<]
TUDelft

Delft University of Technology

A Hybrid Deep Learning Pipeline for Improved Ultrasound Localization Microscopy

Stevens, Tristan S.W.; Herbst, Elizabeth B.; Luijten, Ben; Ossenkoppele, Boudewine W.; Voskuil, Thierry J.;
Wang, Shiying; Youn, Jihwan; Errico, Claudia; Pezzotti, Nicola; More Authors

DOI
10.1109/1US54386.2022.9958562

Publication date
2022

Document Version
Final published version

Published in
IUS 2022 - IEEE International Ultrasonics Symposium

Citation (APA)

Stevens, T. S. W., Herbst, E. B., Luijten, B., Ossenkoppele, B. W., Voskuil, T. J., Wang, S., Youn, J., Errico,
C., Pezzotti, N., & More Authors (2022). A Hybrid Deep Learning Pipeline for Improved Ultrasound
Localization Microscopy. In [US 2022 - IEEE International Ultrasonics Symposium (IEEE International
Ultrasonics Symposium, IUS; Vol. 2022-October). IEEE. https://doi.org/10.1109/1US54386.2022.9958562

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/IUS54386.2022.9958562
https://doi.org/10.1109/IUS54386.2022.9958562

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



2022 IEEE International Ultrasonics Symposium (1US) | 978-1-6654-6657-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/1US54386.2022.9958562

A Hybrid Deep Learning Pipeline for Improved
Ultrasound Localization Microscopy

Tristan S.W. Stevens*, Elizabeth B. Herbst}, Ben Luijten*
Boudewine W. Ossenkoppele®*, Thierry J. Voskuil*, Shiying Wang?, Jihwan Youn*
Claudia Errico*, Massimo Mischi*, Nicola Pezzotti*!, Ruud J.G. van Sloun**

* Dept. of Electrical Engineering, Eindhoven University of Technology, The Netherlands
§ Dept. of Imaging Physics, Delft University of Technology, The Netherlands
f Philips Research, Eindhoven, The Netherlands, 1 Philips Research, North America

Preprocessing

e SVD filter
* MoCo

@ Data

e deepULM

e  Field Il sim
¢ ULM labeled

Data-driven

Model-based

Localization

Tracking
* KalmanNet

@ Data

* Non-linear
motion model

Fig. 1: Hybrid ultrasound localization microscopy (ULM) pipeline with model-based (blue) and data-driven (red) elements.

Abstract—The image quality of ultrasound localization mi-
croscopy (ULM) images is driven by the ability to accurately
detect and track the location of microbubbles (MBs) in vascular
networks. This task becomes increasingly challenging in imaging
environments with high MB concentrations and low signal-to-
noise ratios, making it difficult to differentiate and localize
individual MBs. Recent developments in deep learning (DL)
have demonstrated significant improvements over conventional
methods but depend on vast amounts of realistic training data
with the corresponding ground truth labels, which are difficult to
obtain. The alternative, simulated data, in turn, poses challenges
in generalizability of the method. In this work, we present
a hybrid pipeline for ULM that comprises data generation,
localization, and tracking. It combines the current state-of-the-
art, utilizing both conventional and DL techniques. We show that
using this approach, we can create high-quality velocity maps
while being able to generalize well across different domains.

I. INTRODUCTION

Ultrasound localization microscopy (ULM) is an exciting
and upcoming field of research in biomedical ultrasound (US).
Traditionally, ULM image reconstruction is divided into 4
steps: 1) filtering and motion compensation, 2) microbubble
(MB) localization, 3) MB tracking and 4) image formation
[1], [2]. Most of the time, these algorithms rely on careful
parameter tuning or approximations of the underlying mea-
surement model, limiting its imaging potential. More recently,
deep learning has proven itself as an effective tool for ULM,
especially for pre-processing and the localization of MBs [3],
[4]. However, several challenges remain. High bubble concen-
trations hamper the localization of MBs due to overlapping
PSFs. On the contrary, distinguishing individual MBs is easier

at low concentrations, but a longer acquisition time is needed
to produce sufficient image quality. In turn, such an acquisition
may be subject to stronger motion artifacts in in-vivo scenarios.

In this work, our aim is to tackle these issues by employing
robust conventional processing, together with state-of-the-
art deep learning techniques. Traditional image processing
methods are used to estimate the number of MBs per frame and
to estimate the PSF properties. Subsequently, we perform sub-
pixel localization of the MB centers through a convolutional
neural network based on the work by van Sloun et al. [4],
which is trained on a mixture of simulation and in-vivo data.
Finally, we use a novel model-based MB tracking method
based on KalmanNet [5], a hybrid network (model-based and
data-driven) that combines classical Kalman filtering with a
recurrent neural network (RNN). An overview of the complete
hybrid pipeline is shown in Fig. 1.

II. ULTRA-SR CHALLENGE

The Ultrasound Localization and TRacking Algorithms for
Super Resolution (ULTRA-SR) challenge is a challenge orga-
nized by the 2022 International Ultrasonics Symposium (IUS).
The aim of the challenge is to advance the field of ULM
imaging. The challenge data comprises four datasets, two
synthetically generated (linear and phased array) and two in-
vivo (rat brain and lymph node) B-mode US sequences. There
are three categories in the competition including 1) localization
— synthetic data 2) localization and tracking — synthetic data,
and 3) localization and tracking - in-vivo data.
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Fig. 3: Results on the in-vivo lymph node data of the challenge. Comparing both ULM and deepULM images.

orized licensed use limited to: TU Delft Library. Downloaded on December 22,2022 at 12:09:46 UTC from IEEE Xplore. Restrictions apply.




(2) (b)

Fig. 4: Examples of the simulated images used for training:
(a) phased array synthetic data, (b) linear array synthetic data,
and (c) lymph node data.

III. METHODS
A. Preprocessing

Before DL-based methods are applied to the challenge data,
conventional image processing methods are used to provide
baseline ULM images. For the in vivo lymph node data set,
we apply clutter filtering using a slow-time highpass FIR
filter. This clutter-filtered data set is used as input to the DL
pipeline. For all other data sets, we do not apply preprocessing.
After preprocessing, ULM is performed using performance
assessment localization algorithm (PALA) based methods [2],
[6]. For each data set, the PALA method parameters are tuned
to account for the estimated size of the MB point spread
function (PSF) and the estimated number of MB in a frame.
Final sub-pixel localization of the MB center is performed
using a weighted average method.

The results from this conventional ULM pipeline are used
for two purposes. First, the localization data is used as a quasi-
ground truth data set for neural network training. Second, the
output MB density maps from the conventional ULM pipeline
are used as a basis of comparison against DL-based density
maps (Fig. 2 and Fig. 3). In the following paragraphs we will
detail on the subsequent processing steps.

B. Localization

1) Data generation: For the synthetic and lymph node
datasets, training data are simulated using the Field II ultra-
sound simulation [7]. In the ideal scenario, we would like
to train the networks with the provided data. However, it
is challenging to obtain the ground truth, that is, true MB
positions, especially when the MBs are placed closer than the
resolution limit of ultrasound in one image frame. For the
synthetic phased array dataset, the peak intensity of an isolated
PSF does not correspond to the MB position when the MB is
away from the center laterally. This happens because the array
size is small and at the same time the imaging region is deep.
Furthermore, some imaging regions are not fully covered by
transmitted plane waves. Additionally, the number of frames
for the synthetic datasets is not large enough to be used for
training.

To simulate MB images, point scatterers are placed ran-
domly in the region of interest, and ultrasound channel data are

simulated using plane waves. Next, delay-and-sum beamform-
ing with dynamic apodization and compounding is performed
to form the MB ultrasound image. Most imaging parameters
such as plane wave angles, apodization window, and the F-
number are chosen empirically, as the true parameters for
the synthetic data are unknown. For the synthetic training
sets, clutter images are also simulated separately in the same
way but using 10 to 20 times more point scatterers than the
MB images. A training example is then created by randomly
selecting one MB image and one clutter image and applying
envelope detection to the summation of them. For the lymph
node training set, the clutter images are not simulated but
extracted from the provided measurements, as they included
compression artifacts that cannot easily be simulated. For
the lymph node training set, the clutter images are already
envelope detected, so we cannot simply sum an MB image
with a clutter image. For a smooth transition between the
MB and clutter images, a weighted summation of an envelope
detected MB image and a clutter image is used:

ItT:[MB—F(maX(IMB)_IMB) chluttera (1)

where I, is the training data, Ip;p is the MB image, and
T iuiter 1s the clutter image. Examples of simulated training
data are shown in Fig. 4.

For the rat brain dataset, the MB density is low, and the
number of frames is large enough for training. Therefore, we
directly employ the provided data for training with the MB
positions estimated by a conventional method.

2) Network architecture and training: For MB localization
we employ the U-net architecture presented in [4], and upscale
the input by a factor of 10. Training is facilitated through
a mean-squared-error (MSE) between the predicted locations
and the ground truth targets on input patches of 64 x 64 pixels.
Furthermore, we apply a small Gaussian blur to the target
labels to relax the MSE objective and favor detection accuracy
over localization error. As a result, we are able to train the
localization network in a regression style, such that detections
that are a few pixels off still contribute to the loss. Finally, we
perform a hyperparameter search to optimize the number of
layers and kernel sizes in the network. The predictions of the
best performing models are subsequently ensembled to remove
outliers through majority voting.

C. Tracking

Our proposed tracking framework combines the advanced
motion estimation of KalmanNet [5] with the conventional
data association of the Hungarian Algorithm (HA) [8].
KalmanNet is used for the motion estimation of the MBs
and predicts the positions of the MBs in the next frame.
Subsequently, HA is used to solve the linear sum assignment
problem with a pairwise distance matrix as cost.

The process of KalmanNet is similar to classic Kalman
filtering; it also has a prediction and an update step to estimate
states. However, the Kalman gain computation is learned from
data through an RNN. Furthermore, KalmanNet does not
explicitly track the covariance matrix.
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1) Data generation: KalmanNet is trained on a dataset
containing tracks that were generated with a nonlinear motion
model (NMM) in state space format, as done in [9]. The
state vector x; of an MB for frame ¢ is given as x; =
(¢, z¢, vy, gpt,wt)T, where z; and z; are the lateral and axial
coordinates, respectively. The velocity is denoted by v; and
the direction is determined by the angle (; and the turning
rate w;. This motion model takes into account the curved
physiology of vessels by including the turn rate w;. A more
detailed description on the track generation is given in [9]. In
total, 25000 tracks of length 100 were generated at a frame
rate of 100 Hz with a maximum flow velocity of 15 mm/s.

2) KalmanNet training: In KalmanNet, the Kalman gain
computation is performed by an RNN. The network has a fully
connected (FC) layer, which is followed by a Gated Recurrent
Unit (GRU) layer. The GRU layer is succeeded by two other
FC layers. The last FC layer transforms the output to the
number of features in the Kalman gain. An L2 regularized
Mean Squared Error (MSE) loss function is used. The loss
function is based on the error in the predicted and ground
truth state and is given as follows,

1 X
L= 53 G —x)" + X wl, )

t=1
where 7' is the sequence length of the tracks, A is the
regularization parameter, w are the weights of the network, and
X, and x; are the estimated and ground truth state, respectively.
The loss function is minimized with the Adam optimizer. The

hyperparameters were optimized through a random search.

3) Tracker: The KalmanNet-based tracker consists of three
steps that are executed for every frame, namely prediction,
data association, and update. In the prediction step, KalmanNet
estimates the next MB position on its corresponding track.
Consequently, in the data association step a cost matrix, con-
taining the Euclidean distances from predicted MB positions
to localized MB positions, is constructed and used by the HA
to solve the assignment problem. After applying the HA, the
assignments are checked against a distance threshold to avoid
physical implausible displacements. Lastly, in the update step,
the assigned observations are used to update the state and
Kalman gain of the corresponding tracks.

IV. RESULTS AND CONCLUSION

The synthetic datasets are not labeled, since they are part
of the test set of the challenge. Similarly, the in-vivo datasets
are also not labeled. However, the performance can still
be qualitatively evaluated. We visually compare our hybrid
method with a conventional ULM method [6].

A. Synthetic data

1) GE M5Sc-D Phased array: MB localizations for the
low frequency phased array data are shown in Fig. 4a. The
deepULM localization network is more sensitive in the deeper
region. However, deepULM sometimes detects two MBs from
one isolated MB.

. B
* deepULM

o ULM
+ deepULM

(@ (b)

Fig. 5: Results on the synthetic datasets: (a) phased array with
a low frequency and (b) linear array with a high frequency.

2) Verasonics L11-4v Linear array: MBs localizations for
the high frequency linear array data are shown in Fig. 4b. ULM
and deepULM show similar results, since the high frequency
data results in smaller PSF and less overlapping between MBs.
Still, deepULM can resolve closely spaced MBs where ULM
does not in some cases.

B. In-vivo data

The 2D velocity (magnitude) ULM images for the rat brain
and lymph node in-vivo data are shown in Fig. 2 and Fig. 3,
respectively. Our method shows increased sensitivity with
respect to the conventional method, and cleaner tracks overall.
It is possible to achieve more sensitivity with the conventional
method, however, we found that the resulting tracks were
noisier, possibly due to an increase in false detections.
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