the matrix near the crack tip of a cracked
fibre were determined with a new formulation. They were
used in an energy criterion for fracture to determine if cracks
will grow parallel to the fibres or radially between fibres. It
was shown that, for typical fibre volume fractions used in
practice, radial matrix cracks are the preferred method for
energy dissipation. The size of these cracks and the fraction
of cracked fibres were used along with individual stiffness
and strength properties for the fibre and matrix to predict
failure of uni-directional tape composites under tension and
were shown to be in good to excellent agreement with tests.
Combined with previously developed models for matrix
cracks in cross-ply laminates45 and fatigue life predic-
tions,35 and accounting for the creation and growth of a
plastic zone at the tip of the radial inter-fibre cracks, pre-
dictions for the fatigue life and stiffness degradation as a
function of cycles for uni-directional and cross-ply lami-
nates were obtained and shown to be in very good agree-
ment with tests.

While the approach presented here is very promising,
there are several assumptions and simplifications that need
revisiting: First, the failure model implicitly requires that, at

higher applied strains, cracks in fibres align, i.e. the crack
spacing is small enough and a matrix crack growing from
one fibre will, at some point, line up with a crack growing
from a neighbouring fibre. Second, the interaction between
damage created in 0° and 90° plies is mainly accounted for
by updating the stiffness properties in each ply. This is a
simplification which does not account for the fact that at the
tip of a crack in a 90° ply, stress is transferred from that ply
to adjacent 0° plies locally changing the stress field. While
this change is small at low loads, at higher loads it can affect
the creation of fibre cracks in the 0° plies and lead to earlier
failure. Third, the model used to determine crack opening
displacement, crack length and plastic zone size is based on
the Nied-Erdogan solution in ref. 23 which does not include
the additional bending moment that the loaded fibre exerts
to the surrounding matrix. This bending moment is rela-
tively small for higher fibre volume fractions but may
become significant at lower fibre volume fractions. In ad-
dition, the Nied-Erdogan results were extrapolated here in a
few cases where the crack lengths were longer than the
tabulated results in ref. 23 would allow. Also, determining
the plastic zone size using a stress intensity factor from
linear elastic fracture mechanics is an approximation which
could be improved. Fourth, the model for cracks growing in
the plastic zone ahead of a radial matrix crack does not
account for any dynamic effects and does not include any
retardation and crack path changes that will occur as the

Figure 14. Predicted laminate stiffness degradation as a function of cycles compared to tests from.48 (a) Applied stress = 85% of static
strength. (b) Applied stress = 53% of static strength. (c) Applied stress = 28% of static strength.
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crack approaches a neighbouring locally intact fibre which
has higher stiffness and fracture toughness than the matrix.
This may explain why the predictions in Figure 11 are
conservative, especially for high cycle fatigue.
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