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Abstract— We intend to develop an ultrasound compressive 

imaging device to perform carotid artery (CA) function and flow 

monitoring/imaging by using just a few single element transducers 

equipped with spatial coding masks. The spatially unique impulse 

responses can be exploited in compressive reconstructions. To 

explore the potential of different configurations, in this study we 

emulated such a device using a linear array system. We combined 

its elements with individual digital delays into a small number of 

groups. The results suggest our spatial coding mask approach 

based on reconstructions regularized with a least squares method 

has potential for CA monitoring with only 10 to 12 sensors.  

Keywords— Compressive imaging, Matched filtering, Image 

reconstruction, Carotid artery, Simulation 

I. INTRODUCTION 

Ultrasonography of the carotid artery (CA) can non-
invasively provide blood velocity, wall motion, pulse wave 
velocity (PWV) and vessel anatomy information which can be 
used as indicators of atherosclerosis[1]. Conventionally, this 
examination is performed by a skilled sonographer using an 
ultrasound system with a linear array transducer. We aim at a 
long-term monitoring solution for measuring functional 
parameters of the carotid artery such as flow and wall motion by 
using a patch with only a small number of ultrasound sensors. 

The compressive sensing theory[2] provides possibilities for 
extracting information with a minimal number of sensors and 
observations. In a previous study[3], we proposed a compressive 
sensing-based method using a single channel sensor for 3D 
imaging. By placing an aberration mask upon the sensor we 
could generate a spatially coded acoustic field that allowed 
detailed 3D reconstructions of complex 3D objects in water. 

We intend to use this compressive sensing principle to 
develop our carotid artery monitoring device. To explore the 
potential of imaging with a low number of masked sensors (Fig. 
1 a), we emulated such a device using a linear array system. In 
this study, we only investigated the B-mode imaging potential 
assuming that if anatomical information is spatially reasonably 

separable, this should also apply to functional information such 
as flow and wall motion.  

In the emulated system, the acoustic field inferred by the 
physical spatial coding (aberration) mask was translated into 
digital delays applied per element of the linear array (Fig. 1 c). 

 

Fig. 1 a) Intended practical device. Signals are acquired by a low number of 
sensors with masks. b) Emulation system. Received signals from a linear 
array are delayed per element according to the mask pattern and summed per 

group. c) Fixed delay pattern was used in this study 
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Elements were grouped to represent a small number of sensors 
(Fig. 1 b). In this paper, the feasibility of our compressive 
sensing method in B-mode reconstruction was demonstrated, 
two reconstruction schemes for the compressed signals were 
compared, and the effect of the number of groups on the quality 
of the reconstruction was studied. The results will supply a lower 
limit for the number of sensors in a practical device design that 
would be sufficient to spatially separate functional information. 

II. METHODS 

A. Emulation setup 

The proposed emulation setup consisted of a 128 elements 
linear array transducer (L7-4) and a Vantage 256 system 
(Verasonics). A fixed delay mask pattern over the full aperture 
(randomly generated once, Fig. 1.c) was chosen to emulate the 
local delaying effect of the spatial coding mask in transmit and 
receive. The aperture was divided into equally sized groups of 
elements, each representing a single sensor with a coding mask. 
Different numbers of sensors (group sizes) were explored in this 
study. A synthetic aperture (SA) transmit scheme was employed 
when acquiring signals: each element was excited individually 
(4 cycles, 5 MHz) and received signals from all elements were 
recorded. The signal of each masked group was constructed by 
applying each transmit and receive element’s individual delays 
and summing received element signals per group. The emulation 
system was deployed in a tissue mimicking phantom (CIRS 
040GSE) and raw signals from a depth range of 5-50 mm were 
acquired, corresponding to a typical region of interest for carotid 
artery imaging. 

B. Signal model 

In our compressive reconstructions, a basic linear system 
model is employed to describe the generation of the received 
signals: 

 

This model relates the received element signals y to the 
presence of scatterers in any spatial location (expressed in x) via 
a matrix A. The matrix A contains for each index �x�,�z�  the 
expected sensor signals associated with a scatterer present in that 

spatial position �x�,�z� , where n�  and n	  are the number of 
positions/pixels in the x and z dimension of the region of interest 
(ROI). If the spatial signals are sufficiently unique and/or the 
number of observed signals is large enough, the spatial scatterer 
distribution can be reconstructed with reasonable spatial 
separation. In the case of a synthetic aperture transmit scheme 
on all individual elements of the linear array, y will contain in 
total N × N signals, where N=128 is the number of elements. 
Each index �t�,�r�  in the y vector corresponds to the received 
signal on element r as a result of a transmit on element t. Each ��t�,�r� also has its corresponding ��t�,�r� in the A matrix. 

When we group individual elements into a lower number of 
sensors for our emulation, the linear system model is very 
similar, but now y and A are constructed per sensor. We assume 
synthetic aperture transmission per sensor st and receive on each 
sensor sr: 

 

where M is the number of sensors after grouping (M<<N). The 
coding effect of the spatial coding mask is converted to a 
temporal delay per element for each ��t�,�r�  and ��t�, �r� . The 

corresponding sensor signals  ��st �,�sr�  and sub-matrix entries ��st�,�sr� for each group are represented by one summed temporal 

signal, respectively.  

C. Reconstruction methods 

A regular matrix inversion is not applicable to solve x (our 
desired image content), since the problem is highly 

underdetermined �M� ≪ n�n	� . Therefore, we revert to 
reconstruction methods that will provide an approximation of x. 
We will employ a matched-filtering reconstruction as basic 
method, and we will investigate whether least-squares iterative 
regularization can improve the reconstruction. 

a) Matched filtering method (MF): 

A matched filtering method was performed as our basic 
reconstruction method: 

���� = � ����s�t �,�s�r�� ���s�t �,�s�r���
� 

�
�!

 

This publication is part of the project TOUCAN (with project number 
17208) of the OTP research programme which is financed by the Dutch 
Research Council (NWO). 

⎝
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⎟⎟⎞

⎝
⎜⎛

��1�,�1�⋮��x�,�z�⋮��n� �,�n	�⎠
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⎟⎞ 

TABLE I FWHM OF PSF (MEAN (±SD)) AND CR FOR DIFFERENT RECONSTRUCTION SCHEMES AND NUMBERS OF SENSORS  

Reconstruction schemes no mask with mask 

 Number of sensors 128 (GT) 16 16 12 10 8 

MF 

Lateral FWHM [mm] 0.39(±0.1) 1.68(±0.34) 0.52(±0.07) 

 Axial FWHM [mm] 0.75(±0.04) 1.08(±0.05) 1.05(±0.06) 

CR [dB] 16.64 12.85 11.73 

LSQR 

Lateral FWHM [mm] 

 

0.78(±0.17) 0.43(±0.06) 0.53(±0.13) 0.55(±0.15) 0.49(±0.08) 

Axial FWHM [mm] 0.91(±0.05) 0.89(±0.07) 0.99(±0.12) 1.13(±0.24) 1.21(±0.31) 

CR [dB] 13.09 9.94 9.22 8.24 5.67 
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In this method, the Hermitian matrix is used as a best 
replacement of the intractable matrix inversion [4]. The MF 
method was deployed on signals from each pair of transmit and 
receive sensors individually (synthetic aperture per sensor) to 
gain better reconstruction quality with the highest possible 

number of observations and then summed to provide ����  as the 

estimation of the real � vector. 

b) Least-squares method (LSQR): 

The least-squares method (LSQR algorithm) [5] was 

investigated and compared with ����: 

,-. /� ����s �t�, �s �r���0123 4���s �t�, �s �r���
� 

�
�!

/
�
 

An iterative general error minimization between ��s �t�, �s �r���0123  and ��s �t�, �s �r�  among all observations was 

performed, which would lead to a ��0123 closer to the actual x. 

In this work, the regularization was stopped after 20 iterations. 
In our experience, the gain of image quality was becoming 
insignificant at that stage. 

D.  Evaluation 

 In this study, we investigated the effects of different numbers 
of sensors and the reconstruction methods on B-mode image 
quality in our emulation setup. This should give an indication 
what minimal number of sensors would still properly separate 
information spatially, to be used in a practical monitoring device 
for carotid function. We investigated spatial separability in 
terms of lateral and axial point spread functions of wire targets, 
and contrast ratio of inclusions to the background  

Performance of the reconstruction schemes was first 
compared for the case of a relatively high number of sensors 

 
Fig. 2 Comparison of reconstructions for different methods and numbers of sensors. a) MF reconstruction with 128 sensors’ signals with no mask (ground truth). 
FWHM of PSF was determined for the red boxes, CR from the green circles; b-e) reconstruction from 16 sensors by different schemes: b) MF with no mask; c) 
LSQR with no mask; d) MF with mask; e) LSQR with no mask; f-g) LSQR reconstruction using mask, with different numbers of sensors: f) 12 sensors; g) 10 
sensors; h) 8 sensors; i) FWHM of lateral and axial PSF of a-e (left) and a, e-h (right); j) CR of a-e (left) and a, e-h (right). 
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(16), to ensure the reconstruction differences would be more 
distinct. The 128 elements of the total aperture were evenly 
divided into 16 sensors (with 8 grouped elements in each 
sensor). Two reconstruction schemes: with/without mask and 
with MF/LSQR were deployed in all four combinations on these 
grouped sensor’s signals to determine if the use of the mask 
and/or LSQR improved the reconstruction. The ground truth in 
this study was the MF reconstruction from all 128 element 
signals without mask and LSQR, which was equivalent to the 
reconstruction by the standard synthetic aperture delay and sum 
method. The reconstruction quality of different schemes was 
evaluated by: 

• Quantifying the average lateral and axial full width at 
half maximum (FWHM) of point spread function 
(PSF) of 8 wire targets in the ROI (red boxes in Fig. 2 
a). 

• Quantifying the contrast ratio (CR) of the inclusion 
region in the ROI to the background region (green 
dashed circles in Fig. 2 a). 

The reconstruction performance for different numbers of 
sensors was also studied. Since the number of independent 
observations in Y is related to the square of the number of 
sensors in our synthetic aperture scheme, reducing the number 
of sensors should significantly affect the reconstruction quality. 
However, to keep our device design simple we strive for a 
minimal number of sensors that still allows sufficient spatial 
separability.  
The 128 elements were evenly divided into 16, 12, 10 and 8 
sensors, while in the 12 and 10 sensors case, 8 elements on the 
right edge of the aperture were abandoned to ensure an even 
division. One should realize that changing the number of 
sensors will also change the size of each sensor. Therefore, the 
effects of the number of observations and size/pitch of the 
sensors were studied together in this work. The reconstruction 
scheme that performed best in the previous part of the study 
(LSQR with mask) was adopted here. Reconstruction quality 
was evaluated in the same way as in the previous part (PSF and 
CR vs. GT). 

III. RESULT 

A. Reconstruction schemes  

We can see in Table I and Fig. 2 a, that the ground truth 
reconstruction with 128 sensors had the best quality, as 
expected. When the number of sensors is decreased to 16, using 
MF without mask (Fig. 2 b), the wire targets and inclusion are 
still distinguishable, but the image resolution was heavily 
degraded and a stripy pattern appeared in the near field. The wire 
target PSFs were clearly improved after applying the mask and 
LSQR separately (Fig. 2 c, d) and even more when combining 
mask and LSQR (Fig. 2 e). The resulting image was visually 
already close to the ground truth image. Specifically, the lateral 
PSF was improved most by the combination of mask and LSQR. 
The axial PSF was slightly improved, mainly by applying 
LSQR. The CR slightly decreased by applying mask and 
applying mask with LSQR. 

B. Different numbers of sensors  

As we can see in Fig. 2 e-h and Table I, the reconstruction 
quality decreases considerably for a lower number of sensors, 
likely due to the lower number of observations. The axial PSF 
was degraded somewhat. For the lateral PSF, the degradation 
was minor. The CR decreased considerably, which can also be 
observed visually at the inclusion region. The reconstruction of 
the inclusion region was more sensitive to the change of the 
number of sensors than the reconstruction of the wire targets. 
But since this region is already reasonably distinguishable with 
12 to 10 sensors (Fig. 2 f, g), we consider these numbers of 
sensors in principle useful for our purpose. 

IV. CONCLUSION 

In this emulation study, it was found that MF reconstruction 
from signals of a low number of masked sensors does benefit (in 
terms of axial and lateral PSF) from the use of a spatial coding 
mask. Moreover, the quality of the reconstruction can be further 
improved by LSQR regularization, which also fixed the uneven 
distribution of image intensity in the MF with mask 
reconstruction. However, a minor decrease in CR was seen with 
respect to the ground truth, which might also be related to the 
lower image resolution. The reconstruction with different 
numbers of sensors showed that a smaller number of sensors 
degraded the reconstruction quality mainly in axial PSF and CR. 
More importantly, this study also implies that for a practical 
device with the proposed aperture (38 mm), 12 to 10 sensors 
could be adequate for a reasonable B-mode reconstruction.  

In this paper, only one randomly generated coding pattern 
was adopted, which might still be optimized towards our 
application scenario. Our previous work[6] has shown that this 
may improve results further. Furthermore, we are aiming to 
apply our device for flow/function monitoring in the carotid 
artery, for which the requirements of spatial separability might 
be more lenient than for B-mode imaging. These questions will 
be studied in our future work. 
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