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Cliff’s Delta is a non-parametric effect size that is based on data observations. In this paper,
we elaborate on an adaptation of Cliff’s Delta in order to compare behaviour profiles. Be-
haviour profiles are density distributions in which survey answer behaviour is summarized for
specific groups of respondents or items. Such profiles are useful, as they take into account the
varying number of survey items that is filled out per respondent due to filter questions. By
the adapted profile-based Cliff’s Delta, two subgroups of respondents (for instance higher and
lower educated respondents) can be compared on the occurrence of specific answer behaviour
(for instance giving ‘don’t know’-answers). By means of simulations, we show that the adapted
profile-based Cliff’s Delta converges towards the original Cliff’s Delta as the number of items
that is filled out by respondents increases. The uncertainty that comes along with a finite
number of items is taken into account by the adapted profile-based Cliff’s Delta. As a result,
the adapted profile-based Cliff’s Delta has a restricted magnitude for a finite number of items.
We conclude that the adapted profile-based Cliff’s Delta is a solid and conservative statistic
that is both useful and advantageous to compare behaviour profiles. We close with two survey
data examples and by discussing our findings.
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1 Introduction

The relation between survey answer behaviour and mea-
surement error has been studied extensively. According to
the literature, the occurrence and size of measurement er-
ror and hence response data quality can be influenced by re-
spondent characteristics (see for instance Olson and Smyth,
2015; Pickery and Loosveldt, 1998; Tourangeau, Rips, and
Rasinski, 2000) and survey item characteristics (see for in-
stance Campanelli et al., 2011; Saris and Gallhofer, 2007;
Tourangeau et al., 2000). Both respondent and item charac-
teristics may lead to undesirable answer behaviour, like an-
swering “won’t tell” (Bradburn, Sudman, Blair, & Stocking,
1978; Shoemaker, Eichholz, & Skewes, 2002) or answering
“don’t know” (Beatty & Herrmann, 2002; Leigh & Martin Jr,
1987).

The relation of undesirable answer behaviour to respon-
dent and item characteristics could be used as a starting point
for future survey design. Surveys could be adapted to specific
respondent and item characteristics in order to minimize the
occurrence of undesirable answer behaviour and measure-
ment error. This means that exposed relations could function

Contact information: Frank Bais, Department of Research and
Innovation, Cito Institute for Educational Measurement, Amster-
damseweg 13, 6814 CM Arnhem (E-mail: frank.bais@cito.nl).

as guides in optimizing future data collection. In order to
investigate such relations, so-called “behaviour profiles” can
be constructed. A behaviour profile is a density distribution
that gives a statistical summary of survey answer behaviour
for a specified group of respondents or items. Such a profile
takes into account the uncertainty that exists around the ac-
tual occurrence of answer behaviour. In practice, this means
that two behaviour profiles can be compared on the extent
to which they show a specific undesirable answer behaviour.
For instance, the profiles for men and women or for sensitive
and non-sensitive items could be compared on the occurrence
of don’t know-answers. See section 2 for a brief explanation
about behaviour profiles and see Bais (2021) for an extensive
statistical elaboration on this topic.

A consequence of using behaviour profiles is that we do
not consider individual data observations for the analyses,
as each individual respondent estimate is transformed into
a density distribution. This means that we cannot use cus-
tomary effect sizes like Cohen’s d (Cohen, 1962, 1988) or
the Mann-Whitney U statistic (Mann & Whitney, 1947) to
compare two groups of respondents. Thus, in order to com-
pare two group profiles of respondents or items on the occur-
rence of answer behaviour, an inventive statistical measure is
needed. In this paper, we elaborate on an adaptation of the ro-
bust and non-parametric effect size Cliff’s Delta (Cliff, 1993,
1996a, 1996b) to compare two behaviour profiles. The main
benefit of our adapted Cliff’s Delta is that two behaviour pro-
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files of any type or shape can be compared without difficulty.
Cliff’s Delta was originally developed by Cliff (1993) for

the use with ordinal data. It is a measure of how frequently
the data values in one group are larger than the data values
in a second group. In our study, we address our first research
question by showing how we transform the original Cliff’s
Delta for data observations into an adapted Cliff’s Delta for
density distributions. Second, we address our second re-
search question by illustrating that the adapted Cliff’s Delta
is a justifiable approximation of a fixed reference Cliff’s
Delta based on two estimated behaviour profiles by means of
simulations. See Bais (2021) and Bais, Schouten, and Toe-
poel (2022) for an application of the adapted Cliff’s Delta to
survey data.

In section 2, we briefly explain the concept and interpre-
tation of behaviour profiles. In section 3, we elaborate on the
concept of Cliff’s Delta and its transformation from the orig-
inal into the adapted version. In section 4, we show that the
adapted Cliff’s Delta is a solid and conservative measure that
is suitable for comparing two behaviour profiles. In section
5, we give two answer behaviour examples of estimating the
adapted Cliff’s Delta from two behaviour profiles. We close
with a conclusion and discussion of the simulation outcomes
in section 6.

2 Behaviour profiles

In order to compare the occurrence of answer behaviour
for the two categories of a respondent or item characteris-
tic, so-called “behaviour profiles” can be constructed. We
define a behaviour profile as a density distribution that sum-
marizes answer behaviour for a specified group of respon-
dents or items. We may distinguish respondent and item
behaviour profiles, which summarize answer behaviour for
types of respondents and items respectively. A behaviour
profile represents the relative proportions of a group of re-
spondents or items (for instance lower educated respondents
or items containing difficult language) in showing a specified
answer behaviour (for instance answering “don’t know”) for
all possible probabilities from 0 to 1. From here, we first give
reasons to make use of behaviour profiles for comparing spe-
cific groups of respondents or items. Second, we elaborate
on how to construct behaviour profiles.

2.1 Why using behaviour profiles?

In order to compare types of respondents or items on the
occurrence of answer behaviour, a few aspects need to be
taken into account regarding the answer behaviour. First, the
number of respondents that participates in a survey and the
number of items that is applicable to a specific answer be-
haviour per survey is finite. This means that an extent of
uncertainty exists around the actual occurrence of behaviour,
since the behaviour is based on a by definition delimited

number of respondents or items. In other words, the ac-
tual occurrence of behaviour for respondents is surrounded
by more uncertainty as they fill out a smaller number of
items. And the actual occurrence of behaviour for items is
surrounded by more uncertainty as they are filled out by a
smaller number of respondents. Second, when a survey con-
tains filter questions that may or may not branch out into
follow-up questions, each respondent is likely to fill out a
different number of items for that survey. Therefore, the ac-
tual occurrence of behaviour is indicated with varying un-
certainty across different respondents and items within such
a survey. Hence, to compare groups of respondents or items
on their answer behaviour, simply using individual behaviour
proportions is insufficient. Our method of using behaviour
profiles to estimate behaviour occurrences takes into account
the aforementioned uncertainties in order to compare types
of respondents or items.

Let us briefly discuss why using individual behaviour pro-
portions is not sufficient. Consider the situation in which
we want to construct a behaviour profile for a group of re-
spondents for giving “won’t tell”-answers in a survey con-
taining filter questions. Suppose that almost all respondents
fill out relatively many items and give “won’t tell”-answers
only occasionally, while one single respondent who fills out
only few items gives “won’t tell”-answers frequently. This
means that we are uncertain about the behaviour of this sin-
gle respondent compared to the behaviour of the other re-
spondents. Simply averaging individual behaviour propor-
tions would lead to a biased (in this case higher) group mean
proportion. More importantly, comparing either weighted or
unweighted mean proportions by using a customary measure
like Cohen’s d is not robust against skewed or heavy-tailed
distributions and outliers (Rousselet, 2016). As a difference
between two groups may increase by including an outlier,
Cohen’s d is affected by this inclusion and may be smaller
than when this outlier would have been removed (Rousselet,
2016). In summary, behaviour profiles can be used to omit
parametric assumptions and account for important uncertain-
ties, and a robust statistical measure is needed to compare
such profiles.

2.2 Constructing behaviour profiles

Except for the notation and the interchangeability of the
terms respondent and item, the concept and construction of
respondent and item profiles are identical. For the purpose
of this paper, we therefore only discuss the concept and con-
struction of respondent profiles. In constructing a respon-
dent profile, we make use of the binomial distribution to take
into account the abovementioned uncertainties. Here, each
item that is filled out can be interpreted as an independent
Bernoulli trial with probability p.

Let Ir be the number of items for which a specific an-
swer behaviour is possible that has been presented to a spe-
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(a) Individual profiles for respondents A, B, and C

1A. Example: Individual Profiles
for Respondents A, B, and C
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(b) Group profile based on respondents A and B

1B. Group Profile Based on
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(c) Group profile based on respondents A, B and C

1C. Group Profile Based on
Respondents A, B, and C
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Figure 1. Example profiles

cific respondent r. We interpret each item as an independent
Bernoulli experiment, with an unknown probability p that the
behaviour is shown (and a probability 1−p that the behaviour
is not shown). Consequently, the total number of items Xr for
which respondent r shows the behaviour is expected to have
a binomial distribution (Dekking, Kraaikamp, Lopuhaä, &

Meester, 2005)

P (Xr = Kr) =

(
Ir

Kr

)
pKr (1 − p)Ir−Kr , (1)

where Kr∈ {0, 1, . . ., Ir}. From our observations, we know the
number of times Gr that the behaviour is actually shown by
respondent r. The likelihood λr is the probability P (Xr = Gr)
that this observation is correctly predicted by formula (1)
(Dekking et al., 2005; Fisher, 1925), leading to

λr (p) =

(
Ir

Gr

)
pGr (1 − p)Ir−Gr . (2)

Unlike probability density functions, λr (p) does not neces-
sarily integrate to 1. In this study, we assign this favorable
property to each distribution by normalization and we aver-
age behaviour distributions of multiple respondents to con-
struct behaviour profiles for groups of respondents. From
here, we therefore define the normalization of the likelihood
of an individual respondent as the plausibility Λr that the be-
haviour is shown by this respondent:

Λr (p) =
λr (p)∫ 1

0 λr (p) dp
. (3)

For a single respondent r, the average or expected value Er

for the behaviour occurrence can be estimated on the basis of
the respondent’s profile and the following integral over p:

Er =

∫ 1

0
pΛr(p) dp . (4)

The distribution resulting from formula’s (2) and (3) is an
individual respondent profile. The profile delineates the ex-
pected behaviour occurrence across the full potential proba-
bility range from 0 to 1 and gives consideration to the amount
of occurrence uncertainty.

See Figure 1a and consider the behaviour profile for re-
spondent A. This respondent filled out five items and a
specific undesirable answer behaviour (for instance giving
‘don’t know’-answers) was selected for one out of these five
items by this respondent. The behaviour occurrence for re-
spondent A is relatively uncertain, as only five items were
filled out. This uncertainty is evident by the stretched shape
of the behaviour profile. This means that a broad range of
probabilities for the behaviour occurrence is more or less
plausible and that the expected value of 0.29 (see the blue
dotted line) is not precisely estimated. Respondent B se-
lected specific behaviour for 10 out of 20 items. The be-
haviour occurrence is less uncertain for respondent B than
for respondent A, considering the higher peak at the expected
value of 0.50 and a slightly more squeezed profile. See Fig-
ure 1a and consider the behaviour profile for respondent C.
This respondent filled out the larger number of 40 items. A
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specific undesirable answer behaviour was selected for 32
out of these 40 items by respondent C. The behaviour occur-
rence is more certain for respondent C than for respondent A
or B. This can be seen in the behaviour profile for respondent
C, which has a relatively squeezed and peaked profile. This
means that only a relatively narrow range of probabilities for
the behaviour occurrence is plausible and that the expected
value of 0.79 is relatively precisely estimated. In summary,
our profile method takes into account the degree of uncer-
tainty that comes along with the answer behaviour of each
individual respondent. See Appendix A1 for two other exam-
ples of individual profiles and to construct individual profiles
in R yourself.

By considering all respondents who meet the condition
of a specific category for a characteristic (for instance lower
educated respondents for educational level), the average re-
spondent group profile can be calculated by averaging their
individual plausibilities:

Λ (p) =
1
R

R∑
r=1

Λr (p) , (5)

where Λ(p) is the respondent profile of the group behaviour
occurrence averaged over all respondents, and R is the total
number of respondents in the group. By means of this av-
erage respondent profile, the averaged expected value E for
the behaviour occurrence for this group of respondents can
be calculated as follows:

E =

∫ 1

0
pΛ (p) dp . (6)

The distribution resulting from formula (5) is an averaged
group respondent profile. From here, we illustrate how to
come to such an averaged group profile step by step. See the
group profile in Figure 1b. This group profile consists of the
average of the two individual profiles for respondent A and
B (see Figure 1a). For each probability, the accompanying
plausibilities for respondents A and B are averaged. The re-
sult is the group profile for respondents A and B. As can be
seen in Figure 1b, the low broad bump and the higher more
narrow bump of the individual profiles for respondent A and
respondent B respectively are still visible. The dotted line at
around 0.40 refers to the expected value of the group profile.

See Figure 1c. This group profile consists of the average
of the three individual profiles for respondents A, B, and C
(see Figure 1a). Again, the individual profiles for respon-
dents A, B, and C are averaged. The result is the group pro-
file for respondents A, B, and C as can be seen in Figure 1c.
The bumps of the individual profiles for respondents A and
B are still visible to some extent, but the peak of the indi-
vidual profile for respondent C is most striking in the group
profile. This means that as an individual profile is based on
more items, the more influence that individual profile has on

the shape of the group profile. The dotted line at around 0.52
refers to the expected value of the group profile. Group pro-
files can be based on any number of individual respondent
profiles and any type of respondent characteristics. See Ap-
pendix A2 for two other examples of group profiles and to
construct group profiles in R yourself.

In summary, respondent profiles for groups with different
characteristics can be constructed. In this way, an idea can
be obtained about the difference of the occurrences of spe-
cific answer behaviour (for instance answering don’t know)
between two groups (for instance lower and higher educated
respondents). The expected values give an indication of the
average behaviour occurrence for the groups as a whole. The
next step is to use a solid statistical measure to compare the
behaviour occurrences of two groups.

3 Adapting Cliff’s Delta

The non-parametric effect size Cliff’s Delta δ can be used
as a robust alternative to using two independent group means.
It measures how often the data observations in one group are
larger than the data observations in a second group (Cliff,
1993, 1996a, 1996b). In this section, we first briefly explain
the original Cliff’s Delta for data observations. Second, we
address our first research question by illustrating how we
transform the original Cliff’s Delta into an adapted version
for density distributions.

3.1 The original Cliff’s Delta for data observations

Cliff’s Delta δ is a robust effect size that indicates to what
extent two groups are different. It calculates the probability
that a random data observation xa from a group A is larger
than a random data observation xb from another group B,
minus the reverse probability (Hess & Kromrey, 2004; Rous-
selet, Foxe, & Bolam, 2016; Rousselet, Pernet, & Wilcox,
2017):

δ = p (xa > xb) − p(xa < xb) . (7)

The sample estimate of δ is obtained by comparing each
data observation in group A to each data observation in group
B:

δ̂O =

∑RA
a=1

∑RB
b=1 sgn(xa − xb)

RARB
, (8)

where δ̂O is the observation-based sample estimate of δ. The
sign function sgn (xa−xb) results in 1, 0, or −1 when xa > xb,
xa = xb, or xa < xb respectively. The total number of
comparisons is the product of the sample sizes RA and RB

of group A and B respectively. Calculating δ̂O may be con-
sidered a dominance analysis, referring to the extent to which
the one data distribution overlaps the other (Hess & Kromrey,
2004). The smaller the overlap between the distributions of
two groups, the larger the dominance and the more difference
between the two groups. A δ̂O of −1 or 1 indicates absence
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of overlap between two groups and a δ̂O of 0 refers to group
equivalence (Hess & Kromrey, 2004).

3.2 Adapting Cliff’s Delta for density distributions

In this subsection, we illustrate how to transform δ̂O into
an adapted version for density distributions in order to use the
statistic for comparing behaviour profiles. Consider δ̂O for
which each specific observation from a sample A is compared
to each specific observation from a sample B exactly once.
Therefore, we may regard both observations for each such
comparison on its own as having a “frequency” or “weight”
of 1. Implementing these frequencies into formula (8) gives

δ̂O =

∑RA
a=1

∑RB
b=1 sgn(xa − xb)(wawb)∑RA

a=1
∑RB

b=1(wawb)
, (9)

where wa and wb are the frequencies of the data observations
xa and xb from groups A and B respectively. By simply con-
sidering each possible data observation pair once, these fre-
quencies are all 1 by definition, making formula (9) identical
to formula (8).

When we apply this idea to behaviour profiles, we may
consider the behaviour probabilities from 0 to 1 (with a spe-
cific step size interval) our “observations” and the plausibil-
ities for each probability their accompanying “frequencies”
or ‘weights’. Implementing the probabilities and their plau-
sibilities into formula (9) gives the adapted Cliff’s Delta for
density distributions:

δ̂P =

∑A
a=1

∑B
b=1 sgn(pa − pb)ΛA(pa)ΛB(pb)∑A

a=1
∑B

b=1 ΛA(pa)ΛB(pb)
, (10)

where δ̂P is the profile-based sample estimate of δ. Here, pa

and pb are the probabilities from 0 to 1 for group A and group
B respectively, and ΛA and ΛB are the averages of all indi-
vidual respondent profiles for group A and group B respec-
tively. Note that A and B refer to the same number of step
size intervals for both groups and are unrelated to respondent
group size. We choose to discretize the probability axis by
a step size of 0.01, which means that we have 100 of these
intervals for each distribution. The midpoints of the inter-
vals, 0.005, 0.015, 0.025, . . ., 0.995, may be considered our
“observations” that all have their own accompanying weight
in the form of a plausibility. See Figure 2a, where we show
the actual 100 plausibility points of the distributions for three
groups of respondents. Note that δ̂P can also be evaluated as
a continuous function. In Appendix B, we discuss several
representations for the continuous form of Cliff’s Delta.

3.3 Using and interpreting δ̂P

See Figure 2a for an example of a pair of “observations”
in comparing group 1 and group 3. Consider their respec-
tive probabilities of 0.305 and 0.655, and their respective

(a) By distribution locations

2A. Respondent Profiles for Group 1, 2, and 3:
The Influence of Distribution Location
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(b) By distribution shapes

2B. Respondent Profiles for Group 1, 2, and 3:
The Influence of Distribution Shape
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Figure 2. Example profiles for group 1, 2 and 3

plausibilities of about 2.1 and 4.2 (see the dotted lines). Im-
plementing these values into the numerator of formula (10)
gives sgn(0.305-0.655)(2.1*4.2), resulting in a negative con-
tribution to the total numerator sum. In the numerator, all
positive and negative contributions of all possible pairs of
probability observations are summed. The result is divided
by the sum of all possible pairs of all (positive) plausibility
products. Hence, δ̂P will fall between (or at) −1 and 1. In
case of complete overlap of two distributions, δ̂P will be 0.
In case of absence of overlap of two distributions, δ̂P will be
−1 or 1. We consistently compare the probabilities of group
A to the probabilities of group B according to formula (10)
throughout this paper. Note that if we would interchange
groups A and B, that is using sgn (pb − pa) in the numerator
of formula (10), the sign of δ̂P would flip.

In comparing behaviour profiles, δ̂P takes into account
both location and shape. See Figure 2a. Considering the
location of behaviour profiles, when two groups are located
close to each other, they largely overlap. This means that
the expected values for both groups are alike and result in
a smaller absolute δ̂P (as for groups 1 and 2). When two
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groups are located further from each other, they hardly over-
lap. This means that the expected values for both groups are
different and result in a larger absolute δ̂P (see group 1 and
3). As can be seen in Figure 2a, the pairs of observations
for which the probability is larger in group 3 than in group
1, are frequently accompanied by substantial plausibilities.
However, the pairs of observations for which the probabil-
ity is larger in group 1 than in group 3, are rarely accompa-
nied by substantial plausibilities. The larger the overlapping
area of both groups, the smaller the absolute δ̂P, as positive
and negative contributions in the numerator cancel each other
out. Hence, in case of substantially different expected group
values and little overlap between the two behaviour profiles,
the outcome is a relatively large absolute δ̂P. When compar-
ing group 1 to group 3 (see Figure 2a), the result will be a
large negative δ̂P, indicating that the behaviour occurrence is
higher for group 3 than for group 1. Calculating δ̂P for com-
paring the profiles for groups 1 and 2 by means of formula
(10) yields -0.16, while comparing the profiles for groups 1
and 3 yields a δ̂P of -0.95.

Considering the shape of behaviour profiles, see Figure
2b. Here, group 1 and 2 are located around the same ex-
pected value, but shaped differently. When a group profile
is relatively stretched across the probability range (see group
2), this means that quite some uncertainty exists around the
expected value for this group. In general, a stretched profile
is likely to give a relatively large area of overlap with another
profile (see the overlap between groups 2 and 3). This results
in a relatively small absolute δ̂P. However, when a group pro-
file is relatively squeezed (see group 1), this means that the
expected value for this group is relatively certain. In general,
a squeezed profile is likely to give a small area of overlap
with another profile (see the overlap between group 1 and 3).
The outcome is a relatively large absolute δ̂P. Calculating
δ̂P for groups 2 and 3 by means of formula (10) yields -0.74,
while comparing the profiles for groups 1 and 3 yields a δ̂P of
−0.96. In summary, the further the profiles are located from
each other and the more squeezed they are, the more the pro-
files differ and the more δ̂P deviates from zero. Hence, we
can use δ̂P as a suitable measure to compare the behaviour
profiles for two specified groups of respondents or items.

Using δ̂P to compare behaviour profiles has many advan-
tages. For instance, δ̂P makes no assumption about the shape
of the underlying distribution (Cliff, 1993, 1996a, 1996b;
Goedhart, 2016; Vargha & Delaney, 2000) and is robust in
case of outliers or skewed or otherwise non-normal distri-
butions (Goedhart, 2016). The statistic is easy to calcu-
late, straightforward to interpret, and standardized, which
means that different effect size categories can be distin-
guished (Goedhart, 2016). For our δ̂P, relatively small or
unequal sample sizes are no issue.

4 Simulations for Cliff’s adapted Delta

In this section, we simulate data from two fixed respon-
dent group profiles that are accompanied by a specific fixed
reference δ. In subsection 4.1, we sample observations from
both reference profiles for which we calculate δ̂O. Here, we
consider each observation fixed and certain, without taking
into account the uncertainty that comes along with the fi-
nite number of items. We illustrate that δ̂O estimates δ with
more certainty as we sample more observations per group.
In subsection 4.2 and 4.3, we take into account the fact that
the number of items is finite in practice by constructing be-
haviour profiles for which we calculate δ̂P. Here, we consider
each probability a latent behaviour occurrence for a single re-
spondent who fills out a specific number of items. We illus-
trate that δ̂P estimates δ with more certainty as the number of
respondents per group increases. Subsequently, we answer
our second research question by showing that δ̂P approaches
δ as respondents fill out more items.

The simulation examples are based on random sampling
from two fixed reference distributions with pre-specified
means and shape. To map the uncertainty regarding the val-
ues of the respondent profiles and Cliff’s Delta’s, we use the
method of bootstrapping to construct 99% confidence inter-
vals. All respondent profiles are sampled randomly from
the reference profiles 10000 times. As a result, 10000 cor-
responding Cliff’s Delta’s can be calculated. For sections
4.2 and 4.3, the occurrence of a specific behaviour per item
is sampled on the basis of the sampled behaviour probabil-
ity for the corresponding respondent. See Table 1 for the R
code to construct the reference profiles and for an overview
of why and how we set up each simulation. R codes for the
simulations can be requested from the authors.

4.1 Increasing the number of observations for δ̂O

First, we construct two respondent profiles as our refer-
ence profiles for this section. See Figure 3a. Comparing
group 1 to group 2 results in a fixed reference δ of 0.29.When
we sample observations from these respondent profiles ran-
domly with replacement, we can calculate δ̂O. Let us sample
varying numbers of observations with an equal number of
observations per group and calculate the accompanying δ̂O.
See Figure 3b. As can be seen in the graph, the average δ̂O

across all samples is estimated well for any fixed number of
observations per group. The certainty of this estimation be-
comes larger as the number of observations increases. Thus,
δ̂O based on large numbers of randomly sampled observa-
tions from two respondent profiles is an accurate estimation
of δ based on those two profiles.

4.2 Increasing the number of respondents for δ̂P

We showed that increasing the number of sampled obser-
vations gives a more certain estimation of δ̂O. We may con-
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Table 1
R Code for the Reference Distributions and an Overview of the Purpose and Execution of the
Various Simulations

Construction of the reference profiles G1 and G2 in R
step = .01; seq = seq(.5*step, 1 - (.5*step), step)
meanA=.40 and sdA=.04
meanB=.70 and sdB=.10
A = dnorm(seq, meanA, sdA) # construct A
B = dnorm(seq, meanB, sdB) # construct B
A = A/(sum(A)*step) # normalize A
B = B/(sum(B)*step) # normalize B
G1 = (A+B)/2 # construct G1 as the average of A and B
meanG2=.45 and sdG2=.15
G2 = dnorm(seq, meanG2, sdG2) # construct G2
G2 = G2/(sum(G2)*step) # normalize G2

What do we want to illustrate by the
simulation?

How do we execute the simulation?

Simulation in section 4.1
Illustrate that Cliff’s Delta δ̂O estimates
reference Cliff’s Delta δ with more
certainty as more observations are
sampled from two behaviour profiles.

Sample observations from reference profiles
G1 and G2 based on their plausibility to
occur.

Simulation in section 4.2
Illustrate that two constructed behaviour
profiles and Cliff’s Delta δ̂p that results
from comparing them become more
certain as they are based on more
respondents.

1) Sample probabilities (as latent behaviour
occurrences) from reference profiles G1 and
G2 based on their plausibility to occur.
2) Construct behaviour profiles based on
these probabilities for 50 vs. 500 respondents
(for 500 items).

Simulation in section 4.3, part 1
Illustrate that the estimate of Cliff’s Delta
δ̂p that results from comparing two
constructed behaviour profiles becomes
more accurate (converges towards
reference Cliff’s Delta δ) as the number
of items per respondent increases.

1) Sample 500 fixed probabilities (as latent
behaviour occurrences) from reference
profiles G1 and G2 based on their plausibility
to occur.
2) Construct behaviour profiles based on
these probabilities for 5 to 500 items per
respondent (for 500 respondents).

Simulation in section 4.3, part 2
Illustrate that constructed behaviour
profiles become more accurate as the
number of items per respondent increases.

Same as for section 4.3 part 1, but for 5, 20,
50, and 200 items per respondent.

sider these observations the latent behaviour occurrences for
individual respondents. In practice, these individual occur-
rences are based on a finite number of survey items. The
uncertainty that comes along with this finite number of items
is the reason to construct respondent profiles, as our profile
method takes into account this uncertainty. In the following,
we sample occurrences or respondents that are based on a
finite number of items.

First, let us illustrate the influence of a varying respondent
group size on the estimation of δ for the fixed number of 500
items per respondent. For this purpose, we compare groups
consisting of 50 and 500 respondents by sampling from the
reference profiles.

See Figure 4 for the averaged samples. In Figure 4a,
the profile confidence intervals are relatively broad, refer-
ring to the present uncertainty of the profiles and hence of
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(a) Respondent profiles for group 1 (mean=0.55) and group 2
(mean=0.45) with reference Cliff’s δ = 0.29

3A. Respondent Profiles for
Group 1 (mean=.55) and Group 2 (mean=.45)

Reference Cliffs Delta = .29
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(b) Original observation-based Cliff’s δ̂ = 0.293B. Original Observation−Based Cliffs Delta = .29
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Figure 3. Reference profiles and observation-based Cliff’s δ̂

δ̂P. Here, the average δ̂P across all samples is estimated well
considering its value of 0.29, but its confidence interval of (-
0.00, 0.56) indicates large uncertainty for the estimation. In
Figure 4b, the average δ̂P is estimated well and the profile
confidence intervals are visibly smaller than in Figure 4a.
This refers to a more certain estimation of the profiles and
hence of δ̂P considering its more narrow confidence interval
of (0.20, 0.38). We can conclude that respondent profiles
and δ̂P become more certain as group size increases. This
conclusion is in line with the more certain estimation of δ̂O

for an increasing number of observations in subsection 4.1,
where the observations can be considered respondents who
filled out an infinite number of items.

4.3 Increasing the number of items for δ̂P

In this section, we illustrate the effect of increasing the
number of items per respondent. To disentangle this effect
from the influence of group size, we keep group size large
and fixed at 500 respondents per group. To disentangle this

(a) 50 respondents (99% C.I. = [−0.00, 0.56])

4A. Estimated Respondent Profiles for
Group 1 (mean=.55) and Group 2 (mean=.45)

Estimated Profile−Based Cliffs Delta = .29
Its 99% Confidence Interval = (−.00, .56)
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(b) 500 respondents (99% C.I. = [−0.20, 0.38])

4B. Estimated Respondent Profiles for
Group 1 (mean=.55) and Group 2 (mean=.45)

Estimated Profile−Based Cliffs Delta = .29
Its 99% Confidence Interval = (.20, .38)
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Figure 4. Estimated respondent profiles and their sta-
tistical properties for group 1 (mean=0.55) and group 2
(mean=0.45) with estimated profile-based Cliff’s δ̂ = 0.29

effect from the influence of group behaviour occurrence, we
use the same sample of 500 respondent behaviour probabil-
ities for each simulation. We show that δ̂P is a conservative
statistic and factually an underestimation of δ. As the number
of items per respondent increases, the estimation becomes
more accurate. We will see that δ̂P approaches δ as the num-
ber of items per respondent increases. A formal proof on how
δ̂PC converges to δ when the number of items per respondent
increases towards infinity is provided in Appendix C.

For each simulation, our starting points are the reference
profiles. Random samples of 500 fixed behaviour probabil-
ities from both reference profiles are used. Based on these
probabilities, we construct respondent profiles based on vary-
ing numbers of items that run from 5 to 500 items per respon-
dent. For simplicity, we choose an equal number of items
per respondent within each respondent profile (which is not
a requirement for the methodology). For instance, when a
respondent profile is based on 50 items, then 50 items are
sampled for each individual respondent based on the corre-
sponding probability. For each specific number of items, re-
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(a) Equal number of items per group

5A. Profile−Based Cliffs Delta = .29
for Two Distributions (R=500):

Based on Equal Number of Items per Group
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(b) Variable number of items for group 1 and 500 items for group 2

5B. Profile−Based Cliffs Delta = .29
for Two Distributions (R=500):

Based on a Variable Number of Items for Group 1
and 500 Items for Group 2
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(c) Variable number of items for group 1 and 20 items for group 2

5C. Profile−Based Cliffs Delta = .29
for Two Distributions (R=500):

Based on a Variable Number of Items for Group 1
and 20 Items for Group 2
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(d) Variable number of Items for group 1 and 5 items for group 2

5D. Profile−Based Cliffs Delta = .29
for Two Distributions (R=500):

Based on a Variable Number of Items for Group 1
and 5 Items for Group 2
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Figure 5. Estimated profile-based Cliff’s δ̂ for two distributions from 500 respondents with varying numbers of items per
group and δ = 0.29.

spondent profiles are sampled 10000 times in order to obtain
10000 δ̂P’s for each comparison between two profiles. From
these δ̂P’s, the averaged δ̂P is considered.

First, we compare respondent profiles that are based on
equal numbers of items. See Figure 5a. For small numbers
of items, δ̂P is clearly underestimated compared to δ. As the
number of items increases, this underestimation decreases
and δ̂P converges towards δ. The simulation outcome for a
respondent profile based on 500 items and a respondent pro-
file based on varying numbers of items is comparable. See
Figure 5b. Here, the underestimation of δ̂P is more mod-
est for small numbers of items for group 1 and converges
more rapidly towards δ than for the situation in Figure 5a.
The important similarity between both situations is that δ̂P

converges towards δ as the number of items increases. The
more items that respondent profiles are based on, the more
squeezed their shape in general, hence the more they con-
verge towards a precise estimation of the behaviour occur-
rence for the corresponding group. Theoretically, the profiles
would ultimately converge towards precise point estimates.

Such point estimates are identical to single data observations
for which δ̂O can be calculated.

It is interesting to see what happens when we compare a
respondent profile based on varying numbers of items to a
respondent profile based on a small fixed number of items.
See Figure 5c for such comparisons for a fixed number of
20 items for group 2. Also here, δ̂P rapidly increases as the
number of items increases for group 1. However, as can be
seen in Figure 5c, this increasement is limited and δ̂P does
not converge closely towards δ. When the fixed number of
items for group 2 is even smaller with only 5 items per re-
spondent, this effect is even stronger. See Figure 5d. Here,
δ̂P hardly increases with an increasing number of items in
group 1. The smaller the fixed number of items that group 2
is based on, the stronger the underestimation of δ̂P remains
for a large number of items for group 1.

We need to note that this underestimation of δ̂P for smaller
numbers of items per group is one of the benefits of the statis-
tic. The smaller the number of items that a group is based on,
the more uncertainty exists about the true behaviour profile
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(a) δ̂P = 0.16, 99% C.I. = [0.10, 0.21], 5 items

6A. Respondent Profiles: Reference Cliffs Delta= .29
Estimated Profile−Based Cliffs Delta = .16

Its 99% Confidence Interval = (.10, .21)
Group 1: 5 Items, Group 2: 5 Items
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(b) δ̂P = 0.24, 99% C.I. = [0.19, 0.28], 20 items

6B. Respondent Profiles: Reference Cliffs Delta= .29
Estimated Profile−Based Cliffs Delta = .24

Its 99% Confidence Interval = (.19, .28)
Group 1: 20 Items, Group 2: 20 Items
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(c) δ̂P = 0.27, 99% C.I. = [0.23, 0.30], 50 items

6C. Respondent Profiles: Reference Cliffs Delta= .29
Estimated Profile−Based Cliffs Delta = .27

Its 99% Confidence Interval = (.23, .30)
Group 1: 50 Items, Group 2: 50 Items
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(d) δ̂P = 0.28, 99% C.I. = [0.26, 0.30], 200 items

6D. Respondent Profiles: Reference Cliffs Delta= .29
Estimated Profile−Based Cliffs Delta = .28

Its 99% Confidence Interval = (.26, .30)
Group 1: 200 Items, Group 2: 200 Items
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Figure 6. Estimated respondent profiles and their statistical properties for varying numbers of items for both groups of respon-
dents (reference Cliff’s δ = 0.29).

for that group. In uncertain circumstances, we want to make
a cautious and conservative comparison between groups. In
other words, we do not want to find an effect by using δ̂P

in case two groups with similar distributions are evaluated
by too few items. In general, this means that groups need
to differ clearly in order to find an effect when one or both
groups are based on few items. Thus, the relatively larger
underestimation of δ̂P for groups that are based on relatively
fewer items is a favorable property of the statistic.

To illustrate the effect of an increasing number of items
and a more squeezed shape of the profiles, let us consider
some examples of respondent profiles that are sampled from
our reference profiles. The sampled respondent profiles are
based on equal numbers of items for each separate example.
See Figure 6 in which profiles are based on 5, 20, 50, and 200
items. As can be seen in Figure 6a, the estimated profiles are
very stretched and contain little detail when based on only 5
items. As the number of items increases in Figure 6b through
Figure 6d, the estimated profiles become more squeezed and
shaped in accordance with the reference profiles in more de-
tail.

In summary, we can conclude that δ̂P is a solid and con-

servative statistic that can be used to compare two behaviour
profiles. In principle, δ̂P is an underestimation of δ that con-
verges towards δ as the number of items increases. This
means that δ̂P takes into account the uncertainty regarding
the numbers of items that the profiles are based on. Note that
δ̂O does not take into account this uncertainty. However, the
underestimation remains evident and hence the convergence
remains limited when one of the profiles is based on a small
number of items. This means that the magnitude of δ̂P may
be substantially restricted by the profile that is based on the
least number of items. In fact, mainly this profile determines
the degree of underestimation of δ̂P relative to δ. Thus, in
case of a small number of items for one group, δ̂P is underes-
timated regardless of the number of items for the other group.

4.4 Recommendation on the number of items and re-
spondents

In this section, we provide some guidance on the number
of items per respondent and the number of respondents per
group for using respondent profiles and δ̂P. For the number
of items per respondent, we zoom in on part of the simulation
results for Figure 5a in section 4.3. We consider the numbers
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(a) 1 through 100 items per respondent (500 respondents in both
groups)

7A. Profile−Based Cliffs Delta for
  1 Through 100 Items per Respondent
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(b) 5 through 500 respondents in both groups (500 items per respon-
dent)

7B. Profile−Based Cliffs Delta for
  5 Through 500 Respondents in Both Groups
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Figure 7. Estimated profile-based Cliff’s δ̂

of 1 through 100 items per respondent for a fixed number of
500 respondents per group. See Figure 7a. In order to use
δ̂P and to omit a clear underestimation of the statistic, we
recommend to use at least roughly 30 items per respondent.
Again, note that δ̂P can be used for any number of items per
respondent, but that an existing effect may not be found for
lower numbers of items.

To give some guidance on the number of respondents per
group, see Figure 7b. We consider the numbers of 5 through
500 respondents for each group for a fixed number of 500
items per respondent. We simulated data by sampling with
replacement in the same way as we did in section 4.2 for 50
and 500 respondents per group. In order to obtain a more
or less reliable δ̂P, we recommend to use at least roughly 75
to 100 respondents per group. Note how the results for δ̂P in
Figure 7b resemble the results for δ̂O in the left part of Figure
3b.

(a) Age subgroups for “don’t know” in the survey Politics (Cliff’s
δ̂P = 0.28, 99% C.I. = [0.22, 0.34])

8A. Answering Dont Know
Age: Politics

Estimated Profile−Based Cliffs Delta = .28
Its 99% Confidence Interval = (.22, .34)
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(b) Educational subgroups for “neutral responding” in the survey
Personality (Cliff’s δ̂P = −0.16, 99% C.I. = [−0.23,−0.09])

8B. Neutral Responding
Education: Personality

Estimated Profile−Based Cliffs Delta = −.16
Its 99% Confidence Interval = (−.23, −.09)
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Figure 8. Respondent profiles and their statistical properties

5 Survey data examples

In this section, we make use of data of the LISS (Longitu-
dinal Internet studies for the Social Sciences) Panel adminis-
tered by CenterData at Tilburg University, The Netherlands
(CentERdata, 2014a, 2014b). In this section, we show two
survey data examples. Each example consists of two respon-
dent profiles for which we calculate δ̂P. To calculate the 99%
confidence intervals for δ̂P, we bootstrap 10000 profiles for
each respondent profile. For each bootstrap profile, respon-
dents are randomly sampled with replacement from the cor-
responding group data. In sampling, we consider the num-
ber of times that a behaviour did and did not occur as given
for each respondent. The number of sampled respondents is
equal to the group size R. See Figure 8a.

In Figure 8a, we compare respondents between 15 and 24
years old to respondents older than 24 years. They are com-
pared on giving don’t know-answers (Beatty & Herrmann,
2002; Leigh & Martin Jr, 1987) for the items of the LISS
Panel survey “Politics and Values” (wave 6, 2014b). Only
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those items are considered for which a don’t know-answer
was an applicable response option. More than 99% of all re-
spondents in both groups filled out between 64, 66, or 67 ap-
plicable items. As can be seen in Figure 8a, the respondents
in both age groups give don’t know-answers only occasion-
ally; the lower the probability on a don’t know-answer, the
higher the expected plausibility of the probability. However,
respondents between 15 and 24 years old seem to give rel-
atively more don’t know-answers considering the plausibil-
ity of the probability range of approximately 0.10–0.60 and
the small bump at a high probability (0.90–1.00) on the be-
haviour. This small bump may refer to a subgroup within the
respondent group between 15 and 24 years old that shows
don’t know-answers strikingly often. The statistical result
is a δ̂P of 0.28 with a confidence interval of (0.22, 0.34).
This means that respondents between 15 and 24 years old
show more don’t know-answers than respondents older than
24 years for items about political content.

In Figure 8b, we compare respondents who completed
an academic education to respondents who completed an-
other level of education. They are compared on giv-
ing neutral responses (see Krosnick and Fabrigar, 1997;
O’Muircheartaigh, Krosnick, and Helic, 2000) for the appli-
cable items of the LISS Panel survey “Personality” (wave 6,
2014a). More than 95% of all respondents in both groups
filled out 182 or 184 applicable items. As can be seen in
Figure 8b, the profile for respondents who completed non-
academic education is concentrated at higher probability val-
ues compared to the profile for respondents who completed
academic education. This means that a higher plausibility
is expected for higher probabilities on the behaviour for re-
spondents who completed non-academic education. The sta-
tistical result is a δ̂P of −0.16 with a confidence interval of (-
0.23, -0.09). This means that respondents who completed an
academic education show less neutral responses than respon-
dents who completed a non-academic education for items
about personal and psychological traits.

The resulting effect sizes of 0.28 and −0.16 can be classi-
fied as a “medium” and “small” effect respectively. We use
the rules that

∣∣∣δ̂P

∣∣∣ < 0.11 indicates no effect, 0.11≤
∣∣∣δ̂P

∣∣∣ < 0.28
a small effect, 0.28 ≤

∣∣∣δ̂P

∣∣∣ < 0.43 a medium effect, and
∣∣∣δ̂P

∣∣∣
≥ 0.43 a large effect, as investigated by Vargha and Delaney
(2000). See also Goedhart (2016). To illustrate the broad
usefulness of the adapted Cliff’s Delta, we refer to Appendix
D for two other data examples. For an elaboration on the lim-
itations of the profile method in specific (extreme) situations,
see Appendix E.

6 Discussion

In this paper, we introduced an adaptation of the non-
parametric effect size measure Cliff’s Delta δ. The motiva-
tion for this adaptation comes from the use of behaviour pro-
files for respondent survey data. Behaviour profiles are den-

sity distributions in which survey answer behaviour is sum-
marized. Such profiles take into account the varying number
of survey items that is filled out per respondent due to filter
questions. In order to compare two behaviour profiles, the
adaptation of Cliff’s Delta δ̂P can be used. For instance, the
occurrence of answering “don’t know” for men and women
can be compared. The adapted Cliff’s Delta δ̂P takes into ac-
count both the location and the shape of both profiles. Here,
the location refers to the estimated behaviour occurrence and
the shape refers to the precision of the estimation. The less
profiles overlap each other and the more squeezed their dis-
tributions, the larger the difference between two groups. In
essence, we showed the relation between the adapted profile-
based Cliff’s Delta δ̂P and the original observation-based
Cliff’s Delta δ̂O. In Appendix F, we discuss the relation of
δ̂O to the Mann-Whitney statistic (Mann & Whitney, 1947;
Wilcoxon, 1945).

First, we constructed two fixed behaviour profiles and
their accompanying fixed reference δ. We illustrated how
δ̂O is calculated by sampling random observations from these
fixed behaviour profiles. This estimate becomes more certain
as the number of sampled observations increases. Second,
we sampled random probabilities from the fixed profiles and
considered each probability the latent behaviour occurrence
of an individual respondent who filled out a specific number
of items. We showed that an increase in respondent group
size results in more certain behaviour profiles and hence a
more certain δ̂P. Third, we illustrated that δ̂P converges to-
wards δ as the number of items per respondent in both groups
is sufficiently large. Interestingly, δ̂P approaches δ only to a
limited degree in case one of the groups is based on a small
number of items. In fact, the profile that is based on the least
number of items determines the degree of convergence of δ̂P.
The smaller the number of items that this profile is based on,
the more this profile needs to differ in behaviour occurrence
from another profile in order for δ̂P to detect an effect. This
means that two profiles based on any number of items can
be compared. In summary, δ̂P is a solid and conservative
statistic that is both useful and advantageous to compare two
behaviour profiles.

Although δ̂P can be used to compare any two density dis-
tributions, our specific purpose to transform δ̂O was to com-
pare groups of respondents or items on survey answer be-
haviour. For instance, higher and lower educated individu-
als can be compared on their frequency of answering ‘don’t
know’. Or items that do and do not contain sensitive content
can be compared on how frequently respondents give “won’t
tell”-answers. By such comparisons, relations between re-
spondent and item characteristics on the one hand, and un-
desirable answer behaviour on the other, may be exposed.
These relations can be investigated per survey and topic, but
also across surveys to indicate their stability and consistency
for multiple survey topics and characteristics. The relations
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may function as a guide in designing surveys that minimize
the occurrence of undesirable answer behaviour and hence
optimize data collection.
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Appendix A
R-Code examples

A1. Individual profiles

This appendix is provided with an R code in order to construct individual profiles yourself. You can simply fill out
numbers of items for respondents A and B, and then run the complete code.

# Fill out numbers for the construction of individual profiles A and B yourself;
# set GA for the number of items for which a behaviour has been shown by respondent A;
# set IA for the number of items that has been filled out by respondent A;
# set GB for the number of items for which a behaviour has been shown by respondent B;
# set IB for the number of items that has been filled out by respondent B.

GA = 14
IA = 30
GB = 16
IB = 30

# After filling out GA, IA, GB, and IB, just run the rest of the code:
step = 0.01; seq = seq(0.5 * step, 1 - (0.5 * step), step)

# Construct the individual profiles:
respA = dbinom(GA, IA, seq)
respB = dbinom(GB, IB, seq)

# Normalize the individual profiles:
respA = respA / (sum(respA) * step)
respB = respB / (sum(respB) * step)

# Plot the individual profiles:
plot(seq, respA, type=’l’, col=’blue’, lwd=2, ylim=c(0,8), axes=FALSE,
main = c(paste(’Constructing Behaviour Profiles Yourself’),
paste(’for Respondent A and B’)),
xlab = ’Probability of Behaviour’,
ylab = ’Plausibility’)
axis(side=1, at=seq(0, 1, 0.1))
axis(side=2, at=seq(0, 8, 2), las=1)
lines(seq, respB, type=’l’, lwd=2, col=’red’)
legend(’top’, bty=’n’, c(’Profile for Respondent A’,
’Profile for Respondent B’), cex=0.9, fill=c(’blue’, ’red’))

# Calculate expected values for the individual profiles:
sum(seq * respA) * step
sum(seq * respB) * step

# Calculate adapted Cliff’s Delta for the individual profiles:
zA = respA
zB = respB
DIF = matrix(0, length(zA), length(zB))
for(x in 1:length(zA))
{

for(y in 1:length(zB))
}
dif = (x-1) * step - (y-1) * step
DIF[x,y] = dif
DIF = sign(DIF)
DEN = matrix(0, length(zA), length(zB))
for(x in 1:length(zA))
{

for(y in 1:length(zB))
}
den = zA[x] * zB[y] * step^{}2
DEN[x,y] = den
CD = sum(DIF * DEN) / sum(DEN)
CD

A2. Group profiles

This appendix is provided with an R code in order to construct group profiles yourself. You can simply fill out numbers
of items for respondents in groups A and B, and run the complete code.

# Fill out numbers for the construction of group profiles A and B yourself;
# set GA and GB for the number of items for which a behaviour has been shown
# by the three respondents in group A and the three respondents in group B respectively;
# set IA and IB for the number of items that has been filled out
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# by the three respondents in group A and the three respondents in group B respectively.
# Note that each group can be enlarged by any number of respondents by simply
# adding new respondents under ’Input for group A’ and/or ’Input for group B’.

# Input for group A:
GA = c(10, 15, 20)
IA = c(40, 40, 40)

# Input for group B:
GB = c(15, 20, 25)
IB = c(40, 40, 40)

# After filling out GA, IA, GB, and IB, just run the rest of the code:
step = 0.01; seq = seq(0.5 * step, 1 - (0.5 * step), step)

# Construct profile A based on the average of all group members:
inputA = matrix(c(GA, IA), ncol=2)
nrespA = nrow(inputA)
groupA = matrix(0, 1/step, 1)
nA = 0
for (i in 1:nrespA)
{

db = dbinom(inputA[i,1], inputA[i,2], seq)
dbA = matrix(db, 1/step, 1) / (sum(db) * step)
groupA = groupA + dbA
nA = nA + 1

}
groupA = groupA / nA

# Construct profile B based on the average of all group members:
inputB = matrix(c(GB, IB), ncol=2)
nrespB = nrow(inputB)
groupB = matrix(0, 1/step, 1)
nB = 0
for (i in 1:nrespB)
{

db = dbinom(inputB[i,1], inputB[i,2], seq)
dbB = matrix(db, 1/step, 1) / (sum(db) * step)
groupB = groupB + dbB
nB = nB + 1

}
groupB = groupB / nB

# Plot the group profiles:
plot(seq, groupA, type=’l’, col=’blue’, lwd=2, ylim=c(0,8), axes=FALSE,
main = c(paste(’Constructing Behaviour Profiles Yourself’),
paste(’for Respondent Groups A and B’)),
xlab = ’Probability of Behaviour’,
ylab = ’Plausibility’)
axis(side=1 , at=seq(0, 1, 0.1))
axis(side=2 , at=seq(0, 8, 2), las=1)
lines(seq, groupB, type=’l’, lwd=2, col=’red’)
legend(’top’, bty=’n’, c(’Profile for Group A’,
{}’Profile for Group B’), cex=0.9, fill=c(’blue’, ’red’))

# Calculate expected values for the group profiles:
sum(seq * groupA) * step
sum(seq * groupB) * step

# Calculate adapted Cliff’s Delta for the group profiles:
zA = groupA
zB = groupB
DIF = matrix(0, length(zA), length(zB))
for(x in 1:length(zA))
{
for(y in 1:length(zB))
{

dif = (x-1) * step - (y-1) * step
DIF[x,y] = dif

}
}
DIF = sign(DIF)
DEN = matrix(0, length(zA), length(zB))
for(x in 1:length(zA))
{
for(y in 1:length(zB))
{

den = zA[x] * zB[y] * step^{}2
DEN[x,y] = den

}
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}
CD = sum(DIF * DEN) / sum(DEN)
CD
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Appendix B
The continuous form of δ̂P

For reasons of practical utility, we computed δ̂P for discrete
behaviour profiles. However, we can adjust our formulation
for continuous profiles. In order to do this, we multiply both
the numerator and denominator in formula (10) by step sizes
∆pa and ∆pb of both respondent profiles:

δ̂P =

∑A
a=1

∑B
b=1 sgn(pa − pb)ΛA(pa)ΛB(pb)∆pa∆pb∑A

a=1
∑B

b=1 ΛA(pa)ΛB(pb)∆pa∆pb
.

(11)
As the profiles are normalized to have an area of 1, the

outcome of the denominator in formula (11) is 1. Removing
the denominator in formula (11) yields

δ̂P =

A∑
a=1

B∑
b=1

sgn(pa − pb)ΛA(pa)ΛB(pb)∆pa∆pb . (12)

By taking the limit ∆pa → 0 and ∆pb → 0, we can
write the summations in formula (12) as integrals, transform-
ing δ̂P into its continuous form δ̂PC:

δ̂PC =

∫ 1

0

∫ 1

0
sgn(pA − pB)ΛA(pA)ΛB(pB) dpA dpB . (13)

In Appendices C and F, it appears helpful to write
δ̂PC in an alternative form. To derive this form, we may first
rewrite formula (13) as

δ̂PC =

∫ 1

0

(∫ 1

0
sgn(pA − pB)ΛA(pA) dpA

)
ΛB(pB) dpB .

(14)
Next, we can split up the integral between parentheses into
two parts:∫ 1

0
sgn(pA−pB)ΛA(pA) dpA =

∫ pB

0
sgn(pA−pB)ΛA(pA) dpA

+

∫ 1

pB

sgn(pA − pB)ΛA(pA) dpA . (15)

Since pA < pB in the first integral and pA > pB in the
second integral in the right hand side of the formula, we ob-
tain sgn (pA − pB) = −1 and sgn (pA − pB) = 1 respectively.
Therefore, we may write formula (15) as∫ 1

0
sgn(pA − pB)ΛA(pA) dpA = −

∫ pB

0
ΛA(pA) dpA

+

∫ 1

pB

ΛA(pA) dpA . (16)

We can substitute this result into formula (14), lead-
ing to

δ̂PC =

∫ 1

0

(
−

∫ pB

0
ΛA(pA) dpA +

∫ 1

pB

ΛA(pA) dpA

)
ΛB(pB) dpB .

(17)

As both behaviour profiles are normalized to have an
area of 1, we can derive that∫ pB

0
ΛA(pA) dpA+

∫ 1

pB

ΛA(pA) dpA =

∫ 1

0
ΛA(pA) dpA = 1 ,

(18)
which means that

−

∫ pB

0
ΛA (pA) dpA =

∫ 1

pB

ΛA (pA) dpA − 1 . (19)

Substituting this outcome into formula (17) gives

δ̂PC =

∫ 1

0

(
2
∫ 1

pB

ΛA(pA) dpA − 1
)
ΛB(pB) dpB , (20)

resulting in the alternative way of writing δ̂PC:

δ̂PC = 2
∫ 1

0

(∫ 1

pB

ΛA(pA) dpA

)
ΛB (pB) dpB − 1 . (21)

Note that we may also rewrite formula (13) as fol-
lows:

δ̂PC = −

∫ 1

0

(∫ 1

0
sgn(pB − pA)ΛB(pB) dpB

)
ΛA(pA) dpA .

(22)
After using similar steps of derivation, we then obtain

δ̂PC = −2
∫ 1

0

(∫ 1

pA

ΛB(pB) dpB

)
ΛA (pA) dpA + 1 . (23)

Formula’s (13), (21), and (23) pose three different
forms to compute δ̂PC for continuous behaviour profiles.
These forms may be utilized for specific purposes, as we do
in Appendices C and F.
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Appendix C
Profiles with an infinite number of items

In section 4.3, our numerical simulation suggests that δ̂P con-
verges to δ as the number of items tends to infinity. In this
appendix, we provide a mathematical proof for this claim.
For this purpose, we use the alternative continuous form of
Cliff’s Delta, as derived in Appendix B. See formula (21).
With help of formula (5), this form can be written as

δ̂PC =
1

RARB

RA∑
rA=1

RB∑
rB=1

δ̂PCrArB
, (24)

with

δ̂PCrArB
= 2

∫ 1

0

(∫ 1

pB

ΛrA (pA) dpA

)
ΛrB (pB) dpB−1 . (25)

Here, ΛrA is the profile of an individual respondent rA

in group A, which can be expressed as

ΛrA (pA) =
p

xrA IrA
A (1 − pA)(1−xrA )IrA∫ 1

0 p
xrA IrA
A (1 − pA)(1−xrA )IrA dpA

, (26)

with xr = Gr
Ir

being the proportion of items for which the
behaviour is shown. Similarly,

ΛrB (pB) =
p

xrB IrB
B (1 − pB)(1−xrB )IrB∫ 1

0 p
xrB IrB
B (1 − pB)(1−xrB )IrB dpB

. (27)

When formula’s (26) and (27) are substituted into
(25), we obtain

δ̂PCrArB
= 2

∫ 1
0

(∫ 1
pB

p
xrA IrA
A (1 − pA)(1−xrA )IrA dpA

)
p

xrB IrB
B (1 − pB)(1−xrB )IrB dpB(∫ 1

0 p
xrA IrA
A (1 − pA)(1−xrA )IrA dpA

) (∫ 1
0 p

xrB IrB
B (1 − pB)(1−xrB )IrB dpB

)−1 .

(28)
In the limit of IrA → ∞, we can rewrite this result as

δ̂PCrArB
= 2

∫ 1
0

((
1xrA>pB

) ∫ 1
0 p

xrA IrA
A (1 − pA)(1−xrA )IrA dpA

)
p

xrB IrB
B (1 − pB)(1−xrB )IrB dpB(∫ 1

0 p
xrA IrA
A (1 − pA)(1−xrA )IrA dpA

) (∫ 1
0 p

xrB IrB
B (1 − pB)(1−xrB )IrB dpB

) −1 ,

(29)
where 1x>y is the indicator function

1x>y =


1 if x > y
1
2 if x = y
0 if x < y

. (30)

When we substitute formula (30) into (29), it follows
that

δ̂PCrArB
= 2

∫ xrA

0 p
xrB IrB
B (1 − pB)(1−xrB )IrB dpB∫ 1

0 p
xrB IrB
B (1 − pB)(1−xrB )IrB dpB

− 1 . (31)

As IrB → ∞, we can rewrite this result with help of
the indicator function as

δ̂PCrArB
= 2

(
1xrA>xrB

)
− 1 = sgn

(
xrA − xrB

)
. (32)

Substitution into formula (24) yields

δ̂PC =
1

RARB

RA∑
rA=1

RB∑
rB=1

sgn
(
xrA − xrB

)
, (33)

which is identical to formula (8) in section 3. Hence, we
have proven that the profile-based Cliff’s Delta converges to
the observation-based Cliff’s Delta as the number of items
approaches infinity.
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(a) Subgroups that Chose Few versus Many Advantageous Cards
and Their Intolerance of Uncertainty Level. 99% C.I. of
[−0.02, 0.54] and estimated profile-based Cliff’s Delta of 0.28

E1. Intolerance of Uncertainty for Participants
Choosing Few vs. Many Advantageous Cards

Estimated Profile−Based Cliffs Delta = .28
Its 99% Confidence Interval = (−.02, .54)
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(b) PVV Voters versus GroenLinks Voters and Their Openness to
Experience Level. 99% C.I. of [0.10, 0.32] and estimated profile-
based Cliff’s Delta of 0.21

E2. Openness to Experience for
PVV Voters vs. GroenLinks Voters

Estimated Profile−Based Cliffs Delta = .21
Its 99% Confidence Interval = (.10, .32)
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Figure D1. Respondent Profiles and Their Statistical Proper-
ties

Appendix D
Other data examples

In this appendix, we illustrate the broad usefulness of the
adapted Cliff’s Delta. For this purpose, we show two differ-
ent types of examples than in section 5. See Figure D1a for
the first example. The outcomes resulted from research in
which individuals participated in playing the IOWA Gam-
bling Task in order to clarify the effect of intolerance of
uncertainty on future-oriented decision making (see Bais,
2012). Intolerance of uncertainty was measured by the Dutch
version of the Intolerance of Uncertainty Scale (IUS) con-
sisting of 27 items on a 5-points Likert scale (see De Bruin,
Rassin, van der Heiden, & Muris, 2006). The IOWA Gam-
bling Task consisted of choosing one card during 100 subse-
quent trials from four piles of cards that either yielded or cost
fictitious money for every ten cards. From these piles, two
piles consistently resulted in long term gain and two piles

consistently resulted in long term loss of money. The goal
for the participants was to prevent long term future loss of
money. Hence, they had to discover that they should choose
the (advantageous) cards from the two piles that resulted in
long term money gain. Findings from a simple regression
analysis showed a negative association between number of
advantageous cards and intolerance of uncertainty. In other
words, a higher level of intolerance of uncertainty was re-
lated to choosing fewer advantageous cards (Bais, 2012).

In order to use these data to construct two respon-
dent profiles, we first split up the participants into a group
that chose few and a group that chose many advantageous
cards by using the overall median number of advantageous
cards. Second, we transform the participant IUS scores of 1
through 5 on each item into 0, 0.25, 0.50, 0.75, and 1 respec-
tively. Then we sum the transformed scores of all 27 items
and round the total to the nearest integer for each participant.
The outcome of this process is used as Gr in formula (2) with
Ir=27. Finally, the respondent profiles for both groups are
computed by formula’s (3) and (5); see Figure D1a. When
we compare the few to the many advantageous cards profile,
the adapted Cliff’s Delta is 0.28, which is a medium effect.
Interestingly, this value is similar in magnitude to the effect
size as found by Bais (2012) and thus confirms the earlier
outcome. Note that the confidence interval for Cliff’s Delta
is broad, as we use 99% confidence intervals and both groups
are relatively small.

See Figure D1b for the second example. Central in
this example is the Big Five personality trait “openness to
experience”. Individuals showing a high degree of openness
to experience have an intellectual curiosity, an active imagi-
nation, and a sensitive, analytical, and self-reflective mindset
(see Goldberg, 1992; Guenole and Chernyshenko, 2005). We
use respondent data from the LISS Panel surveys “Personal-
ity” and “Politics and Values”(both wave 6, 2014a, 2014b)
of CentERdata to examine our idea that individuals who vote
for a progressive-green party (“GroenLinks” or GL) might
show more openness to experience than individuals who vote
for a conservative-populistic party (“Partij voor de Vrijheid”
or PVV). From the survey “Politics and Values”, we con-
sider the item “Which political party did you vote for during
the most recent national Dutch elections on September 12th
2012?”. All respondents who answered “PVV (Partij voor de
Vrijheid)’ or “GL (GroenLinks)” are taken into account for
the construction of both respondent profiles.

From the survey “Personality”, we consider the ten
openness to experience items on a 5-points Likert scale (see
Guenole and Chernyshenko, 2005). The transformation and
summation of the scores is executed by the same procedure
as in the former example. Subsequently, the respondent pro-
files for both political parties are constructed. See Figure
D1b. When we compare the GroenLinks to the Partij voor
de Vrijheid profile, the adapted Cliff’s Delta is 0.21, which
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is a small but clearly present effect. To some extent, this
confirms our idea that individuals who vote for GroenLinks
are more opened to experience than individuals who vote for
Partij voor de Vrijheid. Finally, note that the confidence in-
terval for Cliff’s Delta in this example is more narrow than
in the former example, as both groups are relatively large.
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(a) The same number of items and different behaviour probability
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(b) Different number of items and the same behaviour probability
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Figure E1. Examples of respondent profiles

Appendix E
Limitations of the behaviour profile method

In this appendix, we discuss and illustrate potentially difficult
situations when constructing behaviour profiles. Answer be-
haviour may occur very rarely or very frequently. This may
pose difficulty in comparing behaviour profiles using a sta-
tistical measure like the adapted Cliff’s Delta. Particularly
when one or both behaviour proportions are close to 0 or 1
and the one subgroup is based on a relatively small and lower
number of items than the other subgroup, three undesirable
situations may occur: 1) An effect occurs that does not ac-
tually exist; 2) an effect that actually exists is not detected;
3) an effect occurs that may contrast reality. Essentially, the
undesirability of these three situations is related to the differ-
ent number of items that two respondent profiles are based
on. In other words, the one profile contains more uncertainty
than the other profile. In case one or both behaviour occur-
rences are close to 0 or 1, this difference in uncertainty may
be problematic in comparing two respondent profiles. From
here, we give examples that refer to behaviour occurrences
close to 0.

Before elaborating on the three situations, let us con-
sider respondent profiles that are based on the same number
of 20 items for some clarification first. See Figure E1a. Re-
spondent profile A (blue) has a behaviour proportion of 0.50
and contains a degree of uncertainty that is equally spread
around this value. This means that the expected value equals
the behaviour proportion of 0.50. However, when consid-
ering respondent profile B (magenta) that has a behaviour
proportion of 0.10, the uncertainty cannot be spread well to-
wards the left of the profile center. As a result, the profile
loses a bit of its symmetric shape and the expected profile
value (0.14) is projected slightly upwards relative to the be-
haviour proportion. This effect is even a bit stronger for re-
spondent profile C (green) that has a behaviour proportion
of 0.05. The profile clearly has a skewed shape towards the
right of the profile center and an expected value (0.09) that
is projected upwards relative to the proportion. For respon-
dent profile D (red) with a behaviour proportion of 0.00, this
effect is striking, as its full area is forced to fall within the
probability axis from 0 to 1. The result is a positively skewed
profile and an increased expected value (0.05) relative to the
proportion.

Now let us consider respondent profiles that have the
same behaviour proportion of 0.05, but differ in the number
of items that they are based on. See Figure E1b. Respon-
dent profile D (red) that is based on 80 items has a nearly
symmetric shape and an expected value (0.06) that is only
marginally higher than 0.05. This means that a behaviour
proportion close to 0 is not of concern in case the number of
items is large enough to maintain the profile’s nearly sym-
metric shape and initial centered value. The same effect
applies to respondent profile C (green) that is based on 60
items. Its shape is still more or less symmetric and the ex-
pected value (0.06) is only slightly higher than 0.05. How-
ever, when we consider respondent profile B (magenta) that
is based on 40 items, we notice that the profile’s shape is a
bit skewed towards the right of the profile’s center and the ex-
pected value (0.07) is projected slightly upwards. The effect
is the strongest for respondent profile A (blue) that is based
on only 20 items. This profile is clearly positively skewed
and its expected value (0.09) clearly deviates from the pro-
portion of 0.05. In summary, the more the behaviour propor-
tion is close to 0 and the lower the number of items that a
respondent profile is based on, the more the profile is pos-
itively skewed and its expected value is projected upwards
relative to the proportion. The same idea can be applied to
behaviour proportions close to 1. From here, we elaborate on
the undesirability of the three situations as delineated above.

6.1 The diverging case

In situation 1), the behaviour proportion for a group A
based on the larger number of items is relatively close to 0;
the proportion for a group B based on the smaller number of
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items is slightly less close to 0. Due to the smaller number of
items and hence larger uncertainty of group B, the expected
value for this group is projected more towards the center of
the probability axis than for group A. Therefore, the expected
value for group B may “diverge” from the expected value for
group A. In other words, the expected values may differ more
than is presumed on the basis of the difference between the
proportions. Thus, such a “divergent case” may indicate a
difference between two groups, while there may actually not
exist a difference between them.

6.2 The converging case

Situation 2) is essentially the opposite of situation 1);
the behaviour proportion in a group A based on the smaller
number of items is relatively close to 0; the proportion in
a group B based on the larger number of items is slightly
less close to 0. Because of the smaller number of items and
hence larger uncertainty of group A, the expected value for
this group is projected more towards the center of the prob-
ability axis than for group B. Therefore, the expected value
for group A may “converge” towards the expected value for
group B. In other words, the expected values differ less than
is presumed on the basis of the difference between the pro-
portions. Thus, such a “convergent case” may not detect a
difference between two groups, while there may actually ex-
ist a difference between them.

6.3 The contrasting case

Situation 3) is essentially a variant of situation 2).
The only difference compared to situation 2) is that the ex-
pected value for group A (based on the smaller number of
items) does not only ‘converge” towards, but also surpasses
the expected value for group B (based on the larger num-
ber of items). This means that based on the proportions, we
may presume a more frequent behaviour for group B than for
group A. However, based on the expected values, we may
presume more frequent behaviour for group A than for group
B. Thus, such a “contrasting case” may refer to a specific dif-
ference, while the actual difference may be the opposite one.

6.4 A few final notes

We need to note that an undesirable situation may
occasionally occur when the behaviour proportions of both
groups are not necessarily close to 0 or 1. This may happen
when two groups are based on a very large and a very small
number of items respectively. The influence of profiles based
on very many items on projecting the expected value towards
the center of the probability axis is much smaller than this
influence of profiles based on very few items. Thus, com-
paring two respective groups based on very many and very
few items may be of concern, regardless of their behaviour
proportions.

Theoretically, the most optimal situation is the com-
parison of two large groups of respondents who all fill out
the same large number of items. Practically, this is difficult
to accomplish, as most surveys contain filter questions and as
both characteristic’s categories should then contain the same
number of items. This means that in using respondent pro-
files, the profiles should be scanned on their behaviour pro-
portions and expected values. In this way, distortions can be
detected and the abovementioned situations can be omitted.
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Appendix F
Relation between Cliff’s Delta and Mann-Whitney U

In this appendix, we briefly illustrate the relation between
the Mann-Whitney U statistic and Cliff’s Delta. This statistic
consists of two parts:

UA = RARB +
RA(RA + 1)

2
− TA (34)

and
UB = RARB +

RB(RB + 1)
2

− TB , (35)

where UA and UB are the Mann-Whitney U statistics for a
group A and B respectively, RA and RB are the numbers of ob-
servations in group A and B respectively, and TA and TB are
the sums of the ranks of the observations in group A and B,
respectively (see Mann and Whitney, 1947; Wilcoxon, 1945;
Zar, 2010). The δ̂O is linearly related to U:

δ̂O =
2UA

RARB
− 1 =

−2UB

RARB
+ 1. (36)

Considering formula’s (21) and (23) in Appendix B,
note that δ̂PC is directly related to the form of δ̂O in formula
(36):

δ̂PC = 2ZA − 1 = −2ZB + 1 , (37)

where

ZA =

∫ 1

0

(∫ 1

pB

ΛA(pA) dpA

)
ΛB (pB) dpB . (38)

and

ZB =

∫ 1

0

(∫ 1

pA

ΛB(pB) dpB

)
ΛA (pA) dpA . (39)

Finally, note that formula (36) differs from formula (37) in
that δ̂O takes into account group size, whereas δ̂PC does not.
The reason is that δ̂PC compares two full behaviour profiles
by definition, which can be based on any number of respon-
dents.
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