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A B S T R A C T   

To address the need for a shift from a linear to a circular economy in the built environment, this paper develops a 
semi-automated assistive process for planning building material deconstruction for reuse using sensing and 
scanning, Scan-to-BIM, and computer vision techniques. These methods are applied and tested in a real-world 
case study in Geneva, Switzerland, with a focus on reconstruction and recovery analysis for floor beam sys-
tems. First, accessible sensing and scanning tools, such as mobile photography and smartphone-based consumer- 
grade Lidar devices, are used to capture imagery and other data from an active demolition site. Then, photo-
grammetry and point cloud data analysis are performed to construct a 3D BIM model of relevant areas. The 
structural relationships between reconstructed BIM elements are evaluated to score the feasibility for recovery of 
each element. This study illustrates what is feasible and where further development is necessary for automating 
building material reuse planning at scale to increase the uptake of circular economy practices in the construction 
sector.   

1. Introduction 

The construction industry represents 5.6% of the European Gross 
Domestic Product [1], yet it is the largest consumer of global raw ma-
terials [2], responsible for 39% of anthropogenic greenhouse gases [3] 
and 35.9% of the total solid waste generated [4]. Through the Waste 
Framework Directive, the EU aimed at recovering 70% of construction 
and demolition waste by 2020, thereby reducing the amount of debris 
going to landfill [5]. During the most recent progress study for the 
Framework Directive, more than half of member states were on track for 
this goal as of 2018 [6], however a broader study of environmental 
policy as of 2022 indicated more than half had not ultimately reached 
these goals [7]. Specifically, contemporary recovery directives treat 
reuse, recycling, and backfilling operations as material recovery [5], the 
latter of which still creates an end of life for the product. This is part of a 
broader trend wherein current waste efforts have largely resulted in 
downcycling practices whereby a material’s original developed prop-
erties are lost and the new use is of lesser value [8]. Additionally, given 
the accompanying rise in consumption, reused and recycled materials 

only account for 11.8% of overall material usage [9]. 
To address the resource depletion, waste generation, and pollution 

caused by the construction sector, an urgent shift from a linear ‘take-
–use–waste’ model to a circular economy is needed, in which building 
components have multiple or extended lifespans [10]. The scale of the 
issue is illustrated in a study on the residential building material stocks 
in Switzerland, which estimated 2.6 million tons of material outflow per 
year as of 2015, and predicted to reach 6.1 million tons per year by 2055 
[11]. Extending the lifespan of the current material stock through reuse 
is an extensive process, as buildings pose complex, multi-variant prob-
lems that are addressed by numerous stakeholders often lacking 
collaboration, while changing practices and synergies within the in-
dustry produce organizational challenges [12]. Given this, the explo-
ration and adoption of digital technologies could enable a shift toward 
the circular paradigm in the Architecture, Engineering and Construction 
(AEC) sector [13], with the goal of carbon-free buildings by 2050, in line 
with the Glasgow Climate Pact [14,15]. In particular, digitizing and 
automating the process of material reuse in the built environment can 
facilitate the connection of actors across the value chain through a 
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common methodology by enabling information gathering and sharing 
[16]. 

The 9R Strategies Framework [17] encapsulates the primary strate-
gies by which lifespans of building components can be improved. Crit-
ical among them for the building sector are the reuse of components once 
removed, repair of components in place when possible, refurbishment of 
removed components for new use, remanufacture of discarded parts of a 
component, and recycling of any waste still produced, preferably using 
techniques that avoid downcycling [18]. The complexity and breadth of 
information required for effective material application of these strate-
gies has led to several specializations among groups in the industry. At 
the comprehensive information scale, groups such as Building Material 
Scout in Germany [19] and Zirkular in Switzerland [20] offer design 
consulting and matchmaking with other circular service providers, 
while Opalis in Belgium [21] provides information on local material 
dealers as well as product and technical information from a recovery 
standpoint. This indicates a need for an expansion of the traditional 
array of BIM data provided with building products. One implementation 
includes the material passport system developed by groups such as 
Buildings as Material Banks [22]. 

At the level of specific components, groups such as useagain in 
Switzerland [23] and Enviromate in the UK [24] provide marketplaces 
and inventory and tracking systems for components and disassembled 
materials on a per-site basis, while Excess Material Exchange in the 
Netherlands [25] brings these matching services to a range of possible 
corporate waste materials. The materials may be already recovered and 
in storage, or in buildings scheduled for impending deconstruction. 
While listings contain a variety of per-element data, at minimum they 
cover element counts and approximate dimensions, to be matched with 
new designs. 

The on-site recovery of materials is performed by deconstruction 
groups. Companies with deconstruction arms include New Horizon in 
the Netherlands [26], RotorDC in Belgium [27], and Materiuum in 
Switzerland [28]. Within a particular site, components may be chosen 
for recovery based on current market needs, accessibility, and removal 
potential or quality. Currently, deconstruction groups rely on manual 
inspection by experts to produce inventories of recoverable components 
and materials, limiting the maximum throughput and turnaround time 
of materials. 

Common to these roles is the applicability of BIM-integrated material 
information, for which automation and digitization technologies can be 
applied to produce at scale. The reuse benefits of this digital tooling are 
also complemented by the economic benefit for the relevant users, as 
building sector digitization has been predicted to lead to 13–21% cost 
savings during the engineering and construction phases, and 10–17% 
savings during operations [29]. 

The research undertaken in this project aims at building more 
knowledge on digitalized strategies for a circular building environment, 
in line with the EU’s strong ambition for the new European Bauhaus 
[30] to help Europe move toward circularity and digitalization. Based on 

data capture performed on a real demolition site undergoing recovery, 
this research develops a site-digitization and inventory-making pro-
cedure focused on steel beam-and-column systems, for use when plan-
ning deconstruction jobs (outlined in Fig. 1). This procedure covers the 
combined problem domains of handling data from low-cost capture 
sources (necessary at large scales of capture) and the specific challenges 
of structural steel geometry and relationships. First, we describe the 
state of the art in digitization and Scan-to-BIM technology (Section 2). A 
relevant recovery area of the test site is digitized using several capture 
hardware methods (Section 3.1–3.3) Our data processing starts with 
cleaning and normalizing the digitized site information (Section 3.4) and 
identifying critical areas (Section 3.5). Then, two alternatives for 
locating beams within each area are tested, based on established Scan- 
to-BIM methodologies (Section 3.6). Next, relevant columns for each 
system are located (Section 3.7). Finally, the connection logic across the 
beam system is determined to measure the complexity of each compo-
nent’s recoverability based on its relative accessibility (Section 3.8). 
Taken together, the output of this technology is envisioned as a direct 
source for contemporary material marketplaces and design tools. 

2. Background 

2.1. Reality capture to digitized demolition sites 

Reality capture has been extensively studied in AEC as a method of 
digitizing historic sites, verifying as-built details, and tracking new work 
against a known digital model [31–34]. Verification is often specifically 
applied in the mechanical, electrical and plumbing (MEP) domain, given 
the large amounts and difficult accessibility of relevant components 
[35,36]. Photogrammetry (taking real-world measurements from 2D 
imagery) provides the common contemporary method of structure from 
motion (SfM), which estimates three-dimensional points using the 
overlap and parallax between a series of still images. Alternatively, Lidar 
scanning performs direct measurements by measuring the time of flight 
(TOF) of a reflection of a laser in the scene. While typically performed 
from a tripod, handheld full-size and smartphone-based models exist. 
These can generally attain 1 cm accuracy, however their smaller range 
may present issues for AEC applications, with the Apple Lidar having a 
maximum range of 5 m [37,38]. 

Building scale photogrammetry has generally been based on hand-
held or unmanned aerial vehicle (UAV, i.e. drone), − mounted 
perspective cameras, though it has been found that spherical or 360-de-
gree photography can achieve point-location accuracy similar to that of 
Lidar systems above a minimum distance [39]. Comparisons of photo-
grammetry from smartphone imagery compared to full-sized cameras 
has indicated a twofold increase in discrepancy for in-image and geo-
metric measurements, though it is noted the differences are rapidly 
shifting. [40]. 

Lidar and other TOF systems measure real distance information, so 
the scale of their output inherently matches reality. On the other hand, 

Fig. 1. Overview of analysis steps, numbered by section.  
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SfM photogrammetry at its core works only with scale-less image data, 
so external information is included for accurate scaling to reality. 
Commonly this is performed semi-automatically with the inclusion of 
tags at pre-measured positions or objects of known size in the scene. 
However, this involves additional operator effort, especially for very 
large or minimally connected interior spaces. Inherent position infor-
mation can be utilized if the camera includes global navigation satellite 
system (GNSS) information (such as a smartphone), as is often used at 
the UAV-topography scale [41]. However, satellite signals are often 
unavailable in the building interior context and contemporary smart-
phone GNSS resolution produces scaling errors of 10% at best [42]. 

Additionally, photogrammetry may produce clouds at arbitrary ori-
entations. Editing is required to align at least the floor of the scene with 
the XY plane, and often the major walls with the X- and Y- axes. A case in 
which a scene is entirely describable along these axes is described as a 
Manhattan World (MW) scenario, one of several models for describing 
the complexity and reducibility of a 3D scene [43,44]. A possible 
strategy for automatic alignment (pose normalization) on indoor data-
sets finds trends in the normals of the cloud’s points and optimizes their 
alignment to the world axes [45]. 

Compared to exterior reality-capture operations, indoor scanning 
must deal with greater amounts of clutter and extraneous objects that 
may occlude relevant geometry or become confused with permanent 
structures. While in some domains this can be solved by an initial se-
mantic segmentation (labeling and splitting of datapoints by known 
present classes, e.g. furniture) [46,47], in the construction sector many 
clutter items may not consistently appear in a known class. A general-
ized method that handles clutter outside the primary area checks the 
visibility of relevant areas by ray casting, ignoring outliers and clutter 
points [48]. Another solution employs heuristics on the point cloud’s 
normals, which excludes all normals more than a specific distance from 
the expected vertical or horizontal planes, relevant to common BIM 
element types [49]. Per-point analysis may be expanded by additional 
contextual features that describe the local topology [50]. Some context 
analysis also utilizes initial voxelization to simplify the description of 
local patches and make non-clutter forms more obvious [51]. In further 
scenarios, additional hardware may be utilized, such as the inclusion of 
radio-frequency identification (RFID) tags for furniture in commonly 
scanned spaces, allowing the lookup and matching of the associated 
explicit geometry [52]. 

For applications where raw 3D data would be overly complex, 
computer vision (CV) techniques have been brought to the construction 
site in various capacities. A common application is for structural in-
spection, whereby the techniques can help locate issues such as concrete 
cracks, steel corrosion, and steel delamination [53]. Identification of 
material types is another primary application, and a support-vector- 
machine (SVM)-based classification system has been developed specif-
ically for building materials for use in progress monitoring. [54]. 
Considering individual elements, state-of-the-art segmentation models 
such as Mask R-CNN have been employed as a foundation for recon-
structing 3D elements from minimal input images for use with BIM [39]. 

For all applications, the complexity and disorder of clutter and back-
grounds in building sites is of concern, as these factors have been noted 
to strongly limit object recognition accuracy [55]. 

2.2. Dataset generation of construction components through scan-to-BIM 

Methods for automatic BIM reconstruction feature a mix of super-
vised and unsupervised tasks. As these methods do not have existing 
documentation for comparison, they must accommodate a large variety 
of possible input scenarios. Initially, simple geometric features or pre-
dicted segments are localized, at which point methods are applied to 
combine and classify these areas into BIM geometry [56]. 

One accepted approach to identify Manhattan World-aligned ele-
ments is via point density histograms across different axes. For instance, 
for indoor wall reconstruction, predictions for wall locations can be 
found along maxima in histograms of point density [57]. Further de-
velopments of this technique use these locations to split a total building 
volume, which is then progressively re-combined according to rules of 
room connection to create the final form [58]. These statistical methods 
may lead to limits in the variety of spaces able to be analyzed, which can 
be avoided by considering the site as a series of volumetric convex cells 
in which wall, floor, and void geometry are calculated for equally [48]. 

Alternatively, analysis can be performed from a 2D plan perspective, 
with a subset of the cloud flattened to two dimensions and relevant 
points projected to the ground plane. Hough transforms, traditionally 
used for edge detection in computer vision [59], can then be applied 
along with clustering to determine local and regional directionality and 
thus edges on walls [49,57]. These edges are then iteratively combined 
into complete wall segments. 

Additionally, analytical complexity increases for BIM elements with 
higher geometric complexity. For example, direct analysis of the local 
point cloud region can be used for extracting dimension, direction, and 
profile for steel elements. However, the initial segmentation of the 
relevant points from the rest of the cloud must still be performed 
manually first [60]. 

The specific applications of Scan-to-BIM systems define the types of 
data that are focused on. For instance, construction verification con-
siders absolute positions and surface level deviations, heritage digiti-
zation may largely focus on element detailing, and demolition actors 
will have use for accurate volumes of material, or per-element di-
mensions and relative positions between elements. As a midpoint be-
tween BIM verification and BIM reconstruction, some applications track 
the temporary works including scaffolding and formwork, by consid-
ering the space around explicitly modeled elements to work with points 
where temporary components are likely to exists [61]. 

The details of geometric analysis for Scan-to-BIM vary with the 
chosen BIM categories and application (Table 1). Common domains 
include walls and slabs to generate room layouts, the verification of as- 
built MEP, and verification or defect detection in structural concrete. 
Steel structural components present particular challenges, as they are 
often smaller in cross section, have more complex profiles (and thus 

Table 1 
Selection of Scan-to-BIM studies.  

Reference Methods Tested categories Application 

Son 2017 [63] convexity analysis concrete structural elements producing new models 
Xu et al. 2018 [64] random forest with LSSHOT descriptor scaffolding producing new models 
Ochman 2019 [48] ILP walls, floors, rooms producing new models 
Yang 2020* [60] PCA, cross section fitting steel structural elements producing new models 
Guo et al. 2021 [62] feature-based global registration steel structural elements deformation monitoring 
Kim 2021 [65] deep learning, connectivity relations concrete structural elements producing new models 
Valero et al. 2021 [36] histogram analysis, voxel clustering, polygon matching slabs, walls, MEP producing new models 
Kaufmann et al. 2022 [66] RANSAC, H-obb concrete slabs, walls, columns producing new models 
Wang 2022 [67] deep learning MEP producing new models  
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smaller continuous planes), and have more opportunities for self- 
occlusion. This makes full process automation difficult, leading to the 
need for manual pre-segmentation [60] or working within a specific pre- 
known structural system [62]. 

2.3. Building logic for deconstruction assessment 

Digitally assisted analysis can support the end user in managing the 
density of data in BIM models. Effective analysis is dependent on the 
software’s ability to handle both explicit information in the BIM data 
and implicit relationships that a human would be able to discern. This 
deduction has been tested with the application of unsupervised and 
supervised machine learning techniques to open-format BIM data [68]. 
The specifics of BIM element relationships are also critical when plan-
ning a building’s deconstruction. Though generally encoded in textual 
building codes and domain knowledge, some methodologies for building 
analysis have defined the relations of building components as formal 
rules. Applications include discrete structural analysis [69] as well as 
multidisciplinary design optimization [70]. Rule-based analysis has also 
been applied on a component-specific level to the topic of component 
connections and construction sequencing [71]. In a broader view, these 
techniques can model the relationships of differing component lifespans 
within a building, along with its overall transformability [72]. 

3. Materials and methods for digitization of deconstruction sites 

3.1. Test site overview 

The inventory-making procedure was tested at a warehouse site 
being demolished in Geneva, Switzerland. While the site contained 
various types of recoverable components, a steel-frame mezzanine was 
chosen to evaluate the reconstruction process (Fig. 2). 

3.2. Data capture 

Data capture was conducted via two main methods: photogrammetry 
and mobile-device-based Lidar scanning, low-cost methods applicable to 
the large quantity of sites that will ultimately require digitization. 
Photogrammetry imagery was captured using still photography from a 
mobile device and 360-degree video capture. Lidar capture was per-
formed using a 2021 Apple iPhone 12 Pro. The hardware was accessed 
with the software systems 3D Scanner App, Polycam, and Pix4D (here-
after referred to as Lidar 1, 2, and 3, respectively). These systems 

exported either point clouds directly as an output, or textured meshes 
from which the vertices were extracted. All point clouds were captured 
in a single pass; the registration of clouds from multiple areas was not 
considered in this study. 

In order to test the reconstruction methods across these different 
capture devices, a subset of possible per-point metadata was chosen for 
final analysis. Information specific to the capture method – such as 
capture position, point intensity, or local reconstruction confidence – 
was not utilized, in order to only compare the effects of their noise and 
accuracy. Per-point geometric information, such as local density and 
normals, were calculated if necessary and used during the pre- 
processing steps (Section 3.4). The main BIM reconstruction analysis 
methodology ultimately worked only with point position as input. 

Finally, the test area was manually measured and modeled both to 
provide a ground truth to test BIM reconstruction accuracy, and to 
generate synthetic ideal point clouds to evaluate the effects of each 
scanning method’s noise and error against a baseline (Fig. 3). Face to 
face measurements were made by hand for all relevant components in 
the area, and for the dimensions of all relevant components. 

3.3. Software overview 

Photogrammetry was performed using Agisoft Metashape v1.7.1, 
which has been found to produce results applicable to indoor recon-
struction [73,74]. Relevant tradeoffs between photogrammetry software 
methods include resistance to noise, time of processing, adaptability to 
different image types, and effects of the software’s original intended 
scale (e.g. terrain or furniture). Point cloud transformation and cleaning 
were performed with CloudCompare v2.12. Point cloud analysis oper-
ations were written using the Open3D v12 library for Python. 

3.4. Data cleaning and normalization 

After capture, each cloud was spatially sub-sampled to 10 mm for 
more efficient processing and to reduce local variation in point density. 
This resolution matches the subsampling step of other contemporary 
Scan-to-BIM studies [36,67]. 

Errors in the photogrammetry process consist of matching errors 
(spatial offsets of real geometry) and background noise (points at non- 
existent geometry) [64]. Background noise was removed by identi-
fying points and clusters of points that had resulted from incorrect 
matching between frames (Fig. 4). First, a Statistical Outlier Removal 
filter was applied with a neighborhood of 6 points and a standard 

Fig. 2. Overview of test location (left), typical connection at location (right).  
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Fig. 3. Ground truth BIM model (left) and example synthetic point cloud (subsampled to show detail).  

Fig. 4. Example of aligned and cleaned clouds from still image photogrammetry (left) and 360 video photogrammetry (right). Removed points are indicated in red. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The photogrammetry cloud was initially generated misaligned with the world axes, which would prevent correct analysis (A). The EGI for the cloud’s normals 
illustrates this skew (B). The densest direction (true Z-axis) is marked with a cyan point. After rotation, only the predominately horizontal vectors are shown (C), and 
the calculated true X-axis is again marked in cyan. For visualization, each EGI point’s distance from the origin is scaled by its local density. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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deviation factor of 1.0, removing points significantly distant from their 
neighbors [75]. Additionally, Radius Outlier Removal was applied at 
each point, taking a point count of a region of radius 0.25 m, and 
removing points with fewer than 2650 neighbors in their region [75]. 
These parameters were determined experimentally against the density 
of noise produced from this photogrammetry pipeline. Matching errors 
were not removed at this step, and their influence was thus observed in 
the final error results. 

Each photogrammetry cloud was initially scaled using a 60 cm metal 
rod as a reference object, placed to be visible in the majority of capture 
angles. The scaling was checked using manual spot measurements of the 
distance between the flat faces of the columns to ensure that it could be 
properly compared to the ground truth. Although generally measuring 
true distances, the Apple Lidar system has an observed per-point mean 
error of 1–2 cm [37,76], and total error at the building scale of up to 10 
cm [77]. As this final discrepancy is due to non-linear errors during the 
mobile trajectory reconstruction, there was no attempt to correct it using 
scaling. 

Each cloud was then aligned automatically to the coordinate sys-
tem’s main axes (pose-normalized) to prepare it for further analysis, 
using a variation on Hubner’s method [45] (Fig. 5). Photogrammetry 
results required an initial alignment of the scene’s Z-axis, and all 
methods required additional rotation-normalization around this Z-axis, 
as all later analysis required data closely following the Manhattan World 
model. Normalization was applied by taking the extended Gaussian 
image (EGI), a point cloud created from a summary of the main point 
cloud’s normal vectors, in order to identify trends in the scene’s orien-
tation. Each normal vector was weighted by the point density of its local 
neighborhood (within 0.3 degrees between vectors) in the sphere, and 
the point with the greatest value was considered to represent the vector 
for the scene’s true Z-axis. The simplest transformation from this vector 
to the world Z-axis (0,0,1) was recorded and applied to the EGI. 

Next, only points near the transformed EGI’s XY-plane were 
considered to limit the analysis to normals coming from walls (Fig. 5, C). 
The largest density value was again found among this subset, and the 
vector considered to be the scene’s X-axis. The rotation to this vector 
was applied to the total transformation, and the transformation was 
applied to the original point cloud (Fig. 4). 

Lastly, the cloud was translationally aligned with the ground truth 
model for comparison, using the Iterative Closest Point method. The 
scale and Z-axis of the resulting transformation were locked to maintain 
effects of the capture and alignment methods. 

The total normalization operation thus produced a cloud appropriate 
for use with the chosen analysis methods and comparable to the ground 
truth model. 

3.5. Identification of vertical levels and relevant walls 

For BIM element reconstruction, the approximate areas encompass-
ing the beam systems were first located in the form of horizontal slices of 
the space. The location was determined by histogram analysis of each 
point cloud along the cloud’s Z-axis. Based on the total bounding box of 
the cloud, the histogram was divided into bins such that each bin rep-
resented the point count of a 50 mm area. The histogram was then 
smoothed with a nearest-neighbor kernel of 3 bins in width and the 
totals of each bin were normalized to remove differences in average 
point density between capture methods (scaled such that the maximum 
value was 1). The peaks were calculated with a minimum prominence of 
0.1, a minimum width of 3 bins (150 mm), and a relative height of 0.5 
(Fig. 6); these values were determined experimentally and may be spe-
cific to factors such as camera model and photogrammetry algorithm. 
This method detected all strong horizontal geometries, including floors 
as well as the desired beam systems. 

To avoid false positives and to separate Z-slices representing floors 
from beam systems, a simple measure of point density was taken. First, 
the points of each slice were projected to the 2D plane. The slice was 
then rendered as an image, with each point filling a single pixel, at two 
different scales: 40 mm/px and 200 mm/px (Fig. 7). The images were 
then rescaled to the same size, the number of highlighted pixels was 
counted, and the counts were compared between scales. In this opera-
tion, greater downscaling filled in more pixels for slices with a large 
‘surface area’ between the geometry and open space. Z-slices where the 
larger scaling had <50% the coverage score of the smaller scaling were 
considered to be true beam layers. This complete layer-determination 
step is described in Algorithm 1 in the appendix. 

Fig. 6. Plot of Z-axis point-count histogram for the still image photogrammetry cloud; each bar represents the point count of each 50 mm horizontal slice of the 
cloud; values are normalized to avoid differences in point density. Detected peaks are shown in blue and cyan (indicating the floor and beam layers, respectively). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.6. Beam detection and location 

Given the complexity of analyzing unstructured point cloud data in 
its fully 3D form, the analysis methods tested first flattened the data into 
a simpler form, to use existing statistical and computer vision methods 
to identify the likely locations of BIM elements. This was made possible 
by the Manhattan World nature of the test location. 

3.6.1. Beam detection using 1D histogram analysis 
The first method evaluated took advantage of the linear nature of the 

elements. Within each previously determined beam system slice, point 
density histogram analysis was again applied along the X- and Y-axes, 
for determining candidate beam locations. In each histogram, peak 
finding was again applied, here using a prominence of 1.3 and a width of 
4 (200 mm), taken at a relative height of 0.75 (Fig. 8). Here, the required 
prominence (a measurement of the local height) was the strongest dif-
ferentiator between a peak considered relevant vs. a peak from noise. 

From each of these locations, the dimensions of the beam were 
determined by measuring changes in value around each peak. Starting 
from the peak bin, the considered region was expanded in each direction 
until the difference from the peak passed a relative threshold. 

(Fig. 9). This defined an initial bound, from which points were 
cropped from the original cloud to determine the final beam size based 
on their maximum bounds. 

3.6.2. Beam detection using 2D Hough transforms 
The second method considered for identifying beam locations 

analyzed the beam region as a 2D system, utilizing computer vision 
techniques. The cloud was first rendered as a 2D image with colour 
representing density value (heatmap) at a scale of 1 px/10 mm 
(matching the subsampling resolution to avoid artifacts) and each point 
contributing to a 10 px region around its location, (matching the ex-
pected per-point worst-case accuracy errors) (Fig. 10, A). The heatmap 
values were normalized, with the densest pixel scaled to a value of 255. 
The binary threshold of this heatmap was taken with a cutoff of 22, 
which was determined experimentally to be the value closest to the true 

Fig. 7. Comparison of two Z-levels showing peaks in the photogrammetry scan 
of Area 1. The 40 mm/px image is indicated in white, and the additional pixels 
filled in at 200 mm/px indicated in blue. The true beam layer (A) has a ratio of 
0.47 between scales, and the floor layer (B) has a ratio of 0.90. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 8. Histogram of point concentration in Z slice along X- and Y- axes in the test area. Each bar represents the point count of a 50 mm slice of the cloud. Values are 
normalized to avoid differences in point density. Cyan indicates detected peaks. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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edge of the beam given the above parameters. From here, the edge pixels 
were detected using the Canny algorithm [78], which is generally 
resistant to noise, and converted into line segments using the probabi-
listic Hough transform [79], finding segments of minimum 40 mm, with 
a maximum gap of 15 mm. 

The segments were divided by their general trend along the X- or Y- 
axes. For each axis, the total collection of segments was recursively 
joined by matching segments with nearby endpoints, until each segment 
represented one edge of a beam. 

The system then attempted to match each segment with another 
segment nearby along its perpendicular axis. Pairs of successfully 
matched elements were considered the bounds for unique beam objects. 
While this determined the width of the beam, the length was not yet 

accurate (Fig. 10, D) in connection cases where the beams’ footprints 
overlapped. To account for this, the intersection points were found be-
tween the centerlines of all beams. If the endpoint of beam was within 
200 mm of its theoretical intersection with another beam, the difference 
was considered an error and the beam was extended. The complete 
Hough transform step is described in Algorithm 2 in the appendix. 

3.7. Column detection 

After each beam layer was reconstructed, its surrounding region was 
checked for the presence of supporting columns. Initially, a slice of the 
raw point cloud was taken 0.5 m below the beam layer. The resulting 
subcloud was flattened, and clustering applied using the Density-Based 

Fig. 9. An example peak has a neighborhood of 5 bins (250 mm) in which the histogram is within the relative threshold difference of 0.2. Thus, a 250 mm-wide 
region is cropped to obtain final beam points. 

Fig. 10. Hough transform beam location 
process: (A) raw point heatmap, colorized for 
visualization; (B) binary threshold, (C) line 
segments (blue) and segment end points 
(red) from edge detection and Hough trans-
form. (D) beam edge segments after merging, 
and divided by primary (cyan) and second-
ary (green) beam layers. Note the initial lack 
of overlapping at T-connections. (For inter-
pretation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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Spatial Clustering of Applications with Noise (DBSCAN) method in order 
to find candidate locations (Fig. 11). DBSCAN was chosen as the number 
of clusters (columns) is unknown beforehand, and common column 
profiles that are searched for in the flattened data may include concave 
but contiguous regions [80]. 

The maximum extent (bounding box) of each candidate cluster was 
then considered. Clusters with bounds below 500 mm on a side and with 
an aspect ratio smaller than 2/1 were considered legitimate column 
locations. The columns’ bounds were then set using the previously 
determined floor and beam system heights for the area. Finally, each 
candidate column was checked to ensure that it intersected a previously 

found beam. The complete column detection step is described in Algo-
rithm 3 in the appendix. 

3.8. BIM system modeling 

The preceding reconstruction steps established the positions and 
extents of each element, without relation to the rest of the system. To 
determine these relationships, the beams were first split, if necessary, 
and then checked for connections at their ends. Subsequently, to facil-
itate recovery decisions, the beam system and its building logic were 
represented as a directed acyclic graph (DAG), being a series of nodes 

Fig. 11. DBSCAN clustering examples for the region analyzed 
for relevant columns in the ground truth cloud (cyan). Types of 
clustered objects include the concrete column (A), which is too 
large and is rejected, and cluster (B), which is the correct size 
and aspect ratio, and is considered a relevant column. Stair 
elements (C) create clusters with incorrect aspect ratios and are 
ignored. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this 
article.)   

Fig. 12. Connection relations in test area (left). Beams A and A’ abut and are dependent on beam B, which is in turn dependent on column C. Various abutting and 
dependency scenarios may be described with this strategy (right), but were not included in this study. 
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(BIM elements) connected by directed edges (BIM relationships) 
(Fig. 14). This graph followed the Elemental Graph Data Model [71], 
indicating which elements were supporting others and informing the 
order of removal and level of complication. 

The analysis supports systems of beams logically divisible into 
multiple perpendicular layers that support each other. As connection 
methods may vary, a heuristic was used wherein the direction with a 
smaller mean distance between beams was assumed to be the secondary 
layer. In the test area, secondary beams abutted the primary layer 
instead of sitting on top of it, requiring splitting (Fig. 12, A–A’). 

During analysis, the mean height of each layer was compared to 

determine whether beams abutted and thus required splitting for accu-
rate beam counts and element size estimations. When splitting was 
necessary, intersections were found between the center lines of each 
beam. If an intersection point was within a threshold of the ends of a 
secondary beam, it was assumed to be a correct connection and left in 
place. In this case, the threshold was set at 100 mm, set by the order of 
magnitude of the detected beam widths on the site. Alternatively, points 
located further from the end were assumed to be split points, and two 
new beams created on either side of the point. This process was repeated 
until all intersections were resolved (Fig. 13). 

At this stage, errors in capture become evident, such as the floating 

Fig. 13. Still image photogrammetry beam system after splitting (split points indicated in red). Resulting beams below a threshold (magenta) were rejected. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. (Above) Resulting directed acyclic graph from reconstructed beam system (ground truth cloud), with the recoverability complexity marked, indicating 
structural dependency and number of downstream elements dependent on each element. (Below) diagram of the reconstructed beam system (gray) compared to 
ground truth (cyan wire frame). As there are no missing beams or intersections, the graph is accurate for the scene. 
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beams present on the right of Fig. 13. These were resolved using the 
extension method described in Section 3.6.2. 

Once all intersections were finalized, each member of the columns, 
primary beams, and secondary beams sets were assigned a vertex in the 
vertex sets V1, V2, and V3, respectively, of a multipartite graph D 
(Fig. 14). Each graph vertex had an associated solid S, where S is the 
bounding box of its associated element geometry; that is, 

S(i, v ∈ Vi) ⊆ ℝ3.

The full graph was defined by the combined bi-adjacency matrices, 

AD =

⎛

⎝
0|V1 |,|V1 | B12 B13

0|V2 |,|V1 | 0|V2 |,|V2 | B23

0|V3 |,|V1 | 0|V3 |,|V2 | 0|V3 |,|V3 |

⎞

⎠,

with each individual bi-adjacency matrix position determined by the 
presence of a solid intersection between members of the sets; that is, 

Bkl =
[
bij
]
=

{
1, S(k, i) ∩ S(l, j) ∕= ∅

0, otherwise , ∀i ∈ Vk,∀j ∈ Vl 

For each node/element, a recoverability complexity RC(u) was 
calculated for each element u. Being the total number of reachable 
vertices from the element’s vertex, RC indicated how many other ele-
ments would need to be removed before the element could be recovered. 
The RC was based on a precomputed reachability matrix RD[81]: 

RD =
[
rij
]
=

{
1, i can reach j in D

0, otherwise ,∀i ∈ V(D) ,∀j ∈ V(D)

RC(i) =
∑

j∈VD

RD[i, j]

4. Results 

The primary results of the process were the reconstructed elements, 
their individual properties, and resulting graph and RC value. These 
were considered in light of the raw properties and accuracy measure-
ments of the point clouds captured by each method. 

4.1. Comparison of data capture techniques 

As a baseline, measurements of each cloud’s density and accuracy 
were recorded (Table 2, Table 3). The following parameters were 
considered:  

1. Raw cloud size, a measure of the level of detail of the capture method 
and a heuristic for judging the quality of the point cloud. It may 
indicate an on-average denser capture of points within the space, or a 
more complete capture with fewer gaps.  

2. Cleaned cloud size, point count after cleaning operations performed 
in Section 3.4, but before subsampling. It is an indicator of the level 
of noise in the method.  

3. Capture time, the total duration required by operators to obtain data 
for a given area of the site. This is affected by the time required to 

take a single measurement, the method’s time between measure-
ments, and the ease of movement with the hardware. 

Several types of issues affected the output quality of each tested 
method, including noise in point location, missing data, creation of non- 
existent points, and occlusion of relevant geometry. The raw accuracy of 
each capture method was measured by comparing each captured cloud 
to the best possible representation of the geometry in point cloud form. 
This was found by generating a synthetic point cloud with points at 
equal density across the mesh of the ground truth BIM model. This 
method created synthetic clouds with a point count set to match the 
order of magnitude of the captured cloud. The base accuracy of each 
capture method was measured using the Chamfer distance (Eq. 1) be-
tween the captured cloud (C1) and synthetic cloud (C2), which returns 
distance approximations useful for comparisons in a computationally 
efficient manner [82]. Smaller distances between clouds indicate more 
accurate captures. 

CD(C1,C2) =

∑

P1∈C1

min
P2∈C2

‖P1 − P2‖
2
2

|C1|
+

∑

P2∈C2

min
P1∈C1

‖P2 − P1‖
2
2

|C2|
(1)  

4.2. Element reconstruction 

As the reconstructed model’s likely use would include supplying data 
for deconstruction planning, recovery operations, and connecting to 
new users, errors in the quantity and dimensions of reconstructed ele-
ments could affect the viability of recovery, transport, and storage op-
erations, as well as connecting components to new design uses. 

The output of each methodology was compared to the ground truth 
BIM model based on several factors, both relative to the element and 
absolute within the overall model (Table 4). The total count of predicted 
elements for each type was compared first. Then, for each predicted 
element, element position and dimensions were compared to the closest 
ground truth element by length, difference in cross section size, and 
finally by cross section offset. The sum of recoverability complexity 
measurements between all detected elements was also compared to the 
ground truth model. 

5. Discussion 

The complete set of evaluated methods for the proposed procedure is 
shown in Fig. 15. The methods in sections 3.2–3.4 all required some 

Table 2 
Operator time and output size for the test capture methods.  

Capture method Raw cloud size Cleaned cloud size Capture time 

Still image photogrammetry 26,466,370 16,778,419 08:00 
360 video photogrammetry 27,190,095 7,134,258 01:00 

Lidar 1 11,288,843 7,764,338 05:00 
Lidar 2 491,373 393,299 10:00 
Lidar 3 469,646 440,488 10:00  

Table 3 
Accuracy measuring total distance to ground truth cloud.  

Capture method Software method Chamfer distance 

Still image photogrammetry Metashape 293.84 
360 video photogrammetry Metashape 132.81 
Mobile device Lidar 3D Scanner App 448.62 

Polycam 576.23 
Pix4DCatch 227.74  
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degree of manual operation, while the methods described in sections 
3.5–3.8 form an automated pipeline. With regard to testing capture 
methods, all hand-directed methods took similar amounts of time and 
required constant operator attention to capture useful data. 

The worst-case length errors observed in the case study are indicative 
of the cumulative effects of missed elements. For example, in the case of 
Lidar 2, a primary beam was missed due to appearing weakly in the in- 
app reconstruction, leading to oversized reconstruction of the attached 
secondary beams. Similarly, false-positive primary beams (such as in 
Lidar 1), over-split and undersized the secondary layer. Less extreme but 
persistent errors, such as the mismatch in length between similar ele-
ments, stem from gaps in reconstruction. This indicates the possible 
application of domain-specific error-checking methods. 

While methods were developed to mitigate noise and incorrectly 
reconstructed features, missing data proved a larger source of error. This 
included gaps in flat surfaces during Lidar scanning or geometry ending 
before its full extent due to a lack of accessible photography angles. At 
worst, this prevented from being able to discern between floors and 
beam layers, or the identification of walls for point cleaning. While 
extending short elements can be predicted (such as with columns), this 
runs the risk of overextending to non-related elements. These types of 
issues may be addressable by the inclusion of a whole-model pass to 
decide which elements are likely to be legitimate based on context. 
Additionally, given the challenges of overcoming missing data at the 
BIM level, this indicates to the usefulness of hole-filling and data pre-
diction tools at the original point cloud stage. 

Table 4 
Comparison of reconstructed geometry to ground truth geometry. Lowest error for each factor is indicated in bold.  

Capture method Analysis Method Element count 
difference 

Median length 
difference (mm) 

Median cross section 
difference (mm) 

Median cross section 
offset (mm) 

TRC TRC error 

C (10) B (26) C B C B C B   

Synthetic point cloud P 0 0 10.9 19.3 44.1 25.9 2.0 7.3 154 0 
T 0 0 8.5 30.6 47.0 26.0 4.2 8.0 136 18 

Stationary photogrammetry P − 6 0 42.6 588.2 37.6 57.9 102.2 36.0 61 93 
T − 5 4 60.7 456.9 37.2 331.0 102.1 72.3 72 82 

360 video photogrammetry 
P − 4 − 2 72.6 40.0 46.3 114.0 130.1 44.7 81 73 
T ¡1 6 70.2 43.5 55.4 278.9 167.9 73.4 113 41 

Lidar 1 
P − 6 7 336.4 1968.7 59.9 137.97 181.0 188.7 54 100 
T − 7 17 51.87 536.49 49.61 433.0 260.0 105.1 34 120 

Lidar 2 P − 8 9 107.7 2807.4 80.5 106.58 588.15 26.9 72 82 
T − 7 0 191.5 4170.0 107.46 426.0 937.7 265.5 58 96 

Lidar 3 P − 4 − 6 36.8 896.6 51.7 63.6 149.6 75.6 65 89 
T − 4 − 9 41.2 1399.7 66.0 200.0 135.1 97.9 28 126  
Column [C]; Beam [B]; 
Histogram Peak Method [P]; Hough Transform Method [T]; 
Total Recoverability Complexity [TRC]  

Fig. 15. Overview of analysis steps with methods applied, listed by section number in methods section.  
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The varied effects of different types of capture error were also re-
flected when comparing the Chamfer distance to the reconstruction re-
sults. In many categories, the amount of error between methods does not 
linearly reflect the difference in cloud error measured by the Chamfer 
distance. Each analysis method is resistant to the noise characteristics of 
the capture methods in different ways, aside from the pure per-point 
distance error. 

Given the cumulative effects of these intrinsic error types on the 
procedure outcomes, mobile device Lidar is not presently considered 
viable for steel-structure BIM reconstruction at this scale. However, as 
data from mobile Lidar undergoes heavy processing on the device before 
being returned to the use, off-the-shelf apps for interfacing with the scan 
hardware may simply be non-domain specific, and a purpose-built 
interface may be necessary. The photogrammetry methods had similar 
results under most metrics, though the still image photogrammetry 
showed worse outliers. 

Under idealized capture circumstances (represented by the synthetic 
dataset), the histogram peak method was found to perform better than 
the Hough transform method. Although this was not always consistent 
across some metrics for the physical scanning methods, it is still 
considered the most viable option. However, in this case the methods 
were tested in isolation, and a combination may allow each method to 
account for the errors of the other. 

BIM relationship analysis provides a numerical means of judging 
recoverability; however, its effects on generalizability are not immedi-
ately clear. Given the high variation and customized solutions in con-
struction, unusual elements or assembly methods may be ignored or 
incorrectly assessed by a particular set of BIM relationship rules. In this 
context, the 360-video photogrammetry again showed itself to be the 
most accurate of the real capture methods. Measuring the total differ-
ence between the sum of complexities put the greatest importance on 
correctly connected columns, as each would have the most downstream 
elements. 

The errors across all methods highlighted the challenges for recon-
struction systems when working with the particular capture artifacts of 
steel structural components. This remains a necessary expansion of the 
well-studied case of concrete structural elements, as the reuse potential 
of these construction systems is low [83] and more research on recovery 
techniques is needed. Additionally, as this study focused on the partic-
ular case of components stocked in obsolete buildings or in buildings 
that will become available for reuse in the near future, this research did 
not consider existing damaged components exposed to unforeseen 
events such as fires or earthquakes. The materials subjected to unfore-
seen events present more challenges for reuse in their current state [83] 
and are more likely to fit within recycling processes that do not require 
explicit BIM reconstruction. 

6. Future research 

This methodology covered the essential types of data needed to 
communicate about material stocks between different actors. Further 
research would produce more in-depth per-element data. For instance, 
for steel elements, predictions about specific profile dimensions, even in 
cases of point cloud occlusion and low point density, would allow for 
more informed decisions regarding the element’s structural capabilities. 
The abundance of image data collected for each element would allow for 
initial computer vision-based predictions about possible damage or 
decay. Computer vision techniques could also facilitate for the 

integration of existing techniques for reconstruction concrete structural 
components by delineating areas of differing materials and allowing for 
the analysis of hybrid steel and reinforced concrete structures. 

Recovery scoring would be enhanced by the additional reconstruc-
tion of connection details. Currently the system treats all connections as 
equal and considers each as a single removal operation. However, a 
combination of geometric and image analyses could differentiate be-
tween, for example, bolted and welded connections. 

Additional robustness would be ensured by evaluating these tech-
niques in a variety of environmental conditions. In this study, the re-
covery location was indoors, with a combination of artificial and 
diffused natural light. There was little glass or other reflective materials 
in the critical area, whose presence would induce different types of noise 
in the captured data. 

Given the strong effects of the different varieties of noise generated 
by the various capture methods, generalizability would be improved by 
being able to test against a large number of synthetic sites, utilizing 
noise-application techniques developed for sim-to-real applications in 
order to mimic a variety of capture methods. 

This work specifically built on low-cost or consumer-grade scanning 
tools, with an inherent tradeoff between user accessibility and data 
quality in comparison to terrestrial Lidar systems. Testing with a broader 
set of scanning methods against the same reconstruction methods would 
make this tradeoff explicitly measurable in the domain. 

Presently, this pipeline produces geometry and associated informa-
tion in an internal format. For further practical use, export into an open 
format such as Industry Foundation Classes (IFC), would be necessary. 
Additionally, the original point cloud data forming each element may be 
a valuable source of information for future users to apply their own 
analysis, and could be included efficiently in the final output with 
contemporary BIM-point cloud integration techniques [84]. 

Finally, beyond data and geometric format, analysis via BIM will be 
affected by the choice of building-domain paradigm used. There are 
several contemporary standards for BIM classes and relationships be-
tween different countries, companies, and researchers. Choice of BIM 
paradigm will affect both the details of the analysis performed as well as 
its applicability for recoverability analysis. 

7. Conclusions 

This case study demonstrates how site data captured with accessible 
technology can support the digitization of steel structural building 
stocks for circularity purposes. Specifically, this technology would be 
positioned as a first step to generate digital information for use in all 
future communication and design steps. 

The study is part of ongoing research in the field of Scan-to-BIM 
methods, focusing on existing building stocks and reconstructing inter- 
element relationships. The case study focuses on adapting existing 
Scan-to-BIM processes to create digital models of demolition sites, to 
better plan for deconstruction works, and to derive more value from the 
recovered materials. This is built on a data capture process assuming 
low-cost hardware viable for wide adoption in industry. 

The implemented Scan-to-BIM process builds on existing recon-
struction methods by specifically focusing on the BIM classes for steel 
column and beam systems, chosen for their direct usability as recover-
able elements. Specifically, these component types present challenges 
for accurate capture and are less commonly studied in contemporary 
Scan-to-BIM research. The nature of these elements also necessitates the 
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reconstruction of element relationships in addition to volumetric and 
geometric data, as well as modeling methods for considering all in-
terconnections of a site. This analysis is necessary for uncovering 
possible obstacles to recovery when implementing circularity on a site 
built with linear thinking. The study showed the feasibility of automated 
reconstruction in relation to structural elements while highlighting the 
strong effects of data capture noise on the accuracy of the results. 

The project also demonstrates the state of accessible technologies, 
such as mobile devices, for capturing reliable information for decon-
struction purposes. Low-cost 360-degree cameras proved the most viable 
with respect to noise and accuracy for this procedure, while mobile Lidar 
systems would require additional domain-specific development. The 
continuing development of this technology is necessary for a viable 
integration of digital solutions into current workflows with minimal 
disruption. 

Ultimately, Scan-to-BIM tools form the logistical base for a complex 
reuse analysis. Transforming unstructured data into standardized classes 
and relationships helps additional actors in the field conduct economic 
and logistical analysis. This information can then facilitate connections 
between circular economy actors in the larger ecosystem of inventory, 
logistics, and matching tools. 
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Appendix: Pseudocode for detection algorithms 

Algorithm 1. Pseudocode for finding beam systems in an arbitrary point cloud.
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Algorithm 2. Pseudocode for Hough transform-based beam detection.
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Algorithm 3. Pseudocode for column detection.
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