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Abstract—3-D contrast enhanced ultrasound enables better
visualization of inherently 3-D vascular geometries compared to
an intersecting plane. Additionally, it would allow the application
of motion correction techniques for all directions. Both contrast
detection and motion correction work better on high-frame rate
data. However high-frame rate 3-D ultrasound imaging with
dense matrix arrays is challenging to realize. Sparse arrays
alleviate some of the limitations in cable count and data rate
that fully populated arrays encounter, but their increased level
of secondary lobes negatively impacts image contrast. Meanwhile
the use of unfocused transmit beams needed to achieve high-
frame rates negatively impacts resolution. Here we propose to use
adaptive beamforming by deep learning (ABLE) to improve the
image quality of contrast enhanced ultrasound images acquired
with a sparse spiral array. We train the neural network on
simulated data and evaluate simulated images and in vivo
images of an ex ovo chicken embryo. ABLE improved resolution
compared to delay-and-sum (DAS) and spatial coherence (SC)
beamforming on the simulated and in vivo data. The qualitative
improvements persist after histogram matching, indicating that
the image quality improvement of the ABLE images was not
purely due to dynamic range stretching.

Index Terms—contrast enhanced ultrasound, spiral array,
sparse array, deep learning, beamforming

I. INTRODUCTION

Contrast enhanced ultrasound imaging (CEUS) has enabled
the visualization of the microvasculature, which used to be
difficult to distinguish from tissue due to the slow blood
velocity and the weak scattering of red blood cells [1]. Three-
dimensional images are highly desired for contrast enhanced
ultrasound, because they enable better visualization of the
vasculature compared to 2-D images and allow for motion
correction in all directions. High-frame rates are not just
desirable in scenarios with a high bloodflow velocity, but
also allow more effective application of postprocessing filters,
better motion compensation and lower acquisition times.

Sparse arrays are an attractive option to realize high-frame
rate volumetric imaging due to their relatively low cable
count, data rate and cost. Although their transmit efficiency

This work is part of the 3-D ICE project (STW project 14279) which is
financed by the Netherlands Organization for Scientific Research (NWO).

and receive sensitivity is lower compared to fully populated
arrays, the high reflectivity of microbubbles makes this less
of a concern in contrast enhanced imaging than in imaging
without contrast. However, variation of magnitude and pulse
shape within the emitted field is higher than with dense matrix
arrays and the high-amplitude secondary lobes of a sparse
array can cause artifacts when beamforming with Delay-and-
Sum (DAS) while reducing contrast. Meanwhile the unfocused
transmit beams needed for high-frame rate imaging negatively
impact resolution. Furthermore, a larger PSF size resulting in
more overlapping microbubbles and a greater variation in PSF
shape also hamper the application of ultrasound localization
microscopy techniques.

Spatial coherence (SC) beamforming has been used to
improve image quality in contrast enhanced ultrasound images
acquired by a sparse array [2]. Through exploiting the coher-
ence of signals, the level of microbubble clutter was reduced.
Others have proposed to use minimum-variance beamforming
(MV) [3] instead of delay-and-sum specifically for improv-
ing the separation of close-by microbubbles, i.e. resolution.
However, minimum-variance beamforming is computational
expensive and not well established for volumetric imaging
with sparse arrays.

Adaptive beamforming by deep learning (ABLE) [4] has
a lower computational cost than minimum variance beam-
forming and has been applied to improve ultrasound image
quality in non-contrast enhanced images for arrays with regu-
larly spaced elements and has been used jointly with deep
learning-based localization [5] to improve the localization
of microbubbles in contrast enhanced ultrasound. Inspired
by this we hypothesize that ABLE can be used to improve
contrast enhanced imaging with a sparse array. We trained
an adapted version of the original ABLE network on in
silico data and compared beamformed images of an in vivo
chicken embryo, acquired with single pulse detection at the
fundamental frequency, to DAS and SC beamforming.
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II. METHODS

A. Sparse spiral array

We used a 5 MHz prototype sparse array with a 1.6 cm
diameter aperture, consisting of 256 piezoelectric elements
with an element size of 200 µm x 200 µm. The elements
are arranged in a tapered spiral pattern, specifically designed
to minimize sidelobe levels of the spiral array by decreasing
the element density towards the edge of the array according
to a Blackman window [6], [7] (see Fig. 1).
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Fig. 1. Layout of the 256 elements of the sparse spiral array. Only the center
120 elements indicated in red are used in transmit. All elements are used in
receive.

B. Imaging scheme

Diverging waves with a 30◦ opening angle were used
to insonify a large region of interest. The final volumetric
images were formed by angular compounding of five steered
diverging waves (angles: [0◦, 5◦], [5◦, 0◦], [0◦, -5◦], [-5◦,
0◦], [0◦, 0◦]) to reach a volumetric frame rate of 1000 Hz.
To increase the uniformity of the transmit field in both lateral
and axial direction, only the center 120 elements were used
in transmission (see Fig. 1). Further details on the probe and
the design of the transmit and receive strategy can be found
in [2].

C. In vivo data acquisition

An ex ovo chicken embryo and chorioallantoic membrane
(CAM) were used as the in vivo model to investigate the effect
of the different beamformers on contrast enhanced ultrasound
imaging. The five-day-old chicken embryo and CAM were
removed from the eggshell and further prepared according to
the protocol of [8], after which four µL of custom-made F-type
microbubble was injected into the vasculature of the chicken
embryo. The chicken embryo was placed in a PBS solution
and the ultrasound array was positioned on top of the chicken
embryo at a 3 cm distance. More details of the procedure can

be found in [2], [8]. The ultrasound recording lasted 3.9 s.
Before off-line beamforming of the data, it was pre-processed
with an SVD filter along the full frame length of 3900 frames
to remove the quasi-stationary tissue and background signal.
The RF data of each transmit angle was filtered separately and
the twenty lowest ranks were removed.

D. Network architecture, training procedure and training data
The neural network architecture is shown in Fig. 2. For each

of the five transmit angles apodization weights were calculated
from the time-of-flight (TOF) corrected RF data. After pixel-
wise multiplication of the apodization weights with the TOF
data and subsequently summing across the channel dimension,
the resulting five voxel values were compounded. Unlike in
the original ABLE beamformer the voxels were then envelope
detected and finally processed by a final 1-D convolutional
layer extending in the axial direction.
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Fig. 2. Network architecture. The number of filters for each convolutional
layer are indicated above the layer, the kernel size is indicated in the layer.
Five parallel branches are used to calculate apodization weights for the TOF
corrected RF data of each transmit angle.

Field II [9] was used to simulate microbubble data acquired
by the sparse array. Point scatterers with an amplitude between
0.5 and 1 were placed in a region spanning from -40◦ to 40◦ in
azimuth and elevation direction. The mean concentration was
0.24 microbubbles per mm3. For a single image five angled
diverging waves were transmitted in the same directions as
in the in vivo recording. The true location and amplitude of
the point scatterers were used to form a target image. During
training image patches of 11 ×11×100 voxels were randomly
selected from a volume at 0.15 to 0.45 cm distance from the
transducers extending -20◦ to 20◦ in azimuth and elevation.
The 78 frames used resulted in 647 distinct image patches.
The network was trained with the Adam [10] optimizer to
minimize the signed-mean-squared-logarithmic-error between
the network output images and a Gaussian filtering of the
images containing the true point locations:

LSMSLE(y, x, σ) =
1

I

I∑
i=1

(
1

2
|| log10(V

(i)
NN )+ − log10(V

(i)
Target)

+||22

+
1

2
|| log10(V

(i)
NN )− − log10(V

(i)
Target)

−||22 ).
(1)

Here V
(i)

NN ) refers to the network output for voxel i and
V

(i)
Target to the target voxel.
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Fig. 3. C-planes of a volume of simulated point scatterers. Left) The ground truth is visualized by a Gaussian filtering of the point scatterers. Right) The
beamformed images are shown for ABLE, DAS and SC. Top row) No further processing is applied. Bottom row) Beamformed images after matching the
histograms of the SC and DAS beamformed images towards that of ABLE.
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Fig. 4. a) The first row shows the maximum intensity projection (MIP) image in the XY plane for the ABLE, DAS and SC beamformer. The second row
shows the MIP image in the XY plane for the ABLE, DAS and SC beamformers after the histograms of the SC and DAS images were matched to the
histogram of the ABLE image. The colored arrows indicate vessels (blue, white, purple) and the heart (green) that are also indicated in the photograph shown
in b). c) The first row shows the MIP image in the YZ plane for the ABLE, DAS and SC beamformers. The second row shows the MIP image in the YZ
plane for the ABLE, DAS and SC beamformers after the histograms of the SC and DAS image were matched to the histogram of the ABLE image.
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E. Comparison to other beamformers

1) Beamformers: The DAS results were calculated with
rectangular apodization. The average spatial coherence value
was calculated on the TOF corrected RF data of each voxel,
using all transducer channel pairs according to:

VSC =

∑C−1
c=1

∑C−c
l=1 y(c)y∗(c+ l)∑N
c=1 |y(c)|2

(2)

Here y(c) is the TOF corrected signal of element c, C is the
total number of elements in the array, l is the lag in number
of elements and ∗ indicates the complex conjugate.

2) Histogram matching: To make a fair visual and quan-
titative comparison between the performance of different
beamformers the effect of dynamic range compression and
displayed dynamic range must be separated from the in-
formation content in the image. Bottenus et al. [11] have
proposed to separate the structural changes from the images
respective embeddings by placing the images all under the
same embedding through histogram matching. The Matlab
implementation made available by [11] was used to implement
full histogram matching of both DAS and SC images towards
the reference ABLE method. Full histogram matching was
used since this resulted in a better match of overall appearance
than partial histogram matching. The number of bins was set
to 256.

III. RESULTS

A. Simulated data

Fig. 3 shows a C-plane slice of a volumetric image of
simulated data from the test set. Without histogram matching
the DAS image shows more background clutter compared to
the ABLE and SC image. The ABLE image has smaller PSFs
than the DAS and SC images. After histogram matching the
DAS and SC image to ABLE and displaying them in the same
dynamic range (see Fig. 3), several simulated microbubbles are
not clearly visible in the DAS and SC image where they are
visible in the ABLE image. However, the ABLE image also
shows some bubbles that are not present in the groundtruth
image slice. This is largely the result of the axial PSF size
of ABLE being larger than that of the groundtruth image.
Thus, purely transforming the dynamic range with which the
DAS and SC image are displayed does not result in the same
improvements seen for the ABLE beamformer.

B. In vivo chicken embryo

Fig. 4 shows the maximum intensity projection (MIP) of 800
subsequent frames that were beamformed with DAS, SC and
ABLE and subsequently averaged over time. After matching
the histograms of the DAS and SC images to that of the
ABLE image, visually the contrast between the vessels and
the background is similar. However, not all details that are
present in the ABLE image are visible in the DAS and SC
images (see arrow and caption). Furthermore, the resolution
is higher in the ABLE images, such that there is an increased
separation of the vessels.

IV. CONCLUSION

In this work we proposed to use an adaptive beamform-
ing by deep-learning, to improve image quality of contrast
enhanced ultrasound images acquired with a sparse spiral
array. A neural network was used to calculate data-adaptive
apodization weights for the TOF corrected RF data received
from each transmit angle and then compute the final voxel
values after compounding and envelope detection. The neural
network was trained on simulations that used point scatterers
to emulate microbubbles. ABLE improved resolution com-
pared to DAS and SC beamforming on the simulated data and
on in vivo data. The improvements of the ABLE images could
not be replicated in the SC and DAS image by matching their
histograms to the ABLE images. This indicates that it is the
beamforming method that results in the image improvements,
rather than a change in the dynamic range used for image
display.
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