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How gaps are created during anticipation of lane changes
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ABSTRACT
The pre-insertion process called anticipation is an essential component of
a lane-changingmanoeuvre. There is little empirical research regarding the
impact of anticipation. Thus, this paper aims to explore the behaviour of
the new follower (NF) in the target lane when it encounters anticipation
by using new trajectory datasets. The changing magnitude of the reaction
pattern is proposed to identify the NF’s behaviour. We find that the antici-
pation significantly affects the NF’s movement in terms of gap creation and
speed reduction. Then,we conduct a detailed analysis of critical variables to
reveal their relationshipwith theNF’s behaviour. Following this,wedevelop
binary logisticmodels to predict theNF’s behaviour, resulting in a goodper-
formance. It also suggests that the NF’s behaviour is highly related to the
anticipation-related variables. The transferability test results show that this
model can be directly used in different locations and timeswith satisfactory
accuracy.
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1. Introduction

The lane-changing manoeuvre is one of the common driving tasks in traffic streams. In the past 60
years, A large body of studies has been conducted to investigate the lane-changing behaviour (Gipps
1986; Kesting, Treiber, and Helbing 2007; Yang et al. 2018; Gao et al. 2022). More importantly, the pre-
vious empirical evidence reported that the impropriety or intensity of the lane-changing manoeuvre
is associated with several negative implications. For instance, approximately 5% of traffic accidents in
2015 in Chinawere inducedby improper lane-changingmanoeuvres (Hou, Edara, and Sun 2015). Yang
et al. (2011) showed that the higher frequency of lane-changing behaviour increases the probability
and severity of traffic accidents. Previous works have also provided substantial macroscopic evidence
that the bottleneck can be activated and lead to a capacity drop due to the high intensity of lane-
changing rates (Elefteriadou 1996; Cassidy and Rudjanakanoknad 2005; Patire and Cassidy 2011). In
addition, Ahn and Cassidy (2007) contended that the lane-changing manoeuvre significantly affects
the formation of traffic oscillation. Zheng et al. (2011a) and Chen et al. (2012a) demonstrated this
finding by analyzing the generation of oscillation based on the NGSIM’s trajectory data. Zheng et al.
(2011b) reported that the lane-changingmanoeuvre induces 12 out of 35 traffic oscillations. Since the
above studies reported several negative lane-changing impacts on traffic streams, the microscopic-
level relationship between the lane-changingmanoeuvre and the surrounding vehicles is still unclear
(Zheng 2014; Pan et al. 2016). Thus, this paper attempts to provide empirical findings to understand
the lane-changing impact.
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In general, a complete lane-changingmanoeuvre could be divided into two stages: (1) the anticipa-
tion stage and (2) the relaxation stage (Zheng et al. 2013). Specifically, anticipation is used to describe
the stage of a lane-changing manoeuvre in which the lane changer (LC) starts to change lanes, but its
trajectory is still in the original lane (Li et al. 2020; Chen et al. 2021; Li et al. 2022). Once the LC suc-
cessfully inserts into the target lane, the LC will experience a relaxation process until its movement is
stable in the target lane. The LCwill interactwith several surrounding vehicles during these two stages,
resulting in a complex lane-changing impact.

The relaxation stage has attracted a lot of attention in the literature due to its obvious negative
impact (Laval and Daganzo 2006; Carey, Balijepalli, and Watling 2015; Jin 2017; Nagalur Subraveti,
Knoop, and van Arem 2019; Yuan et al. 2019). During the relaxation process, the LC is more likely
to increase its spacing ahead to a more considerable value larger than the equilibrium value (Smith
1985; Leclercq et al. 2007). This phenomenon was widely noticed after the work of Laval and Leclercq
(2008), who proposed a model to describe how the LC and its immediate follower exhibit the relax-
ation process. Based on this framework, the passing rate of the vehicle was used by Duret, Ahn, and
Buisson (2011) to measure the impact of the relaxation. They explained that traffic streams are per-
turbed by the relaxation process. Oh and Yeo (2015) discussed the lane-changing behaviour in the
recovery flow. They revealed that the LC influences the acceleration and deceleration behaviours of
the relevant vehicles, which worsens the traffic condition. In addition, the relaxation phenomenon
has been considered the primary reason for the capacity drop. Leclercq et al. (2016) provided analyt-
ical formulae that focused on the relaxation of the merging vehicle, which can connect the merging
behaviour to the capacity value. Chen and Ahn (2018) extended the relaxation of the lane-changing
behaviour to investigate how the spatial lane-changing insertion contributed to the capacity drop of
merge, diverge, and weaving segments. More recently, Keane and Gao (2021) found that the existing
car-following model reacts suddenly at the insertion moment of the lane changer, which is unrealis-
tic. Thus, they proposed a relaxation parameter to smooth the jumping of unmodified headway. This
parameter can be incorporated into parametric and non-parametric models.

The above empirical analyses and theoretical models mainly focus on the negative impact of the
relaxation phenomenon. As for the anticipation process, Zheng et al. (2013) reported that the new
follower (NF) in the target lane may be deviated from its initial driving behaviour to increase the gap
for the LC. Here we give a simple example in Figure 1. As we can see from this figure, the NF follows
well with the leader (NL) before the LC conducts the lane-changing manoeuvre. After a while, the
LC starts to make a lateral moment in the original lane and continually closes to the target lane. The
anticipationprocess endswhen the LC inserts into the target lane. Then, the relaxationprocess follows.
This example shows that the NF will adjust its speed and location in response to the LC’s anticipation,
even though they are not in the same lane. Compared to the analysis of the relaxation phenomenon,
anticipation’s impact received less attention. Zheng et al. (2013) assumed that the difference between
anticipation and relaxation is significantly different but can be captured by one single model. After
that, Ghaffari et al. (2015) proposed a novel adaptive neurofuzzy model to simultaneously model the
new follower’s acceleration during the anticipation and relaxation processes. However, our previous
study (Chen et al. 2021) provided several models to find the best way to simulate the lane changer’s
trajectory.We found that the factors affecting anticipation and relaxationprocesses are quite different.
Additionally, Yang, Wang, and Quddus (2019) examined the NF’s reaction and found that about 44%
of NFs among 5339 study samples will brake during the anticipation process. Furthermore, the Time
to Collision (TTC) value in their study suggested that the NF tends to surface a more risk of rear-end
crash in the anticipation process than that in the relaxation process. Despite the negative impact of
anticipation on NF’s behaviour and safety, available studies on which factors are more likely to induce
the NF to change its following behaviour during the anticipation are still lacking.

Thus, this study attempts to answer three challenge problems: (a) Is the NF’s behaviour affected
by the LC’s anticipation process? If so, (b) How the anticipation process affects the NF? Moreover, (c)
which factors make the NF more likely to be affected by the anticipation, and can we predict it?
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Figure 1. An example of the impact of the anticipation on the new follower’s behaviour.

To address the above research questions, we first recorded seven drone videos at three merging
bottlenecks in Nanjing, China. The vehicle-level trajectory for each video is automatically extracted.
Then, the ratio between the actual wave travel time and theoretical reaction time was used to reflect
the NF’s behaviour during the anticipation. In this paper, the main contributions are threefold. (a) It
provides empirical findings on the impact of anticipation on the NF’s following behaviour in terms
of gap increase and speed reduction. Empirical findings from large trajectory data are scarce in the
existing literature. Still, it is necessary to provide insights into the microscopic details of how the new
follower responds to an anticipation process as part of the lane-changing impact. (b) This study is the
first attempt to examine which explanatory variables and how they affect the anticipation’s impact
on the NF. Although some studies reported some negative impacts caused by the lane-changing
behaviour, limited available research has discussedwhich factors and how they contribute to negative
anticipation. The statistical analysis in this study is to fill this gap. (c) It applies binary logistic regres-
sion topredict theprobability of theNFbeing affectedunder current traffic environments. It points out
that the prediction accuracy can be significantly improved once we consider the anticipation-related
factors. This model has been further demonstrated with better performance compared to the state-
of-the-art approach and good transferability at different locations and times. The findings andmodels
in this paper fill the knowledge gaps that the previous studies paid little attention to the impact of the
anticipation process.

The rest of this paper is organized as follows. Section 2 presents the identification method of driv-
ing behaviour. Section 3 presents the preparation of trajectory data. Section 4 presents the empirical
results. Section 5 presents the results of binary logistic models. Section 6 presents the conclusions and
future works.

2. Methodology

In this section, we adopted the car-following model proposed by Newell (2002) to identify the NF’s
behaviour during anticipation process of LC. This model assumes that the theoretical trajectory of NF
is obtained by shifting the trajectory of NL with a time τ (response time) and a spacing d (minimum
stop spacing). For the convenience of discussion, we let i denotes the NF, i-1 denotes the NL, and j
denotes the LC in the adjacent lane. Thus, the NF’s movement in congestion can be described by:

xi(t) = xi−1(t − τ) − d (1)

where xi (t) is the position of the NF at time t
The NF’s trajectory produced by Equation (1) can be considered the equilibrium trajectory. Tomea-

sure the NF’s real reaction pattern at each time step, we use the method suggested by Laval and
Leclercq (2010). It can be shown to be:

ηi(t) = τi(t)/τ (2)
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Figure 2. Illustration of the new follower who belongs to group 1: (a) trajectory plots; (b) speed of the new follower and the new
leader; (c) reaction pattern curve of the new follower.

where τ i (t) is the actual wave trip time of the NF at time t. Thus, the value of ηi (t) reflects the ratio of
the NF’s actual behaviour to the equilibrium at time t.

Based on the value of ηi (t), the NF at time t can be identified as aggressive when its ηi (t) < 0.9,
timid when its ηi (t) > 1.1, and equilibrium when its ηi (t) ranges from 0.9 to 1.1 (Chen et al. 2012b;
Ma and Qu 2020). Recall that we are interested in how the NF responds to the anticipation process.
Therefore, we quantify this via the changing magnitude of ηi (t) at the start and end moments of the
anticipation process, which can be computed as follow:

�ηi = ηi (Te) − ηi(Ts) (3)

where Ts and Te are the start and end moments of the anticipation process, respectively. We will
introduce how to determine these two moments in Section 3.

It is clear that�ηi will be positive if the NF attempts to deviate from its initial state. On the contrary,
it will be negative if the NF attempts to reduce its initial state. Therefore, it is possible to classify these
two distinct behaviours into two groups in terms of the value of �ηi. Specifically, the NF i belongs to
group 1 if �ηi ≥ 0.1, and it belongs to group 2 if the �ηi < 0.1. The threshold of 0.1 is determined
since the slight fluctuation of the reaction pattern can be considered the driver’s inherent influence
(Chen et al. 2012a).

Here, we give the first example in Figure 2 to illustrate the NF’s behaviour in group 1. As shown in
Figure 2(a), the actual trajectory of the NF is gradually far away from the Newell trajectory before the
insertionmoment of the LC. Particularly, the NL accelerates from 8.82m/s to 11.8 m/s, whereas the NF
still maintains a lower speed, around 9 m/s. As a result, a large gap is created for the insertion of the
LC; see Figure 2(b). In addition, Figure 2(c) displays the reaction pattern of the NF. From this figure, we
can observe that the ηi (t) gradually increases from 1.22 to 1.78, even though the NF’s initial behaviour
is timid. This is a representative example in which the NF’s behaviour is somehow affected.

On the contrary, we also show another case in Figure 3 where the value of �ηi equals −0.72.
From the trajectory and speed plots in Figure 3(a,b), we can find that the NF tries to reduce the
spacing ahead. As a result, the NF’s trajectory returns towards the equilibrium state, which can be
observed from the curve of the reaction pattern in Figure 3(c). Since we assume that the driver’s natu-
ral behaviour is to return to the equilibrium state, this typical example suggests that the NF seems to
maintain its following behaviour during the anticipation process.

3. Preparation of trajectory data

In this section, we introduce the preparation of trajectory data for investigating the NF’s response to
the anticipation process. Threemergingbottlenecks are selected inNanjing city, China. Figure 4 shows
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Figure 3. Illustration of the new follower who belongs to group 2: (a) trajectory plots; (b) speed of the new follower and the new
leader; (c) reaction pattern curve of the new follower.

Figure 4. Structure of three merging bottlenecks.

the structure of these threemerging bottlenecks, namely ‘site 1’, ‘site 2’, and ‘site 3’, respectively. Then,
a drone was used to record videos. The drone carries a 4 K resolution camera, which can provide us
with a high definition (3840× 2160) and 30 frames per second (fps) video. Ultimately, we recorded
three times, two times, and two times videos at site 1, site 2, and site 3 during themorning peak hours,
respectively. Table 1 presents the information for the seven videos. After we got the drone videos,
we adopted an automatically trajectory extraction framework to extract the vehicle-level trajectory
for each video. The read is referred to our previous studies for a detailed information of this method
(Wan et al. 2020; Chen et al. 2021). Generally, this trajectory extraction method includes four steps: (1)
vehicle detection, (2) vehicle tracking, (3) lane detection, and (4) raw data smoothing. To ensure the
vehicle detection accuracy at different locations, we further trained the detecting layer with several
traffic flow scenarios, such as the merging, diverging, weaving, intersection, and basic road segments
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Table 1. The detailed information of seven datasets.

Trajectory
datasets Study site Date Time Weather

Road
length (m)

Average
speed
(m/s)

Average
density

(vehicle/km)

Dataset 1 Site 1 15 December 2020 7:30 am−7:45 am Sunny 340 9.09 212
Dataset 2 Site 1 17 December 2020 7:30 am−:55 am Sunny 320 7.22 235
Dataset 3 Site 1 15 April 2021 7:30 am−8:00 am Sunny 420 11.56 184
Dataset 4 Site 2 8 May 2021 7:40 am−7:55 am Sunny 400 8.95 201
Dataset 5 Site 2 9 May 2021 7:30 am−8:20 am Sunny 360 5.02 248
Dataset 6 Site 3 17 August 2021 7:30 am−8:05 am Sunny 400 9.47 206
Dataset 7 Site 3 19 August 2021 7:35 am−8:00 am Sunny 390 7.67 229

Figure 5. Calibration of critical parameters (a) response time; (b) wave speed.

during the daytime and nighttime. Consequently, we got a strong detecting network that achieve
satisfactory accuracy at different bottlenecks. Specifically, this extraction method provides us with
the following vehicle-level information: lane number, vehicle ID, time (1/30s interval), lateral position
(m), longitudinal position (m), speed (m/s), and acceleration (m/s2). Finally, we obtained seven high-
quality trajectory datasets. The average speed anddensity for each trajectory dataset are also shown in
Table 1.

Based on the trajectory data, we apply the Wavelet-transform method recommended by Zheng
et al. (2011b) to calibrate the response time τ and the wave speed w. Figure 5(a) shows an example
where the speed of the NF and its leader have been transformed into wavelet energy distribution. The
abruptness of this energy represents the speed change moment. Consequently, the time difference
of the energy abrupt between two adjacent vehicles can be determined as the response time. In this
simple example shown in Figure 5(a), we can obtain four response time samples. Without loss of gen-
erality, we select 200 samples from 12 stable oscillations. The average value of these samples as τ (1.3
s) is used for all the NFs. Next, we determine the wave speedw based on the average slopes of the 12
stable oscillations. We illustrate some oscillation cases in Figure 5(b). Once we have the wave speed
w (w = 4.4 m/s) and the response time τ , we can compute the minimum stop distance d through
d = τ ∗w (d = 5.7 m).

Recall that we aim to investigate the NF’s response and its relationship with the anticipation pro-
cess. Thus, only the anticipation samples inducing the LC’s anticipation process and its corresponding
trajectories of the NF and NL in the target lane are helpful for the following analysis. To obtain such
sample, we first need to determine two critical time points: the start moment and the endmoment of
the anticipation process (denoted as Ts and Te, respectively). We give two examples in Figure 6. The
detailed procedures for detecting these two moments are presented as follows:
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Figure 6. The measurement of the start and end moments for the anticipation (a) case 1, (b) case 2.

• Themomentwhen the LC departs themiddle line of the original lane is located as T0; see the yellow
cycle in Figure 6.

• When the LC’s lateral distance to the target lane edge (Ylateral) equals 0, we can locate this time as
the end moment of the anticipation process (Te); see the black cycle in Figure 6.

• The start moment of the anticipation (Ts) is between T0 and Te. In the previous studies (Ali, Zheng,
and Haque 2018; Yang, Wang, and Quddus 2019), the time Ts is located once we observe a drasti-
cally change of the LC’s lateral movement. To pinpoint such sudden lateral change, we adopt the
Wavelet-transformmethod, which has been successfully used to detect the singularities in the traf-
fic data. As shown in the lower part of Figure 6, the LC’s lateral movement has been transformed
intowavelet-based energy. Themax point of thewavelet-based energy between T0 to Te ismarked
as the Ts; see the red cycle in Figure 6.

The above procedures are used to extract the anticipation samples out of all seven trajectory
datasets. After that, we got 4698 anticipation samples. Note that we observe that all these samples
can be split into four cases: (1) the NF speeds up the LC (231 samples), (2) the LC speeds up the NL.
Then the NL becomes the new NF after the insertion (424 samples), (3) the NF or the NL also changes
its lane (203 samples), and (4) the NF and the NL are both the same vehicles for the whole duration of
anticipation process (3840 samples). We employ the fourth case for the following analysis in this study
for two reasons: (1) the majority proportion of anticipation samples is the fourth case (about 82%),
and (2) the unchanged follower is suitable for analyzing its following behaviour during the anticipa-
tion. Here, we give four examples of available anticipation samples in Figure 7. As we can see that one
study sample should include the LC’s anticipationprocess, which starts at Ts and ends at Te (reddotted
line), and its consistent NF (green line) and NL (blue line)
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Figure 7. Illustration of study samples.

Table 2. The classification results.

Study samples
in group 1

Study samples
in group 2 Total

Site1 1215 588 1803
Site2 683 309 992
Site3 714 331 1045
Total 2612 1228 3840

4. Empirical results

This section presents empirical results to understand NF’s behaviour during the anticipation process.
We start by describing the classification result of NF’s behaviour (Section 4.1). Then, the impact of NF’s
behaviour on the gap increasing value and speed reduction in the target lane is investigated (Section
4.2). Additionally, we examine some particular relationships in more detail, such as the relationship
between theNF’ behaviour and twoheadways (in s): (1) headwaybetween theNFandNL; and (2) head-
way between the NF and LC (Section 4.3), the relationship between NF’s behaviour and the headway
between NF and LC versus the LC’s speed (Section 4.4).

4.1. Classification result

According to the behaviour analysis method described in Section 2, we first divide all the 3840 study
samples into group 1 and group 2. The classification result is shown in Table 2.

To investigate the changing amplitude of the reaction pattern in two groups, we start the analysis
by showing the reaction pattern value at the start moment of anticipation η(Ts) and the end moment
of the anticipation η(Te) in Figure 8(a). The correspondingdescriptive statistic is displayed in Table 3. As
we can see from this figure, the average value of η(Ts) is 1.22 and 1.69 in group 1 and group 2, respec-
tively. ANOVA test is applied, and the test result shows that the initial value of the reaction pattern in
group 1 is significantly lower than that in group 2. After the anticipation process, the reaction pattern
value increases to the average value of 1.78 in group 1 and reduces to that of 1.15 in group 2. The
detailed distribution of �ηi for the two groups is shown in Figure 8(b). The above results for group 1
highlight that even though the NF’s initial reaction pattern value is larger than the equilibrium value,
the NF still tends to be away from the equilibrium state. Since the LC is conducting an anticipation
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Figure 8. The changing magnitude of the reaction pattern of new followers in group 1 and group 2.

Table 3. Description results of the reaction pattern for group 1 and group 2.

Mean Std Min Max

Group 1
η(Ts) 1.22 0.31 0.76 3.12
η(Te) 1.78 0.32 0.92 3.34
�η 0.56 0.14 0.11 1.35

Group 2
η(Ts) 1.69 0.57 0.82 3.33
η(Te) 1.15 0.54 0.75 3.16
�η −0.54 0.20 −1.38 0.09

Note: The mean values in group 1 are significantly different from group 2 in the ANOVA
test (p < 0.001).

process in the adjacent lane and tries to insert ahead of the NF, it is natural to assume that the NF’s
behaviour is related to the anticipation. We will further discuss this assumption in Section 4.3.

Additionally, the decreasing trend of �ηi in group 2 is reasonable since the driver’s task always
tends to return to equilibrium if the initial value is relatively large. This also seems to suggest that some
NFs will not adjust their following behaviour when they notice an anticipation process happening in
the adjacent lane. After the above classification and description results on the NF’s reaction pattern,
we continue with the investigation of how the gap in the target lane and the speed of NF change in
these two groups.

4.2. Impact of anticipation

This subsection investigates the anticipation’s impact on the changing of gap size and speed fluctua-
tion. First of all, we define �S to reflect the changing magnitude of the gap between NF and NL after
the NF experiences an anticipation process, which can be computed as below:

�S = �SNL−NF(Te) –�SNL−NF(Ts) (4)

where �SNL-NF (Ts) and �SNL-NF (Te) are the gap between NF and NL at the start and end moments of
the anticipation, respectively.

Figure 9 shows the distributions of�S in group 1 and group 2, and their statistical results are given
in Table 4. We can clearly observe that the distributions of�S are quite different in group 1 and group
2. Specifically, thedistributionof�S is concentrated around thepositive axis in group1andaround the
negative axis in group 2. The results coincide with the definitions of group 1 and group 2. Moreover,
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Figure 9. Gap changing distributions for group 1 and group 2 after anticipation.

Table 4. Descriptive results of the gap changing distribution.

Mean Std Min Max

�S in group1 5.36 4.65 −6.38 20.31
�S in group2 −4.65 6.31 −19.32 2.13

Note: The mean values of Delta S between group 1 and group 2 are significantly
different in the ANOVA test (p < 0.001).

the statistical result of group 1 in Table 4 shows that if the anticipation affects the NF’s behaviour, an
extra gap (mean value = 5.36 m) between the NF and NL will be induced.

Next, we turn our attention to the speed fluctuation in two groups. Let us denote �ϕNL and �ϕNF

as the speed-changing value of theNL and theNF after anticipation, respectively, which can bewritten
as:

�ϕNL = VNL(Te) –VNL(Ts) (5)

�ϕNF = VNF(Te) –VNF(Ts) (6)

where VNL (Ts) and VNL (Te) are the speed of NL at the start and end moments of the anticipation
process, respectively, VNF (Ts) and VNF (Te) are the speed of NF at the start and end moments of the
anticipation process, respectively. Generally, if the NF is in an equilibrium state, the speed-changing
value of NFwill approximately equal to that of NL. Thus, the difference value between�ϕNL and�ϕNF,
denoted as� = �ϕNF -�ϕNL, is capable of reflecting how theNF responds to the anticipationprocess.

Figure 10 shows the distributions of � in group 1 and group 2. The descriptive statistic results of
these distributions are displayed in Table 5. The result for group 1 in Table 5 suggests that the NL is
more likely to accelerate (mean = 0.63 m/s), while the NF tends to decelerate (mean = −0.23 m/s)
during the anticipation process. As a result, the distribution of� in group 1 is concentrated on the left
side of zero; see Figure 10. These distinct driving behaviours of NL andNF explain how the gap created
in the target lane. Regarding group 2, the average value of�ϕNL is−1.58 m/s, suggesting that the NL
in group 2 is more likely to decelerate during the anticipation. Meanwhile, the average value of �ϕNF

(−0.89) is smaller than that of �ϕL. Marczak, Daamen, and Buisson (2013) reported a similar finding.
This finding explains the formation mechanism of group 2, which is that the NL tends to decelerate
while the NF exhibits a slower response. As a result, the NF’s reaction pattern value is reduced.

The above findings report that the consequences of NF in group 1 are clearly different from that in
group 2 regarding gap creation and speed reduction. Thus, an interesting problem lies in whether we
can find multiple factors that directly describe the NF’s behaviour during the anticipation process.
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Figure 10. Distribution of the difference in speed fluctuation between the new follower and its leader for group 1 and group 2.

Table 5. Descriptive results of the speed changing distribution.

Mean Std Min Max

Group 1
�ϕNL 0.63 1.83 −10.63 7.66
�ϕNF −0.23 1.60 −11.24 7.00
� −0.80 1.53 −4.85 4.59

Group 2
�ϕNL −1.58 2.68 −14.73 5.87
�ϕNF −0.89 2.19 −13.24 7.60
� 0.69 1.66 −3.26 5.23

Note: The mean values in group 1 are significantly different from group 2 in the ANOVA
test (p < 0.001).

4.3. Relation between headways and the follower’s behaviour

This subsection investigates whether these two groups’ headway (in s) between the NF and NL
(TNF−NL) is different. The ANOVA test and the distribution of TNF−NL in two groups are displayed in
Figure 11. The results show that TNF−NL has no significantly different in group1 andgroup2 (p = 0.52).
Therefore, one could argue that the difference in NF’s behaviour is not a difference in its present head-
way with the NL. Furthermore, we compare the headway (in s) between the NF and the LC (TNF−LC)
in group 1 and group 2; see Figure 12. We can see that the value of TNF−LC in group 1 is significantly
smaller (1.45s) than that in group 2 (2.12s). This finding would be evidence that the relation between
the NF and LC significantly affects the NF’s behaviour. This is easy to understand that when the LC
conducts an anticipation process with a smaller headway with NF, the NF is more likely to adjust its
speed and location to ensure safety.

4.4. Anticipation speed versus follower’s behaviour and headway

Figure 13 presents the result of the relation between the anticipation speed (VLC) and the NF’s
behaviour. Note that the anticipation speed here is defined by the LC’s speed at the start moment
of the anticipation process. The ANOVA test result is presented in Figure 13(a). It suggests that the
VLC at group 1 and group 2 are significantly different (p < 0.000). The VLC in group 1 (mean = 5.82
m/s) is smaller than that in group 2 (mean = 9.59 m/s). This result reveals that the NF tends to devi-
ate from the initiate reaction pattern if the LC conducts the anticipation with a lower speed. Since the
NF in group 1 is more likely to suffer slow anticipation speed and small headway value of TNF−LC, we
compared the relationship between the anticipation speed and the headway TNF−LC. The comparison
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Figure 11. Relation between the time headway (new follower and new leader) and the new follower’s behaviour.

Figure 12. Relation between the headway (new follower and lane changer) and the new follower’s behaviour.

Figure 13. Relation between anticipation speed and the new follower’s behaviour.

result is shown in Figure 14. This figure shows a large variance and a small value of the Pearson cor-
relation coefficient (0.09). This finding reveals that it is impossible to identify the anticipation speed
based on the value of headway between the LC and the NF.
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Figure 14. Relation between anticipation speed and headway between new follower and lane changer.

5. Binary logistic regressions: which factors influence new follower’s behaviour
during anticipation

In this section, we first develop binary logistic regressions in Section 5.1 to predict the new follower’
behaviour during the anticipation. In Section 5.2, we calibrate and test the performance of the devel-
oped models. Moreover, we compare our model with the model proposed by Zheng et al. (2013) in
Section 5.3. Finally, we further collected four trajectory datasets under different bottlenecks and times
to examine the transferability of the developed model in Section 5.4.

5.1. Model development

As for the approach tomodel the lane-changing behaviour, non-parameter and parametermodels are
widely used in previous studies. The non-parameter method, such as deep learning method (Zhang
et al. 2022), and data-driven simulation (Liu et al. 2022) have been developed to predict lane-changing
behaviour. However, these non-parameter models mainly focused on improving the predicted accu-
racy of lane-changingdecisions insteadof understanding the lane-changing impact on the target lane.
The parametermodels such as themultilevel linear regressionmodel (Yang,Wang, andQuddus 2019),
the linear mixedmodel (Ali, Zheng, and Haque 2018), and the binarymodel (Ng et al. 2020) have been
used to connect factors to the lane-changingbehaviour. Ourwork aims toquantify themultiple factors
on the probability of whether the NF changes its following behaviour when the anticipation occurs in
the adjacent lane. Considering the fact that whether the NF changes its following behaviour is a binary
problem, the binary logistic regression is selected to fill this need.

Let the dependent variable Y = 0 represent the NF who belongs to group 1, and Y = 1 represents
the NF who belongs to group 2. Then, we set an input vector Xn to represent the initial relationship
among three vehicles: NF, NL, and LC,where the subscriptn is the number of candidate variables. Thus,
the general formulation of the binary logistic regression can be expressed as below:

Pr(Y = 0|Xn) = exp[f (Xn,β)]
1 + exp[f (Xn,β)]

(7)

where Pr(Y = 0|Xn) is the probability that theNFbelongs to group 1 if the LC conducts the anticipation
process at the initial state of Xn; f (Xn, β) is themultiple linear regression function which can bewritten
as Equation (8):

f (Xn,β) = Xnβn + β0 (8)

where βn is the coefficient, and β0 is the constant.
Based on this framework, we develop two models. The first model only considers the relation

between NF and NL (model 1). The second model is constructed by adding the anticipation-related



14 K. CHEN ET AL.

Table 6. Pearson’s correlation coefficients between all the candidate variables.

1 2 3 4 5 6 7

1. New follower’s speed (XVNF) 1
2. Relative speed between new follower and new leader (XVNL−NF) −0.13 1
3. Initial reaction pattern of the new follower (Xη(Ts)) 0.12 −0.16 1
Anticipation-realted variables
4. Anticipation speed (XVLC) 0.82 0.06 0.17 1
5. Relative speed between lane changer and new follower (XVLC−NF) −0.14 0.18 −0.14 0.15 1
6. Headway between new follower and lane changer (TNF−LC). −0.03 0.02 0.05 −0.03 0.08 1
7. Relative speed between new leader and lane changer (XVNL−LC) 0.03 0.11 0.09 −0.10 0.05 −0.12 1

variables into model 1 (model 2). Specifically, three factors which are the speed of NF (XVNF), the rela-
tive speed between NF and NL (XVNL−NF), and the initial reaction pattern of NF (Xη(Ts)), are considered
in model 1. As discussed in Section 4.3, the headway between the NF and NL is not significantly dif-
ferent in these two groups. Thus, we do not consider this variable in model 1. On the other hand,
we construct model 2 by incorporating four additional anticipation-related variables into model 1,
which are the anticipation speed (XVLC), the relative speed between LC and NF (XVLC−NF), the head-
way between theNF and LC (TNF−LC), and the relative speed betweenNL and LC (XVNL−LC). Comparing
these two models helps us understand whether the anticipation-related variables can increase the
prediction accuracy.

5.2. Models results

Multicollinearity among the above variables has been first checked using Pearson’s correlation coef-
ficient (PCC). Table 6 presents their PPC values. From this table, there are two observations to be
highlighted. Firstly, the PPC value between XVNF and XVLC is particularly large (0.82), suggesting that
the speed of the NF has a positive correlation with that of the LC. Thus, the variable XVNF is removed
in the construction of model 2. Secondly, the rest of these independent variables produce PPC values
between −0.14 and 0.18. Then, we can conclude that the selected independent variables in the two
models exclude any serious multicollinearity.

Table 7 presents the estimation results for model 1 and model 2. In this table, one observes that
the coefficient of Xη(Ts) is negative. This result suggests that a smaller initial reaction pattern value
of NF increases the probability that NF’s behaviour belongs to group 1, which is coincident with the
ANOVA test result in Figure 8(a). As expected, the coefficient of XVNL−NF is positive, which means the
higher speed of NL than that of NF, the higher the probability for the NF to deviate from its initial
behaviour. This finding seems reasonable because the NF will fall behind if a larger speed difference
exists between NL and NF. However, all the samples in this study were collected in congested traf-
fic conditions; see the mean speed value in Table 1. Leaving aside the setting of timid or aggressive
behaviours, theNF’s natural behaviour is to follow its leader andmaintain an equilibrium state asmuch
as possible. Nevertheless, the discussion in Figure 10 suggests that the NF tends to decelerate even
though the NL accelerates during the anticipation process, which is opposite to the typical driving
experience. Thus, it may be incomplete to determine the NF’s behaviour only based on the relation
between NF and its leader.

The estimation results of model 2 are also shown in Table 7. From this table, the impact trends of
Xη(Ts) and XVNL−NF are the same as inmodel 1. Moreover, the negative coefficients of TNF−LC and XVLC

areobserved, coincidingwith thediscussion in Figures 12and13, respectively. Thenegative coefficient
of XVLC−NF suggests that the probability that the NF’s behaviour belongs to group 1 will be increased
with the reduction of the speed difference between LC and NF. It reveals that if the LC’s anticipation
speed is lower than NF, the NF is more likely to decelerate to ensure safety with the LC. The finding
further explains that the deceleration behaviour of the NF is related to the anticipation speed. Finally,
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Table 7. The estimation and fit results for model 1 and model 2.

Model 1 Model 2

Variables Description Coefficient Standard error Coefficient Standard error

Xη(Ts) Initial reaction pattern of the new follower −1.93∗∗∗ 0.24 −1.72∗∗∗ 0.28
XVNL−NF Relative speed between new follower and new leader 1.54∗∗∗ 0.12 0.78∗∗∗ 0.12
XVNF New follower’s speed −0.09∗∗∗ 0.04 – –

Anticipation-related
XVLC Anticipation speed – – −0.13∗∗∗ 0.02
XVLC−NF Relative speed between lane changer and new follower – – −1.95∗∗∗ 0.09
TNF−LC Headway between new follower and lane changer – – −0.52∗∗∗ 0.15
XVNL−LC Relative speed between new leader and lane changer – – 1.45∗∗∗ 0.07
Intercept 4.73∗∗∗ 0.22 5.23∗∗∗ 0.35

Model fit statistics
No. of parameters 4 7
No. of observations 3840 3840
Log-likelihood at zero −1083.17 −1186.54
Log-likelihood at convergence −711.56 −506.75
Likelihood ratio test χ2 371.61 679.79
McFadden’s ρ2 0.40 0.62
BIC 1456.13 866.55

∗∗∗Significant at p < 0.001.

the coefficient of XVNL−LC is positive, indicating that the probability of the NF’s behaviour belong-
ing to group 1 increased with the increase of the speed difference between NL and LC. This finding
might seem strange, but it can be explained that the NF changes the following target to the LCwhen it
notices the anticipationprocess. Then, theNFmay slow its speed if the LC’s speed is lower than theNL’s
speed.

To further measure the performance of these two models, we calculate three commonly accepted
fit statistics (Schwarz 1978; Roque, Moura, and Lourenço Cardoso 2015; Wang et al. 2020): (1)
McFadden’s ρ2; (2) Likelihood ratio test χ2; (3) Bayesian Information Criterion (BIC). One model
with higher values of Likelihood ratio and McFadden’s ρ2, lower value of BIC is preferred. Table 7
presents the comparison results for model 1 and model 2. We can clearly see that model 2 pro-
vides a significantly better fit than model 1. McFadden’s ρ2 in model 2 is 0.62, indicating that the
selected six independent variables with one constant can explain about 62% of the variation in the
dependent variable. While model 1 can only explain about 40% of the variation in the dependent
variable.

A confusion matrix is adopted to examine the prediction accuracy. In general, a confusion matrix
includes four essential elements, which are (1) true positive (TP), (2) false positive (FP), (3) true negative
(TN), and (4) false negative (FN). Based on the four factors, the recall and the false alarm rate (FAR) are
computed to evaluate the minority and majority classes, respectively. The recall indicates how many
samples in group 1 are correctly detected out of all the group 1 samples. The FAR indicates howmany
samples in group 2 arewrongly detected as group 1 out of all the group 2 samples. The Receiver Oper-
ating Characteristic curve (ROC) curve is constructed in which the horizontal axis represents the FAR,
and the vertical axis represents the recall. Note that the threshold to compute the ROC increases from
0 to 1 with an interval of 0.1. The area under the ROC (AUC) is calculated to evaluate the classification
capable between group 1 and group 2. The detailed results for model 1 and model 2, including the
confusionmatrix, recall, FAR, and AUC, are provided in Table 8. The results indicate that the prediction
capability of model 2 outperforms model 1.

In summary, the results of Tables 7 and 8 conclude that these four anticipation-related variables
play a vital role in increasing the prediction accuracy of whether the NF changes its behaviour dur-
ing the anticipation process. NF’s behaviour can be better predicted when we consider these four
anticipation-related variables.
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Table 8. Confusion matrix and prediction performance for two models.

Model 1 Model 2

Confusion matrix Predicted Predicted

Group 1 Group 2 Group 1 Group 2

Actual Group 1 TP = 1893 FN = 719 TP = 2484 FN = 128
Group 2 FP = 381 TN = 847 FP = 98 TN = 1130

Performance indicators
Recall 83.25% 96.20%

False alarm rate (FAR) 31.03% 7.98%
AUC 78.42% 94.17%

Table 9. Confusion matrix and prediction performance for model 3.

Model 3

Confusion matrix Predicted

Group 1 Group 2

Actual Group 1 TP = 2193 FN = 419
Group 2 FP = 757 TN = 471

Performance indicators
Recall 74.33%
False alarm rate (FAR) 61.64%
AUC 54.27%

5.3. Comparison results

In the work of Laval and Leclercq (2008), the relaxation process has been successfully modelled. It has
been further reformulated by Duret, Ahn, and Buisson (2011) and adopted by Zheng (2014) to analyse
theNF’s drivingbehaviour. As Zhenget al. (2013) observed, theNFwill generally deviate from the equi-
librium state during the anticipation process. They modelled this impact of the anticipation process
on the NF by the maximum passing rate with the logic under 70 samples and achieved satisfactory
accuracy. Thus, we apply this model to our dataset for comparison purpose. We present the details
of this model and its calibration process in the Appendix. For simplification, we name this compared
model as model 3 thereafter.

Table 9 presents the confusion matrix and the performance of model 3. This table shows that the
prediction accuracy of model 3 is worsened than model 1 and model 2. This result is not surprising
because model 3 added a fixed parameter ε to reproduce the deviation behaviour of the NF. Conse-
quently, it works well when the NF changes its behaviour. However, as we reported in Table 2, around
30% of the NFs will not change their behaviour (Group 2). Thus, model 3 has an unsatisfactory accu-
racy for predicting the NF who belongs to group 2, which can be inferred by the large value of FAR in
Table 9. This comparison results again highlight that the prediction accuracy can be highly improved
by considering the current traffic environment, especially the anticipation-related variables.

5.4. Transferability of themodel

To examine the spatial and temporal transferability of our model 2, we additionally select three new
sites in Nanjing, as shown in Figure 15. Four trajectory datasets are obtained based on the trajectory
extraction method introduced in Section 3. The detailed information of these datasets is presented in
Table 10. Specifically, dataset 8 is collected at site 1 to test the performance of our model on the same
site but on adifferent day. A newmerging section (site 4) is chosen to evaluate the transferability of our
model at different merging locations and times. The other two datasets, one collected at a weaving
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Figure 15. Structure of three transferability testing sites.

Table 10. Basic information of transferability testing datasets.

Trajectory
datasets Study site Date Time Type Weather

Study
samples

Group 1
samples

Group 2
samples

Dataset 8 Site 1 23 July 2021 7:45 am-8:45 am Merging Sunny 1038 642 441
Dataset 9 Site 4 31 August 2021 8:10 am-9:10 am Merging Sunny 945 593 352
Dataset 10 Site 5 6 May 2021 7:30 am-8:30 am Weaving Sunny 1370 855 515
Dataset 11 Site 6 13 December 2021 6:30 pm-7:30 pm Basic road Night 745 481 273

Table 11. Transferability results of model 2 on different datasets.

Datasets Recall False alarm rate (FAR) AUC

Dataset 8 97.67% 5.59% 96.23%
Dataset 9 94.51% 7.31% 93.91%
Dataset 10 92.27% 9.22% 90.38%
Dataset 11 93.50% 8.73% 91.75%

section, and another collected at a basic road section during the evening peak hour, are used to test
whether our model performs well on the different bottlenecks and lighting conditions.

Table 11 gives the prediction results of model 2 on these four trajectory datasets. From Table 11, it
can be seen that model 2 achieves even better results on dataset 8 than that on the original dataset.
The recall outcomewith dataset 9 ismarginally lower than that value producedby the original dataset.
Fortunately, the FAR value of model 2 using dataset 9 decreases slightly. As a result, the AUC value of
model 2 obtained with dataset 9 is 93.91%, which is almost the same as the one obtained with the
original dataset (94.17%). The comparison results of dataset 8 and dataset 9 indicate that our model
has thepotential topredict theNF’s behaviourunderdifferentmerging siteswith satisfactory accuracy.
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Next, we compare the performance ofmodel 2with theweavingdataset and the nighttimedataset.
Comparing the results in Tables 8 and 11, it canbe seen that the prediction accuracy decreases to a rea-
sonable extent when we apply model 2 to dataset 10 and dataset 11. The possible explanation is that
the driving behaviours in the weaving section and at nighttime are different from that in the merging
section during the daytime. In addition, the original model 2 did not use those data to calibrate. Under
such a situation, the small decrease in prediction accuracy is reasonable and acceptable.

6. Conclusion

In this paper, we investigate the response behaviour of the new follower in the target lane (NF) when
the lane changer in the adjacent lane (LC) is conducting the anticipationprocess. Drone videos at three
merging sites in Nanjing, China, were recorded. An automatic trajectory extraction method is used to
get the vehicle-level trajectory from these drone videos. After that, 3840 available study samples are
selected from the whole trajectory datasets. To quantify the NF’s behaviour, the ratio between the
real wave travel time and the equilibrium time is applied. Consequently, two kinds of NF’s response
behaviours can be classified: (1) Group 1, the changing of reaction pattern larger than 0.1, indicating
that the NF deviates from its initial state; and (2) Group 2, the changing of reaction pattern less than
0.1, indicating that the NF reduces its initial state.

Based on this classification criterion, comprehensive empirical analyses for the NF’s response and
its relationship with anticipation are conducted. We observe that about 68% of NF samples belong
to group 1. The initial reaction values are examined at the two groups. The results show that the NF
in group 1 tends to change its behaviour to a more ‘timid’ pattern even the initial reaction pattern is
larger than the equilibrium state. This finding suggests that the NF’s behaviour is somehow affected.
Next, we detailly describe the impact of these two groups in terms of the gap increasing size and the
fluctuation of NF’s speed during the anticipation process. We find that the NF exhibits two distinctly
different behaviours in group 1 and group 2. Specifically, the NF in group 1 is more likely to produce
an extra gap (average 5.36 m), while in group 2 it is more likely to reduce the gap (average 4.65 m). It
is interesting to point out that the NL tends to accelerate in group 1 while the NF tends to decelerate
during the anticipation process. For group 2, both the NL and the NF tend to decelerate, while the
deceleration of the NL is larger than that of the NF.

Furthermore, we analyse some critical factors to see their relationships with the NF’s behaviour.
Statistical results confirm that the headway (in s) between the NL and NF does not significantly affect
the NF’s behaviour. However, both the headway between the LC and NF, and the anticipation speed
highly correlate with the NF’s behaviour. These findings reveal that the deviation behaviour of the NF
(group 1) is ascribed to the LC’s anticipation behaviour. Therefore, we proposed two binary logistic
regression models: (1) the basic model only considers the relation between NL and NF (model 1); and
(2) model 1+ anticipation-related variables (model 2). These anticipation-related variables we consid-
ered in this study are the anticipation speed, the related speed between NL and LC, the related speed
between LCandNF, and theheadwaybetween the LCandNF. Severalmodels fit statistics, such as Like-
lihood ratio,McFadden’s R-squared, and BIC all demonstrate thatmodel 2 fits the datamore effectively
than model 1. Additionally, to further evaluate the prediction capability of these models, the confu-
sion matrix, recall, false alarm rate, and AUC are computed. The results of this comparison conclude
that the regression model can predict whether the NF changes its behaviour during the anticipation
process with high accuracy. Remarkably, the prediction accuracy can also be significantly increased if
we consider the anticipation-related variables. Finally, four additional trajectory datasets are used to
test the transferability of the regression model. The results show that the prediction accuracy is still
very high when we directly apply the developed model to other trajectory datasets under different
bottlenecks and times. It demonstrates that our model has good transferability.

This study provides a comprehensive empirical analysis to understand how the NF’s behaviour
changes during the anticipation process. More importantly, the binary logistic regressionmodels sug-
gest that the NF’s behaviour is highly related to the anticipation behaviour. The results suggest that
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when we model the car-following behaviour under the scenario of lane-changing, the impact of the
anticipation stage of the lane-changingmanoeuvre should be considered. This would provide a better
understanding of combing the car-following and lane-changingmodels into onemodel. This is ongo-
ing research in our further work. However, this study only focuses on the successful lane-changing
sample, and its follower and leader are unchanged during the whole anticipation process. There exist
several other lane-changing scenarios in reality, such as the NF may speed up the LC, the NF may also
change lane, and the LC even speed upNF in the target lane, in which the relation between the LC and
its NFs are expected different. This will be a subject for future research. Finally, the vehicle type has not
been considered in this study due to the limited availability of the heavy-vehicle trajectory dataset.

Acknowledgements
We thank Editor, Associate Editor, and the anonymous reviewers for their constructive comments.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This research was sponsored by the National Natural Science Foundation of China (52272331, 52232021, 71871057).

ORCID
Kequan Chen http://orcid.org/0000-0003-3994-8416

Victor L. Knoop http://orcid.org/0000-0001-7423-3841

YuxuanWang http://orcid.org/0000-0001-9153-3512

References
Ahn, S., and M. J. Cassidy. 2007. “Freeway Traffic Oscillations and Vehicle Lane-Changing Maneuvers.” The 17th Interna-

tional Symposium on Transportation and Traffic flow Theory, 691–710.
Ali, Y., Z. Zheng, and Md.M Haque. 2018. “Connectivity’s Impact on Mandatory Lane-Changing Behaviour: Evi-

dences from a Driving Simulator Study.” Transportation Research Part C: Emerging Technologies 93: 292–309.
doi:10.1016/j.trc.2018.06.008.

Carey, M., C. Balijepalli, and D. Watling. 2015. “Extending the Cell Transmission Model to Multiple Lanes and Lane-
Changing.” Networks and Spatial Economics 15: 507–535. doi:10.1007/s11067-013-9193-7.

Cassidy, M. J., and J. Rudjanakanoknad. 2005. “Increasing the Capacity of an Isolated Merge by Metering its on-Ramp.”
Transportation Research Part B: Methodological 39: 896–913. doi:10.1016/j.trb.2004.12.001.

Chen, D., and S. Ahn. 2018. “Capacity-drop at Extended Bottlenecks: Merge, Diverge, andWeave.” Transportation Research
Part B: Methodological 108: 1–20. doi:10.1016/j.trb.2017.12.006.

Chen, D., J. A. Laval, S. Ahn, and Z. Zheng. 2012b. “Microscopic Traffic Hysteresis in Traffic Oscillations: A Behavioral
Perspective.” Transportation Research Part B: Methodological 46: 1440–1453. doi:10.1016/j.trb.2012.07.002.

Chen, D., J. Laval, Z. Zheng, and S. Ahn. 2012a. “A Behavioral car-Following Model That Captures Traffic Oscillations.”
Transportation Research Part B: Methodological 46: 744–761. doi:10.1016/j.trb.2012.01.009.

Chen, K., P. Liu, Z. Li, Y. Wang, and Y. Lu. 2021. “Modeling Anticipation and Relaxation of Lane Changing Behavior
Using Deep Learning.” Transportation Research Record: Journal of the Transportation Research Board 2675: 186–200.
doi:10.1177/03611981211028624.

Duret, A., S. Ahn, andC. Buisson. 2011. “Passing Rates toMeasure Relaxation and Impact of Lane-Changing in Congestion.”
Computer-Aided Civil and Infrastructure Engineering 26: 285–297. doi:10.1111/j.1467-8667.2010.00675.x.

Elefteriadou, A. 1996. “A Probabilistic Model of Breakdown at Freeway-Merge Junctions.” Transportation Research Part A:
Policy and Practice 30: 73. doi:10.1016/0965-8564(96)81150-5.

Gao, Jun, Yi LuMurphey, Jiangang Yi, and Honghui Zhu. 2022. “A Data-Driven Lane-Changing Behavior Detection System
Based on Sequence Learning.” Transportmetrica B: Transport Dynamics 10 (1): 831–848. doi:10.1080/21680566.2020.
1782786.

Ghaffari, A., A. Khodayari, N. Hosseinkhani, andS. Salehinia. 2015. “The Effect of a LaneChangeona car-FollowingManoeu-
vre: Anticipation and Relaxation Behaviour.” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering 229: 809–818. doi:10.1177/0954407014547930.

http://orcid.org/0000-0003-3994-8416
http://orcid.org/0000-0001-7423-3841
http://orcid.org/0000-0001-9153-3512
https://doi.org/10.1016/j.trc.2018.06.008
https://doi.org/10.1007/s11067-013-9193-7
https://doi.org/10.1016/j.trb.2004.12.001
https://doi.org/10.1016/j.trb.2017.12.006
https://doi.org/10.1016/j.trb.2012.07.002
https://doi.org/10.1016/j.trb.2012.01.009
https://doi.org/10.1177/03611981211028624
https://doi.org/10.1111/j.1467-8667.2010.00675.x
https://doi.org/10.1016/0965-8564(96)81150-5
https://doi.org/10.1080/21680566.2020.1782786
https://doi.org/10.1177/0954407014547930


20 K. CHEN ET AL.

Gipps, P. G. 1986. “A Model for the Structure of Lane-Changing Decisions.” Transportation Research Part B: Methodological
20: 403–414. doi:10.1016/0191-2615(86)90012-3.

Hou, Y., P. Edara, and C. Sun. 2015. “Situation Assessment and Decision Making for Lane Change Assistance Using
Ensemble Learning Methods.” Expert Systems with Applications 42: 3875–3882. doi:10.1016/j.eswa.2015.01.029.

Jin, W.-L. 2017. “A First-Order Behavioral Model of Capacity Drop.” Transportation Research Part B: Methodological 105:
438–457. doi:10.1016/j.trb.2017.09.021.

Keane, R., and H. O. Gao. 2021. “A Formulation of the Relaxation Phenomenon for Lane Changing Dynam-
ics in an Arbitrary Car Following Model.” Transportation Research Part C: Emerging Technologies 125: 103081.
doi:10.1016/j.trc.2021.103081.

Kesting, A., M. Treiber, and D. Helbing. 2007. “General Lane-Changing Model MOBIL for Car-Following Models.” Trans-
portation Research Record: Journal of the Transportation Research Board 1999: 86–94. doi:10.3141/1999-10.

Laval, J. A., and C. F. Daganzo. 2006. “Lane-changing in Traffic Streams.” Transportation Research Part B:Methodological 40:
251–264. doi:10.1016/j.trb.2005.04.003.

Laval, J. A., and L. Leclercq. 2008. “Microscopic Modeling of the Relaxation Phenomenon Using a Macroscopic Lane-
Changing Model.” Transportation Research Part B: Methodological 42: 511–522. doi:10.1016/j.trb.2007.10.004.

Laval, J. A., and L. Leclercq. 2010. “A Mechanism to Describe the Formation and Propagation of Stop-and-go Waves in
Congested Freeway Traffic.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 368: 4519–4541. doi:10.1098/rsta.2010.0138.

Leclercq, L., V. L. Knoop, F. Marczak, and S. P. Hoogendoorn. 2016. “Capacity Drops at Merges: New Analytical Investiga-
tions.” Transportation Research Part C: Emerging Technologies 62: 171–181. doi:10.1016/j.trc.2015.06.025.

Leclercq, L., N. Chiabaut, J. Laval, and C. Buisson. 2007. “Relaxation Phenomenon after Lane Changing: Experimental
Validation with NGSIM Data Set.” Transportation Research Record 1999: 79–85. doi:10.3141/1999-09.

Li, M., Z. Li, C. Xu, and T. Liu. 2020. “Short-term Prediction of Safety and Operation Impacts of Lane Changes in Oscillations
with Empirical Vehicle Trajectories.” Accident Analysis & Prevention 135: 105345. doi:10.1016/j.aap.2019.105345.

Li, Gen, Zhen Yang, Yiyong Pan, and Jianxiao Ma. 2022. “Analysing and Modelling of Discretionary Lane Change Dura-
tion Considering Driver Heterogeneity.” Transportmetrica B: Transport Dynamics, 1–18. doi:10.1080/21680566.2022.
2067599.

Liu, Han, Ye Tian, Jian Sun, and Di Wang. 2022. “An Exploration of Data-Driven Microscopic Simulation for Traffic System
and Case Study of Freeway.” Transportmetrica B: Transport Dynamics, 1–20. doi:10.1080/21680566.2022.2146776.

Ma, L., andS.Qu. 2020. “A Sequence to Sequence LearningBased car-FollowingModel forMulti-StepPredictionsConsider-
ing Reaction Delay.” Transportation Research Part C: Emerging Technologies 120: 102785. doi:10.1016/j.trc.2020.102785.

Marczak, F.,W.Daamen, andC. Buisson. 2013. “MergingBehaviour: Empirical ComparisonBetween twoSites andnewThe-
ory Development.” Transportation Research Part C: Emerging Technologies 36: 530–546. doi:10.1016/j.trc.2013.07.007.

Newell, G. F. 2002. “A Simplified Car-Following Theory: A Lower OrderModel.” TransportationResearch Part B:Methodolog-
ical 36: 195–205. doi:10.1016/S0191-2615(00)00044-8.

Ng, Christina, Susilawati Susilawati, Md Abdus Samad Kamal, and Irene Mei Leng Chew. 2020. “Development of a Binary
Logistic Lane Change Model and Its Validation Using Empirical Freeway Data.” Transportmetrica B: Transport Dynamics
8 (1): 49–71. doi:10.1080/21680566.2020.1715309.

Oh, S., and H. Yeo. 2015. “Impact of Stop-and-go Waves and Lane Changes on Discharge Rate in Recovery Flow.”
Transportation Research Part B: Methodological 77: 8–102. doi:10.1016/j.trb.2015.03.017.

Pan, T.,W. H. Lam, A. Sumalee, and R. Zhong. 2016. “Modeling the Impacts ofMandatory andDiscretionary Lane-Changing
Maneuvers.” Transportation Research Part C: Emerging Technologies 68: 403–424. doi:10.1016/j.trc.2016.05.002.

Patire, A. D., andM. J. Cassidy. 2011. “Lane Changing Patterns of Bane and Benefit: Observations of an Uphill Expressway.”
Transportation Research Part B: Methodological 45: 656–666. doi:10.1016/j.trb.2011.01.003.

Roque, C., F. Moura, and J. Lourenço Cardoso. 2015. “Detecting Unforgiving Roadside Contributors Through the Severity
Analysis of ran-off-Road Crashes.” Accident Analysis & Prevention 80: 262–273. doi:10.1016/j.aap.2015.02.012.

Schwarz, G. 1978. “Estimating the Dimension of a Model.” The Annals of Statistics 6 (2): 461–464. doi:10.1214/aos/
1176344136.

Smith, S. A. 1985. “Freeway Data Collection for Studying Vehicle Interactions.” Federal Highway Administration. Available
through the National Technical Information Service.

Nagalur Subraveti, H. H. S., V. L. Knoop, and B. van Arem. 2019. “First Order Multi-Lane Traffic Flow Model – An Incentive
BasedMacroscopicModel to Represent LaneChangeDynamics.” TransportmetricaB: TransportDynamics7: 1758–1779.
doi:10.1080/21680566.2019.1700846.

Wan, Q., G. Peng, Z. Li, and F. H. T. Inomata. 2020. “Spatiotemporal Trajectory Characteristic Analysis for Traffic State Transi-
tionPredictionNear ExpresswayMergeBottleneck.” TransportationResearchPartC: EmergingTechnologies117: 102682.
doi:10.1016/j.trc.2020.102682.

Wang, Y., P. Liu, C. Xu, C. Peng, and J. Wu. 2020. “A Deep Learning Approach to Real-Time CO Concentration Prediction at
Signalized Intersection.” Atmospheric Pollution Research 11: 1370–1378. doi:10.1016/j.apr.2020.05.007.

Yang, M., X. Wang, and M. Quddus. 2019. “Examining Lane Change gap Acceptance, Duration and Impact Using Natural-
istic Driving Data.” Transportation Research Part C: Emerging Technologies 104: 317–331. doi:10.1016/j.trc.2019.05.024.

https://doi.org/10.1016/0191-2615(86)90012-3
https://doi.org/10.1016/j.eswa.2015.01.029
https://doi.org/10.1016/j.trb.2017.09.021
https://doi.org/10.1016/j.trc.2021.103081
https://doi.org/10.3141/1999-10
https://doi.org/10.1016/j.trb.2005.04.003
https://doi.org/10.1016/j.trb.2007.10.004
https://doi.org/10.1098/rsta.2010.0138
https://doi.org/10.1016/j.trc.2015.06.025
https://doi.org/10.3141/1999-09
https://doi.org/10.1016/j.aap.2019.105345
https://doi.org/10.1080/21680566.2022.2067599
https://doi.org/10.1080/21680566.2022.2146776
https://doi.org/10.1016/j.trc.2020.102785
https://doi.org/10.1016/j.trc.2013.07.007
https://doi.org/10.1016/S0191-2615(00)00044-8
https://doi.org/10.1080/21680566.2020.1715309
https://doi.org/10.1016/j.trb.2015.03.017
https://doi.org/10.1016/j.trc.2016.05.002
https://doi.org/10.1016/j.trb.2011.01.003
https://doi.org/10.1016/j.aap.2015.02.012
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1080/21680566.2019.1700846
https://doi.org/10.1016/j.trc.2020.102682
https://doi.org/10.1016/j.apr.2020.05.007
https://doi.org/10.1016/j.trc.2019.05.024


TRANSPORTMETRICA B: TRANSPORT DYNAMICS 21

Yang, D., S. Zheng, C.Wen, P. J. Jin, andB. Ran. 2018. “ADynamic Lane-Changing Trajectory PlanningModel for Automated
Vehicles.” Transportation Research Part C: Emerging Technologies 95: 228–247. doi:10.1016/j.trc.2018.06.007.

Yang, Z., L. Zhibin, L. Pan, and Z. Liteng. 2011. “Exploring Contributing Factors to Crash Injury Severity at Freeway Diverge
Areas Using Ordered Probit Model.” Procedia Engineering 21: 178–185. doi:10.1016/j.proeng.2011.11.2002.

Yuan, J., M. Abdel-Aty, Q. Cai, and J. Lee. 2019. “Investigating Drivers’ Mandatory Lane Change Behavior on the Weaving
Section of Freeway with Managed Lanes: A Driving Simulator Study.” Transportation Research Part F: Traffic Psychology
and Behaviour 62: 11–32. doi:10.1016/j.trf.2018.12.007.

Zheng, Z. 2014. “Recent Developments and Research Needs in Modeling Lane Changing.” Transportation Research Part B:
Methodological 60: 16–32. doi:10.1016/j.trb.2013.11.009.

Zheng, Z., S. Ahn, D. Chen, and J. Laval. 2011a. “Applications of Wavelet Transform for Analysis of Freeway Traffic:
Bottlenecks, Transient Traffic, and Traffic Oscillations.” Transportation Research Part B: Methodological 45: 372–384.
doi:10.1016/j.trb.2010.08.002.

Zheng, Z., S. Ahn, D. Chen, and J. Laval. 2011b. “Freeway Traffic Oscillations: Microscopic Analysis of For-
mations and Propagations Using Wavelet Transform.” Procedia - Social and Behavioral Sciences 17: 702–716.
doi:10.1016/j.sbspro.2011.04.540.

Zheng, Z., S. Ahn, D. Chen, and J. Laval. 2013. “The Effects of Lane-Changing on the Immediate Follower: Anticipation,
Relaxation, and Change in Driver Characteristics.” Transportation Research Part C: Emerging Technologies 26: 367–379.
doi:10.1016/j.trc.2012.10.007.

Zhang, Yue, Yajie Zou, Jinjun Tang, and Jian Liang. 2022. “Long-Term Prediction for High-Resolution Lane-
Changing Data Using Temporal Convolution Network.” Transportmetrica B: Transport Dynamics 10 (1): 849–863.
doi:10.1080/21680566.2021.1950072.

Appendix
Here, we present and calibrate the compared model proposed by Zheng et al. (2013). In this model, the formulation for
the predicted wave travel time from LC to NF is:

τ
pre
i (t) = τi(Ts) + ε

β
ln

(
1 + βt

w + vj(Ts)

)
(A1)

where τ i(Ts) is the actual wave travel time from the LC to the NF at the start moment of anticipation; ε is the speed
difference the NF is willing to accept; the β is the NL’s acceleration value; v j(Ts) is the initial speed of the LC.

Weuse the extracted 3840 anticipation samples, as shown in Section 3, to calibrate Equation (A1). For the parameters v
j(Ts), we adopt the average value; v j(Ts) = 7.62m/s. Then, we use the same calibrationmethod suggested by Duret, Ahn,
and Buisson (2011) to calibrate τ i(Ts), ε, and β . The calibration process aims to minimize the Root Mean Squared Error
(RMSE) between the real and estimated values. After that, we have the calibrated values; τ i(Ts) = 0.51s, ε = 0.94 m/s,
and β = 1.82 m/s2. The RMSE value for calibration is 0.21. The calibrated Equation (A1) provides us with the predicted
wave travel time between the LC and the NF at the endmoment of anticipation. To identify whether this predicted value
belongs to group 1 or group 2, we add the actual wave travel time from the NL to LC (τ j(t)) on the predicted value of
τ pre i(t). Note that if the wave arrives at the leader at time ti−1 and the follower at time t j , then the wave travel time
can be computed as (ti−1 − t j). By combining Equations (2), (3), and (A1), we have the identification indicator for this
comparison method.

�ηi =
τ
pre
i (Te) + τj(Te)

τ
− ηi(Ts) (A2)
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