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1  |  INTRODUC TION

Important questions for battling diseases, improving biotechnology 
and protecting biodiversity include the following: ‘Which pathogen 
strains will be most prevalent a month from now?’, ‘When and where 
will pathogenic mutants that escape vaccine-conferred immunity 
arise?’, ‘Which patient will be cured of cancer and which patient will 
see the tumour come back, but now resistant to chemotherapy?’, 
‘Can we use gene drive systems to get rid of (vectors for) dangerous 
diseases or will they evolve resistance to the gene drive?’, ‘How fast 
will a strain engineered for ethanol production evolve and lose its 

efficiency during prolonged fermentation?’ and ‘Which endangered 
species will go extinct and which will adapt successfully to their 
changing environment?’.

Answering these questions requires the ability to predict the 
future course of evolution. In addition, some of these situations 
would have us trying to influence the course of evolution. While 
some fields have been working for many years on predicting and 
influencing evolution, for other fields this is a new endeavour. We 
argue that predicting and trying to influence evolution is more 
common than one may think, but it is not always easy to recognize 
because the jargon used in different fields is varied. The main goal 
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Abstract
Evolution has traditionally been a historical and descriptive science, and predicting 
future evolutionary processes has long been considered impossible. However, 
evolutionary predictions are increasingly being developed and used in medicine, 
agriculture, biotechnology and conservation biology. Evolutionary predictions may be 
used for different purposes, such as to prepare for the future, to try and change the 
course of evolution or to determine how well we understand evolutionary processes. 
Similarly, the exact aspect of the evolved population that we want to predict may also 
differ. For example, we could try to predict which genotype will dominate, the fitness 
of the population or the extinction probability of a population. In addition, there are 
many uses of evolutionary predictions that may not always be recognized as such. 
The main goal of this review is to increase awareness of methods and data in different 
research fields by showing the breadth of situations in which evolutionary predictions 
are made. We describe how diverse evolutionary predictions share a common 
structure described by the predictive scope, time scale and precision. Then, by using 
examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and 
sustainable product formation in biotechnology, we discuss the methods for predicting 
evolution, the factors that affect predictability and how predictions can be used to 
prevent evolution in undesirable directions or to promote beneficial evolution (i.e. 
evolutionary control). We hope that this review will stimulate collaboration between 
fields by establishing a common language for evolutionary predictions.

K E Y W O R D S
disease modelling, evolution, evolutionary control, models, population genetics, predictability, 
prediction
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    |  3WORTEL et al.

of this review is to show the breadth of situations in which evo-
lutionary predictions are being made. In addition, we aim to pro-
vide a common language to improve information transfer between 
research communities. We discuss the study of the predictability 
of evolution, we describe different methods for evolutionary fore-
casting and we discuss situations where the goal is to influence 
evolution (evolutionary control).

Note that throughout this paper, we focus on predictions of 
how populations will evolve, that is how the genetic and pheno-
typic makeup of populations will be different in the future (Nosil 
et al., 2020), rather than predictions about the evolution of new spe-
cies, or predictions about the past. We thus generally take a more 
applied approach to predict evolution compared with some of the 
existing literature (Conway Morris, 2003; Gould, 1990).

1.1  |  The scientific basis of evolutionary 
predictions

What is the basis upon which we can make sound predictions about 
evolution? Evolving populations are complex dynamical systems 
and one has to take into account different forces (e.g. directional 
selection), including stochastic effects (mutation, environment) 
and nonlinear dynamics (e.g. due to eco-evolutionary feedback 
loops). Evolutionary predictions are often based on Darwin's theory 
of evolution by natural selection, which states that if populations 
of entities manifest heritable variance in traits (that contribute to 
fitness), then these populations will adapt to their environment. For 
example, we can predict that if we treat bacteria with antibiotics, 
and if these bacteria harbour (or acquire) genetic variation for 
antibiotic susceptibility then the bacterial population will adapt 
to that challenge and become resistant. We can also recreate this 
scenario as an experiment in the lab and see whether our prediction 
holds true.

Some extensions to Darwin's theory make these statements 
more precise and quantitative. For example, our understanding of 
the polygenic nature of quantitative traits has aided in developing 
tools such as the ‘breeder's equation’ and ‘genomic selection’, fa-
cilitating selective breeding strategies in order to deliver particular 
(predicted) outcomes in animal husbandry and agriculture (Cooper 
et al., 2014; Masuka et al., 2017). For other situations, we need more 
explicit population genetic models to include forces that can distort 
the expected impact of selection, such as random genetic drift, mi-
gration, recombination and mutation, and the stochasticity associ-
ated with these forces.

An additional complicating factor is that populations impact their 
environment. In many situations, we therefore have to consider both 
evolutionary and ecological dynamics and these can feedback onto 
each other (eco-evolutionary feedback loops). For example, the fate 
of endangered species may critically rely on the abundance of pred-
ators, preys and other members of their ecological community, while 
these populations are in turn affected by the endangered species in 
question (Govaert et al., 2019).

Predicting evolution has long been considered challenging or 
even impossible. Fundamental difficulties of predicting evolution 
include the inherent stochasticity of mutation, reproduction and 
environment, and the unknowns of the genotype-phenotype and 
phenotype-fitness maps which, together, determine the fitness land-
scape (De Visser & Krug, 2014; Fragata et al., 2019; Wright, 1932). 
In addition, eco-evolutionary feedback loops make long-term pre-
dictions challenging. These aspects of evolving populations will limit 
the accuracy, and predictions will therefore always be probabilistic 
and provisional, especially for predictions further into the future. 
Thus, short-term and microevolutionary predictions may be most 
achievable (Lässig et al., 2017).

1.2  |  Why predict evolution?

There are different reasons why we are interested in predicting 
evolution, which we have organized into three main categories 
(Figure 1). In the first category, although not the focus of this paper, 
are predictions that are used for experimental systems to develop 
fundamental knowledge on evolving systems and to test assumptions 
of models that are used to predict future evolution (Figure  1a). 
Most work in experimental evolution falls into this category. These 
experiments can focus on the speed of adaptation, the distribution 
of fitness effects of new and existing mutations, the repeatability of 
evolutionary outcomes and the causes of such repeatability. Several 
studies using experimental evolution with E. coli have revealed general 
rules of microbial adaptation. For instance, (i) fitness improvement is 
faster in maladapted genotypes (Couce & Tenaillon,  2015), (ii) the 
beneficial mutation supply is large, such that often multiple beneficial 
mutations coexist and compete in a population (Lang et al., 2013), 
(iii) in most environments mutations with large fitness benefits are 
only found in a few genes (Lind et al., 2017; Tenaillon et al., 2012), 
which leads to high evolutionary convergence at the gene level, (iv) 
mutations with large fitness benefits typically occur at a low rate 
(Schenk et al., 2022) and (v) a change in mutation rate can easily be 
selected for in the course of adaptation (Sniegowski et al.,  1997). 
These observations, while made mostly in vitro, were recovered in 
(experiments in) more natural conditions such as the mammalian gut 
(Barroso-Batista et al., 2014; Lescat et al., 2017; Zhao et al., 2019). 
Experiments to test fundamental knowledge and assumptions force 
us to define the necessary information to predict the evolution and 
determine reasons for failure, and they allow us to test the limits of 
the generality of predictions.

A second reason for making evolutionary predictions is to be 
prepared for the future. A key example here is seasonal influenza 
(Figure 1b). In the spring of any year, vaccines are produced for the 
next fall. To make sure the vaccine is as effective as possible, it is 
necessary to predict which strains will be most common in the next 
influenza season.

A third reason to predict the course of evolution is to choose 
actions that influence the direction or speed of evolution—also re-
ferred to as evolutionary control (Figure 1c). Evolutionary control is 
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4  |    WORTEL et al.

the alteration of an evolutionary process with a specific purpose. 
Control can either suppress evolution, for example, prevent patho-
gens from evolving drug resistance, or facilitate evolution, for exam-
ple, increase the ecological range of a species to avoid extinction. 
As an example of the first, treatment regimes may be chosen with 
different combinations of antibiotics that, together, reduce the risk 
of resistance evolution or that guide evolution to low fitness types 
that are less likely to spread in antibiotic-free environments. There 
are general measures to achieve these goals, but measures can be 
more targeted if we can predict their effects on evolution. We de-
vote a section of this review to evolutionary control.

For predictions in the second and third categories above, it might 
be enough to just predict the future without knowing why a pre-
diction is correct, for example, by using machine-learning or other 
statistical methods. In other words, a useful prediction does not al-
ways come from an understanding of the underlying mechanisms. 
However, precise predictions often come at the expense of gener-
ality, which means predictions cannot be applied in conditions that 

are even slightly different (Huneman, 2014). This is related to Levins' 
triangle, following the 1966 paper in which Levins states that mod-
els cannot simultaneously achieve realism, precision and generality 
(Levins, 1966).

1.3  |  What do we want to predict?

When making evolutionary predictions, we can focus on many dif-
ferent aspects of the future state of a population. Here it may be 
useful to briefly compare evolutionary predictions to weather and 
climate predictions, which have many dimensions as well. Sometimes 
we care about whether or not it will rain tomorrow; whereas other 
times, when we worry about flooding, we care about exactly how 
much rain will fall in the next 24 h. Also, on most days, wind speeds 
may not be mentioned in a weather forecast, but when a hurricane 
is arriving, wind speeds are suddenly crucial to prepare for the im-
pact of the hurricane. Evolutionary predictions are similarly diverse. 

F I G U R E  1  Why do we need predictions? (1) To test hypotheses of evolution for a better fundamental understanding of evolving systems. 
Based on their phylogenetic history we can predict how species evolve when exposed to a given treatment. These predictions can be tested 
with experimental evolution approaches. (2) To be prepared for future outbreaks, we aim to match vaccines with the most common influenza 
strains each year. (3) To have control over evolutionary outcomes and design treatment strategies that prevent the evolution of resistance 
from happening in pathogens. In this review, we focus on predicting evolution for goals (2) and (3), while (1) plays a role in obtaining the 
information on the basis of these predictions.
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    |  5WORTEL et al.

Evolutionary predictions can be about different population variables 
(e.g. majority phenotype or genotype, average fitness, identity of 
fixed mutations, allele frequencies, population size) and include a 
time component (from a few hours to many years).

In this paper, we focus on evolutionary predictions that are 
forward-looking in the sense that they concern future events. 
Predictions can be focussed on either the genotypic or the pheno-
typic level. For instance, at the genotypic level, we can predict the 
frequency of influenza variants in the next influenza season and 
which strains will be most common (Łuksza & Lässig, 2014), or we can 
predict the mutational targets of E. coli responding to various envi-
ronmental pressures (Wang et al.,  2018). At the phenotypic level, 
we can predict the shape of Darwin's finches' beaks after a drought 
(Grant & Grant, 2002). Other times, we want to predict whether or 
after how long drug resistance will evolve in a virus or bacterial in-
fection in a patient. In experimental evolution, the goal may be to 
predict a certain phenotype (e.g. cell size) or the average fitness of a 
population after some amount of time, or we may want to predict 
which genes will acquire new mutations or confer increased fitness. 
With increasing interest in engineering microbial communities, inter-
est turns to predict the evolution of interacting populations. In con-
servation biology, the focus may be on predicting future population 
sizes. For all of these cases, besides predicting the most likely out-
come, sometimes the probability of a certain outcome (e.g. extinction) 
is most important.

1.4  |  A conceptual model of evolutionary 
predictions

Although the objects of evolutionary predictions are highly diverse, 
at an abstract level, they nevertheless share a common structure 
(Figure  S1). All evolutionary predictions result from a model—
including conceptual, verbal, mechanistic, statistical, computational 
or mathematical models—that allows for a projection of the state of 
the evolving system beyond the input that is provided.

The model for all evolutionary predictions starts from describ-
ing the current state of the evolving system and incorporates prior 
scientific knowledge of relevance (e.g. facts and mechanisms, evolu-
tionary processes, etc.). This is the input of the model. The assump-
tions that are made, and that have not (yet) been proven to be true 
can also form input or constraints for the model. The output of the 
model describes the state of the evolving system in the future.

When we describe predictions, we can consider various attri-
butes. First, we should consider which attributes of a population we 
want to predict, or what is the predictive scope: Is the prediction 
about genotypes, phenotypes, fitness or population sizes? Are we 
trying to predict the average feature of a population or the distri-
bution of a trait? Are we predicting the evolutionary path or the 
outcome?

Second, we need to consider the temporal range of a prediction, 
the predictive horizon. Generally, predictions of a system's trajec-
tory are more precise for the near future and lose reliability on a 

characteristic scale. This is relevant especially when predictions are 
needed to decide on actions, such as which vaccine to manufacture. 
For example, when predicting influenza strain frequencies, predic-
tions are useful for up to about one year into the future but not for 
longer periods (Lässig et al., 2017).

Third, we can consider the level of detail of a prediction or pre-
dictive precision. A prediction about the direction of an effect is less 
detailed than one that also includes its magnitude, rate or trajec-
tory. For instance, predicting that microbes will evolve to consume 
a novel food source is less detailed than predicting that the evolu-
tion will occur via a given sequence of mutations (trajectory) (Lind 
et al., 2019). In a sense, predictions are a type of hypothesis, and if 
they are too general, they cannot be falsified.

The fourth attribute of a prediction may be the a priori likelihood 
(absence of ‘surprisingness’) of the prediction, the predictive risk. 
All else being equal, predicting something which is a priori unlikely, 
given background knowledge, is harder to predict but possibly more 
interesting.

2  |  WHAT MAKES E VOLUTION MORE OR 
LESS PREDIC TABLE?

Most of this paper focuses on studies that make evolutionary 
predictions, but to predict evolution, it has to be predictable in the 
first place. The study of predictability and repeatability of evolution 
is of wide interest and we'll provide a short discussion of the main 
issues here (Chevin et al., 2022; De Visser & Krug, 2014; Imhof & 
Schlötterer, 2006; Miton & Tokuriki, 2016; Rego-Costa et al., 2018; 
Szendro et al.,  2013). Many factors influence the predictability of 
evolution. In a highly predictable scenario, the efficiency of selection 
is high relative to the stochasticity of genetic drift, mutation, 
recombination and unpredictable environmental changes. In such 
a situation, the fitness increase of the population and possibly 
the increase in population size, and key fitness-related traits can 
be accurately predicted with deterministic models. An example is 
described by Feder, Pennings, and Petrov (2021) who show that in 19 
of 20 patients infected with HIV and treated with a single drug (3TC), 
viral drug resistance was fixed within 3 months through exactly the 
same mutation (M184V) in the reverse transcriptase gene. In this 
exceptional case the genotype, the phenotype and the timing of 
evolution are predictable.

There are many reasons why the predictability of one or more 
aspects of evolution is usually much lower: if the mutation supply is 
low then waiting times for a successful beneficial mutation will be 
stochastic. Fitness effects may be influenced by interactions with 
other mutations (linkage, epistasis and pleiotropic effects) and the 
environment (and thus selection coefficients) may change in unpre-
dictable ways. Predictability may also be affected by the mating sys-
tem, recombination (or lack thereof), species interactions, feedback 
loops and historical contingency. We will not discuss all of these in 
detail but address a selection of the genetic and ecological factors 
that affect the predictability of evolution.
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6  |    WORTEL et al.

2.1  |  Genetic factors

Many genetic factors can influence the predictability of evolution, 
and here, we discuss three of them, namely mutation bias, mutational 
supply and epistasis.

We first consider the influence of mutation bias and the distri-
bution of fitness effects on the predictability of evolution. Mutation 
bias describes the variability in mutation rates of different mutation 
classes (e.g. transitions vs. transversions) or genomic sites. The dis-
tribution of fitness effects (DFE) of new mutations tells us what per-
centage of mutations have what fitness effect. Variation in mutation 
rate (mutation bias) and fitness effects of mutations (selection bias, 
DFE) can both enhance parallel evolution (and hence predictability) 
by reducing the number of ‘successful’ mutations that achieve fixa-
tion or high frequency (Stoltzfus & Yampolsky, 2009; Storz, 2016; 
Storz et al., 2019). These successful mutations are either favoured by 
the existing mutation bias (i.e. they occur at a higher rate than other 
mutational classes), or they provide the largest benefits (Gerrish & 
Lenski, 1998; Schenk et al., 2022).

Theory predicts that in the absence of selection (i.e. under 
neutrality), mutation bias is the only driver of parallel evolution 
(Kimura,  1983). But even when selection occurs, a strong muta-
tional bias reduces the spectrum of mutations available for selection 
and should therefore increase predictability. Somewhat counter-
intuitively, when selection is very strong for multiple possible mu-
tations, mutation bias is again as important as it is under neutrality 
(Stoltzfus, 2021). In a wide range of taxa, mutation bias explains a 
non-negligible proportion of cases of parallel genetic evolution 
(Bailey et al.,  2017, 2018; Stern & Orgogozo,  2008; Stoltzfus & 
McCandlish, 2017). For instance, an elegant study on adaptation to 
high altitudes in birds found parallel evolution, in part due to muta-
tion bias at CpG sites (Storz et al., 2019). When highly beneficial mu-
tations are under-sampled due to the existing mutational bias, other 
smaller effect but more frequent mutations may fix instead. Such a 
pattern was observed in replicated evolving populations of bacte-
riophage (Sackman et al., 2017) where the mutation with the largest 
fitness effect was not the one that reached fixation most often, be-
cause its mutation rate was lower than that of other mutations with 
smaller fitness effects.

The impact of selection bias (i.e. fitness effect of different mu-
tations) can be analysed via the distribution of fitness effects (DFE). 
The above-mentioned bacteriophage study (Sackman et al.,  2017) 
experimentally quantified the fitness effects of new mutations and 
then used the shape of the quantified DFE and number of beneficial 
mutations to predict the probability of parallel evolution (eqn 37 in 
Joyce et al., 2008), comparing those estimates to observed measures 
of parallel evolution within the same system. The authors found that 
including the shape parameters of the DFE in a model improved es-
timates of the probability of parallel evolution, providing support for 
the idea that DFEs are important drivers of evolutionary predictabil-
ity. On the other hand, theoretical work using extreme value theory 
has shown that regardless of the specific shape of the entire DFE 
(i.e. including deleterious, neutral and beneficial mutations), there 

will always be much more small than large-effect mutations. This can 
reduce the predictability of which mutation will fix or how fitness 
will increase because the more numerous small-effect mutations 
may collectively have a similar fixation probability compared with 
the small set of large-effect mutations (Joyce et al., 2008; Sackman 
et al., 2017).

Mutational supply is the total number of mutations that occur in 
a generation (or other unit of time) within a population and, hence, 
is determined by the population size and the mutation rate. When 
the mutational supply is low (e.g. in small populations), then having 
only a few large-effect beneficial mutations means that the waiting 
time for one of these mutations may be long, making the timing of 
their appearance unpredictable (Orr, 2005). With an increase in the 
mutation supply rate, selection bias becomes the dominant driver 
of adaptive trajectories, though mutation bias still has an impact on 
the identity of successful mutations. For instance, in larger popula-
tions where mutational supply is high, multiple beneficial alleles are 
present simultaneously (i.e. the clonal interference regime). Here, 
selection bias is expected to dominate over mutation bias and ge-
netic drift, and fix the most beneficial mutations largely indepen-
dent of their mutation rate (Bailey et al., 2017; Pennings et al., 2022; 
Pinheiro et al., 2021; Szendro et al., 2013).

Another important factor influencing predictability is interac-
tions between mutations (epistasis), which introduce ruggedness in 
fitness landscapes. Generally speaking, epistasis reduces predict-
ability, because even if fitness effects are measured in one genetic 
background, we do not know the effects in another background 
(Miton & Tokuriki, 2016). Additionally, the complexity and redun-
dancy in genotype-phenotype maps decrease the predictability 
of evolution: if many different genotypes map to the same phe-
notype, the observation of any particular genotype is just one of 
many, equally probable, evolutionary outcomes (Zheng et al., 2019). 
However, there are interesting nuances; for example, when epi-
static interactions change the sign of mutational effects from ben-
eficial to deleterious or vice versa, a condition referred to as sign 
epistasis (Weinreich et al., 2005). Sign epistasis can both increase 
and decrease predictability. A seminal study on the antibiotic re-
sistance enzyme TEM-1 β-lactamase showed that sign epistasis 
can strongly reduce the number of mutational pathways along 
which a population can evolve towards higher fitness (Weinreich 
et al., 2006), which increases the predictability of evolutionary tra-
jectories. On the other hand, sign epistasis can also lead to fitness 
landscapes with multiple peaks (Poelwijk et al., 2011), which means 
that populations can end up moving towards different fitness peaks 
depending on which mutation fixes first, thus decreasing the pre-
dictability of evolution.

How the combined knowledge on these genetic factors aids 
us towards forecasting organisms' responses to changing con-
ditions in the future is illustrated in the predictability of the 
mutational routes for adaptive ‘wrinkly spreader’ phenotypes 
of Pseudomonas (Lind et al.,  2019). Pseudomonas can evolve to 
grow flattened or wrinkled colonies that compete for access to 
oxygen. Three mutational routes have commonly been found to 

 17524571, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13513 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [27/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7WORTEL et al.

underlie the convergent evolution of the wrinkly spreader phe-
notype (McDonald et al.,  2009). However, a study that elimi-
nated these three mutational routes revealed 13 other routes 
that also led to the wrinkly spreader phenotype. These other 
paths had similar fitness, but much lower mutation rates (e.g. 
because of smaller mutational target size), which explained why 
they were not observed in the original studies (Lind et al., 2015). 
This detailed information on mutational biases that affect 
the genotype-phenotype map could then be used to forecast 
genetic evolution for wrinkly spreader phenotypes in other 
Pseudomonas species (Pentz & Lind, 2021). Detailed knowledge 
of the genotype-phenotype map may seem superfluous when 
phenotypic evolution can be forecasted without this knowledge, 
as in the case of the wrinkly spreader phenotype in Pseudomonas. 
However, knowledge of the genetics constraining evolutionary 
responses is relevant when we want to use evolutionary fore-
casting to control populations.

Genetic evolution of many traits, especially complex traits in 
eukaryotes, is highly polygenic, i.e. many recombining loci across 
the genome with small phenotypic effects jointly contribute to the 
evolutionary response (Boyle et al., 2017; Pritchard et al., 2010). 
Polygenic evolution is less predictable in terms of which muta-
tion will fix due to genetic redundancy (Yeaman,  2022). Under 
genetic redundancy, similar phenotype and fitness outcomes 
can be achieved through different genetic changes; however, 
these changes may be more predictable when causal genes clus-
ter in narrow genomic regions or when ancestral genetic varia-
tion is repeatedly used in evolution (Blankers et al., 2019; Conte 
et al., 2015; Tennessen & Akey, 2011; Yeaman, 2022). Polygenic 
forecasting approaches that focus on phenotypic outcomes use 
quantitative genetics frameworks that predict the response to 
selection based on phenotypic and genetic variances and co-
variances, i.e. the breeder's equation (Lande & Arnold,  1983), 
or trait-fitness covariance (Price,  1970; Robertson,  1966) also 
known as the Robertson-Price identity. Despite their simplify-
ing assumptions, approaches using quantitative genetics can be 
successful in forecasting evolution over short time frames (Hill 
& Kirkpatrick, 2010; Morrissey et al., 2010). Limitations of these 
approaches are the inability to account for drift effects (Pélabon 
et al.,  2021) and the assumption of linear genotype-phenotype 
mapping (Milocco & Salazar-Ciudad, 2020). A formidable challenge 
is thus to integrate stochasticity and nonlinearities in frameworks 
that are amenable to forecasting polygenic evolution (Milocco & 
Salazar-Ciudad, 2022).

2.2  |  Ecological factors

Experimental evolution studies are typically performed in a 
laboratory environment where most environmental and ecological 
conditions are controlled. However, the predictability of evolution 
in the wild will depend on the characteristics of populations and 
their habitat as well as interactions with the biotic and abiotic 

environment (here jointly referred to as ‘ecological factors’). 
Ecological factors affect the predictability of evolution both 
through their effect on the amount and distribution of genetic 
variation and on the fitness effects of variants. To illustrate this, 
below, we briefly outline the effect of the rate of environmental 
change, the characteristics and complexity of the habitat, and the 
ecological interactions within a community on the predictability 
of evolution.

Firstly, the speed of environmental change may affect predict-
ability by setting the strength and variability of selection pres-
sures. Overall, adaptation is more likely under gradually changing 
environments compared with rapid or saltational environmental 
shifts (Bell & Gonzalez,  2011; Radchuk et al.,  2019). Empirical 
evidence for the higher predictability during gradual change was 
provided with a yeast laboratory system exposed to different gra-
dients of salt stress (Bell & Gonzalez, 2011). Also, a recent study 
emphasized that current global climate change causes imper-
fect adaptive responses due to the high speed of environmental 
change (Radchuk et al., 2019). An exception is when the change 
is so fast that populations cannot cope, in which case the predict-
ability of the evolutionary outcome—local extinction—is high. Fast 
environmental changes impose large selection pressures, which 
can increase predictability (Gorter et al., 2017), but when the en-
vironmental change exceeds the limits of extant spatio-temporal 
variation in the habitat, the new fitness landscape becomes largely 
unexplored. This indicates that fast-changing environments can 
limit the ability to predict evolution. Moreover, when environmen-
tal change is accompanied by the erratic occurrences of extreme 
conditions that dramatically alter the fitness landscape, either 
temporally or spatially, it introduces high stochasticity, further re-
ducing predictability.

Secondly, characteristics of a species' habitat can also affect 
predictability, including the complexity or heterogeneity of the hab-
itat, patch size and connectedness. The more complex a habitat, the 
more selective pressures act, which may reduce the predictability 
of evolution. This can arise through trade-offs between traits for 
adaptation to multiple selection pressures (Armbruster et al., 2014; 
Roff & Fairbairn,  2012; Stuart et al.,  2017; Svensson et al.,  2021), 
as well as by decreases in population size. Patch size strongly influ-
ences population size, and the connectedness of habitat patches will 
influence the flow of individuals and, as a consequence, the influx of 
genetic variation. Dispersal between populations has a dual influ-
ence on adaptation: (1) Local dispersal may provide a genetic and/or 
demographic rescue effect, by effectively increasing the population 
size resulting in less drift and a higher absolute input of mutations 
(but see Szendro et al., 2013). (2) High dispersal rates may, however, 
induce a migration load between populations adapting to different 
stressors (Bisschop et al., 2019).

Finally, feedbacks between ecological and evolutionary 
dynamics (eco-evo dynamics) will influence evolutionary pre-
dictability. We know that higher ecological complexity (more 
diversity, more interactions) promotes ecological stability in 
some cases (Ives & Carpenter,  2007; Pennekamp et al.,  2018; 
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8  |    WORTEL et al.

Xu et al., 2021). Can we expect evolutionary dynamics in more 
complex communities also to be more predictable? One may 
expect that it is more straightforward to predict evolution-
ary outcomes in simple communities because there are fewer 
parameters to take into account. However, this argument is 
based on data constraints and not on fundamental constraints 
to evolutionary predictions in complex communities, where 
feedbacks might stabilize communities, resulting in more sta-
ble short and long-term dynamics. Ecological feedback may 
lead to frequency-dependent selection in various ecological 
interactions. In particular, negative frequency-dependent se-
lection (NFDS) can lead to predictable frequency fluctuations 
and stable equilibria of polymorphisms within a population. The 
strength of NFDS and the (un)predictability of environmental 
changes then determine whether this leads to unpredictable 
chaos or whether it can increase the predictability of evolution 
(Chevin et al.,  2022). Moreover, when environmental variabil-
ity strongly affects population growth and natural selection, 
as is commonly observed in natural systems, this ‘environmen-
tal forcing’ tends to render the evolutionary responses and 
tracking of the environment less chaotic and more predictable 
(Rego-Costa et al., 2018). Therefore, although the complexity of 
the real world and the inherent stochastic nature of some core 
ecological processes (such as priority effects (Fukami,  2015)) 
suggest limits to our ability to predict evolutionary change, ex-
ploring the effect of eco-evo dynamics on the stability of dy-
namics across timescales can shed new light on the potential 
for evolutionary forecasting.

Empirical support for the effect of ecological factors on the 
predictability of evolution exists. For example, in a microcosm 
experiment with Escherichia coli, the spread of beneficial geno-
types was mostly stochastic in communities with low complex-
ity but deterministic in high-complexity communities (Imhof & 
Schlötterer,  2006), suggesting a positive relationship between 
ecosystem complexity and predictability of evolution. Similarly, 
communities of bacteria that were experimentally evolved for 
several hundred generations followed repeatable trajectories to-
wards a final, stable community structure (Celiker & Gore, 2014). 
Natural ‘laboratories’ also offer insight into the role of ecology 
on evolutionary predictability, for example in the form of par-
allel evolution in replicated habitats where organisms respond 
similarly to similar changes in their environments. Urbanization 
provides a unique setting where similar environmental changes 
are replicated amongst cities, such as the selection of a be-
havioural gene in the common blackbird (Turdus merula; Donihue 
& Lambert,  2015; Mueller et al.,  2013). Other examples are 
the convergent evolution of colour morphs in Hawaiian spiders 
caused by their surrounding environment (Gillespie et al., 2018), 
and reduced armour when marine three-spine sticklebacks 
(Gasterosteus aculeatus) colonized freshwater, which is explained 
by both abiotic and biotic changes (differences in salinity and 
predation pressure, respectively) (Jones et al.,  2012). Based on 
these patterns of repeated evolution, we can potentially forecast 

how other populations would respond to similar ecological or en-
vironmental factors.

3  |  METHODS FOR PREDIC TING 
E VOLUTION

If we establish that we want to predict evolution, and what such a 
prediction entails, the next question is how we can predict evolution. 
Predictions can be data-driven, e.g. based on observations of 
repeatability that we would expect to observe again under similar 
conditions, or based on theory and mechanistic understanding 
of the evolutionary processes which we can model. Sometimes 
a combination of the two is used. There are many different 
approaches and methods to predict evolution. We mention some of 
those here and in Figure 2. For more details, we refer readers to the 
Appendix S1. Note that phylogenetic models are not described here 
but feature in Box 1.

3.1  |  Experimental evolution

A straightforward method for evolutionary predictions is creating 
the conditions of interest (in the lab or in a natural environment), 
observing (a lack of) evolution and identifying which conditions 
lead to which outcomes (Jagdish & Nguyen Ba,  2022; Kawecki 
et al., 2012).

3.2  |  Using the mutational and fitness landscape

Though currently out of reach for most systems, it may become 
possible to predict the next evolutionary step for a population 
using detailed knowledge of the mutation and fitness landscape for 
a population in a given environment (Fragata et al., 2019; Salverda 
et al., 2011).

3.3  |  Metabolic and growth models

When the selection of microorganisms is due to differential 
population growth of alternative genotypes, we can use (genome-
scale) metabolic and growth models to predict how these populations 
will evolve (Schuetz et al.,  2007; Wortel et al.,  2016). Metabolic 
models have been used to predict de novo, previously unseen 
mutations that induce dosage-dependent antibiotic resistance 
mutations in E. coli (Pinheiro et al., 2021).

3.4  |  Population genetic models

Population genetic models are models that keep track of the 
genetic status (often at one or a few loci) of an entire population 
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    |  9WORTEL et al.

F I G U R E  2  Selection of methods that 
are used to predict evolution

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
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10  |    WORTEL et al.

(Hartl,  2020). These models are either mathematical in nature 
or use computer simulations and can include mutation, fitness, 
reproduction, recombination and other parameters, with both 
deterministic and stochastic forces. They are used to predict 
the success of gene drive systems (Champer et al.,  2020; Noble 
et al., 2017).

3.5  |  Quantitative genetics and the 
breeder's equation

In situations where the focus is on altering one or a few phenotypes, 
over short timescales and in relatively controlled environments, 
quantitative genetics has achieved great success in predicting 
phenotypic changes (Walsh & Lynch, 2018). Such models are used, 
for example, in maize breeding programmes (Masuka et al., 2017).

3.6  |  Epidemiological models (SIR models)

SIR models are compartment models where individuals can move 
from a susceptible (S) to an infectious (I) state and from an infectious 
to a recovered (R) state. When classical SIR models are combined 
with the possibility of the pathogen to evolve (e.g. changing virulence 
or infection probabilities), we can predict the spread of an evolving 
infectious agent (Gordo et al., 2009) or the evolution of a multi-strain 
viral population (Łuksza & Lässig, 2014).

3.7  |  Species distributions across space and 
environmental conditions

Forecasting biodiversity responses to climate change are generally 
done through species distribution models. Such models can be 
combined with genomic data and evolutionary responses to 
predict adaptation (Bay et al., 2017) and range expansion (Kearney 
et al., 2009).

3.8  |  Multi-scale evolutionary modelling

Studying long-term evolution requires models in which the 
genotype-phenotype map itself can evolve. Such models can be 
used to study genome evolution and evolution of communities. One 
example of a multi-scale model is the combination of within-host 
and epidemiological levels in a model to study the effect of the HIV 
latent reservoir (Doekes et al., 2017)

3.9  |  Machine learning

In cases where large amounts of data on repeated evolutionary 
trajectories in the past are available, machine-learning approaches 

are likely to become increasingly important for predicting evolution 
(Hayati et al., 2020; Schenk et al., 2022).

4  |  E VOLUTIONARY CONTROL

4.1  |  Evolutionary control needs predictions

Using predictions for control requires an extension of the scope 
of the prediction: we have to predict not only the evolutionary 
process under natural conditions but also its response to specific 
control interventions. Important applications of evolutionary control 
are interventions against evolving human pathogens (Lässig & 
Mustonen, 2020) and against insects evolving insecticide resistance 
(Tabashnik et al.,  2013). In this section, we will describe several 
examples of evolutionary control, where predictions are used or 
could prove beneficial to improve control measures.

4.2  |  Preventing or reversing antibiotic resistance 
in bacterial pathogens

Increasing rates of antibiotic resistance threaten the efficacy of this 
mainstay of treatment for bacterial disease. Because the discovery 
and development of novel antimicrobial agents lag behind the rate of 
resistance evolution, newer approaches that focus on antimicrobial 
stewardship have emerged whose aim is to prevent or reverse 
resistance evolution to existing drugs (Andersson et al., 2020; Nichol 
et al., 2015; Perron et al., 2015; Read & Woods, 2014). These ideas, 
which can be implemented for individuals or at the population level in 
a hospital or agricultural setting, fundamentally rely on an accurate, 
empirical understanding of antimicrobial resistance evolution and 
spread. Two broad categories of evolutionary predictions to inform 
therapeutic decisions can be envisioned: one to avoid a specific 
outcome and another to promote one.

The case of HIV shows that predictions don't have to be very 
precise in order to allow some control. When triple-drug therapy be-
came available for HIV patients in the 1990s, the prediction—based 
on a mathematical model—was that it would prevent or, at least, slow 
down the evolution of drug resistance, reducing the progression to 
AIDS and saving lives. Even though the model that was used wasn't 
entirely correct, the high-level predictions held, and many lives 
were saved (Feder, Harper, et al., 2021; Perelson & Nelson, 1999; 
Rocheleau et al., 2018).

Several different models and experiments have supported the in-
tuitive predictions that combination therapies decrease the likelihood 
of resistance evolution compared with monotherapy. First, combina-
tion therapies increase the rate of pathogen decline, limiting the time 
window for de novo resistance mutations to occur (Raymond, 2019). 
Second, combination therapies require resistance mutations in multi-
ple targets, decreasing the probability that completely resistant mu-
tants will arise ((Perelson & Nelson, 1999), though see (Feder, Harper, 
et al.,  2021)). Combination therapies encompass a wide range of 
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    |  11WORTEL et al.

BOX 1 Examples of evolutionary predictions

Evolutionary predictions and control are a guide in the SARS-CoV-2 pandemic

SARS-CoV-2, the coronavirus that started a pandemic in late 2019, is a focus of evolutionary predictions at the phenotypic and genetic 
levels. The extremely high global prevalence of this virus as well as the recent host change and change in selective pressures (such 
as with vaccines) as well as the unprecedented scale of data that are available make it possible to quickly test the accuracy of many 
predictions. It is common for viruses to adapt further after a host switch. At first, the main aim of predictions by public health agen-
cies was to predict total case numbers using epidemiological or statistical models with no evolutionary dynamics included (Bertozzi 
et al., 2020; Watson et al., 2021). Next, there was interest in predicting the dynamics of different strains (Davies et al., 2021). And 
when vaccines became widespread, the big question was whether and when immune escape would happen (Kustin et al., 2021).

In the absence of herd immunity (due to infections or vaccines) the strongest selection is expected to be on increased transmis-
sion, whereas weaker selection is predicted on other disease life-history traits, such as the lengthening of the presymptomatic phase 
and decreased virulence. When large parts of the population become immune due to infection or vaccination, selection for immune 
escape is expected to become more important (Cobey et al., 2021; Grubaugh & Cobey, 2021).

There is a strong interest in predicting specific genetic changes that will occur in the SARS-Cov 2 virus (Maher et al., 2022). Different 
methods have been used to predict which mutations can contribute to the escape evolution of the virus from existing population im-
munity. These methods use existing genomic surveillance data (Harvey et al., 2021), deep mutational scanning (Starr et al., 2020) and 
comparisons with different coronaviruses (Armijos-Jaramillo et al., 2020). Recently, a multi-strain fitness model has been developed to 
predict selection windows shaping the antigenic evolution of SARS-Cov 2 (Meijers et al., 2022).

Public health measures like physical distancing and vaccination not only reduce the number of infections but also can reduce the 
evolutionary potential of the virus due to a reduced population size, which could lower the rate at which new strains emerge. At the same 
time, widespread vaccination will increase selection for immune escape mutants. This means that vaccination campaigns and physical 
distancing rules can be seen, at least in part, as evolutionary control measures. A particularly interesting discussion about the effects of 
vaccination roll-out on viral evolution has been discussed in the context of dose-sparing strategies (e.g. getting more people a single dose 
or a half dose of a vaccine as opposed to vaccinating fewer people with two doses). Different epidemiological-evolutionary models pre-
dict that dose-sparing strategies could speed up or slow down the evolution of immune escape (Cobey et al., 2021; Saad-Roy et al., 2021).

Sustainable product formation by microorganisms

The chemical industry poses a high environmental burden and a sustainable alternative is (bio)chemical compound production by 
microorganisms. The major challenge for the bio-based production of chemicals is the evolution of reduced product formation. This 
evolution happens because compound production diverts resources from growth, therefore inducing a fitness cost. We can use 
mathematical models of microbial metabolism to predict the evolutionary stability of production strains. For example, we can pre-
dict that for mutants where product formation is coupled to biomass production, the evolutionary loss is least likely. Computational 
techniques that use genome-scale metabolic models can then predict which gene knock-outs couple product formation to biomass, 
which should lead to increased stability of product formation (Du et al., 2018). These predictions were applied for formate production 
by cyanobacteria and experimental validation showed that with growth coupling, indeed no decrease in product formation occurred 
within a month, whereas without growth coupling formate production decreased after days (Du et al., 2019).

Adaptation of natural populations to changing environments

To plan conservation efforts most efficiently we need to predict which species or populations can adapt to changing conditions and 
which will be threatened with extinction. These types of predictions are difficult to make, but several approaches are taken to enable 
the forecasting of future population states. (1) We can apply a certain selection pressure in the lab and observe the adaptive potential 
(e.g. under size-selective harvesting (Uusi-Heikkilä et al., 2015) or higher temperatures (Kellermann et al., 2009; Morgan et al., 2020)). 
(2) Similarly, species can be transplanted to different habitats and their adaptation monitored ((Colautti & Barrett, 2013) and see 
(Edwards, 2015) for a review). (3) We can determine if ongoing evolution has already led to adaptive change (e.g. a recent meta-
analysis of phenological adaptation of (mostly) birds to climate change showed that it is unlikely that adaptation will rescue popula-
tions (Radchuk et al., 2019), although it is difficult to distinguish between evolutionary and plastic adaptation (Chevin et al., 2010); 
and contrary to predictions it does not seem that Atlantic Cod has genetically adapted to fishing (Pinsky et al., 2021)). (4) We can use 
species distribution models along with genomic information (Hoffmann et al., 2015). Predictions for the last type have been made for 
the dwarf birch (Borrell et al., 2020), oaks (Rellstab et al., 2016) and the yellow warbler (Bay et al., 2018).

(Continues)
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12  |    WORTEL et al.

approaches: using multiple antimicrobial agents simultaneously (e.g. 
antibiotic-antibiotic, antibiotic-adjuvant, antibiotic-phage or phage 
cocktails); antibiotic mixing, that is, random allocation of different an-
tibiotics for different patients in the same hospital ward; and imple-
menting temporally alternating therapies including antibiotic cycling 
(population level) and sequential therapy (individual level) (Abel Zur 
Wiesch et al., 2014; Nichol et al., 2015; Sarraf-Yazdi et al., 2012; Tyers 
& Wright, 2019; Yen & Papin, 2017).

More interesting are approaches that would be used to drive a 
particular outcome. These are based largely on known epistatic or 
pleiotropic effects of resistance mutations. Resistance mutations are 
typically associated with fitness costs, and several authors have pro-
moted treatment strategies designed to maximize these costs, thus 
maximizing the probability that these strains are replaced once the an-
tibiotic selection is relaxed (Andersson & Hughes, 2010). Interactions 
between resistance mutations can also be used to exploit drug syner-
gies, thereby driving faster rates of population decline in the patho-
gen. Finally, a recent strategy is based on the idea that resistance to 
a given drug pleiotropically increases susceptibility (i.e. causes collat-
eral sensitivity) to a second drug (Sommer et al., 2017). Knowledge 
of collateral sensitivity could help choose drugs to be used sequen-
tially: if resistance to one drug evolves, it concomitantly increases 
the efficacy of the other one. Note, however, that epistatic effects 
(when a mutation's effect depends on the genetic background) can 
make it harder to predict, and thus use, collateral sensitivity (Barbosa 
et al., 2019; Hernando-Amado et al., 2020).

4.3  |  Insect resistance to transgenic plants

Evolutionary predictions have been used to guide the deployment 
of the most successful transgenic plants designed to protect crops 
against insect damage. Cotton, maize and other crops have been 

transformed with the genes for insecticidal protein toxins from 
the bacterium Bacillus thuringiensis (Bt) and have been remarkably 
successful as an alternative to sprays with chemical insecticides 
(Tabashnik et al., 2013). From the beginning, the evolution of insect 
resistance to Bt toxins was anticipated and deployment strategies 
were deliberately designed to minimize its spread. For example, tox-
ins were chosen for which resistance was known to be recessive, and 
for which standing genetic variation for resistance was shown to be 
low. This was done because population genetic models predict that 
evolution will proceed more slowly for recessive alleles or when al-
leles are rare. Population genetic models of natural selection were 
also used to predict how soon resistance would evolve, based on as-
sumptions about the genetics of resistance, the strength of selec-
tion, pest dispersal amongst Bt and non-Bt crops, and other genetic 
and ecological factors (Roush et al., 1998). Strategies based on these 
predictions, especially high dose/refuge strategies, were mandated 
by governmental regulatory agencies (Meihls et al., 2008). The high 
dose/refuge strategy means that (1) there is a refuge (crop that does 
not express the Bt toxin) which means that even if resistance evolves, 
very few homozygotes for the resistance allele will be produced, 
while (2) the dose of the toxin is so high that heterozygotes for the 
resistance allele will die. Retrospective analysis of the efficacy of 
these strategies has shown that they were more successful when 
more of the underlying assumptions were valid in the field, and when 
grower compliance was high (Tabashnik et al., 2013). This is probably 
the most successful test of the performance of evolutionary predic-
tions in modern agriculture.

4.4  |  Prevention of resistance to gene drives

Gene drive systems use genetic constructs (currently often CRISPR/
Cas9-based) to force the spread of a trait into a population. These 

Approach (1) is difficult or impossible and time-consuming for many species and it remains to be seen how well these predictions can 
be extrapolated to natural systems. The latter problem is reduced in approach (2). Approach (3) can only be applied to changes that are 
already happening and needs a large amount of long-term data on individuals. Finally, approach (4) has usually yielded very weak correla-
tions. Therefore, predicting which species may adapt to novel environmental conditions (e.g. rapid climate change) remains a big challenge.

Influenza vaccine development relies on evolutionary predictions

One of the best-known examples of evolutionary predictions is predictions of which influenza strains will be common the next sea-
son, as a basis for vaccine development. Two main methods, that can also be combined, are used to make these predictions: molecular 
properties of the virus and genealogical trees (Morris et al., 2018). The first method uses key phenotypes contributing to viral fitness: 
protein stability and binding to the human antibodies sum up to the fitness of the virus particle (Łuksza & Lässig, 2014). The second 
method uses data from recent clinical samples and makes a phylogenetic tree of these strains. The ‘bushy’ parts that have a lot of 
recent diversification are the expected genotypes that will dominate next year (Neher et al., 2014). These methods are in use for vac-
cine strain selection. However, success rates are still limited and further improvement would have a large impact on the effectiveness 
of influenza vaccines. Such improvement can come from a better understanding of the genotype-phenotype map for virus-antibody 
interactions, such that antigenic evolution can be predicted better from sequence data.

BOX 1  (Continued)
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systems are being developed to, one day, change wild populations 
(e.g. make mosquitoes resistant to malaria), however, the target spe-
cies can evolve to become resistant to the drive allele. Research is 
therefore focussed on preventing the evolution of resistance.

Gene drives or gene drive constructs are a special type of segre-
gation distorter that use the CRISPR/Cas9 gene editing technology. 
Under Mendelian expectations, each gamete has a 50% chance to 
carry the allele that came from one parent and a 50% chance to carry 
the allele that came from the other parent. One type of gene drives 
is called homing gene drives. They use a kind of copy-paste mecha-
nism that distorts the 50–50 rule and therefore they can be present 
in many more gametes, which then leads to offspring that inherits 
the gene drive allele at a rate much greater than 50%. This works 
as follows: when the gene drive construct is initially present in the 
heterozygous state in a cell, it can cleave a genomic target site in the 
chromosome that doesn't carry the construct. This cut then induces 
the cell to repair the damage by copying the drive sequence into the 
damaged chromosome. The result is that the cell now has two copies 
of the gene drive allele. In this way, the gene drive construct can 
rapidly spread in the germline and therefore in the population. When 
the gene drive system is linked to an allele of interest (the ‘payload’), 
the transmission bias forces the spread of that allele. While CRISPR/
Cas gene drives are not yet used outside the laboratory, there are 
plans to use this technology in mosquitoes and other species that 
cause harm to humans.

Resistance to homing gene drive systems can evolve when the 
cut that is made by the gene drive construct is repaired by the non-
homologous end-joining pathway. This is because end-joining often 
leads to changes in the target sequence, which means that the drive 
construct can no longer cleave that sequence (Champer et al., 2020; 
Gomulkiewicz et al.,  2021). When resistance has thus evolved, a 
drive construct can no longer spread and may go down in frequency 
if it comes with a fitness cost.

Evolutionary predictions at two different levels are of interest 
here: (1) how fast will the drive allele spread in the population and 
(2) when will resistance to the gene drive evolve and spread? The 
first is a fairly straightforward application of existing population ge-
netic and population dynamic models, with an additional parame-
ter for non-Mendelian segregation. However, in early experiments, 
the populations almost always became resistant to the gene drive 
element. The second level of prediction is therefore possibly more 
important: how fast will resistance evolve (Dhole et al.,  2020; 
Gomulkiewicz et al., 2021; Unckless et al., 2017)? The susceptibility 
of a gene drive construct to resistance can be reduced by (a) increas-
ing the number of sites at which the gene drive construct can cut 
(Champer et al., 2020) or by (b) introducing a cost to resistance by 
targeting the gene drive to an essential gene (Noble et al.,  2017). 
Predictions have been validated by laboratory experiments: sev-
eral groups have shown that gene drives with multiple guide RNAs 
(which target multiple sites), or that target an essential gene, can 
spread in a population for much longer before resistance evolves 
(Champer et al., 2020; Kandul et al., 2021; Kyrou et al., 2018). In an 
important example of successful evolutionary control—at least in the 

lab—researchers from Imperial College London were able to create a 
gene drive system that targeted an important fertility gene (double-
sex) in 2018. With this gene drive system, no resistance evolved and 
the experimental mosquito populations all went extinct as hoped 
and predicted (Kyrou et al., 2018).

4.5  |  Preventing extinction by promoting evolution

One case where we want to promote evolution is to rescue a spe-
cies from extinction. It is widely thought that a lack of genetic vari-
ation increases extinction risk. For example, the Tasmanian devil 
had very low genetic variation and its population size was severely 
reduced by infectious cancer (Hendricks et al., 2017). At the same 
time, loss of habitat, loss of dispersal opportunities and decrease in 
population size can lead to lower genetic variation in a species lead-
ing to an ‘extinction vortex’ (Olivieri et al., 2015). The main method 
of promoting adaptation to a changing environment is therefore by 
increasing genetic diversity, as genetic diversity has been shown 
to be beneficial for adaptation and rescue (Agashe, 2009; Agashe 
et al., 2011; Hughes et al., 2008). Maintaining genetic variation also 
plays a role when breeding programmes are used to rescue a popu-
lation (Ebenhard, 1995). Increasing genetic diversity in endangered 
populations, termed genetic rescue, often used to avoid inbreeding 
depression, is a promising intervention, but whether it predictably 
leads to increases in population sizes to prevent extinction remains 
to be seen (Bell, 2017).

5  |  CONCLUSION AND OUTLOOK

Evolutionary predictions are used in many fields, including infec-
tious disease, biotechnology and conservation biology. In some 
cases, the use of evolutionary models that include mutations, se-
lection and drift is very explicit (such as in the gene-drive example 
or in the influenza vaccine predictions), whereas in other cases evo-
lution may only be implicitly included in population size predictions 
(such as for predicting extinction risk for endangered species). In 
this review, we have shown how evolutionary predictions are used 
in many biological subfields. Because researchers in different sub-
fields use different languages, it is not always obvious that they 
are, in essence, doing the same thing: predicting the future state 
of an evolving population. Predictions can be improved when re-
searchers can learn and be inspired by results from other subfields, 
but for this to happen, we need to use a common language. This 
review is meant as a start to bridge those research communities. 
We believe that those who work on preventing unwanted evolution 
(in biotechnology, agriculture and health) and also those who work 
on promoting or steering evolution (such as in conservation biol-
ogy and biotechnology) could benefit from much more extensive 
communication.

Most of the theory we described in this review was featured in 
the paragraphs on predictability. This reflects the relatively early 
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stage of the field, where many researchers involved focus on un-
derstanding under which conditions evolution is more or less pre-
dictable and which factors drive predictability. While this has led to 
many relevant insights, these theoretical insights are still far away 
from the applications where predictions are needed. We thus be-
lieve that the field could benefit from a stronger connection be-
tween theory and applications. Specifically, the efforts that are 
underway in the area of influenza research (using data and theory 
to predict influenza strains to design the best vaccine) could be rep-
licated in other situations. For example, models could be made to 
predict drug resistance in a hospital over the next year, given the 
current state and parameters such as antibiotic use. Also, evolution-
ary models could more explicitly be used in other situations, such as 
to predict which tumours will recur with resistance. By applying evo-
lutionary methods to real-life situations, we will discover the gaps in 
our knowledge and contribute to making evolutionary predictions 
more accurate and useful.

Finally, we expect that the increasing access to genome informa-
tion and the use of modern statistical techniques, including machine 
learning, will improve evolutionary predictions in amenable taxa over 
the next few years. However, there will be a continued need to develop 
mechanistic models of evolution for various systems, for at least two 
fundamental reasons: (i) to extrapolate predictions to conditions other 
than those used to parameterize specific models and (ii) to further our 
understanding of how evolution works. While the increasing access to 
high-resolution phenotype and genotype data make it tempting to in-
clude all these details in such models, more coarse-grained mechanistic 
models may allow more powerful predictions. We hope that together, 
improved collaboration, a shared language and new combinations of 
methods will lead to further maturation of the field, leading to evolu-
tionary predictions becoming mainstream in areas such as infectious 
disease, conservation biology and biotechnology.
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