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SUMMARY

Much of modern mesoscopic physics focuses on studying hybrid superconducting struc-
tures: systems that combine superconductors with other materials such as semicon-
ductors, ferromagnets, and graphene. When properly engineered, these devices display
emergent physical properties that are absent in their individual constituents. An early
example of such a device is the two-terminal Josephson junction: two superconduct-
ing terminals connected by a region without superconductivity. Josephson junctions
give rise to a plethora of interesting phenomena, including quantized voltage steps and
macroscopic quantum coherence. Experimental and theoretical advances in Josephson
devices have led to numerous technological applications, such as sensitive magnetic
field detectors, rapid single flux quantum logic, metrological voltage standards, and
superconducting qubits.

Semiconductors with strong spin-orbit coupling proximitized with a superconductor
are another prominent example of hybrid devices. Although semiconductors and con-
ventional superconductors have been well understood for decades, their combination is
predicted to yield a new state of matter known as topological superconductivity. Topolog-
ical superconductors host Majorana bound states: topologically protected quasiparticles
with non-abelian statistics that are promising candidates to realize fault-tolerant qubits.
Reliably creating and manipulating Majorana modes remains one of the outstanding
challenges in modern condensed matter physics.

In the first two chapters of this thesis, we theoretically study Majorana bound states in
Josephson junctions formed in a two-dimensional electron gas. The primary advantage
of this setup is that it removes one of the major obstacles in nanowire-based platforms,
namely the need to apply a large external magnetic field to break time-reversal symmetry
and drive a topological phase transition. Specifically, applying a superconducting phase
difference across the junction significantly lowers the magnetic field required to create
Majoranas.

In Ch. 2 we introduce a modified Majorana junction setup that removes the need
for an external magnetic field altogether. To achieve this, we propose breaking time-
reversal symmetry by applying supercurrents parallel to the junction. We show that,
combined with spin-orbit coupling, the supercurrents create an effective Zeeman field
that lifts Kramers’ degeneracy. However, without additional modifications, this system
has a conservation law that prevents the opening of a topological gap. We present three
schemes that break this conservation law and stabilize a topological phase: adding a third
superconductor, introducing a periodic potential, or making the junction zigzag-shaped.

While Majorana junctions are a promising platform to realize topological supercon-
ductivity, they are often plagued by small topological gaps. Semiclassically, this occurs
due to states with high momentum parallel to the junction that have long flight times and
thus result in a small induced gap. Earlier work showed that removing long quasiparticle
trajectories by making the junction zigzag-shaped results in an order of magnitude in-
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x SUMMARY

crease in the topological gap. A natural follow-up question is how to find the geometry
that maximizes the topological gap. In Ch. 3, we tackle this problem by developing
an optimization algorithm that explores the space of junction geometries greedily. We
show that the algorithm is capable of finding high-gap geometries in a variety of physical
settings. Additionally, we provide evidence that the algorithm likely converges to global
maxima in geometry space.

In Ch. 4, we turn our attention to (non)local transport experiments in hybrid su-
perconducting devices, a commonly-used method to measure the density of states in
Majorana devices. Linear response theory predicts that the conductance matrix of such
devices obeys various symmetry relations. As an example, the two-terminal conduc-
tance is predicted to be symmetric in voltage, a manifestation of particle-hole symmetry.
However, experimental conductance maps of Majorana devices often show significant
deviations from these symmetries. One possible explanation is the presence of quasipar-
ticle poisoning, which hinders Majorana qubits. We show that a bias-dependent tunnel
barrier also leads to the breakdown of symmetries of the conductance matrix. Crucially,
this mechanism preserves superconducting parity and therefore is benign for Majorana
qubits. We conclude by identifying several physical behaviors that distinguish symmetry
breaking originating from a voltage-dependent tunnel barrier and dissipation.

Finally, in Ch. 5 we explore a different topic in mesoscopic physics: multiplet supercur-
rent in multiterminal Josephson junctions. Previously proposed mechanisms to observe
multiplets rely on delicate nonlocal Andreev processes that are obscured by dissipation.
We show that this effect also arises in commonplace Josephson tunneling circuits with
only local Cooper pair transfers. Remarkably, the multiplet supercurrent persists even
when the circuit is in the deep charging regime where only single Cooper pairs are allowed
to tunnel in and out of the central island.



SAMENVATTING

Een groot deel van de moderne mesoscopische fysica richt zich op de studie van hybride
supergeleidende structuren: systemen die supergeleiders combineren met andere mate-
rialen zoals halfgeleiders, ferromagneten en grafeen. Wanneer deze systemen op de juiste
manier zijn ontworpen, vertonen ze nieuwe fysische eigenschappen die in hun afzon-
derlijke onderdelen ontbreken. Een vroeg voorbeeld van zo’n apparaat is de Josephson-
junctie met twee terminals: twee supergeleidende terminals verbonden door een gebied
zonder supergeleiding. In Josephson-juncties komen een groot aantal interessante ver-
schijnselen voor, waaronder gekwantificeerde spanningsstappen en macroscopische
kwantumcoherentie. Experimentele en theoretische vooruitgang in Josephson-apparaten
heeft geleid tot talrijke technologische toepassingen, zoals gevoelige detectoren van
magnetische velden, snelle kwantumlogica met een flux, metrologische spanningsstan-
daarden en supergeleidende qubits.

Halfgeleiders met een sterke spin-baankoppeling nabij een supergeleider zijn een
ander prominent voorbeeld van hybride apparaten. Hoewel halfgeleiders en conventio-
nele supergeleiders al tientallen jaren goed worden begrepen, wordt voorspeld dat hun
combinatie een nieuwe toestand van materie zal opleveren die bekend staat als topo-
logische supergeleiding. Topologische supergeleiders herbergen Majorana-gebonden
toestanden: topologisch beschermde quasideeltjes met niet-abeliaanse statistieken die
veelbelovende kandidaten zijn om fouttolerante qubits te realiseren. Het betrouwbaar
creëren en manipuleren van Majorana toestanden blijft een van de uitdagingen in de
moderne gecondenseerde materie fysica.

In de eerste twee hoofdstukken van dit proefschrift bestuderen we theoretisch Ma-
jorana gebonden toestanden in Josephson juncties gevormd in een tweedimensionaal
elektronengas. Het belangrijkste voordeel van deze opstelling is dat zij een van de be-
langrijkste obstakels van op nanodraad-gebaseerde platforms wegneemt, namelijk de
noodzaak om een groot extern magnetisch veld toe te passen om tijdspariteit te door-
breken en een topologische faseovergang aan te sturen. Met name het toepassen van
een supergeleidend faseverschil over de junctie verlaagt het magneetveld dat nodig is om
Majorana’s te creëren aanzienlijk.

In hoofdstuk 2 introduceren we een aangepaste Majorana-junctie die de noodzaak
van een extern magnetisch veld volledig wegneemt. Om dit te bereiken stellen wij voor de
tijdspariteit te doorbreken door superstromen parallel aan de junctie aan te leggen. Wij
laten zien dat, in combinatie met spin-baankoppeling, de supergeleidende stromen een
effectief Zeemanveld creëren dat de ontaarding van Kramers opheft. Zonder extra aan-
passingen heeft dit systeem echter een behoudswet die het openen van een topologische
kloof verhindert. Wij presenteren drie regelingen die deze behoudswet doorbreken en
een topologische fase stabiliseren: toevoeging van een derde supergeleider, invoering van
een periodieke potentiaal, of het zigzagvormig maken van de junctie.
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Hoewel Majorana juncties een veelbelovend platform zijn om topologische super-
geleiding te realiseren, worden ze vaak geplaagd door kleine topologische bandkloven.
Semiklassiek ontstaat dit door toestanden met een hoog momentum parallel aan de
junctie die lange reistijden hebben en dus resulteren in een kleine geïnduceerde kloof.
Eerder werk toonde aan dat het verwijderen van lange trajecten van quasideeltjes door
de verbinding zigzagvormig te maken, resulteert in een orde van grootte toename van
de topologische kloof. Een natuurlijke vervolgvraag is hoe de geometrie te vinden die de
topologische kloof maximaliseert. In hoofdstuk 3 pakken we dit probleem aan door een
optimalisatie-algoritme te ontwikkelen dat gretig de ruimte van knooppuntgeometrieën
verkent. Wij laten zien dat het algoritme in staat is hoge kloof-geometrieën te vinden
in verschillende fysische omstandigheden. Bovendien tonen wij aan dat het algoritme
waarschijnlijk convergeert naar globale maxima in de geometrische ruimte.

In hoofdstuk 4 richten we onze aandacht op (niet)lokale transportexperimenten in hy-
bride supergeleiders, een veelgebruikte methode om de toestandsdichtheid in Majorana-
apparaten te meten. De lineaire responsietheorie voorspelt dat de geleidingsmatrix
van dergelijke apparaten aan verschillende symmetrieverhoudingen voldoet. Als voor-
beeld, de twee-terminal geleiding wordt voorspeld symmetrisch te zijn in spanning, een
manifestatie van deeltje-gat symmetrie. Experimentele geleidingsfiguren van Majorana-
apparaten vertonen echter vaak aanzienlijke afwijkingen van deze symmetrieën. Een
mogelijke verklaring is de aanwezigheid van quasideeltjesvergiftiging, die Majorana qu-
bits belemmert. Wij laten zien dat een bias-afhankelijke tunnelbarrière ook leidt tot de
afbraak van de symmetrieën van de geleidingsmatrix. Cruciaal is dat dit mechanisme
de supergeleidende pariteit behoudt en daarom gunstig is voor Majorana qubits. We
besluiten met het identificeren van verschillende fysische gedragingen die een onder-
scheid maken tussen symmetriebreking door een spanningsafhankelijke tunnelbarrière
en dissipatie.

Tenslotte onderzoeken we in Hoofdstuk 5 een ander onderwerp in de mesoscopische
fysica: multiplet superstroom in multiterminale Josephsonverbindingen. Eerder voor-
gestelde mechanismen om multiplets waar te nemen berusten op delicate niet-lokale
Andreev-processen die door dissipatie worden verduisterd. Wij laten zien dat dit effect
ook optreedt in gewone Josephson-tunnelingcircuits met alleen lokale Cooperpaarover-
drachten. Opmerkelijk is dat de multiplet superstroom blijft bestaan, zelfs wanneer de
kring zich ver het oplaadregime bevindt waar alleen enkele Cooperparen in en uit het
centrale eiland mogen tunnelen.
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2 1. INTRODUCTION

1.1. PRELIMINARIES: SUPERCONDUCTIVITY AND BCS THEORY
In 1911, H. Kamerlingh Onnes made a remarkable discovery: when various metals are
cooled down to temperatures close to absolute zero, their resistivity drops sharply to zero.
This transition signals the appearance of a state of matter known as superconductivity.
Although superconductivity rapidly became an intense area of experimental research,
it was only in the ninety-fifties that its microscopic origin was explained theoretically.
In 1956, Leon Cooper showed that at low temperatures a non-interacting Fermi sea is
unstable with respect to the formation of correlated pairs [1]. A year later, Bardeen,
Cooper and Schrieffer (BCS) used this insight to formulate the first microscopic theory
of superconductivity [2]. BCS theory postulates that superconductivity arises as a result
of a phonon-mediated attraction between electrons. This effective interaction causes
electrons near the Fermi level to condense into Cooper pairs that mediate supercurrent.
Energetically exciting a superconductor requires providing enough energy to break a
Cooper pair. As a result, the single-particle excitation spectrum acquires a superconduct-
ing gap ∆.

Mathematically, the BCS mechanism is captured by the mean-field Hamiltonian [3]

HBCS =
∑
kσ
εkc†

kσckσ+
∆

2
e iφ/2

∑
k

c†
k↑c†

−k↓+h.c., (1.1)

where c†
kσ are electron creation operators for electrons with momentum k and spin pro-

jection σ, εk is the energy of an electron with momentum k, and φ is the superconducting
phase. By introducing the Nambu spinor

Ψk =
(
ck,↑ ck,↓ c†

−k,↓ −c†
−k,↑

)T
, (1.2)

we rewrite Eq. (1.1) in a more convenient form using the Bogoliubov-De Gennes (BdG)
transformation

HBCS = 1

2

∑
k
Ψ†

k HBdG(k)Ψk (1.3)

where

HBdG(k) =


εk 0 ∆ 0
0 εk 0 ∆

∆ 0 −εk 0
0 ∆ 0 −εk

= εkτzσ0 +∆τxσ0. (1.4)

Here σi and τi are the Pauli matrices acting on spin and electron-hole space. The eigen-
states of HBdG(k)

ψki =
(
uki↑ uki↓ vki↑ vki↓

)
(1.5)

allow us to define Bogoliubov quasiparticle operators γki that bring (1.1) to a diagonal
form

HBCS = 1

2

∑
ki
εkiγ

†
kiγki . (1.6)

The factor of 1/2 in equation (1.6) betrays an important artifact of the BdG transformation,
namely that it artificially doubles the degrees of freedom of Hamiltonian. This redudancy
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3

is embodied by the anti-unitary particle-hole symmetry (PHS) P = τyσy K :

P HBdG(k)P −1 =−HBdG(−k), (1.7)

which implies that a solution ψki with energy εki has a particle-hole symmetric partner
ψki with energy −εki . In second quantization terms, for any creation operator of a
Bogoliubov excitation at energy E we may write

γ(E) = γ†(−E). (1.8)

Hence populating the state γ(E) is the same as removing a particle from γ(−E).

1.2. ANDREEV PHYSICS IN SUPERCONDUCTOR-NORMAL INTER-
FACES

Throughout the course of this thesis, we will study devices that combine properties of
semiconductors with superconductivity. Experimentally, this is achieved by exploiting
the proximity effect, in which a normal region in the vicinity of a superconductor acquires
a part of its superconducting properties. Intuitively, this effect occurs because Cooper
pairs from the superconductor penetrate into the normal region as long as the normal-
superconductor (NS) interface is sufficiently transparent. The charge transfer process that
underpins this phenomenon is Andreev reflection (AR), which we explore in this section.

1.2.1. ANDREEV REFLECTION

Figure 1.1: Andreev reflection in a normal-superconductor interface. An electron traveling in the metal with
energy ε−EF < ∆ is not allowed to propagate in the superconductor because there are no available states.
Instead, it can Andreev reflect as a hole with energy −ε. Physically this corresponds to injecting a Cooper pair in
the superconducting condensate.

We consider the simplest system in which Andreev reflection can take place: a one-
dimensional normal metal-superconductor junction. Consider an electron traveling
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in the metal towards the superconductor with subgap energy ε−EF < ∆ (where EF is
the Fermi energy). When the electron reaches the NS boundary, it cannot propagate
into the superconductor because there are no single-particle states available below the
superconducting gap ∆. It must be reflected to the normal metal. Naturally, it can reflect
as an electron with opposite velocity. However, superconductors allow another process:
Andreev reflection as a hole with opposite spin and energy −ε. Physically, this corresponds
to an electron "dragging" a partner electron to form a Cooper pair in the superconductor.
The opposite process is also allowed: a hole can be retroflected as an electron, which
corresponds to a Cooper pair tunneling to the normal region. We visually summarize
Andreev reflection in Fig. 1.1.

1.2.2. ANDREEV BOUND STATES

Figure 1.2: Andreev bound states in Josephson junctions form as a result of successive Andreev reflections that
interfere constructively.

Let us now consider what happens when a normal region is sandwiched between two
superconductors, that is, an SNS Josephson junction. From the previous subsection, we
know that an electron traveling towards a superconducting contact will undergo Andreev
reflection. The resulting hole will travel to the opposite superconducting contact and
Andreev reflect as an electron, restarting the cycle. We conclude that the superconducting
contacts act as potential barriers that confine the motion of quasiparticles in the normal
region through successive Andreev reflections (Fig 1.2). If these reflections interfere
constructively, they give rise to an Andreev bound state (ABS). Unlike bound states in
non-superconducting systems, ABS mediate a Josephson supercurrent because each
Andreev reflection results in a charge transfer of 2e.

To derive the spectrum of ABS, we consider two clean superconducting contacts with
phase difference φ = φ2 −φ1 connected by a disordered normal region. We consider
the short junction limit, in which the quasiparticle dwell time W /vF (with vF the Fermi
velocity, W the width of the normal region) is much larger than the Andreev reflection
time ħ/∆, as follows from the uncertainty relation. We formalize this treatment of the
problem through the scattering formalism, which analyzes how electron waves entering a
superconductor reflect from it, and from the junction. Scattering states at energy ε in the
left and normal regions are superpositions of incoming and outgoing states:

ΨL = ∑
c=e,h

ac,L |cL,in〉+bc,L |cL,out〉ΨR = ∑
c=e,h

ac,R |cL,in〉+bc,R |cR,out〉 (1.9)

Incoming waves that interact with the disordered region are normal-reflected according
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to the scattering matrix SN : 
be,R

be,L

bh,R

bh,L

= SN


ae,R

ae,L

ah,R

ah,L

 (1.10)

Because the normal region does not mix electrons and holes, SN is block-diagonal in
electron-hole space:

SN =
(

sN 0
0 sN

)
, sN =

(
r t
t r

)
. (1.11)

Here we have used the short-junction approximation to neglect the energy dependence
of sN . At energies below the bulk superconducting gap (ε<∆), there are no propagating
states in the superconductors. Therefore, outgoing particles that come into contact with
a superconducting terminal will be Andreev reflected:

ae,R

ae,L

ah,R

ah,L

= S A(ε)


be,R

be,L

bh,R

bh,L

 (1.12)

where

S A =
(

0 sA(ε)
sA(ε)∗ 0

)
, sA = e−i arccosε/∆

(
e iϕ/2 0

0 e−iϕ/2

)
(1.13)

has a block off-diagonal structure because the superconductors only mix electron and
hole degrees of freedom. Plugging (1.10) into (1.12) we obtain

(I−S A(ε)SN )


ae,R

ae,L

ah,R

ah,L

= 0 (1.14)

Equation (1.14) implies that det(I− sA(ε)sN (ε)) = 0. Solving this equation yields the short
junction spectrum [4]

E =±∆
√

1− t sin2 ϕ

2
, (1.15)

which is two-fold degenerate due to spin rotation symmetry. Because the ABS disperse
with φ, they mediate a supercurrent given by

I =−2e

h

∂E

∂ϕ
(1.16)

1.3. MAJORANA BOUND STATES

1.3.1. INTRODUCTION TO MAJORANA BOUND STATES
A Majorana fermion is a hypothetical particle that is its own antiparticle. Mathematically,
this implies that Majorana operators are hermitian:

γ† = γ. (1.17)
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Figure 1.3: Schematic spectrum of a superconductor hosting Majorana bound states separated from other levels
by an energy gap. Particle-hole symmetry pins Majorana bound states at zero energy and thus protects the
ground state degeneracy. Removing the Majoranas from zero energy requires closing the bulk gap or bringing
the Majorana modes sufficiently close so that they hybridize. Figure adapted from the Online course on topology
in condensed matter (https://topocondmat.org), used under CC-BY-SA 4.0.

While they were initially studied in the context of high-energy physics, Majoranas are also
conjectured to appear as localized quasiparticles in condensed matter systems. In this
thesis, we focus on schemes based on one-dimensional superconductors. Superconduc-
tors are a natural place to search for Majoranas because PHS dictates that zero-energy
excitations automatically fulfill the condition (1.17). However, as we will see in a moment,
these excitations do not behave like fermions and therefore it is more appropriate to call
them Majorana bound states (MBS).

MBS display two remarkable properties that distinguish them from conventional
fermionic excitations. First, a collection of N spatially separated MBS spans a 2N /2-
dimensional ground state manifold that is immune to local perturbations smaller than the
energy gap. To see this, consider a superconductor hosting zero energy MBS energetically
separated from the remaining states by a spectral gap, as shown schematically in Fig. 1.3.
Simply moving these levels away from zero energy is forbidden because it would break
PHS. Indeed, the only way to lift this degeneracy without violating PHS is to close the
superconducting gap or to bring the MBS close to each other so that they hybridize. In
other words, MBS are topologically protected by PHS. The second property is related to
exchange statistics. Exchanging regular fermions multiplies the system’s wavefunction by
a factor -1. In contrast, MBS have so-called non-Abelian statistics: exchanging a pair of
MBS (also known as braiding) induces a non-trivial unitary transformation in the ground
state manifold. Crucially, this unitary operation is determined strictly by the topology of
the exchange (that is, which Majoranas are exchanged), and not by the specific geometry
or dynamics of the process.

https://topocondmat.org
https://creativecommons.org/licenses/by-sa/4.0/


1.3. MAJORANA BOUND STATES

1

7

Reliably observing topological protection and non-Abelian statistics would be of fun-
damental scientific interest, but also have practical implications for quantum computing.
Qubits are inevitably subject to errors caused by coupling to a dissipative environment
and imperfect control. Avoiding these errors is the main obstacle to building a useful
quantum computer. A well-known approach to this problem is to use quantum error
correction protocols that encode information in a redundant fashion. However, these
schemes often have a large overhead and require high gate fidelities to begin with. Using
MBS as qubits is an alternative, hardware-native path towards fault-tolerance: quantum
information stored in MBS is naturally protected from their environment and, because
most quantum gates can be implemented through braiding, unitary errors are suppressed.

1.3.2. RELATION TO TOPOLOGY
In the previous subsection, we saw that MBS are insensitive to perturbations in the system
Hamiltonian. This suggests that it should be possible to formulate a higher-level descrip-
tion of these systems that is independent of microscopic details. Such a description is
indeed possible by means of topological classification of bulk Hamiltonians [5, 6].

Two gapped Hamiltonians H1 and H2 are considered topologically equivalent if H1

can be continuously deformed to H2 while i) maintaining a finite bulk energy gap and ii)
preserving a given set of symmmetries. Conversely, if such a transformation does not exist,
H1/2 are said to be in different topological phases. In practice, it is unnecessary to explic-
itly construct these transformations to verify topological equivalence. One can instead
compute a topological invariant for each Hamiltonian. Informally speaking, a topological
invariant is an integer that labels different topological phases. Two Hamiltonians are
topologically equivalent if their invariant is the same.

The symmetries and dimensionality of the system determine the appropriate topo-
logical invariant to use. In this thesis, we will concern ourselves with one-dimensional
superconductors that only possess PHS. The topological invariant of these systems is the
sign of the Pfaffian of the Hamiltonian:

Q = sgn Pf(iH ). (1.18)

Because Q can only take on two values ±1, it is said to be a Z2 invariant. Systems with
Q = −1 host MBS and are dubbed as topological or nontrivial, whereas systems with
Q =+1 are labeled trivial and do not contain MBS. Physically, the Pfaffian measures the
fermion parity of the ground state and thus its value can only change when an odd number
of levels cross zero energy. Such a crossing – known as a fermion parity switch – implies
that it becomes energetically favorable to add or remove a Bogoliubov quasiparticle.

When H is translationally invariant and admits a Bloch decomposition H =⊕
k HBdG(k),

the invariant can be rewritten in a different form. In general, zero-energy crossings at
finite momentum kx are accompanied by another crossing of a particle-hole partner at
−kx . Therefore they leave the Pfaffian unchanged. There are, however, two special points
in the Brillouin zone for which this reasoning does not apply: kx = 0 and k =π, which are
mapped to themselves by PHS. This implies that fermion parity switches must occur at
kx = 0,π. We may then write

Q = sgn[Pf(i HBdG(kx = 0))Pf(i HBdG(π))] . (1.19)
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1.3.3. REALIZING MAJORANAS IN SUPERCONDUCTORS: GENERAL CONSID-
ERATIONS

Previously we saw that the ground state degeneracy of a system with Majoranas is pro-
tected from local perturbations. This implies that the Majoranas states must have zero
expectation value for any local observable. If that were not the case, the degeneracy
would be lifted by arbitrarily weak perturbations that couple to the observable with finite
expectation value. This immediately allows us to conclude that metals cannot support
MBS because metallic excitations have definite charge and thus couple to electric fields.
To realize Majoranas in condensed matter systems we must break charge conservation.

Superconductors remove charge conservation by coupling electrons and holes. In-
deed, a generic excitation of the BdG Hamiltonian (1.4) schematically reads

γ† = uc†
↑ + vc↓. (1.20)

However, Eq. (1.20) reveals another problem: Bogoliubov quasiparticles have definite
spin! Put another way, the spin structure in Eq. (1.20) forces γ† ̸= γ, which violates the
Majorana condition (1.17).

In order to realize Majoranas, we need to somehow engineer a spinless superconductor.
Generating an effective spinless material is relatively easy. Consider a metal with a spin-
degenerate parabolic dispersion ∼ k2. Applying a Zeeman field EZσz splits the spectrum
into an aligned band with lower energy and an anti-aligned band with higher energy.
By placing the chemical potential between the two bands, we populate the system with
a single spin species – effectively a spinless system. We could then try to make the
system superconduct by leveraging the proximity effect and placing it in the vicinity of
a superconductor. However, conventional superconductors pair electrons in singlets
and thus it is impossible to induce superconductivity in such a system! The problem is
that, although we have broken spin rotation symmetry, the system still conserves spin
in the z direction. To circumvent this limitation we introduce new ingredient: Rasbha
spin-orbit coupling (SOC) αkxσyτz . SOC introduces a spin canting angle at opposite k,
which makes it possible to induce superconductivity.

To summarize, there are three essential ingredients to realize topological superconduc-
tivity: a Zeeman field (or, more generally, a TRS-breaking term), Rashba spin-orbit cou-
pling, and conventional superconductivity. Traditionally, experimental works have largely
focused on combining these ingredients in proximitized semiconducting nanowires. How-
ever, this approach is hard to scale and requires large magnetic fields that compromise
superconductivity in the parent superconductor. These issues are alleviated by a recently
proposed platform based on Josephson junctions in two-dimensional electron gases
(2DEG). We review this approach in the next subsection.

1.4. MAJORANA BOUND STATES IN A PLANAR SEMICONDUCTOR-
SUPERCONDUCTOR HETEROSTRUCTURES

Josephson junctions formed by proximitizing a 2DEG with superconductors are fruitful
searching grounds for interesting mesoscopic phenomena. On the one hand, the low
density of states and gate-tunability of the semiconducting region make it possible to
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Figure 1.4: A Josephson junction made by proximitizing a 2DEG with Rashba spin-orbit coupling (blue) with
two superconducting contacts (orange). At sufficiently strong in-plane magnetic fields the system enters a
topological phase with MBS at the sample edges.
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Figure 1.5: ABS spectrum of a narrow topological Josephson junction at kx = 0 as a function of the superconduct-
ing phase difference. The dashed lines show the ABS energies when the magnetic field threading the junction is
zero. The spectrum is doubly degenerate at any phase due to spin conservation, which prevents a topological
phase transition. A finite Zeeman field splits the two spin species, allowing a switch of the ground state parity
close to φ=π.

resolve and manipulate individual ABS. On the other hand, the presence of strong spin-
orbit coupling gives control over the spin of Andreev quasiparticles [7] and enables new
phenomena such as the anomalous Josephson effect [8] and, most relevant for this thesis,
topological superconductivity. Initial experimental works were met with difficulties in
observing Josephson physics due to material quality. Gradual progress in nanofabrication
techniques eventually circumvented these issues and, between 2015 and 2016, a series
of experiments demonstrated high-quality semiconductor-superconductor contacts in
epitaxial Al-InAs 2DEG heterostructures [9–11]. Shortly thereafter, two independent
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Figure 1.6: Phase diagram of a topological Josephson junction as a function of Zeeman field and superconducting
phase difference. When normal reflection is absent in the system, the spectrum is doubly degenerate at φ= 0,π.
As a result, the Z2 index cannot change at those phases and the system is always topological at φ=π and trivial
at φ= 0. When normal reflection occurs the shape of the diamonds becomes distorted and allows topological
phase transitions to occur at all values of φ.

works theoretically studied how 2DEG junctions can be used to create MBS [12, 13]. In
comparison with the more established nanowire proposals, this approach has two main
advantages. First, because it is based on a planar design, it is more flexible and in principle
easier to scale to multiple qubits. Second, the superconducting phase difference across
the junction significantly lowers the Zeeman fields required to drive the system into a
topological regime.

TOPOLOGICAL JOSEPHSON JUNCTIONS

We consider a two-dimensional strip of semiconductor in proximity with two supercon-
ducting terminals and subject to an in-plane magnetic field (Fig.1.4). The contacts have
width LSC and the unproximitized region has width W . We model the 2DEG with a single
band electron model with Rashba spin-orbit coupling. The BdG Hamiltonian of the
system then reads

HN =
(

p2
x +p2

y

2m

)
τz +α(kxσy − i kyσx )τz +EZ (y)σx , (1.21)

where α is the Rashba spin-orbit strength and the Zeeman field has the form

EZ (y) =
{

EZ −W /2 < y <W /2

0 elsewhere
. (1.22)

In addition, the regions covered by superconductors experience a pairing interaction of
the form

HS =∆cos

(
±φ

2

)
τx +∆sin

(
±φ

2

)
τy , (1.23)
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where φ is the superconducting phase difference across the junction. Because the Zee-
man field breaks time-reversal symmetry (TRS) T = iσy K (with K denoting complex
conjugation), we would naively expect this system to be in class D [5, 6]. However, the
system has an effective TRS T̃ = MyT , where My is a mirror operator with respect to the
y axis. As a result, the system is in class BDI and supports arbitrary numbers of Majorana
modes. Breaking this symmetry, by e.g. allowing the superconducting contacts to have
different superconducting gaps, restores the system to class D and stabilizes a topological
phase with a single pair of Majorana modes.

To compute the topological properties of the system, we consider a translationally-
invariant junction along x. From Eq. 1.19 we know fermion parity switches can only occur
at particle-hole inviarant momenta kx = 0,∞. However, at kx →∞ the Hamiltonian 1.21
asymptotically approaches that of free electrons, and thus Pf(i HBdG(kx =∞)) = 1 [12]. It
is therefore sufficient to compute the bound state spectrum at kx = 0. By performing a
gauge transformationΨ(x, y) → e i f (y)σxΨ(x, y) we remove the spin-orbit term and arrive
at the Hamiltonian

H(kx = 0) =
p2

y

2m
τz +EZ (y)σx +HS (1.24)

For simplicity, we limit our analysis to narrow junctions in the Andreev limit µ≫∆, such
that normal reflection is negligible. In the absence of a magnetic field, we recover the
short junction spectrum (1.15) (dashed lines in Fig. 1.5). Spin conservation forces the ABS
to be doubly degenerate, thereby preventing a topological phase transition. Applying a
Zeeman field splits the two spin species and, as a result, two non-degenerate zero-energy
crossings appear in the vicinity of φ=π. When the superconducting phase lies between
these two crossing points, the system is in a topological phase and hosts MBS at the
sample edges.

In Fig. 1.6 we show the resulting φ−EZ topological phase diagram, which consists of
a periodic diamond structure with alternating topological and trivial regions. Notably,
the system is always topological at φ=π and trivial at φ= 0. As a result, if the system is
phase-biased at φ=π, Majoranas appear at arbitrarily low magnetic fields. This occurs
because mirror symmetry forces the ABS to be degenerate at φ = 0,π (Fig 1.5), which
prevents a topological phase transition. However, this degeneracy is only present because
we have assumed perfect Andreev reflection at the NS boundary. Several factors can cause
Andreev quasiparticles to undergo normal reflection, such as low chemical potential,
a chemical potential mismatch between normal and superconducting regions, or an
imperfect interface. Finite normal reflection couples the left and right moving states
and lifts the degeneracy at φ= 0,π, causing the diamond structure to become distorted
(dashed lines Fig. 1.6).

1.4.1. OPEN QUESTIONS AND STATE OF THE ART
In this subsection, we briefly summarize recent theoretical and experimental advances in
the field of topological Josephson junctions. We review four main directions of research:
enhancement of the topological gap, topological superconductivity induced through
superconducting phases, material engineering, and experimental signatures of ABS and
MBS.
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ENHANCING THE TOPOLOGICAL GAP
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Figure 1.7: Effect of disorder on the Majorana localization length. (a) Numerical topological phase diagram
of a Majorana junction. (b) The Majorana localization length as a function of the disorder-induced inverse
mean free time for different points in the topological region marked in (a). Figure reproduced from Haim and
Stern [14].

The primary advantages of Majorana junctions are that they require small magnetic
fields and are relatively insensitive to variations in the chemical potential. However, this
comes at the cost of small topological gaps, which weakens the topological protection in
the system. Indeed, a straight Majorana junction with realistic material parameters only
achieves gaps of the order of a few percent of the parent gap. The mechanism underlying
the small energy gaps was explained in 1963 by de Gennes [16]. His analytical calculations
showed that a soft gap arises in NS devices due to quasiparticles with large longitudinal
momentum kx ≈ kF directed along the junction. Because these quasiparticles run almost
parallel to the junction, they rarely come into contact with the superconductor and thus
the proximity effect is reduced. In semiclassical terms, these trajectories have a long flight
time τ f (or equivalently a small Thouless energy ħ/τ f ) and therefore a small gap. To
increase the topological gap, it is necessary to eliminate long-flight trajectories. A simple
solution would be to use low fillings [17]; however, tuning to this regime requires precise
microscopic knowledge of the junction and increases the sensitivity to disorder.

Another way to limit long trajectories was pointed out by Haim and Stern [14]. They
analytically showed that weak non-magnetic disorder decreases the localization length of
Majoranas. At a microscopic level, this enhancement occurs because in the presence of
disorder the effective s-wave order parameter becomes

|∆eff
s | = |∆s |+ 1

2τs
, (1.25)

while p-wave pairing behaves as

|∆eff
p | = |∆p |− 1

2τp
. (1.26)
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Figure 1.8: Majorana wavefunctions for different Josephson junction geometries. (a) a straight junction, (b)
a zigzag system, (c) a sinusoidal system, (d) a sinusoidal with disordered edges Each figure also shows the
topological gap of the system along with the Majorana localization length. We observe that the zigzag-like
systems improve the gap by an order of magnitude and the localization length by two orders of magnitude.
Figure adapted from Laeven et al. [15]

Here τi are the mean free times that arise from the disorder potential. We observe that the
effective s-wave gap increases with disorder, whilst the p-wave gap decreases. In Majorana
junctions, the gap is limited by high momentum states, where spin-orbit coupling forces
electrons at opposite k to have almost parallel spins. The pairing at high momentum is
therefore largely s-wave. In this case, introducing disorder does not cause intra-channel
backscattering and therefore increases the effective pairing gap. In contrast, states close
to kx = 0 are largely p-wave paired, and thus the low momentum gap decreases with
increasing disorder. As Fig 1.7(b) shows, the competition between these two energy
scales causes the localization length to evolve nonmonotically with increasing disorder.
The localization length initially decreases due to the increase in s-wave pairing of high
momentum states. At the same time, the low momentum p-wave pairing begins to
increase. When it becomes equal to the s-wave gap, the localization length begins to
increase.

In realistic experimental settings, disorder is uncontrollable. It is therefore desirable
to find deterministic ways to increase the topological gap. Laeven et al. [15] studied
an alternative approach based on geometry modulation. Their primary finding is that
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modulating the shape of the junction to remove long trajectories (by, e.g. making it zigzag-
shaped) dramatically improves the topological gap and localization length. Importantly,
the gap enhancement is independent of the precise shape of the junction, provided that
it cuts off long trajectories. In Fig.1.8 we show the Majorana wavefunctions along with
the topological gap for straight and modulated geometries with identical Hamiltonian
parameters. We observe that in zigzag-like junctions the gap is an order of magnitude
larger, while the localization length is two orders of magnitude smaller. A follow-up work
by Paudel et al. [18] also found a gap enhancement in periodically modulated junctions,
which the authors attribute to renormalized spin-orbit coupling originating from band-
structure folding [19].

Although zigzag junctions have been fabricated and measured, evidence of a robust
gap enhancement remains elusive [20, 21]. One potential issue with zigzag-like junctions
is that a magnetic field directed along x generates screening supercurrents that suppress
the amplitude of Andreev reflection and the induced gap [22]. It remains unclear whether
the gap enhancement would persist in these circumstances.

PHASE-INDUCED TOPOLOGICAL SUPERCONDUCTIVITY

(a) (b)

Figure 1.9: Scheme for phase-induced topological superconductivity in planar semiconductor-superconductor
heterostructures. (a) A toy tight-binding model that supports perfectly localized MBS without a Zeeman field.
The unit cell is a ring with N ≥ 3 superconducting sites coupled through spin-orbit terms. A single ring supports
a pair of MBS when the superconducting phases form a vortex. When the coupling of two topological rings is
tuned to the "sweet spot", one pair of MBS hybridize, while the remaining MBS remain uncoupled and perfectly
localized. (b) An implementation of the previous toy model in a planar architecture. The blue regions represent
a 2DEG in the normal state, while the gray regions are proximitized with phase-biased superconductors. Figures
reproduced from [23].

As we have seen, phase difference across a Josephson junction lowers the magnetic
field required to induce topological superconductivity. A natural follow-up question
is whether it is possible to go a step further and remove the need for a Zeeman field
altogether. Earlier work by van Heck et al. provides an important clue [25]: using the
scattering formalism they proved that, in the absence of a magnetic field, Josephson
junctions can only support zero energy solution if i) they contain at least three super-
conducting terminals and ii) the superconducting phases θi form a discrete vortex, i.e.∑

i θi = 2π. In this section, we briefly review two proposals for phase-induced topological
superconductivity in planar geometries that directly exploit this concept. For a more
thorough review of the subject, we refer the reader to [23].
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Figure 1.10: (a) A phase-biased SNSNS junction. This device supports Majorana bound states provided that the
two spin branches have different Fermi velocities in the transverse direction. (b) Transverse dispersion relation
of the junction in a model with next-nearest neighbor hoppings, which results in different Fermi velocities for
the two spin branches. Figures reproduced from [24].

In the first of these proposals [23], the authors begin by studying a toy tight-binding
model that supports perfectly localized MBS and where the only source of TRS-breaking
is superconducting phases. The building block of the model is a ring with N ≥ 3 sites
(Fig.1.9 (a)), where each site is proximitized by a phase-biased s-wave superconductor,
and electrons are allowed to hop through a spin-orbit term. A single ring is shown to
support a pair of MBS provided that the superconducting phases wind in a vortex, in
agreement with the findings of van Heck et al. Remarkably, when two rings are connected,
it is possible to tune the system into a "sweet spot" where two MBS remain uncoupled
and perfectly localized, whilst the remaining pair gaps out (bottom of Fig. 1.9 (a)). Hav-
ing established the basic properties of the toy model, the authors turn to investigate a
practical implementation in a planar semiconductor-superconductor architecture which
we illustrate in Fig. 1.9 (b). The platform is similar to Majorana Josephson junctions,
but contains additional phase-biased superconductors in the middle of the junction;
the resulting periodic arrangement that resembles the previously considered ring model.
Numerical tight-binding simulations show that the device supports MBS when the phases
form a vortex. The authors then discuss the experimental viability of the proposal and
conclude that it is within reach of current fabrication methods. Nevertheless, simulations
indicate that the topological gaps at experimentally realistic semiconductor densities are
modest (2-3% of the parent gap).

Another approach put forward recently by Lesser et al [24] relies on Fermi velocity
engineering along the transverse direction to drive a topological phase transition. In Fig.
1.10 (a) we show the proposed setup, which consists of an SNSNS junction where the
outermost superconductors are semi-infinite and have order parameters ∆e±iθ, and the
central superconductor has a finite width WS with order parameter ∆′e iφ ). The motion
of electrons along y is described by the linear dispersion H±

0, j =±v j∂y , where v j is the

Fermi velocity of the j -th spin branch (Fig. 1.10 (b)). At kx = 0 the j -th branch crosses the
Fermi level when the following condition holds:

cosθ+ tanh

(
WS∆

′

v j

)
cosφ= 0. (1.27)

If the velocities of the two branches are unequal the two spin branches cross the Fermi
level at different points, signaling a topological phase transition. The authors then discuss
several schemes to induce unequal v j , namely, i) replacing the 2DEG with a monolayer of
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transition metal dichalcogenides, ii) applying a periodic electrostatic potential along the
junction, and iii) tuning the system to have more than one occupied subband in the z
direction of the 2DEG.

EXPERIMENTAL PROGRESS: MATERIAL ENGINEERING

(a)

-
- -- --
--

---

(b)

Figure 1.11: Schematic band diagrams of a metal-semiconductor interface. (a) Band diagram before the
materials are in contact. The metal is filled up to the Fermi level, while the semiconductor has a filled valence
band and a partially filled conduction band. (b) After contact the semiconductor’s bands bend downward and
form a charge accumulation region near the interface.

Although research on proximitized 2DEGs goes back several decades [26], progress in
the field was hampered by the presence of soft superconducting gaps – that is, a residual
density of states at energies below the induced superconducting gap. These difficulties
can be traced back to material synthesis challenges that arise when combining proper-
ties of superconductivity and semiconducting 2DEGs. First, in order to induce a hard
superconducting gap in the proximitized regions, it is necessary to create a transparent
superconductor-semiconductor interface through proper band alignment. In particular,
the semiconductor’s electron affinity must be larger than the superconductor’s work
function so that the semiconducting bands bend downwards at the interface [27, 28]
(Fig. 1.11(a)). The charges confined in the resulting accumulation region interact strongly
with the superconductor and thus contribute to a large induced gap (Fig. 1.11(b)). An-
other challenge is related to the Hamiltonian parameters of the material stack in the
heterostructure. In order to preserve superconductivity when magnetic fields are applied,
the parent superconductor must have a large critical field. At the same time, the 2DEG
should have large mobility (indicative of low disorder), spin-orbit coupling (which results
in a large topological gap), and g -factor (so that the applied magnetic fields can remain
small). Narrow bandgap semiconductors such as InAs and InSb fulfill these conditions,
but growing high-quality quantum wells in these systems is challenging [29]. Recent
progress in fabrication techniques have made great strides in solving these issues and
kickstarted the search for topological superconductivity in 2DEG Josephson junctions.
We briefly review some of these developments below.

Between 2015 and 2016, a series of experiments characterized InAs 2DEGs proximi-
tized with epitaxially-grown Al[29]. Tunneling spectroscopy experiments with quantum
point contacts in NS junctions revealed a hard superconducting gap in the tunneling
regime and conductance plateaus at 4e2/h in the open regime [30]. Subsequent exper-
iments studied SNS junctions and observed multiple Andreev reflections, indicating
high transparency between the semiconductor and superconductor [31]. High quality
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semiconductor-superconductor interfaces were also reported in inverted NbN-GaAs het-
erojunctions [32], NbTi contacted through a thin layer of epitaxial aluminum [33] and
Nb-In0.75Ga0.25As [34].

In 2019, induced superconductivity was observed in InSb 2DEGs proximitized by
ex-situ NbTiN[35]. In comparison with InAs, InSb has a larger g -factor and spin-orbit
coupling. However, it is difficult to proximitize with in-situ Al, presumably due to band
offset issues [36]. This issue was overcome by replacing InSb with the ternary compound
InSb1-xAsx, which was successfully proximitized with in-situ grown Al while retaining
high spin-orbit and g -factor. Another approach is to proximitize free-standing InSb
nanoflags [37, 38].

EXPERIMENTAL PROGRESS: SIGNATURES OF MBS AND MANIPULATING ANDREEV STATES

In 2018 two works appeared that claimed to observe evidence of topological supercon-
ductivity. In [39] the authors studied a phase-biased Al-InAs Josephson junction. The
authors measure the local density of states through tunneling spectroscopy and observe
non-quantized zero-bias peaks. Furthermore, they find that the peaks develop at lower
fields whenφ=π. Another work published almost simultaneously studied a phase-biased
Al-HgTe junction through tunneling spectroscopy [40]. Their findings are qualitatively
similar to those of Ref. [39]. In addition, the authors mapped out regions in φ−Bx space
that showed a zero-bias anomaly and found a diamond-like shape that resembles the
phase diagram we introduced in Sec. 1.4. When interpreting these results, the usual
caveats related to local tunneling conductance apply. First, a large body of theoretical
work shows that trivial ABS can also manifest as zero-bias peak [41–44]. Additionally, the
conductance in both studies clearly shows a soft gap, which precludes a topological phase
by definition. A few months later, Dartiailh et al. [45] published a study on Al-InAs junc-
tions in which the phase is left as a free parameter. At sufficiently high in-plane magnetic
fields, critical current maps show a closing and reopening of the gap concomitantly with
a π phase jump in the current phase relation. The combination of spin-orbit coupling
and Zeeman splitting can result in a topologically trivial π phase jump [35, 46, 47]. How-
ever, the authors claim this mechanism is inaccessible in the range of magnetic fields
considered, and instead interpret these observations as a topological phase transition.

A more recent generation of experiments focused on topological superconductivity
studies devices with additional leads. In [48] the authors report measurements of a
phase-biased Al-InAs junction connected to quantum point contacts on both ends of the
sample. In some regions of parameter space, local conductance at both ends shows states
coming down to zero energy followed by a zero-bias peak. A follow-up work investigates
a similar device using nonlocal conductance experiments [49]. Nonlocal conductance
is in principle a more reliable way of detecting topological phase transitions because it
probes bulk properties of the system [50]. The experiments observe an apparent closing
of the bulk in nonlocal conductance followed by correlated zero-bias peaks on both
ends. However, both nonlocal and local conductances clearly show a soft gap. Moreover,
Ref. [51] showed that regions where the order parameter vanishes can host ABS that mimic
nonlocal signatures.

A separate direction of research focuses on characterizing and manipulating the
subgap Andreev spectrum. In [52], the authors measure the critical current of a DC
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SQUID with Al-InAs junctions as a function of the flux threading the loop. A local tunnel
probe allows simultaneous measurement of the energies of the ABS which they fit using
the short junction spectrum(1.15). Having obtained a model of the ABS spectrum, the
authors compute the critical current Ic = maxφ I (φ) and find very good agreement with
the measured critical current values. Finally, building on a recent theoretical proposal
by Stern and Berg [53], two experimental works showed that applying a perpendicular
magnetic field induces a superconducting texture that allows controlling the spatial
position of ABS [54, 55].

1.5. STRUCTURE OF THIS THESIS

Here we give a brief overview of the topics explored in the following chapters.

1.5.1. SUPERCURRENT-INDUCED MAJORANA BOUND STATES IN A PLANAR

GEOMETRY

We propose a new setup for creating Majorana bound states in a two-dimensional electron
gas Josephson junction. Our proposal relies exclusively on a supercurrent parallel to the
junction as a mechanism for breaking time-reversal symmetry. We show that combined
with spin-orbit coupling, supercurrents induce a Zeeman-like spin splitting. Further,
we identify a new conserved quantity—charge-momentum parity—that prevents the
opening of the topological gap by the supercurrent in a straight Josephson junction. We
propose breaking this conservation law by adding a third superconductor, introducing a
periodic potential, or making the junction zigzag-shaped. By comparing the topological
phase diagrams and practical limitations of these systems we identify the zigzag-shaped
junction as the most promising option.

1.5.2. GREEDY OPTIMIZATION OF THE GEOMETRY OF MAJORANA JOSEPHSON

JUNCTIONS

Josephson junctions in a two-dimensional electron gas with spin-orbit coupling are a
promising candidate to realize topological superconductivity. While it is known that
the geometry of the junction strongly influences the size of the topological gap, the
question of how to construct optimal geometries remains unexplored. We introduce a
greedy numerical algorithm to optimize the shape of Majorana junctions. The core of the
algorithm relies on perturbation theory and is embarrassingly parallel, which allows it to
explore the design space efficiently. By introducing stochastic variations in the junction
Hamiltonian, we avoid overfitting geometries to specific system parameters. Furthermore,
we constrain the optimizer to produce smooth geometries by applying image filtering
and fabrication resolution constraints. We run the algorithm in various setups and find
that it reliably produces geometries with increased topological gaps over large parameter
ranges. The results are robust to variations in the optimization starting point and the
presence of disorder, which suggests the optimizer is capable of finding global maxima.
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1.5.3. CONDUCTANCE ASYMMETRIES IN MESOSCOPIC SUPERCONDUCTING

DEVICES DUE TO FINITE BIAS
Tunneling conductance spectroscopy in normal metal-superconductor junctions is an
important tool for probing Andreev bound states in mesoscopic superconducting devices,
such as Majorana nanowires. In an ideal superconducting device, the subgap conductance
obeys specific symmetry relations, due to particle-hole symmetry and unitarity of the
scattering matrix. However, experimental data often exhibits deviations from these
symmetries or even their explicit breakdown. In this work, we identify a mechanism that
leads to conductance asymmetries without quasiparticle poisoning. In particular, we
investigate the effects of finite bias and include the voltage dependence in the tunnel
barrier transparency, finding significant conductance asymmetries for realistic device
parameters. It is important to identify the physical origin of conductance asymmetries: in
contrast to other possible mechanisms such as quasiparticle poisoning, finite-bias effects
are not detrimental to the performance of a topological qubit. To that end, we identify
features that can be used to experimentally determine whether finite-bias effects are the
source of conductance asymmetries.

1.5.4. MULTIPLET SUPERCURRENT IN JOSEPHSON TUNNELING CIRCUITS
The multi-terminal Josephson effect allows DC supercurrent to flow at finite commensu-
rate voltages. Existing proposals to realize this effect rely on nonlocal Andreev processes
in superconductor-normal-superconductor junctions. However, this approach requires
precise control over microscopic states and is obscured by dissipative current. We show
that standard tunnel Josephson circuits also support multiplet supercurrent mediated
only by local tunneling processes. Furthermore, we observe that the supercurrents persist
even in the high charging energy regime in which only sequential Cooper transfers are
allowed. Finally, we demonstrate that the multiplet supercurrent in these circuits has a
quantum geometric component that is distinguishable from the well-known adiabatic
contribution.
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2.1. INTRODUCTION

Majorana bound states (MBS) are a promising avenue for fault tolerant quantum compu-
tation due to their topological protection [1–4]. While it is possible to realize MBS in spin
liquids [5] or in fractional quantum Hall systems [6, 7], much of the current experimen-
tal effort focuses on systems with induced superconductivity and broken time-reversal
symmetry [8–10].

One way of breaking time-reversal symmetry is through an exchange interaction with
a ferromagnet [11, 12]. However, in such a setup the interaction is not easily tunable.
This creates difficulties in distinguishing MBS from trivial low energy states [13], and
makes it necessary to carefully optimize the constituent materials. The most commonly
used scheme relies on the Zeeman effect created by an external magnetic field in a
proximitized semiconducting nanowire [14–21]. This approach requires strong magnetic
fields because the electron spin splitting must exceed the induced superconducting gap
in the topological phase. An alternative method relies on the orbital effect of the magnetic
field in a three-dimensional geometry, however it also requires strong magnetic fields
because of the need to thread a flux comparable to a flux quantum through the device
cross-section [22–25]. Magnetic fields suppress the superconducting gap and can create
Abrikosov vortices, both detrimental to MBS properties.

Supercurrents also break time-reversal symmetry, and can thus be used to lower the
minimal magnetic field required for creating MBS [26, 27], or even remove it altogether in
hybrid devices combining topological insulators and superconductors [28, 29]. Recent
proposals have focused on Josephson junctions formed by a two-dimensional electron gas
(2DEGs) proximity-coupled to two superconducting terminals [30, 31]. In these devices
the critical magnetic field reduces significantly when the superconducting electrodes
have a phase difference. Such Josephson junctions were realized experimentally [32, 33]
but a significant critical field reduction is yet to be observed.

Here we propose a setup using a conventional 2DEG and superconducting phase
differences to create MBS without an external magnetic field. In order to achieve this, we
utilize the idea of Ref. [34], demonstrating that more than two distinct values of super-
conducting phase are necessary to create a topological phase transition. In particular,
we show that applying supercurrents parallel to junction creates a spin splitting that is
sufficiently strong to drive a topological phase transition.

2.2. SETUP

We consider a 2DEG with spin-orbit interaction covered by two superconductors forming
a Josephson junction. The coupling between the superconductor and the semiconductor
is strong and therefore the g -factor and the spin-orbit coupling are suppressed in the
covered regions [35]. The superconductors carry supercurrents in opposite directions
along the junction (Fig. 3.1). We model this system using an effective 2-dimensional
Hamiltonian combining parabolic dispersion and Rashba spin-orbit interaction:

H =
(

p2
x +p2

y

2m
−µ

)
σ0τz +ξ(y)α(pxσy −pyσx )τz +Re∆(x, y)σ0τx + Im∆(x, y)σ0τy , (2.1)
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where px,y =−iħ∂x,y , m is the effective electron mass, µ the chemical potential, α the
Rashba spin-orbit interaction strength and∆(x, y) the superconducting gap. The indicator
function ξ(y) = 0 under the superconductor and ξ(y) = 1 otherwise. Finally, σi and τi are
the Pauli matrices in the spin and the electron-hole space. This Hamiltonian has a particle-
hole symmetry P = τyσy K , with K complex conjugation. Because the superconductors
carry a supercurrent, their phase depends linearly on x:

∆(x, y) =


∆0 exp(2πi x/λT ) W /2 < y <W /2+Lsc,

0 |y | <W /2,

∆0 exp(−2πi x/λB ) −W /2−Lsc < y <−W /2,

(2.2)

with W the width of the Josephson junction, λT and λB the winding lengths of the
superconducting phase in the two superconductors, and∆0 the magnitude of the induced
superconducting gap. Making the superconducting phase depend only y coordinate
coordinate is insufficient, because at kx = 0 the spin-orbit coupling may be removed by a
transformation ψ(y) → exp[iσx f (y)]ψ(y), and therefore all states are doubly degenerate.
This degeneracy was overlooked in Ref. [22] when analyzing the effective two-dimensional
Hamiltonian of the semiconducting slab.

Figure 2.1: A 2DEG with Rasba spin-orbit coupling covered by two conventional superconductors. The super-
conductors carry longitudinal supercurrents in opposite directions, indicated by the horizontal arrows.

To characterize the topological properties of the setup we apply the finite difference
approximation to the continuum Hamiltonian Eq. (5.3) with a lattice constant a = 10nm,
and numerically study the resulting tight-binding Hamiltonian using the Kwant software
package [36]. We use the implementation of Ref. [37] as a starting point. Whenever
necessary we use Adaptive [38] to efficiently sample the parameter space. The source
code and data used to produce the figures in this work are available in Ref. [39].

2.3. CREATING A TOPOLOGICAL PHASE
We illustrate the appearance of the topological phase by introducing the necessary ingre-
dients one by one. The resulting band structures are computed through sparse diagonal-
ization of the Hamiltonian for several values of the Bloch wave vector κ corresponding to
the supercell of the device. We choose the following parameter values, unless specified
otherwise. The effective electron mass is m = 0.04me , with me the free electron mass,
λT =λB =λ= 370nm, ∆0 = 1meV, α= 10meVnm, as well as the geometrical parameters
Lsc = 200nm, W = 150nm.
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2.3.1. PHASE WINDING AND INVERSION SYMMETRY
We observe that the band structure in presence of phase winding has a spin splitting
at κ = 0, as shown in Fig. 2.2. The level crossing at κ = 0 may be protected only by
the Kramers degeneracy appearing when H commutes with an antiunitary operator
squaring to −1. In absence of winding, this condition is fulfilled by the time-reversal
symmetry T = σy K . We identify that even in presence of winding, the Hamiltonian
commutes with the operator δ(y + y ′)T , except for the transverse spin-orbit coupling
αpyσx . Therefore the avoided crossing is produced by a combination of the winding
and of the transverse spin-orbit coupling breaking all the remaining time-reversal-like
symmetries of the system. In Fig. 2.2 we also demonstrate that removing the transverse
spin-orbit coupling restores the degeneracy of levels at κ= 0. We conclude that the width
W of the normal region must be comparable to the spin-orbit length lso =ħ/mα in order
for the transverse spin-orbit to have a sufficient impact and to cause a spin splitting. The
level crossings at κ=π stay protected by a nonsymmorphic antiunitary symmetry with
an operator τzδ(y + y ′)δ(x −x ′+λ/2)K .

−π − π/2 0 π/2 π
λκ

−0.05

0

0.05

E
/∆

Figure 2.2: Band structures of systems with spin-orbit interaction at µ= 0.17meV. The avoided level crossings at
κ= 0 are a consequence of an effective Zeeman interaction originating from the combination of the spin-orbit
coupling and the supercurrents carried by the superconductors. Removing transverse spin-orbit coupling
restores Kramer’s degeneracy at κ= 0 and results in the band structure plotted with dashed lines.

Furthermore, we see that the spectrum is reflection symmetric about κ= 0. This is a
consequence of the inversion symmetry of the Hamiltonian [H , I ] = 0, with the inversion
symmetry operator I = δ(x +x ′)δ(y + y ′)σz . Since choosing λT ̸=λB breaks the inversion
symmetry, it may close the band gap at finite momentum, as illustrated in Fig. 2.3, where
we chose λT = 2λB = 700nm and µ= 0.42meV. Preserving inversion symmetry therefore
maximizes the parameter range supporting gapped spectra.

2.3.2. BREAKING THE CHARGE-MOMENTUM CONSERVATION LAW
The band structure in Fig. 2.2 resembles that of a proximitized nanowire with spin-orbit
interaction and Zeeman field [14, 15]. By analogy it is then natural to expect that tuning
the chemical potential such that the two spin states at κ= 0 have opposite energies should
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Figure 2.3: Gapless band structure due to broken inversion symmetry resulting from different supercurrent
densities (λT = 2λB ).

result in a topologically nontrivial band structure. Instead we observe a gapless band
structure with band gap closings at finite κ, as shown in Fig. 2.4(a).
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Figure 2.4: Band structures of the system with the Fermi level tuned inside the avoided crossing at κ= 0 with
(a) a zero band gap due to charge-momentum parity conservation, and (b) finite band gap due to a periodic
potential. The bands are colored according to the expectation value of O .

The crossings in the spectrum are protected because every Andreev reflection in this
setup is accompanied by a wave vector change of ±2π/λ. Therefore the Hamiltonian
conserves the charge-momentum parity

O = (−1)nτz , [H ,O ] = 0. (2.3)

Here n ≡λ(kx −κ)/2π is the number of the unit cell in reciprocal space. We visualize this
conservation law in Fig. 2.5. Because {P ,O } = 0, each eigenstate |Ψ〉 of the Hamiltonian
with energy E , Bloch wave vector κ, and charge-momentum parity O has a partner P |Ψ〉
with −E , −κ, and −O . Topological phase transitions occur whenever such a pair of states
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crosses zero energy at κ = 0 or κ = π. As a consequence, in the topological regime the
difference of the number of states with positive E and O at κ = 0 and those at κ = π is
odd. Therefore the topological phase requires at least one band with positive O (and its
particle-hole symmetric partner with negative O ) to cross zero energy between κ= 0 and
κ=π. This prohibits a gapped topological phase as long as O is conserved.

Figure 2.5: Schematic normal state band structure of the Hamiltonian of Eq. (5.3). For illustration purposes we
neglect the spin-orbit coupling. The dots represent momentum eigenstates with Bloch momentum κ= 0 and
the lines denote couplings introduced by the superconductors. The colors correspond to different eigenvalues
of the charge-momentum parity.

Since a gap is necessary for topologically protected MBS, we consider the following
strategies for breaking the charge-momentum parity conservation:

• adding a periodic potential

δV =V cos(2πx/λV )σ0τz , (2.4)

with V the amplitude of the potential and λV its periodicity;

• adding an extra superconductor in the middle, as sketched in Fig. 2.6 (a), so that
∆(x, y) becomes:

∆(x, y) =


∆0 exp(−2πi x/λ) y >W /2,

∆′ w/2 > |y |,
0 w/2 < |y | <W /2,

∆0 exp(2πi x/λ) y <−W /2,

(2.5)

where w is the width of the middle superconductor and ∆′ its superconducting gap;

• adding a zigzag modulation to the junction shape [40] with period zx and amplitude
zy , as depicted in Fig. 2.6(b).

These modifications couple the eigensubpaces of O as shown in Fig. 2.7 and open a gap
in the topological regime. We verify that this is the case by adding a periodic potential
with V = 0.005meV and λV =λ, which results in a gapped topologically-nontrivial band
structure shown in Fig. 2.4(b).
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Figure 2.6: Schematics of systems with broken charge-momentum parity symmetry due to (a) a third supercon-
ductor carrying no supercurrent, and (b) a zigzag-shaped junction.

Figure 2.7: Schematic band structure of the Hamiltonian of Eq. (5.3) with charge-momentum parity breaking
terms. The red dashed lines denote the symmetry breaking couplings introduced by (a) a periodic potential,
and (b) a third superconductor, and (c) zigzag-shaped junction. By projecting the zigzag junction Hamiltonian
onto a plane wave basis we have verified that it introduces couplings to higher harmonics [39] which we denote
with narrower transparent lines.

2.4. PHASE DIAGRAMS
In order to check how robust the resulting topological superconductivity is, we study
the topological phase diagrams of the three candidate systems as a function of λ and
µ, focusing especially on the effect of winding of the superconducting phase becoming
incommensurate with the other periods appearing in the Hamiltonian: λV and zx . For il-
lustration purposes we choose the parameters α= 20meVnm, zx = 515nm, zy = 37.5nm,
V = 0.15meV, λV = 515nm, ∆′ =∆0 = 1meV and w = 10nm. Because our goal is a quali-
tative exploration of the topological phase diagram we neglect the impact of the zigzag
shape on the phase winding pattern. This is also a good approximation because the
zigzag modulation is small (zx ∼ 10× zy ). We utilize the scattering formalism to con-
struct the topological phase diagram when the winding length λ of the superconducting
phase is incommensurate with the periodicity of the potential λV or the period of the
zigzag modulation zx . Specifically, we construct a finite but large system with length
Lx = 10.3µm = 20zx with two normal leads attached, shown in Fig. 2.8(a). We then com-
pute the scattering matrix as a function of energy and compute the topological invariant
Q = signdetr , where r is the reflection block of the scattering matrix [41]. We estimate
the gap as the lowest energy at which the total transmission between two leads T12 = 1/2,
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Figure 2.8: To compute the band gap we (a) attach two two normal leads to the system and (b) compute the
transmission between the leads; we then approximate the gap to be the energy at which transmission exceeds
0.5.

as illustrated in Fig. 2.8(b).

Because adding a third superconductor preserves inversion symmetry regardless of
λ, the phase diagram of the system with 3 superconductors is gapped except for phase
transitions. In contrast, the periodic potential and zigzag systems are only inversion
symmetric when the periods of different Hamiltonian terms are equal, that is when
λ=λV and λ= zx . Once parameters become incommensurate the gap closes quickly and
the diagrams have large gapless regions. However, the topological phase of the system
zigzag geometry is significantly more robust to incommensurate parameters than that of
the periodic potential and tolerates variations of λ of approximately 10%. We also observe
that the zigzag geometry is sufficiently robust to support a gapped topological phase with
only one superconductor, see App. 2.A.

The shape of the topological regions has a complex dependence on µ and λ that
does not seem amenable to analytical treatment. Additionally, the topological gap is
smaller than the full superconducting gap by approximately a factor of 50, likely due to a
suboptimal choice of parameters, rather than a fundamental limitation of the setups.
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Figure 2.9: Phase diagrams for systems with (a) a periodic potential, (b) a zigzag-shaped junction, and (c) a
third superconductor carrying no supercurrent. The dashed line indicate the region where the systems have
commensurate parameters, that is λ=λV , and λ= zx . Negative values correspond to topologically non-trivial
systems.
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2.5. SUMMARY
In summary, we have shown that the winding of a superconducting phase is a sufficient
source of time-reversal symmetry breaking to create MBS in Josephson junctions. By
performing symmetry analysis we have identified the breaking of the charge-momentum
parity conservation law as the key ingredient for tuning the system into a gapped topolog-
ical regime. Furthermore, we showed that preserving inversion symmetry maximizes the
size of the parameter regions supporting gapped spectra.

The only magnetic field in the system is caused by the supercurrents in the electrodes.
To estimate the magnitude of the magnetic field we approximate the supercurrents and

the resulting magnetic field through the relations I = hdW /(λ2
Lµ02eλ) and B = µ0 I

2πW ,
where d is the thickness of the superconductor, λL the London penetration depth, and
µ0 the vacuum permeability. Using experimentally realistic values of d = 10nm, λL =
200nm (niobium) and λ= 250nm yields ∼ 0.3mA and B ∼ 0.2mT, which is negligible in a
mesoscopic superconductor.

The periodic potential scheme is the most challenging to implement experimentally,
since it requires patterning a large number of gates. Additionally this scheme requires
almost exactly commensurateλ andλV . Adding a third superconductor has the advantage
of preserving inversion symmetry regardless of the phase winding length λ. On the other
hand it is sensitive to the geometry: the width of the middle strip w must be large
enough to allow Andreev reflections, but shorter than the superconducting coherence
length in order to allow transmission between the top and bottom superconductors. The
zigzag-shaped junction has a larger tolerance to incommensurate parameters compared
to the periodic potential and is less sensitive to the details of the geometry than the
third superconductor. Furthermore, it can be be fabricated with current techniques [42],
making it the most promising scheme.

We have excluded the effects of disorder and aperiodic variations in the geometry
or the electrostatic environment of the device. Such perturbations destroy translation
symmetry and couple states with different Bloch momenta, thus also breaking the charge-
momentum parity, and potentially offering a simpler approach to creating a topological
phase. Another direction of further research would is to identify the system geometry and
parameters maximizing the topological gap of the systems.

2.A. SYSTEM WITH A SINGLE ZIGZAG-SHAPED SUPERCONDUC-
TOR

A system with a single zigzag-shaped superconducting contact, as shown in Fig. 2.10, may
still support a topological phase despite having strongly broken inversion symmetry. In
Fig. 2.11 we show a phase diagram for such a system with zx = 360nm, zy = 75nm, and
Lx = 7.2µm = 20zx .
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3.1. INTRODUCTION

Majorana bound states (MBS) are topologically protected edge states with non-abelian
statistics that can serve as a building block for fault tolerant quantum computers [1–4].
While much of the experimental search for topological superconductivity has focused on
proximitized semiconducting nanowires [5–8], this system requires applying a sufficiently
strong magnetic field to drive a topological phase transition. Because magnetic fields sup-
press superconductivity, the field compatibility of Majorana devices is an open problem.
An alternative proposal—Josephson junctions in a two-dimensional electron gas (2DEG)
with spin-orbit coupling [9–13]—uses the phase difference across the junction to lower
the critical magnetic field.

The topological protection of MBS requires a spectral gap. Therefore, designing
devices with sufficiently large gaps is a necessary component of engineering Majorana
states. In Majorana Josephson junctions, the gap is limited by long trajectories in the
normal region that do not come into contact with the superconducting terminals [14, 15].
Eliminating these long-flight trajectories by making the junction zigzag-shaped leads to
an order of magnitude increase in the topological gap [15]. The topological gap is also
enhanced in other periodically modulated geometries [16, 17].

Optimizing a band gap is similarly relevant to photonic and acoustic crystals to design
devices such as filters, beam splitters, and waveguides [18]. A large body of research shows
that numerical optimization methods such as genetic algorithms [19, 20], semidefinite
programming [21, 22], and gradient-based strategies [23, 24] find geometries with large
band gaps despite performing a search in an exponentially large design space. More
recent work demonstrated that deep learning accelerates optimization by predicting
effective tight-binding models corresponding to microscopic geometries [25]. In the
context of one-dimensional Majorana nanowires, Boutine et al. [26] and Turcotte et al [27]
used an algorithm based on GRAPE [28] to minimize the Majorana localization length
through spatially varying electrostatic potentials and magnetic field textures.

While geometry was demonstrated to have a sizeable effect on the topological gap
of Majorana junctions, the question of how to find optimal geometries remains open.
Inspired by the previous works in numerical geometry optimization, we develop the
following greedy algorithm to find optimal Majorana junction geometries. At each opti-
mization step, we compute a set of possible deformations to the shape of the supercon-
ducting regions. Using perturbation theory we estimate how the gap changes with these
deformations and select the one that yields the largest improvement. We avoid overfitting
geometries to specific parameters by randomly varying the operating point throughout
the optimization, similarly to stochastic gradient descent. To ensure that the resulting
geometries are within reach of fabrication techniques, we incorporate smoothness and
minimum feature size constraints. We benchmark our algorithm on a variety of physical
scenarios and find that it reliably produces geometries with increased topological gaps
over large system parameter ranges. Finally, we check the robustness of the algorithm
and discuss its potential generalizations.
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Figure 3.1: Schematic representation of two unit cells of a topological Josephson junction formed by covering a
Rashba 2DEG with s-wave superconductors. An applied magnetic field penetrates the normal region (grey) and
breaks time-reversal symmetry. The proximitized regions (yellow) experience an additional proximity-induced
pairing term and a superconducting phase difference of π.

3.2. MODEL AND ALGORITHM DESCRIPTION
We consider a Josephson junction formed by proximitizing a Rashba 2DEG with two
s-wave superconductors (Fig. 3.1). We model the central normal region with a two-
dimensional Bogoliubov-de Gennes Hamiltonian

HN =
( ħ2

2m
(k2

x +k2
y )−µ+α(kyσx −kxσy )

)
τz +EZσx ,

where α and EZ parameterize the strength of the Rashba spin-orbit and Zeeman fields
respectively, µ is the chemical potential, and σi and τi are the Pauli matrices acting in
spin and electron-hole space. Following previous works [9, 10] we fix the superconducting
phase difference to its optimal value φ = π. This choice also simplifies the geometry
optimization problem because it guarantees that the system never leaves the topological
regime. The Hamiltonian of the proximitized regions then has an additional coupling
term

HSC =∆(x, y)τx

where ∆(x, y) =∆0—the induced superconducting gap—in the top superconductor and
−∆0 in the bottom superconductor. Because we are interested in determining bulk
properties, we consider a translationally invariant system with a supercell Hamiltonian
H = HN +HS, which we discretize using the Kwant software package [29]. Unless stated
otherwise, we consider a unit cell of length Lx = 1300nm, lattice constant of a = 20nm,
and Hamiltonian parameters m = 0.02me (with me the free electron mass),α= 20meVnm
and ∆0 = 1meV.

Our core iterative algorithm starts by computing the band structure of the initial geom-
etry on a sufficiently fine grid of the supercell momenta κx using sparse diagonalization.
Since we are interested in low-energy behavior, we compute only a small set of the 2nb = 8
bands closest to the Fermi level. We then compute a set of candidate perturbations to
the geometry of the junction. Using conventional image processing we determine the
normal-superconductor boundary and then consider two types of modifications: remov-
ing superconductivity from boundary sites, and introducing superconductivity in normal
sites immediately next to the boundary (Fig. 3.2(b)). Limiting the geometry perturbations
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Figure 3.2: Summary of the core optimization algorithm. (a) We start from a discretized model of the junction. (b)
At the start of an iteration we determine the boundaries of each superconductor. We then consider perturbations
that introduce or remove superconductivity in sites at the boundary (circled in red). (c) Using perturbation
theory, we compute how the gap changes with each geometry modification. (d) Finally, we update the shape
using the modification that yields the largest improvement in the gap.

to the boundaries of the superconductors with the normal regions promotes the conti-
nuity of the shape evolution. In order to implement fabrication constraints, we reject
perturbations where the minimum distance between superconductors is lower than a
specified tolerance w = 100nm. Once we have collected a set of perturbations, we use first
order degenerate perturbation theory to estimate how they change the dispersion relation
(Fig. 3.2(c)). Finally, we modify the superconductors’ shape with the perturbation that
yields the largest improvement in the gap and proceed to another iteration (Fig. 3.2(d)).
Because calculations of Bloch eigenstates at different κx as well as computing the effect
of different perturbations are independent, the algorithm is embarrassingly parallel. We
leverage this by using the dask software package [30] to parallelize our implementation.

Although the core algorithm is already capable of finding improved geometries, it has
the following limitations:

• It is inefficient to fully recompute the dispersion relation after each iteration.

• Due to being greedy, the algorithm gets stuck in any local maximum.

• The resulting shapes tend to be irregular and contain features that vary on the scale
of the lattice constant.

We solve these problems by introducing epochs consisting of a handful of iterations
each. Instead of exactly recomputing the dispersion relation at each iteration, we do
it only at the beginning of an epoch. Furthermore, at every epoch we select random
values of EZ 1 < EZ < EZ 2 and µ1 < µ < µ2. This procedure is analogous to performing
stochastic gradient descent to optimize the average gap over a region in parameter space,
and it ensures that the optimized geometries are tolerant to variations in the junction
Hamiltonian. Finally, we apply a median filter to the superconductor shapes every few
epochs, which constrains the optimizer to explore shapes that vary smoothly in space.
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Figure 3.3: Optimization run starting from a straight geometry with homogeneous chemical potential and with
parameter shifting and median filtering. (a) The blue curve corresponds to the average gap evaluated at 16
different points in parameter space, whose individual values we plot in orange. In panel (e) we mark these
points with red dots. (b-d) Geometries found at the epochs marked with vertical dashed lines in panel (a). (e-f)
Topological phase diagrams of the geometries in (b-d).

Having introduced the algorithm, we turn to investigate its performance, robustness,
and the relevance of its components. Unless noted otherwise we perform epochs with 5
iterations per epoch and apply a median filter with a window size of 3a = 60nm. Reflection
symmetry x → Lx−x protects the gap from closing at finite momentum [31]. Therefore we
consider only mirror-symmetric geometries ∆(x, y) =∆(Lx −x, y) and change the shape
in pairs of reflection-symmetric sites simultaneously.

Figure 3.5 demonstrates our algorithm in action. We initialize the system with a
straight geometry where the normal and superconducting regions have initial widths W =
200nm and LSC = 500nm respectively. Further, we consider a parameter space of µ1 =
10meV, µ2 = 15meV, EZ 1 = 0.5meV,EZ 2 = 1.5meV, and apply the median filter every 5
epochs. In Fig. 3.3(a) we show how the gap of 16 uniformly spaced points in the parameter
space evolves with epoch number. Although the gaps at fixed parameters fluctuate, the
average increases smoothly as the optimization proceeds, eventually converging to a value
approximately 10 times larger than the initial one. In Fig. 3.3(b-d) we show geometries and
corresponding Majorana wavefunctions at the beginning of the optimization, its middle,



3

44 3. GREEDY OPTIMIZATION OF MAJORANA JOSEPHSON JUNCTION

0 50 100 150 200 250 300
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

E
g
a
p
/∆

0

Fixed parameters

5% variation in EZ and µ

Figure 3.4: A comparison of the behavior of the optimizer with fixed Hamiltonian parameters and with random
fluctuations in the chemical potential and Zeeman field. The blue curve shows the topological gap computed
at each epoch for the optimizer with fixed parameters. At approximately 130 epochs it gets stuck in a local
maximum. In contrast, the optimization with parameter shifting (red curve) avoids this local maximum and
converges to higher gap values. Although the geometry has converged, the observed gaps oscillate about their
average value due to the parameter shifting. The two inset plots show the converged geometries obtained at
each run.

and at convergence. Similar to the zigzag geometries explored in [15], the final shape
has a strong spatial modulation that eliminates long quasiparticle trajectories. Despite
the algorithm imposing no such constraints, the converged geometry has a periodicity
of half of the supercell. The increase in average gap leads to more localized Majorana
wavefunctions, as is expected from the well-known relation for the localization length
ξM = ħvF

Egap
. Indeed, in the last iteration, the overlap of the Majoranas is already negligible

within a single supercell. In Fig. 3.3(e-g) we plot topological phase diagrams as a function
ofµ and EZ and find that the algorithm significantly increases the average gap both within
the search window and in its vicinity.

We study the importance of individual aspects of the algorithm by examining their
impact on the algorithm performance. To confirm the importance of the median filter,
we check that excluding it generates discontinuous shapes shown in Fig. 3.5(a) and
(c). Turning to the random sampling of parameters, we repeat the previous run with
fixed parameters µ= 10meV and EZ = 1meV, along with a parameter-shifting run with
µ1 = 9.5meV,µ2 = 10.5meV,EZ 1 = 0.95meV,EZ 2 = 1.05meV.1 We plot the observed gaps

1We choose a parameter window smaller than in Fig. 3.3 to reduce the fluctuations of the gap across epochs. In
our simulations we found that the performance of the algorithms depends weakly on the window size, as long
as it is neither too big nor too small.
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Figure 3.5: The effect of introducing median-filtering in the optimization algorithm. The top panels (a) and
(b) show optimized geometries when starting from a straight junction with homogeneous and mismatched
chemical potentials, respectively. The bottom panels (c) and (d) show the geometries obtained when a median
filter is added. Each panel also shows the average gap over the range of µ and EZ used in the optimization (see
main text for exact parameters).

at each epoch in Fig. 3.4. Both runs result in geometries with significantly larger gaps
than the straight junction. However, the optimizer with fixed parameters gets stuck in a
local maximum with a gap of approximately 0.2∆0. In contrast, the parameter-shifting
optimizer avoids this local maximum and continues exploring the geometry space until it
converges to a shape with a gap of the order of 0.25∆0.

To study the robustness of our algorithm, we introduce several modifications in the op-
timization procedure and study how the results change in comparison with the reference
geometry from Fig 3.3. In Fig. 3.6(a-b), we show results obtained with a different random
seed and in Fig. 3.6(a-b) when the optimization starts from a zigzag geometry [15] (width
and amplitude modulation of W = zy = 300 nm). In both scenarios, the optimization
converges to the reference up to 1–2 lattice sites. This suggests that the final result is inde-
pendent of the details of the simulation parameters and that it is likely that the algorithm
is converging to a global maximum in geometry space. Next, we allow the algorithm to add
a single site per iteration, thereby removing the mirror symmetry constraint. To maintain
consistency in the number of sites added per epoch we perform 10 iterations. Remarkably,
although the optimizer starts by exploring highly mirror-asymmetric configurations, it
eventually converges to the mirror-symmetric reference shape (Fig. 3.6(d-e)). Finally,
we explore the effects of disorder in the junction Hamiltonian. We introduce an onsite
potential Vdisorder(x, y) =V0(x, y)τz , where V0(x, y) is uniformly distributed in [−W0,W0].
We set the disorder strength at W0 = 1.7meV, which corresponds to a mean free path of a
unit cell length. To avoid overfitting to a specific disorder realization we sample a new set
of V0(x, y) every epoch. Disorder effectively renormalizes Hamiltonian parameters and
hence plays a similar role to parameter shifting. Therefore we opt for a smaller parameter
window and set µ1 = 9.5meV,µ2 = 10.5meV,EZ 1 = 0.95meV,EZ 2 = 1.05meV. Once again
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Figure 3.6: Comparison of optimized geometries with a reference geometry obtained by optimizing a straight
junction with homogeneous chemical potential. In the panels we plot the difference of the magnitude of
the superconducting gap of the reference geometries and the optimized geometries. The left panels show
the geometry obtained after 50 epochs, and the right panels after convergence. Panels (a-b) correspond to
geometries obtained with a different random seed, (c-d) starting the optimization from a zigzag shape, (e-f)
allowing the optimizer to choose mirror-asymmetric perturbations, and (g-h) in the presence of onsite disorder.

the resulting shape differs from the reference by a few lattice sites (Fig. 3.6(g-h)).

All of the previous simulations converged to the same geometry, which raises the
natural question of whether the optimizer generalizes well to other physical scenar-
ios. To address this, we consider a modified version of the 2DEG junction with larger
chemical potential in the proximized regions µsc = 15meV, and a parameter range of
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µnormal,1 = 9.5meV,µnormal,2 = 10.5meV,EZ 1 = 1.35meV,EZ 2 = 1.65meV. The higher
chemical potential in the proximitized regions simulates the doping due to the work
function difference [32, 33]. Figure 3.5(b) shows the geometry obtained with a run of
800 epochs without filtering. Interestingly, the optimizer converges to highly disordered
superconductor shapes. This is in contrast with the previous simulations, where the
unfiltered geometries remain approximately smooth. Applying the median filter at every
epoch restores the smoothness of the final geometry 3.5(d)), but results in a significant
reduction in the average topological gap. We attribute the overall lower gaps to the pres-
ence of normal scattering at the normal-superconductor interface caused by the Fermi
velocity mismatch [34, 35]. This tends to reduce the induced superconducting gap and
complicate the optimization problem. We have briefly explored optimization in another
setup consisting of a straight junction with electrostatic gates next to the superconductors.
Such a system would be less influenced by diamagnetic screening supercurrents that
suppress the amplitude of Andreev reflection amplitude and hence the induced gap [36].
However, we did not obtain systematic results yet and thus we omit the discussion of
these systems from the manuscript.

3.4. SUMMARY AND OUTLOOK
We have presented a greedy algorithm for finding Majorana junction geometries with
large topological gaps. Our algorithm relies on parallelization and perturbation theory
to sample geometry space efficiently and is compatible with minimum feature size and
smoothness constraints. We validated our approach in different scenarios and showed
that it is robust to variations in the starting point and the presence of disorder.

There are several possible improvements to the algorithm. A straightforward opti-
mization would be to explore the hyperparameter space more systematically and find,
for example, the optimal number of iterations per epoch and parameter window size.
Additionally, the optimized geometries presented in the main text have periods shorter
than our initial choice of Lx . This suggests that allowing the optimizer to dynamically
adjust the period of the unit cell may increase performance. Another direction of further
research would be to go beyond our greedy strategy and implement more sophisticated
algorithms to explore the tree of perturbations such as Monte Carlo tree search [37].

While our results look promising, they are not yet experimentally relevant. The state-
of-the-art experiments in 2DEG heterostructures do not offer sufficient insight into the
material properties to enable predictive simulations. On the theoretical side, we have
neglected several phenomena, namely electrostatics and magnetic field distribution,
which will strongly influence the optimal geometry shape. Including these effects in
the simulation requires significantly higher computational resources and is not justified
without more knowledge about the platform.

We expect that our algorithm applies to other Majorana devices, such as Majorana
Josephson junctions that only require phase gradients to break time-reversal symme-
try [38, 39]. Geometry optimization can answer whether the previously reported small
gaps in the high-density regime are an inherent problem of this platform. While our initial
experiments indicate that the algorithm is directly suitable to gate shape optimization,
more work is required to achieve a reliable conclusion.

Considering geometry optimization beyond Majorana Josephson junctions, we be-
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lieve that the core ideas of our approach would apply to other inverse design problems in
mesoscopic quantum physics [40]. The stochastic nature of our algorithm safeguards it
from overfitting, but on the other hand makes it unsuitable to find sharp resonances or
phenomena that are sensitive to microscopic device details. This, however, is a natural
setting in many experiments where the control over the system is imprecise. The numer-
ical efficiency of our approach largely relies on the locality of the perturbation used to
estimate the gradient of the target function. Local control over microscopic Hamiltonians
is far beyond current experimental reach. A practical adaptation of our algorithm to
nonlocal perturbations would approximate those as local during most optimization steps
and only recompute the precise observables at the beginning of an epoch.
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4.1. INTRODUCTION

Hybrid nanostructures combining spin-orbit coupled semiconducting nanowires and
conventional superconductivity are a promising candidate to host Majorana bound states
(MBS) [1–16]. Much of the ongoing experimental work on these devices relies on two-
terminal tunnel spectroscopy in which the nanowires are coupled to a normal reservoir
through an electrostatic tunnel barrier. In the tunneling limit the conductance through
the normal-superconductor (NS) junction is proportional to the local density of states
at the edge of the nanowire. This allows to measure local signatures of MBS such as a
resonant zero-bias conductance peak [17–27]. Additionally, a three-terminal setup allows
to probe nonlocal conductances, which can provide information about the bulk topology
and the BCS charge of bound states [28–30].

A common theoretical framework for calculating the conductance in NS junctions is
the scattering matrix (S) method under the linear response approximation [31]. In the
presence of particle-hole symmetry and unitarity of the S matrix, the linear response
conductance G obeys several symmetry relations at voltages below the superconducting
gap ∆. In two-terminal setups, for example, the conductance is symmetric about the zero
bias voltage point, i.e., G(V ) =G(−V ) for |V | <∆/e [32, 33]. In three-terminal setups, it
has recently been shown that the anti-symmetric components of the local and nonlocal
conductance matrices are equal [30]. However, in experiments these symmetry relations
are only observed approximately [34–39]. So far, possible mechanisms for the observed
deviations that have been discussed in the literature always rely on coupling to a reservoir
of quasiparticles, for example through dissipation due to a residual density of states in
the parent superconductor or additional low-energy states [33, 40], or inelastic relaxation
processes connecting subgap states to the above-gap continuum [41].

In this work we go beyond the linear response regime and study how finite-bias effects
break conductance symmetry relations, without the need for quasiparticle poisoning. In
particular, we consider the dependence of the tunnel barrier profile and transparency
on the applied bias voltage in the normal lead [32, 42, 43]. In two-terminal setups, we
find that a voltage-dependent tunnel barrier introduces asymmetry in both the width and
height of subgap conductance peaks. Moreover, we study the conductance asymmetry
as a function of system parameters, and show that it is enhanced by mirror asymmetric
barrier shapes. We also identify general features that can be used to experimentally
determine whether finite-bias effects are the main source of conductance asymmetry.
Finally, we turn our attention to three-terminal setups and observe that finite-bias effects
break conductance symmetries in accordance with recent experimental work [39].

4.2. FINITE-BIAS CONDUCTANCE IN A MESOSCOPIC SUPERCON-
DUCTING SYSTEM

The formalism for computing the nonlinear conductance in a mesoscopic superconduct-
ing device has been derived in [32]. We give a concise summary here to point out the
important aspects for our study.

Consider a scattering region attached to a normal lead and a superconducting lead
shown schematically in Fig. 4.1(a). Using the Landauer-Buttiker formalism [31, 44] we
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Figure 4.1: (a) Schematic band diagram of an NS tunnel junction at zero bias voltage. (b) Calculating conduc-
tance through the junction in the linear response limit. The voltage dependence of the scattering region is
neglected and therefore the scattering matrix depends solely on the energy of incoming modes. (c) Finite-bias
conductance includes changes in the electrostatic profile of the junction due to the applied voltage, e.g. a
positive shift of the chemical potential near the normal lead, along with a linear voltage drop across the tunnel
barrier. As a result the scattering matrix depends on both the energy of the incoming modes and the applied
bias voltage.

write the current in the normal lead as a sum of three contributions

I (e) =− e

h

∫
dE f (E +eVbias)[N (E ,Vbias)−Ree (E ,Vbias)], (4.1)

I (h) = e

h

∫
dE f (E −eVbias)Reh(E ,Vbias)

= e

h

∫
dE [1− f (E +eVbias)]Rhe (E ,Vbias), (4.2)

I (sc) = e

h

∫
dE f (E)Tes (E ,Vbias), (4.3)

where e = |e| and we have set the chemical potential of the superconductor to zero.
I (e) (I (h)) is the current carried by electrons (holes), I (sc) the current originating from
quasiparticles in the superconducting lead, and

f (E) = 1

1+exp
(

E−µ
kB T

) (4.4)

is the Fermi-Dirac distribution. N is the number of electron modes in the normal lead,
Ree the total electron reflection amplitude, Reh the total Andreev reflection amplitude and
Tes the transmission amplitude from the superconductor above-gap modes. In contrast
with the conductance obtained in the linear response approximation, the finite-bias
conductance takes into account changes in the profile of the tunnel barrier due to the
applied bias voltage Vbias (Fig. 4.1(c)). Therefore Ree , Reh and Tes depend not only on
the energy of incoming particles E , but also on Vbias. Unitarity of the scattering matrix
implies that

N (E ,Vbias) = Ree (E ,Vbias)+Reh(E ,Vbias)+Tes (E ,Vbias). (4.5)
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Hence

I (sc) = e

h

∫
dE f (E)[N (E ,Vbias)−Ree (E ,Vbias)−Reh(E ,Vbias)]

= e

h

∫
dE f (E)[N (E ,Vbias)−Ree (E ,Vbias)]− e

h

∫
dE [1− f (E)]Rhe (E ,Vbias)

= e

h

∫
dE f (E)[N (E ,Vbias)−Ree (E ,Vbias)+Rhe (E ,Vbias)]

− e

h

∫
dE Rhe (E ,Vbias). (4.6)

The total current is then given by

I = e

h

∫
dE [ f (E)− f (E +eVbias)][N (E ,Vbias)−Ree (E ,Vbias)+Rhe (E ,Vbias)]. (4.7)

In the zero-temperature limit the conductance reduces to [32]

G = d I

dVbias
= e2

h
(N (−eVbias,Vbias)−Ree (−eVbias,Vbias)+Rhe (−eVbias,Vbias))

− e

h

∫ −eVbias

0
dE

[
∂Rhe (E ,Vbias)

∂V
− ∂Ree (E ,Vbias)

∂V

]
. (4.8)

Equation (4.8) is the most general form of finite-bias conductance. It does not assume
any specific electrostatic profile of the junction and is also valid for multi-terminal se-
tups. When the dependence of the NS junction on the applied bias voltage is ignored
(Fig. 4.1(b)), that is Ri j (E ,Vbias) → Ri j (E ,0), Eq. (4.8) reduces to the well-known expres-
sion for NS conductance in the linear response limit

Glin(Vbias) = 2e2

h
(N −Ree (−eVbias)+Rhe (−eVbias)) , (4.9)

which satisfies the symmetry relation G(Vbias) =G(−Vbias) at voltages below the supercon-
ducting gap [32, 33].

4.3. FINITE-BIAS LOCAL CONDUCTANCE INTO A SINGLE AN-
DREEV BOUND STATE

To obtain a qualitative understanding of the influence of finite-bias effects, we first
consider a toy model of an NS junction where the nanowire hosts a single Andreev bound
state:

H = E0

(
1 0
0 −1

)
. (4.10)

Below the superconducting gap, Eq. (4.8) reduces to

G

2G0
= Rhe (−eVbias,Vbias)− 1

e

∫ −eVbias

0
dE

∂Rhe (E ,Vbias)

∂V
, (4.11)
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Figure 4.2: Two-terminal NS conductance into a single Andreev bound state with a scattering region sensitive
to the applied bias voltage. In the linear response approximation the voltage dependence of the scattering
region is neglected, resulting in particle-hole symmetric conductance profiles (orange dashed lines). When
a voltage dependence is included in the electron/hole tunneling amplitude te/h (red/green solid lines), the
corresponding conductance profiles (blue solid lines) show different heights and widths at positive and negative
bias voltage.

where G0 = e2

h is the conductance quantum. Rhe (E ,V ) can be obtained by taking the
trace over the appropriate block of the scattering matrix, which we compute through the
Mahaux-Weidenmüller formula

S =1−2πW †(E −H +πW W †)−1W, (4.12)

where

W =
(
ute (E ,V ) v∗th(E ,V )∗
v te (E ,V ) −u∗th(E ,V )∗

)
(4.13)

parameterizes the coupling of the bound states to the lead modes. For notational con-
venience we drop the E and V dependencies of te/h below, but their presence should be
kept in mind.

We start by computing the first term in Eq. (4.11). The Andreev reflection amplitude is
given by

16π2E 2
0 |uv te th |2·

{
(E 2 −E 2

0 )2 +π2[2EE0(|u|2 −|v |2)(|te |4 −|th |4)

−4E 2
0 |uv |2(|te |2 −|th |2)2 + (E 2 +E 2

0 )(|te |4 +|th |4)]
}−1 (4.14)

where we assume the junction is in the tunneling limit so that te/h ≪ E0 and we can
safely discard terms of order higher than O (t 4

e/h). In the vicinity of E = E0 we obtain the
approximate expression

Rhe (−eVbias,Vbias) ≈ 4π2|te thuv |2
(−eVbias −E0)2 +π2

(|te u|2 +|th v |2)2 . (4.15)
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Hence, the first term in Eq. (4.11) gives a Lorentzian conductance profile with a resonance
at |V | = E0/e. The height and full-width half maximums of the resonances are given by

Gmax

2G0
= 4|te thuv |2(|te u|2 +|th v |2)2 , (4.16)

FWHM = 2π

e

(|te u|2 +|th v |2) . (4.17)

The expressions for V =−E0/e can be readily obtained through the transformation u ↔ v .
In the linear response regime we have te/h(E ,Vbias) = te/h(E ,0). Particle-hole symmetry
gives the constraint te (E ,0) = th(−E ,0) and thus the subgap conductance is also particle-
hole symmetric. However, when finite-bias effects are included, te/h(±E0,±E0/e) are not
constrained to be equal, resulting in particle-hole asymmetric conductance.

The contribution of the second term in Eq. (4.11) is (see App. 4.A for the full calcula-
tion)

−2e

h

∫ −eVbias

0
dE

∂Rhe

∂V
=

[
A arctan

(
2(E −E0)

FWHM

)
+B

E −E0( FWHM
2

)2 + (E −E0)2

]−eVbias

0

, (4.18)

where

A =−Gmax ·FWHM

2G0|te th |
∂|te th |
∂V

∣∣∣E=E0
V =−E0/e

+ π2Gmax

2G0e2 ·FWHM

∂
(|ute |2 +|v th |2

)2

∂V

∣∣∣E=E0
V =−E0/e

(4.19)

B = π2Gmax

2G0e2 ·FWHM

∂
(|ute |2 +|v th |2

)2

∂V

∣∣∣E=E0
V =−E0/e

(4.20)

Both terms in Eq. (4.18) vary on the scale of FWHM and therefore do not change the width
of the Lorentzian peaks in Eq. (4.15). However, they change the height of Eq. (4.16) by
≈−πA/2−B/E0.

To compute the conductance of the toy model, we choose u = v = 1/
p

2 and expand
the tunnel rates about E =Vbias = 0 up to second order:

te/h(−eVbias,Vbias) ≈ te,h(0,0)+ae/hVbias +be/hV 2
bias. (4.21)

The remaining parameters can be found in the accompanying code for the manuscript [45].
We show the resulting finite-bias conductance profile along with the corresponding linear
response conductance in Fig. 4.2. In accordance with the analytical results in Eqs. (4.16)
and (4.17), the finite-bias conductance peaks exhibit height and width asymmetry. More-
over, we observe that the finite-bias conductance has a region with negative values, which
is due to the presence of the integral term. In contrast, the linear response conductance
must always be positive.

4.4. TIGHT BINDING SIMULATIONS

4.4.1. FINITE-BIAS LOCAL CONDUCTANCE IN A NORMAL/SUPERCONDUCTOR

GEOMETRY
To investigate finite-bias effects at a more realistic level, we consider a one-dimensional
semiconductor-superconductor nanowire coupled to a normal lead. The Bogoliubov-de
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Figure 4.3: NS junctions with a bias-dependent tunnel barrier and a quantum dot potential. In the top figures we
show a square barrier with at (a) zero bias voltage, and (b) negative bias voltage. In the bottom figures we show
a triangular barrier at (c) zero bias voltage, and (d) at negative bias voltage (blue curve) and positive bias voltage
(orange curve). The shaded regions indicate the effective barrier seen by an incoming electron at E =−eVbias.
When the barrier is triangular shaped, the effective barrier at positive voltage is smaller than at negative voltage,
thus amplifying particle-hole asymmetry in conductance.

Gennes Hamiltonian for the NS junction can be written as

H =
(

p2
x

2meff
+αpxσy −µ(x)+V (x,Vbias)

)
τz +VZσx +∆(x)τx , (4.22)

where σi and τi are Pauli matrices acting in spin and Nambu space, px = −iħd/d x,
meff the effective mass, µ the chemical potential, V the onsite electrostatic potential,
α the strength of Rashba spin-orbit interaction, VZ the Zeeman spin splitting, and ∆
the superconducting gap. In particular, the chemical potential is a piecewise constant
function of x as

µ(x) =
{
µlead, x < 0

µwire, x > 0,
(4.23)

and the superconducting gap ∆(x) is finite only inside the nanowire.

The onsite potential has two terms V (x,Vbias) =Vbarrier(x,Vbias)+Vdot(x) illustrated
in Fig. 4.3 (a)-(b). The first term corresponds to the electrostatic potential induced by the
tunnel gate, which we model as a square barrier at equilibrium. A detailed calculation of
the transport properties at finite bias requires a non-equilibrium approach [46]. However,
in the tunneling regime the system is well approximated by the following phenomeno-
logical model. When a bias is applied, the band bottom of the normal lead is shifted by
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Figure 4.4: Two-terminal conductance as a function of Zeeman field and bias voltage in a proximitized nanowire
with ∆= 0.25 meV. The system in the top panels has a square barrier and in bottom panels a triangular barrier.
The linear response conductance ((a) and (d)) is particle-hole symmetric below the induced gap (dashed lines).
In contrast, the finite-bias conductance ((b) and (e)) shows significant particle-hole asymmetry below the gap
which we plot explicitly in (c) and (f).

eVbias and voltage drops linearly across the barrier [42, 47]:

Vbarrier(x) =


−eVbias, x < 0

eVbarrier −eVbias(1− x
d ), 0 ≤ x < d

0, x > d .

(4.24)

Because the chemical potential of the lead also shifts by −eVbias when a voltage is applied,
this potential keeps the charge density in the system constant. The second term is a
smooth quantum dot potential [40]

Vdot(x) =
{

Vdot cos
(

3(x−d)
2Ldot

)
, d < x < d +Ldot

0, elsewhere,
(4.25)

which induces a subgap Andreev bound state. In the following calculations and discus-
sions we focus on how finite-bias effects cause particle-hole asymmetry for the Andreev
bound state-induced resonance peaks at positive and negative bias voltages.

We apply the finite difference approximation to the continuum Hamiltonian (5.3) with
a lattice constant of 1 nm, and numerically study the resulting tight-binding Hamiltonian
using the Kwant software package [48]. Unless stated otherwise, the Hamiltonian param-
eters are meff = 0.02me , ∆ = 0.25 meV, α = 50 meV nm, Vdot = 2.2 meV, µwire = 0.3 meV,
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Figure 4.5: Two-terminal conductance as a function of Zeeman field and bias voltage in a proximitized nanowire
with ∆= 1 meV. The system in the top panels has a square barrier (Vbarrier = 0.8 meV), and in bottom panels
a triangular barrier (Vbarrier = 1.6 meV). (a) and (d) show the linear response conductance, (b) and (e) the
finite-bias conductance and (c) and (d) the asymmetry in finite-bias conductance.
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Figure 4.6: Normalized height asymmetry of conductance peaks in proximitized nanowire with ∆= 0.25 meV
and VZ = 0 for varying barrier width d and height Vbarrier. The asymmetry vanishes as either the system is
tuned deeper into the tunneling regime.

µlead = 0.55 meV and the geometry parameters are d = 80 nm, Ldot = 180 nm. The source
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Figure 4.7: (a) Normalized finite-bias and linear-response conductances of systems with a square barrier and
triangular barrier at VZ = 0 and (a)∆= 0.25 meV and (b)∆= 1 meV (blue lines). Adding finite-bias effects breaks
particle-hole symmetry of the linear response conductance (green dashed lines). A triangular tunnel barrier
amplifies the width asymmetry of the peaks (though their height does not change significantly) because the
effective barrier at positive voltages is smaller than at negative voltages.

code and data used to produce the figures in this work are available in [45].

In Fig. 4.4(a) and (b) we show the linear response and finite-bias conductances as a
function of bias voltage and Zeeman field strength. The Andreev bound state induces a
resonance peak below the superconducting gap (white dashed line). Additionally, we plot
the conductance asymmetry in Fig. 4.4(c). The conductance peaks display significant
asymmetry in both their width and height. Furthermore, the magnitude of the asymmetry
decreases as the peaks get closer to zero energy. This is a general feature of bias-induced
asymmetry: states at higher energy have more asymmetry due to the larger effect on the
electrostatic environments from the applied bias voltage. As a result, we expect that finite-
bias effects will become more prominent as experiments begin to probe materials with
higher superconducting gaps [49]. To illustrate this we consider a second nanowire with
∆=µwire = 1 meV, µlead = 3 meV, Vdot = 2.2 meV and Ldot = 50 nm. Now the energy of the
Andreev bound state is about four times larger than the previous case. The corresponding
two-terminal conductance in Fig. 4.5(a)-(c) shows significantly more asymmetry than in
the system of Fig. 4.4.

Besides the energy of the Andreev bound states, the transparency of the tunnel barrier
also influences the conductance asymmetry. In Fig. 4.6 we plot the peak height asym-
metries as a function of the barrier width and height of a square barrier for a system
with ∆= 0.25 meV and VZ = 0. As the barrier height and width are increased, the relative
importance of the finite-bias modifications to the Hamiltonian decreases. Therefore the
asymmetry decreases monotonically with both parameters, that is as the system is tuned
deeper into the tunneling regime. This behaviour is independent of the details of the
barrier and thus is useful in determining finite-bias effects are the source of conductance
asymmetry.

While the conductance asymmetry displays the general trends outlined above, its pre-
cise magnitude depends on the microscopic details of the scattering region, in particular
in the barrier transmission probabilities at ±Vbias. Within the WKB approximation the
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normal-state transmission probability is given by

T (E ,Vbias) ∝ exp

[
− 2

h

∫
barrier

√
2m(E −V (x,Vbias)

]
. (4.26)

The conductance through the barrier is therefore exponentially sensitive to the area of
the barrier. In the case of a square barrier, these WKB areas are identical for ±Vbias due to
the mirror symmetry of the barrier shape. However, if mirror symmetry in the barrier is
broken, the effective WKB areas at negative and positive voltages become different, which
further enhances the conductance asymmetry. As an example, we consider a system
with a triangular barrier of height Vbarrier = 1.3 meV, as illustrated in Fig. 4.3 (c)-(d)). In
Fig. 4.4(c) we show the resulting conductance and see that it has larger particle-hole
asymmetry than a system with a square barrier. This is more easily seen in Fig. 4.7(a)-(b)
where we plot one-dimensional cuts of the conductance at VZ = 0.

4.4.2. FINITE-BIAS NONLOCAL CONDUCTANCE IN A THREE-TERMINAL GE-
OMETRY

x

V

Normal Superconductor

Figure 4.8: Schematic three-terminal superconducting device with bias dependent tunnel barriers and quantum
dots.
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Figure 4.9: Anti-symmetric components of the (a) local conductance and (b) nonlocal conductance as a function
of chemical potential and bias voltage. In panel (c) we show a one-dimensional cut of this data at fixed chemical
potential (black dashed lines).

In three-terminal devices with two normal leads coupled to a grounded superconduc-
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tor the conductance is given by

G =
(
GLL GLR

GRL GRR

)
=

 ∂IL
∂VL

∂IL
∂VR

∂IR
∂VL

∂IR
∂VR

 . (4.27)

Because electrons can tunnel across the normal leads, the reflection matrix is not unitary
below the gap. Hence the local conductance GLL is generally not particle-hole symmetric
even in the linear response limit.

However, a recent theoretical work showed that the anti-symmetric components of
local an nonlocal conductances are related by [30]

Gasym
LL =−Gasym

LR , (4.28)

where

Gasym
αβ

=Gαβ(Vbias)−Gαβ(−Vbias). (4.29)

Follow-up experimental data observed excellent agreement with this symmetry re-
lation at low-bias voltages, but only qualitative agreement at high bias voltages [39].
Additionally Gasym

LL and Gasym
LR exhibited different behaviours near crossings of subgap

states: while the crossings are avoided in Gasym
LL , they are unavoided in Gasym

LR .
To investigate whether finite-bias effects can explain these discrepancies, we consider

a finite-length semiconductor-superconductor nanowire with length Lsc = 300 nm. On

the right side of the device, we add another dot potential with Lleft
dot = Lright

dot = 350 nm, and
attach a second normal lead, as shown schematically in Fig. 4.8. When a bias is applied
on the left (right) side, we drop the voltage across the left (right) barrier as specified in
Eq.(4.24). Both the left and right potential wells host subgap Andreev bound states whose
energies oscillate with chemical potential and display avoided crossings. However, due
to the oscillatory nature of the wavefunction there are points in the parameter space in
which the energy splitting of the states vanishes, similar to Majorana oscillations [50]. To
avoid this and obtain spectra that mimic those in [39] we break mirror symmetry and

set V left
dot = 2 ·V right

dot = 1 meV. The remaining Hamiltonian parameters are the same as in
Sec. 4.4.

In Fig. 4.9(a)-(b) we show the asymmetric components of the local and nonlocal
conductances as a function of chemical potential and voltage, and in Fig. 4.9(c) we show
a line cut at a fixed value of chemical potential. In accordance with the experimental
results of [39], we observe Gasym

LL and Gasym
LR (orange and blue solid lines in Fig. 4.7(b)) show

similar profiles qualitatively in general, but at the quantitative level, the deviation between
them increases with the applied bias voltage, because the finite-bias effect is stronger at
larger bias voltage as discussed in the previous sections. In contrast, the conductance
components calculated under the linear response approximation are always equal to
each other over the whole range of bias voltage (dashed line in Fig. 4.9(c)). However,
our model does not capture the qualitative differences between Gasym

LL and Gasym
LR near

avoided crossings. While this does not rule out finite-bias effects as the source of these
discrepancies, it is also possible that they are caused by another physical mechanism.



4.5. SUMMARY AND DISCUSSION

4

65

4.5. SUMMARY AND DISCUSSION

In summary, we have shown that finite-bias effects in NS and NSN junctions can lead to
significant deviations from linear response symmetries of the conductance matrix. In
two-terminal NS junctions, the particle-hole symmetry between the conductance profiles
at positive and negative voltages is broken, while for three-terminal NSN junctions, the
equality between the asymmetric components of the local and nonlocal conductances no
longer holds.

Although the exact values of the symmetry breaking depends on the details of the
junction (e.g., the shape of the tunnel barrier and the magnitude of the superconducting
gap), we find the asymmetry obeys two general qualitative trends. First, it decreases as
the system is tuned deeper into the tunneling regime. Second, it grows with the applied
bias voltage. As a result, finite-bias effects are more important in hybrid nanowires with a
larger SC gap.

An important aspect about conductance asymmetries due to finite-bias effects is that
they are not indicative of quasi-particle poisoning, unlike previously discussed mecha-
nisms such as dissipation. Very recently, coupling of tunneling electrons to a phonon
bath has also been predicted to give conductance asymmetries without quasiparticle
poisoning [51]. Though originating from different physics, both mechanisms thus are not
detrimental to Majorana qubits. Therefore, determining the source of conductance asym-
metries is a helpful tool to predict qubit performance. The aforementioned trends allow
to experimentally probe whether conductance asymmetries stem from finite-bias effects.
As an example, if particle-hole symmetry of the conductance profiles in a two-terminal
device is broken even when the bias voltage goes to zero [34, 36, 38], it is very likely that
there are other mechanisms causing the symmetry breaking.

Finally, our treatment of the bias voltage dependence of the tunnel region is phe-
nomenological. Future work could include computing finite-bias conductances with
more realistic electrostatic potentials obtained by solving the self-consistent Schrödinger-
Poisson equations [43, 52–54]. However, we expect that this will not change our qualitative
findings.

4.A. CALCULATING THE INTEGRAL TERM OF THE CONDUCTANCE

OF A SINGLE ANDREEV BOUND STATE

To compute the integral term we start from the approximate form of Eq. (4.15). The
derivative of Rhe with respect to V is

∂Rhe (E ,V )

∂V
= Rhe (E ,V )

{
2

|te th |
∂|te th |
∂V

− π2 ∂
∂V

(|ute |2 +|v th |2
)2

(E −E0)2 +π2
(|ute |2 +|v th |2

)2

}
(4.30)

Because the integrand is sharply peaked at E0 and we are interested in corrections near
eVbias = E0 we approximate all derivatives of the tunneling rates as constant and evaluated
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Figure 4.10: Blue line: integral term of the conductance for the system shown in Fig. 4.10(a) at VZ = 0. Orange
dots: fit to integral term expression obtained from two-level toy model.

at E ,eVbias = E0. The contribution of the first term is then

− 2

e|te th |
∂|te th |
∂V

∣∣∣E=E0
V =−E0/e

∫ −eVbias

0
dE

4π2|uv te th |2
(E −E0)2 +π2

(|ute |2 +|v th |2
)2 =

=−Gmax ·FWHM

2G0|te th |
∂|te th |
∂V

∣∣∣E=E0
V =−E0/e

[
arctan

(
2(E −E0)

e ·FWHM

)]−eVbias

0
, (4.31)

where we used the standard Lorentzian integral
∫

d x a
(x−x0)2+b2 = a

b arctan
( x−x0

b

)
. The

second term gives

= π2

e

∂

∂V

(|ute |2 +|v th |2
)2

∣∣∣E=E0
V =−E0/e

∫ −eVbias

0
dE

4π2|uv te th |2(
(E −E0)2 +π2

(|ute |2 +|v th |2
)2

)2 =

= 2π|uv te th |2
e
(|ute |2 +|v th |2

)3

∂
(|ute |2 +|v th |2

)2

∂V

∣∣∣E=E0
V =−E0/e

×
[

π
(|ute |2 +|v th |2

)
(E −E0)(

π
(|ute |2 +|v th |2

))2 + (E −E0)2
+arctan

(
2(E −E0)

e ·FWHM

)]−eVbias

0

=

= π2Gmax

2G0e2 ·FWHM

∂
(|ute |2 +|v th |2

)2

∂V

∣∣∣E=E0
V =−E0/e

×
[

e·FWHM
2 (E −E0)( e·FWHM

2

)2 + (E −E0)2
+arctan

(
2(E −E0)

e ·FWHM

)]−eVbias

0

(4.32)

Where we made use of the standard integral
∫

d x a
((x−x0)2+b2)2 = a

2b3

{
b(x−x0)

b2+(x−x0)2 +arctan
( x−x0

b

)}
.

To test how well this expression works, we compute the integral term of the system shown
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in Fig. 4.4(a) at VZ = 0 meV and fit it to

Gint =


[

A arctan
(

2(E−E0)
FWHM

)
+B E−E0( FWHM

2

)2+(E−E0)2

]−eVbias

0
, Vbias < 0[

C arctan
(

2(E+E0)
FWHM

)
+D E+E0( FWHM

2

)2+(E+E0)2

]−eVbias

0
, Vbias > 0

, (4.33)

where A, B , C , D are free parameters and E0 are FHWM are measured from the conduc-
tance profile. The resulting fit is shown in Fig. 4.10.
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The DC Josephson effect allows coherent transport of Cooper pairs across two-terminal
superconducting junctions at zero voltage [1]. At finite DC voltages the phase difference
across the junction advances linearly in time, resulting in a pure AC supercurrent. A
dissipative DC current may also arise due to multiple Andreev reflections [2]. However,
charge transfers across terminals of a voltage-biased junction cost energy and thus no DC
supercurrent can flow.

Junctions with additional terminals biased at commensurate voltages support energy-
conserving processes that transfer charge between multiple electrodes. The simplest
setup where this can occur is a three-terminal junction, where two voltage-biased ter-
minals each transfer n1 and n2 Cooper pairs to a grounded terminal. At commensurate
voltages 2en1V1 =−2en2V2 this is a coherent and energy-conserving process that allows
DC supercurrent. Several experimental works reported increased conductance at com-
mensurate voltages as a signature of multiplet supercurrent in Josephson elements with
weak links made of diffusive normal metals [3], InAs nanowires [4], and graphene [5].

So far, theoretical interpretations of these experiments rely on Andreev physics associ-
ated with highly transparent superconductor-normal-superconductor (SNS) junctions. In
particular, the normal region must host nonlocal Andreev states that extend to multiple
terminals and mediate transport of charge through nonlocal Andreev processes [6–9]
(see Fig. 5.1(a)). This mechanism is nontrivial because it is not guaranteed that a single
state propagates to all three junctions, which may imply that multiplet supercurrent is a
fragile phenomenon requiring fine tuning of microscopic aspects of the normal scattering
region.

One may ask if this delicate microscopic process is the only mechanism that admits
multiplet supercurrent. We draw inspiration from a problem in a similar context: multi-
terminal SNS Josephson junctions were proposed as a platform for non-trivial band
topology, where the superconducting phases play the role of crystal momenta [10]. Recent
works showed that tunnel Josephson junction circuits are capable of encoding the same
physics in collective electronic modes, rather than the fermionic degrees of freedom in
the multi-terminal weak link [11, 12].

In this work, we show that voltage-biased circuits of Josephson tunnel junctions also
generate multiplet supercurrent, and we elucidate two types of contributions: an adiabatic
component and a quantum geometric component. In contrast with its SNS counterpart,
these circuits mediate the transport of multiplets through the collective behavior of
the superconducting circuit, rather than microscopic multi-terminal Andreev processes.
Furthermore, our proposal is experimentally tractable because tunnel junctions are
standard building blocks of experimental superconducting devices.

We begin by analyzing the minimal tunneling circuit in Fig. 5.1(b) in the zero charging
energy limit, EC = 0, which may be referred to as the classical limit of the circuit. We
assume that damping in the circuit allows treating the evolution of ϕ adiabatically. The
circuit energy as a function of the superconducting phases is E (ϕ,φ1,φ2) =−E J ,0 cos(ϕ)−
E J ,1 cos(φ1−ϕ)−E J ,2 cos(φ1−ϕ), where the phases of the voltage-biased terminals evolve
as φ̇i =Vi /Φ0, whereΦ0 =ħ/2e is the reduced magnetic flux quantum. Minimizing the
circuit energy E with respect to ϕ for fixed (φ1,φ2) gives the condition

tan(ϕ) = E J ,1 sin(φ1)+E J ,2 sin(φ2)

E J ,0 +E J ,1 cos(φ1)+E J ,2 cos(φ2)
(5.1)
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(a) (b)

Figure 5.1: Superconducting devices that carry multiplet supercurrent at commensurate DC voltages. (a) A high
transparency three-terminal Josephson junction supports multiplet supercurrent through non-local Andreev
processes. When voltages applied to terminals 1 and 2 satisfy V1 =−V2, each biased terminal may transfer one
Cooper pair to the grounded terminal through crossed Andreev reflections, resulting in quartet supercurrent. (b)
A Josephson tunneling circuit also supports multiplet supercurrents. Even when the central island has a large
charging energy, multiplet supercurrent still flows despite being carried only by single Cooper pair transfers.
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Figure 5.2: Currents across the E J ,0 junction in the circuit of Fig. 5.1 with E J ,1 = E J ,0/2,E J ,2 = E J ,0/4,EC = 0. (a)
Instantaneous current at fixed φ1,φ2. The inset shows the current along the quartet line φ1 +φ2 =−1 (black
dashed line). Since the average (blue dashed line) is finite there is a quartet DC supercurrent. (b) Average current
along quartet trajectories with different phase offsets.

We then obtain the supercurrent flowing to ground using the Josephson relation I 0(φ1,φ2) =
E J ,0 sin(ϕ)/Φ0. In Fig. 5.2(a) we plot I 0(φ1,φ2) for a circuit with E J ,1 = E J ,0/2 and E J ,2 =
E J ,0/4. Because the supercurrent is a periodic function of both φ1 and φ2 it admits a
Fourier expansion

I 0(φ1,φ2) = ∑
n,m

I 0
nm sin(nφ1 +mφ2). (5.2)

The n,m harmonic in Eq. (5.2) is associated with transferring n (m) Cooper pairs from
terminal 1 (2) and n +m to the reference terminal [8]. If terminals 1 and 2 are biased with
commensurate DC voltages nV1 +mV2 = 0, then harmonics with the ratio n/m become
resonant. Thus, a net DC current is produced if any of those Fourier components are
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nonzero, I 0
nm ̸= 0. In the following we focus on the quartet supercurrent appearing when

V1+V2 = 0, i.e. when n = m = 1; however, calculations for higher harmonics are analogous.
To check whether the circuit supports quartet supercurrent we plot the average current
〈I 0(φ1(0)+V t ,φ2(0)−V t )〉 as a function of the phase offset in Fig. 5.2(b). We observe that
the average is finite as long as the phase offset φ1 +φ2 (mod 2π) ̸∈ {0,π}, confirming that
the circuit carries quartet supercurrent proportional to the critical current of the junction
array.

We now investigate the role of quantum fluctuations in the circuit by including the
charging energy of the superconducting island. The circuit Hamiltonian then reads

H = EC (n̂ −ng )2 −E J ,0 cos(ϕ̂)−E J ,1 cos(ϕ̂−φ1)−E J ,2 cos(ϕ̂−φ2), (5.3)

where n̂ is the number of Cooper pairs in the island, ng is the island offset charge, and ϕ̂
is now promoted to a Hermitian operator conjugate to n̂. In the adiabatic approximation
in which the bias voltages are small enough to prevent Landau-Zener transition [13], the
current flowing to ground equals

I 0
adiab. =

1

Φ0

(
∂E

∂φ1
+ ∂E

∂φ2

)
, (5.4)

where E is the energy of the ground state. In Fig. 5.3(a) we show the resulting current
in a circuit with EC = 30E J ,0 and ng = 0. We observe a similar functional dependence to
that of the classical supercurrent in Fig. 5.1(a), indicating that the quartet supercurrent
persists in the presence of large charge fluctuations. At the same time, the magnitude
of the supercurrent is significantly smaller than in the classical limit. In order to more
systematically determine the effect of a large charging energy on the magnitude of su-
percurrent, we analytically compute I 0(φ1,φ2) in the high charging energy limit. Near
the charge degeneracy point ng = 0.5 the system’s dynamics are restricted to the two
lowest charge states |0〉 and |1〉. The low-lying spectrum is then well approximated by the
effective two-level Hamiltonian

H =
[

0 1
2

(
E J ,0 +E J ,1e iφ1 +E J ,2e iφ2

)
1
2

(
E J ,0 +E J ,1e−iφ1 +E J ,2e−iφ2

)
E1

]
, (5.5)

where we set the energy of |0〉 to zero and E1 = EC (1−2ng ) is the energy of |1〉. The ground
state energy reads

E = 1

2

(
E1 −

√
E 2

1 +|E J ,0 +E J ,1e iφ1 +E J ,2e iφ2 |2
)

. (5.6)

Using Eq. (5.4) we obtain the supercurrent flowing to ground:

I 0 = E J ,0(E J ,1 sinφ1 +E J ,2 sinφ2)

2
√

E 2
1 +|E J ,0 +E J ,1e iφ1 +E J ,2e iφ2 |2

. (5.7)

When ng ̸= 0.5, the charge degeneracy is broken (E1 ̸= 0). This suppresses charge transfers
to the island and thus the supercurrent vanishes as EC → ∞ (blue line in Fig. 5.3(b)).
However, at the charge degeneracy point E1 = 0 the supercurrent I 0(φ1,φ2) becomes
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Figure 5.3: (a) Instantaneous current across the E J ,0 junction in the circuit of Fig. 5.1(a) with E J ,1 = E J ,0/2,E J ,2 =
E J ,0/4,EC = 30E J ,0,ng = 0. (b) critical quartet supercurrent: the current I0 maximized over the average phase

of the electrodes maxφ1+φ2 〈I 0(φ1(0)+V t ,φ2(0)−V t )〉. When ng = 1/2 charge states |0〉 and |1〉 are degenerate,
allowing quartet supercurrent to flow with single Cooper pair transfers. The solid lines are obtained by numeri-
cally diagonalizing the full Hamiltonian (5.3), while the dashed lines are given by the approximate analytical
expression (5.7), valid in the high EC limit.

independent of EC (orange line in Fig. 5.3(b)). Remarkably, this implies that the quartet
supercurrent is carried only by sequential Cooper pair transfers.

When the bias voltages are commensurate, the closed trajectory in the φ1,φ2 parame-
ter space results in the accumulation of a Berry phase with each cycle. While φ1,φ2 vary
with time, the instantaneous geometric contribution to the current is [10, 14, 15]

I 0
Berry =−2e

(
Ω12φ̇1 +Ω21φ̇2

)
, (5.8)

where the Berry curvature of the ground state |ψ〉 is given by

Ωαβ =−2Im

〈
∂ψ

∂φα

∣∣∣∣ ∂ψ∂φβ
〉

. (5.9)

The quartet supercurrent then arises from the average of I 0
Berry along a trajectory in phase

space satisfying φ̇1 = −φ̇2 = V /Φ0, for which we simplify the instantaneous geometric
current to

I 0
Berry =− (4e)2

h
πΩ12V (5.10)

where we used the relationΩ12 =−Ω21. In contrast with the adiabatic term of Eq. (5.4),
this current scales proportionally with the applied voltage. This allows the possibility of
separately identifying the adiabatic and geometric parts.

The geometric quartet supercurrent requires additional conditions on the circuit’s
parameters. At charge-inversion invariant points ng ∈ {0,1/2}, the Hamiltonian (5.3) is
both time-reversal and charge-inversion symmetric [11] and hence the Berry curvature
vanishes. Away from these points the Berry curvature becomes finite; however, if E J ,1 =
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E J ,2 it is antisymmetric along the quartet trajectories, i.e. Ω(φ1,φ2) = −Ω(φ2,φ1). As
a result, the average Berry curvature along a quartet trajectory (φ1(0)+V t ,φ2(0)−V t)
vanishes regardless of the offset phase φ1 +φ2. When the Josephson energies differ (i.e.
E J ,1 ̸= E J ,2), the Berry curvature landscape ‘shears’, resulting in a finite average on a
quartet trajectory. As an example, in Fig. 5.4 we show the Berry curvature of a circuit with
EC = E J0 and ng = 0.7. We observe that the average 〈Ω12(φ1(0)+V t ,φ2(0)−V t )〉 is finite
provided that φ1 +φ2 (mod 2π) ̸∈ {0,π}, resulting in the quantum geometric contribution
to the quartet supercurrent.
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Figure 5.4: (a) Berry curvature of the ground state of the circuit in Fig. 5.1(b) with E J ,1 = E J ,0/2,E J ,2 =
E J ,0/4,EC = E J ,0 and ng = 0.7. The inset shows a cut along φ1 +φ2 = −1 (black dashed line). Because the
average (blue dashed line) is finite, the quartet supercurrent has a geometric contribution. (b) Quartet current-
phase relation of the circuit in (a) with geometric corrections. The scale of the voltage is set by the minimum
spectral gap Egap over the Brillouin zone. Reflecting ng about 0.5 flips the sign of the Berry curvature and hence
of the geometric component of the supercurrent.

Our proposal to produce multiplet supercurrent has two main advantages over its
existing SNS counterpart. First, SNS devices require tuning wave functions of Andreev
bound states that depend strongly on the microscopic details of the junction. Additionally,
fabricating multi-terminal junctions is nontrivial [16]. In contrast, fabricating tunneling
circuits with designed parameters (charging and Josephson energies) is a relatively routine
procedure. Finally, SNS junctions have significantly larger dissipation due to the low
resistance of the normal region [17].

Turning to existing experimental work [3–5, 16], we note that the most qualitative
signatures of SNS-based multiplet supercurrents are, to the best of our knowledge, in-
distinguishable from those of tunnel-based junctions. Furthermore, it is known that the
conventional Cooper pair transistor in the deep charging regime (EC ≫ E J ) has the same
Hamiltonian as a single-level quantum dot with weak coupling strengths Γ≪∆ to a pair
of superconducting reservoirs [18]. In this analogy between the SNS and SIS devices, Γ
relates to E J , and a level offset energy relates to offset charge. The same analogy extends
to the multi-terminal case [19]. Such dots would exhibit the same kind of multiplet su-
percurrent described in our work. On the other hand, multiplet processes that entangle
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Cooper pairs from different leads require intermediate states with broken Cooper pairs,
and thus they would be suppressed by factors of Γ/∆. Many of the Andreev levels of
experimental multiterminal and multichannel SNS devices may be weakly coupled to
the superconducting reservoirs, and those levels would predominantly contribute the
kind of multiplet supercurrent described here. Thus, our results suggest that the multiplet
supercurrent observed in SNS devices may have an alternative contribution arising from
local Cooper pair transfers.

Moving forward, a question relevant for experimental implementation is how this
device performs in a realistic environment including load circuit and environmental
noise [20]. Another interesting avenue of further investigation would be to design tunnel-
ing circuits that allow coherent control of the collective motion of quartets. Such a device
could serve as a building block for parity-protected cos2ϕ electromagnetic qubits [21–23].
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