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Abstract: District heating system (DHS) optimization is becoming an increasingly important 

problem because of the unused potential in flexibility that could allow less energy being wasted 

and the integration of renewable energy. While new optimization methods are proposed every 

year to tackle this problem, the literature lacks a good way to benchmark newly proposed 

methods. To address this problem, we introduce GridPenguin, an open-source computational 

simulator for the physics of district heating networks. It provides flexibility in usage by providing 

building blocks with which the user can build any grid he wants. The detailed simulation of the 

physical world with a focus on the heat balance and average flow rate and temperature allows 

for fast and accurate simulation. By explaining the physical equations and computational model 

as well as the comparison to existing software, we lay a solid foundation for the performance 

of the simulator. We present GridPenguin as a metric to evaluate optimization methods as well 

as a tool for easy integration of advanced machine learning methods into DHS optimization. 

The source code of our project can be found on https://github.com/ftbv/grid-penguin 

 

Keywords: District heating system; Simulation; Optimization; Heat production planning 

1 INTRODUCTION 

Heat networks can play an important role in the energy transition by reducing the 

dependency on fossil fuels. Also they can provide flexibility in their use and/or production of 

electricity, an important feature in the future power system. Currently in many district heating 

networks, the decisions on heat and power production are often made separately. The decision 

on heat is made purely based on the experience of the grid operator, and the temperatures 

are often kept relatively constant throughout a season. 

In the literature, various scientific attempts have already been made to empower 

operators to reduce heat losses and use the flexibility of DHS for electricity balancing using 

various methods including MILP, NLP and Genetic algorithms [1] [2] [3] [4] [5]. 

However, to the best of our knowledge, the literature of DHS optimization has two crucial 

limitations. First, there exists no benchmark to evaluate and compare different papers and 

methods. A paper proposing a novel method usually evaluates it in the exact same model it 

uses for optimization, and the proposed method is only compared with simple or traditional 

strategies instead of other methods from the literature [1] [3] [6]. Second, mathematical 

optimization methods dominate this field. They require a deep and comprehensive 

understanding of DHS from the researchers to simplify the complex, non-convex DHS to a 

solvable linear or convex model. It might be beneficial if less domain knowledge is required 

and data-driven machine learning methods can be used. However, there is no standard 

dataset, nor a standard way to generate reliable data. Getting data directly from the grid can 
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be very difficult and is not flexible enough for collecting data for rare situations. On the other 

hand, we lack a reliable model to generate artificial data that simulates real grid accurately 

enough. 

To address the above-mentioned limitations, we propose GridPenguin: a comprehensive, 

accurate and still relatively fast simulator of a DHS. Various modules that model components 

in a DHS are provided to the user, and these modules are backed-up with equations describing 

the physics of the heat system and the hydraulic system [7]. After the user specifies the grid 

structure and the production plan, the software will run and provide a detailed grid status at 

every time window. GridPenguin is proposed as a benchmark to evaluate and compare 

different optimization methods. The software has a more detailed model of a DHS than most 

models built for optimization and using it to evaluate the optimization methods provides better 

insights into the performance of the optimization. It also makes it possible to compare different 

methods. Second, as it gives users the freedom to build any grid they want, they can use it to 

generate data for machine learning methods. It is more accessible and flexible than a dataset 

collected from a real grid and the accuracy is good, compared with existing software on 

modelling heat/hydraulic grids. 

There are a few existing software packages on the market and in the research community 

that can also model district heating networks. However, they are built with a different focus and 

have a different functionality and do not meet these goals. Wanda is a powerful software 

package which models a hydraulic system with good accuracy. Wanda is very accurate in the 

simulation of hydraulics but less so in heat transfer and heat production. This means it is not 

ideal for studies of heat networks where simulation of heat is generally more important than 

hydraulics. Wanda also runs relatively slow. ESSIM/ CHESS  is an energy system simulator. 

At the moment of writing, the source code is not available and we could not find more detailed 

information about CHESS. DisHeatLab models the pipes and flows in a district heating system, 

but we could not find detailed models for heat exchangers or various types of producers. This 

limits the power of an optimizer that works using data from such a simulator. Comsof models 

the heat grid on high level and in a steady state. It cannot facilitate a detailed, hour-to-hour 

plan and it is not open-sourced, making it difficult for any self/machine-learning method to 

interact with it. 

The rest of this paper is structured as the following: in Section 2, we give implementation 

details of the software, including the physical equations describing the behaviors, the 

computational methods to simulate these equations and the interface of modules of the 

software. In Section 3 we compare our model with the detailed hydraulic modelling software 

Wanda, and we show how accurate our model is compared to other similar software: Wanda. 

In Section 4, we discuss aspects that can be improved and what future work could focus on. 

Finally, the conclusion is given in Section 5. 

 

2 MODEL IMPLEMENTATION 

In this section we explain how the computational model is implemented: what physical 

relations are considered, how are they simulated computationally and in what order are they 

computed. With this section we hope to provide the reader a clear overview of what the model 

can be used for. 
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2.1 Main design choices 

On the one hand, to serve as a benchmarking tool for district heating optimization 

algorithms, a simulator needs to have good accuracy. On the other hand, the need to use it 

intensively and repeatedly, as is required for example for machine learning algorithms [8], 

means it needs to have a decent speed as well. For the trade-off between speed and accuracy, 

we make the following design choices: 1. We aim to have a highly detailed simulation of heat 

and temperature. This includes the heat exchanging, heat loss and the production of heat; 2. 

Time is discretized almost everwhere in GridPenguin. The length of these time steps are 

specified by the user, for example at 15 minutes or 1 hour. The simulation accuracy should 

improve with smaller time steps, naturally at the cost of an increase in simulation time; 3. We 

simulate the pressure and the cost of running pumps in a simplified way for the speed of the 

simulation. Also, as reported in an earlier study, pressure is insignificant for optimizing the heat 

grid [7].  

To represent the physical grid infrastructure in GridPenguin, we use two types of 

components: nodes and edges. An edge represents a pipe that is used for water transportation. 

A node may represent various components, such as a producer (CHP, heat pump, geothermal 

source, boiler), consumer, junction branch or water pump. Each of these components in 

GridPenguin is used in every step of the simulation. 

In each time step, the computation starts from the consumers, then components that 

are directly connected to consumers, then components connected to those components. This 

continues through the whole grid and terminates when reaching the producers. Mass flow 

propagates through the grid with no time delay and total mass of water in the grid as well as 

water density is assumed constant. 

To run GridPenguin, the following inputs are needed: the heat demand at each consumer 

(in MW), and the production plan of a producer in either heat production (in MW) or output 

temperature (in ◦C). If electricity trading is considered, then also the market electricity price and 

the electricity production plan (in MW) should be included. After the simulation, the user can 

obtain the output of almost every physical property that is relevant to a heat network, such as 

the temperature at any point of the grid, the heat loss in an edge, mass flow, whether 

production plan is feasible, etc. These values also come in discrete time for each time step. 

Note that for readability we have omitted the time step subscript in the equations in this section. 

2.2 The Edge 

The two physical equations involved in the simulation of water flowing through a pipe 

are the heat loss equation and the pressure loss equation. The simulation of heat loss to the 

environment uses the following equation [7]:  

Tend = (𝑇𝑠𝑡𝑎𝑟𝑡 − 𝑇𝑒𝑛𝑣) ∙ 𝑒
−

(∇𝑡∙𝑅𝜆)
𝐴∙𝜌∙𝑐 + 𝑇𝑒𝑛𝑣   (1) 

Where 𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑣 are the start temperature of the water and the environment in ◦C or K 

respectively, ∇𝑡 is the time difference between start and end, 𝑅𝜆  is the thermal resistance in 

W/m · K, 𝐴 is the cross section area in m2, 𝜌 is water density and 𝑐 is water heat capacity. 

For pressure loss of mass flow due to friction along the pipe, we used a simplified model 

from Li et al. [3]: ∇𝑝 = 𝑓 ∙ 𝑚2̇  where ∇𝑝 is the pressure loss in pa, 𝑓 is the friction coefficient in 

kg−1 · m−1 and �̇� is the mass flow in kg/s. 
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An important cause of the complexity of modelling a district heat grid is the delay effect 

of the pipes. We model the dynamics in the edge/pipe using the node method [7]. An illustration 

of this method is provided in Figure 1.  

 

In this method, water is treated as if it is a rigid block, called plug. A plug saves the 

information of mass, entry temperature and entry step. An edge is filled with plugs of which the 

mass always adds up to the mass that the edge can contain. A plug cannot be compressed 

and no heat exchange happens between plugs. 

When solving the edge, the mass mt has to be specified prior to the computation from 

either upstream or downstream. The plugs to be pushed out of/ into the edge are then 

calculated with the node method. The input, output and the constraint of an Edge are shown 

in Table 1. 

 

Table 1 The input, output parameters and constraints of an Edge. *Delay matrix is to track, for example, for 

water flows out at t = 5, 40% are from t = 2 and 60% are from t = 3 

Input parameters    

 Diameter Length 𝑅𝜆 (thermal resistance) 

 c (heat capacity) 𝜌 (density) 𝑇𝑒𝑛𝑣 

 𝑓 (friction coef.)   

Output parameters     

 Inlet/outlet T Mass flow Delay matrix* 

 Heat loss Heat in pipe Pressure loss 

Constraints    

 Max flow speed Min flow speed  

 

2.3 The Consumer 

The relation between the heat the consumer received and the inlet, outlet temperature 

and mass flow is defined by: 

A consumer always has a built-in heat exchanger (HX), as shown in Figure 2. Each 

consumer has a fixed inlet temperature at the consumer side of the heat exchanger (so not in 

the main grid) 𝑇′𝑖𝑛, and the consumer side outlet temperature 𝑇′𝑜𝑢𝑡 is assumed to stay constant 

unless the demand is not met. Note that this is the model of a heat exchanger that has a control 

to guarantee a constant temperature at the consumer outlet side. The mass flow �̇�′is 

calculated so that the demand is met. Then we calculate 𝑇𝑜𝑢𝑡 and �̇� of the grid side using the 

NTU and LMTD methods [8]. When demand cannot be met, NTU is used. Otherwise, LMTD is 

used as it has better accuracy. Interested readers can refer to our source code for detailed 

implementation. Finally, the pressure load of the consumer is assumed to be a constant ∇𝑝𝑐. 

∇𝑄 = (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) ∙ �̇� ∙ 𝑐 (2) 

Figure 1: The simulation method of water in an edge. Water comes in at each time step is treated as a block 

with mass, entry temperature and entry step 
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Figure 2: The structure of a consumer with built-in heat exchanger. 

The computation of the consumer goes as follows: it retrieves an approximated inlet 

temperature 𝑇𝑖𝑛 from the upstream component. Alternatively, it can retrieve a list of plugs: 

(temperature, mass) from the upstream pipe for better accuracy with more computation time 

and calculate the mass flow of each time during the time step. The current implementation 

uses the latter way. Then it calculates the average mass flow �̇� in this time step and outlet 

temperature 𝑇𝑜𝑢𝑡. The input, output and constraints on a Consumer are shown in Table 2. 

Table 2: The input, output parameters and constraints of a Consumer. 

Input parameters    

 Demand c (heat capacity) �̇�𝑚𝑎𝑥 

 A (surface area) 𝑞, 𝑘(HX parameters) ∇𝑝𝑐 

 𝑇𝑖𝑛,𝑚𝑖𝑛 𝑇𝑖𝑛
′  𝑇𝑜𝑢𝑡

′  

Output parameters    

 Inlet/outlet T Mass flow Delivered heat 

Constraints    

 Demand satisfaction   

 

2.4 Producer (CHP) 

A producer adds heat to the grid by consuming fuel or electricity and may produce 

electricity itself. The water pump is also modelled inside the producer. Currently we only have 

the Combined Heat and Power Plant (CHP) modelled, but other types can be added easily. 

The key to model a CHP is an operating region and the corresponding cost. Most 

research in this field use a key-point approach or can be represented by a key-point approach 

[3] [4] [10] and this is what we implemented in GridPenguin. As shown in Figure 3, the user 

defines a convex operation region by a set of points (𝐻1, 𝑃1), (𝐻2, 𝑃2). In addition, a cost array 

(𝛼, 𝛽) must be defined so that the cost: 

where (𝐻, 𝑃) is any point inside the operating region [11]. The CHP also has ramping 

constraints on heat, power and outlet temperature. 

𝐶 = 𝛼 ∙ 𝐻 + 𝛽 ∙ 𝑃 (3) 
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Figure 3: The operation region of the CHP, defined by 4 key points. H: heat production. P: power 

production. 

The CHP can take either outlet temperature or heat production as input, together with 

power production. The resulting computations are slightly different. When the outlet 

temperature is the input, the downstream component can get an accurate outlet temperature 

from the CHP. However, when the input is the heat production, the downstream component 

does not know what temperature it is getting from the producer. So when it retrieves 

temperature from the producer, it also needs to provide information about an (approximated) 

mass flow. 

The computation of the CHP itself is simple. If the outlet temperature is given, it 

calculates the heat production, or the other way around if the heat production is given. Next, 

it checks if any constraints are violated. Finally, it calculates a margin: 

where 𝛾 is the market electricity price and 𝜂 is CHP efficiency. The input, output and 

constraints of a CHP are shown in Table 3. 

Table 3: The input, output parameters and constraints of a CHP. 

Input parameters    

 𝑇𝑜𝑢𝑡  or H P (power production) 𝛼, 𝛽 (cost coef.) 

 𝛾 (electricity price) ∇𝑝𝑐 pump efficiency 

 𝜌 (density) 𝜂 (efficiency) c (heat capacity) 

Output 

parameters 

   

 Inlet/outlet T Cost, profit and margin Mass flow 

 Heat, Power production   

Constraints    

 Heat, power, Temperature 

ramp 

(H,E) inside Operation region 𝑇𝑜𝑢𝑡 < 𝑇𝑚𝑎𝑥 

 

2.5 The Connector 

The Connector is used to split one edge into two or more edges or to merge two or 

more edges into one. It is necessary for a non-trivial grid with more than one producer and/or 

more than one consumer.  

In the case of one producer and multiple consumers, there will be no control variable 

for the Connector as the mass flow on the main edge is calculated by the sum of all splits. 

Take a connector for example with a producer upstream and 3 consumers downstream. The 

connector will be added 3 times to the solving list by 3 consumers. Each time when it is getting 

𝐹 = −
𝐶

𝜂
+ 𝛾 ∙ 𝑃 (4) 
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solved, it checks if all mass flows of the downstream edges are known and only then it adds 

the upstream edge to the solving list. 

In the case of multiple producers, the Connector that merges the producers together 

must decide how much mass is coming from each producer. As an example, take a connector 

which has two upstream producers and one downstream edge. The downstream edge will be 

solved first and the outlet mass flow of the branch will be known. A valve split parameter 𝜇 

must be set by the user/ the optimizer. For example, if 𝜇 = (0.4,0.6) it means 40% of the mass 

comes from inlet 1 (producer 1) and 60% comes from inlet 2. 

2.6 The Pump and Pressure Calculation 

Because of the reasons we mentioned in section 2.1, we largely simplified the 

computation of pressure load and pressure propagation to have a better computation time and 

make it easier for users who do not have deep knowledge of hydraulic systems. We also do 

not care about pressure at any arbitrary point in the grid, but only the pressure load of the 

pump as only this is directly related to cost. The calculation makes sure that the pressure load, 

hence pump cost, is usually over-estimated. The over-estimation is preferred over under-

estimation because then if it is feasible in the simulation, it should also be feasible in the reality. 

We propagate the pressure loss, starting from the consumers, through the grid and end 

at the producers. The final pump cost is: 

where 𝜂𝑝𝑚𝑝 is the efficiency of the pump and ∇𝑝 is the pressure difference at the 

producer/pump. 

 

3 MODEL VALIDATION 

To validate the simulator, we compared it with a more complex model for hydraulic 

systems: Wanda. It has been widely used in both academic and industrial areas for its 

accurate simulation. We compared two modules mainly: the edge and the heat exchanger 

(consumer). The producer module is not compared as Wanda does not include a detailed 

model of a producer/ CHP. The results show that GridPenguin has good accuracy on 

modelling the relation and propagation of heat, temperature and mass flow. 

3.1 Heat loss 

Wanda and GridPenguin measure heat loss in different ways. While GridPenguin uses 

constant heat capacity which introduces a small error, Wanda introduces an error with their 

discretization approach. It is difficult to say which approach is better. In this section, we set up 

a single pipe in both software packages. With designated inlet temperature and mass flow, 

the outlet temperature directly reflects the heat loss; this is therefore monitored. 

The first thing we noticed is that while GridPenguin uses the thermal resistance 𝑅𝜆 as a 

parameter to model heat loss, Wanda uses the heat transfer coefficient 𝑈. We show that with 

𝑅𝜆 = 𝜋 ∙ 𝑑 ∙ 𝑈 where 𝑑 is pipe diameter, the heat loss calculated from them are nearly the 

same, with a difference less that 0.01%. To study the differences in changing mass flow and 

what it means to GridPenguin, some changing mass flow patterns are tested. These changing 

mass flows are generated using Perlin noise, with 3 different octaves (rate of changing). The 

𝐶𝑝𝑚𝑝 =
∇𝑝 ∙ �̇�

𝜌 ∙ 𝜂𝑝𝑚𝑝
 (5) 
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inlet temperature remains constant. The deviation of cumulative heat loss between Wanda 

and GridPenguin is almost negligible, as shown in Table 4. 

Table 4: Heat loss difference at different mass flow changing rate 

Flow speed changing rate (*10−6𝑚/𝑠2) Difference (%) 

4.95 0.0123 

1.21 0.0693 

0.46 0.340 

3.2 Heat Exchanger 

For the heat exchanging process, Wanda uses a single parameter: heat transfer 

coefficient 𝑈 to represent the heat exchanger, while GridPenguin uses a more complex 

process to calculate 𝑈 that is dependent on the mass flow. If we force the 𝑈 to be the same, 

the differences between GridPenguin and Wanda outlet temperatures are smaller than 0.005 

°C. Thus, we show that 𝑈 is the only difference between Wanda and GridPenguin. We 

consider GridPenguin 𝑈 to be more accurate as it takes mass flows into consideration. 

In the real world, the heat exchanger is controlled with a set of logic modules and this 

comes with a delay. For example, if there is a sudden drop in the secondary outlet 

temperature, a PID will only open the valve on the primary side a little at a time, resulting in 

the secondary outlet temperature slowly recovering to the setpoint value. Wanda models the 

control like this. However, in GridPenguin, we think such small-scale changes are 

unnecessary, as in a real grid the control takes only few minutes or even seconds to adjust 

and this is thus insignificant to the time scale we model. So in GridPenguin the control will 

immediately react to the changing situation. 

4 DISCUSSION AND FUTURE WORK 

In this section we list the most relevant problems and improvements that future works 

can pay attention to: 1. The implementation of more complex storage modules and more 

producer types: geothermal, heat pump, boiler, etc. These are necessary to optimize grids 

with renewable energy sources, which of course become increasingly common; 2. A more 

accurate pressure load, especially at the valve of the HX. Although Benonysson [7] states that 

pump cost is insignificant, our experiments with the pressure do not fully agree with this 

statement. It might be interesting to implement a more accurate pressure model and try to 

see from there if pump cost is indeed insignificant; 3. The ability to handle a complex grid 

topology. The current implementation does not allow a bypass/ bi-directional pipe. However 

we know such structures exist in real-world grids; 4. The water physics can be more accurate. 

Currently we use constant density and heat capacity. However a more accurate model would 

make them temperature-dependent properties; 5. Studies on the speed and scalability of 

GridPenguin. How fast can the simulator run with different grid sizes? Does it scale more than 

linearly? 6. New control strategies of HX.  

5 CONCLUSION 

In the field of district heating optimization, there is a wide variety of methods being 

proposed, most of which involve mathematical optimization and model predictive control. 

However, these methods, when being proposed, are usually only compared with simple grid 

operation strategies as the result of the lack of a cross-board comparison criterion. To address 
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this problem, we propose GridPenguin. It is a powerful and comprehensive tool to simulate a 

district heating network in both good accuracy and high speed. We use discrete simulation 

with large time steps (typically 15-60 minutes) to ensure good speed while the node method 

and the modeling of a pipe with separate water plugs guarantee the accuracy. Details on small 

time scale are ignored while the energy balance and average flow/temperature on large time 

scale are calculated as accurately as possible. We use detailed physical equations for the 

calculation of heat loss and heat exchange. We also have included a detailed model of a 

producer. Compared with Wanda, a popular existing simulation tool, we show that 

GridPenguin has good accuracy and speed. 

We present GridPenguin as a cross-board metric to evaluate and compare different 

optimization methods. Meanwhile, the computational speed allows the user to run a large 

number of simulation within limited time. This opens the possibility to apply data-driven 

machine learning methods, such as Reinforcement Learning [8], Tree Search and Deep 

Learning, in the DHS optimization problem. 
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