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A B S T R A C T

Spatiotemporal time series prediction plays a crucial role in a wide range of applications. However, in most
of the studies, spatial information was ignored and predictions were carried out either on a few points or on
average values. In this study, 37 different configurations of 4 traditional ML models and 3 Neural Network
(NN) based models were utilized to provide a comprehensive comparison and evaluate the spatiotemporal
data prediction capabilities of the ML models. Additionally, to reveal the importance of spatial data for the
time series prediction process, the best configuration of each ML model was evaluated with and without using
spatial information. The utilized models were: (i) Linear Regression (LR), (ii) K-Nearest Neighbors (KNN),
(iii) Decision-Trees (DT), (iv) Support Vector Machine (SVM), (v) Multi-Layer Perceptron (MLP), (vi) Long
Short-Term Memory (LSTM), and (vii) Gated Recurrent Unit (GRU). The study was performed on the Sea
Surface Temperature (SST) data collected by satellite radiometers via infrared measurements. The models were
evaluated according to their one-month ahead spatiotemporal SST prediction performance over the southern
coasts of Turkey, and the effects of spatial information on model performance were presented. Results reveal
that the spatial information increased the prediction performance by approximately 25%, in terms of RMSE.
Additionally, acquired results show that the LSTM model outperforms all other ML models and gives the
smallest prediction errors in all metrics.
. Introduction

Machine Learning (ML) models play a critical role in analyzing time
eries data and making robust predictions required for immediate and
nformed action (Shao et al., 2022). Recently, the increase in data
ollected via satellites and stations increases the importance of these
lgorithms in understanding climatic and environmental changes and
redicting future situations (Amato et al., 2020; Koehler and Kuenzer,
020). Sea Surface Temperature (SST) is one of these critical param-
ters, and it is important for understanding the interaction between
he Ocean and Earth’s atmosphere. Since surface water resources cover
pproximately 71% of the Earth’s surface, SST changes have a major
mpact on global climate and biological systems (Bouali et al., 2017;
ao et al., 2017). Therefore, it is crucial to carry out an accurate
patiotemporal prediction of the observation data.

In recent years, many methods have been developed for time series
rediction. These methods can be classified into three main categories;
umerical methods, data-driven methods, and hybrid (the combina-
ions of these two) methods (Xiao et al., 2019). Numerical methods are
ased on physics equations that have high computational complexity
nd demand massive computational efforts (Yang et al., 2018; Zhang

∗ Correspondence to: Geoscience & Remote Sensing Department, Faculty of Civil Engineering and Geosciences, TU Delft, Netherlands.
E-mail addresses: s.kartal@tudelft.nl, skartal@cu.edu.tr.

et al., 2020). In addition, the physical environment parameters must
be chosen precisely to make the numerical methods more realistic.
However, these methods are not capable of making site-specific SST
predictions when better exploitation of data is needed. On the other
hand, data-driven methods can learn patterns directly from data and
use these patterns to predict future SSTs. These methods are ranging
from traditional statistical methods to the state of art Neural Network
(NN) models. Traditional statistical methods include Linear Regression
(LR) (Laepple Stephen Jewson, 2007), Markov models (Xue et al.,
2000), Seasonal Autoregressive Moving Average (Curceac et al., 2019),
and harmonic analysis (Jiakang et al., 2017). Due to its relative sim-
plicity and well-known properties, in the literature, the LR algorithm
is accepted as both a statistical method and a fundamental supervised
machine-learning algorithm. Although statistical methods can predict
the trend of the time series data, these methods are not effective enough
for nonlinear problems, and their prediction accuracy is generally
unsatisfactory (Shao et al., 2021). Thus, many researchers applied Ma-
chine Learning (ML) methods such as NNs (Ferchichi et al., 2022; Patil
and Deo, 2017) and Support Vector Machines (SVM) (Aguilar-Martinez
and Hsieh, 2009; Lins et al., 2013) in their studies.
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A close look at the literature reveals that Recurrent Neural Net-
ork (RNN) based models have started to attract more attention in

ime series prediction due to their higher accuracy on time series
ata compared to other traditional methods. These algorithms have
roven their capability in learning temporal dependencies in time series
atasets and predicting the next steps. Although RNN algorithms are
ood at analyzing time-series data, early versions of this algorithm
ave not been able to model long-term dependencies due to vanishing
nd exploding gradient problems. Therefore, a new model named Long
hort-Term Memory (LSTM), which eliminates these problems thanks
o its repetitive architecture and gate functions has been proposed
Hochreiter and Schmidhuber, 1997). In addition to the LSTM, its
impler and faster variant, Gated Recurrent Unit (GRU), has been
eveloped by Cho et al. (2014). Although researchers have extensively
tilized LSTM and GRU algorithms in various fields such as finance,
emote sensing, and agriculture (Babu et al., 2020; Chen et al., 2018;
hhetri et al., 0000; Fan et al., 2020; Jin et al., 0000; Lin et al., 2022;
dikumana et al., 2018; Patel et al., 2020; Persio and Di, 2017; Sezer
nd Ozbayoglu, 2018; Tölö, 2020), their use in the SST field is relatively
ew (Haghbin et al., 2021; Liu et al., 2021; Shao et al., 2021; Yu et al.,
020; Zhang et al., 2020).

Regarding the LSTM network in the SST prediction, pioneering
ork was conducted by Zhang et al. (2017). The study examined

he performance of Support Vector Regression (SVR), MLP, and LSTM
odels to predict the SST in the coastal seas of China. In line with

he previous work, Liu et al. (2018) explored the capabilities of LSTM,
LP, and SVR to model SST in oceans. Both studies reported that the

STM provided the most accurate results among the considered models.
nlike the classical LSTM, Xiao et al. (2019) combined Convolutional
eural Network (CNN) and LSTM models to predict the SST based
n satellite data. Further research involving the LSTM model was
onducted by Xie et al. (2020), who investigated SVR, LSTM, and GRU
ncoder–decoder for SST prediction in the South China Sea and the
ohai Sea. So far, to our knowledge, the first and only effort to use
RU for SST prediction was conducted by Zhang et al. (2020).

Concerning the literature, most of the previous studies have only
ocused on temporal information, and have been conducted either on a
ew points or on the average values of a study area. These approaches
re not capable of simultaneously considering the spatial and temporal
atterns of data for site-specific studies (Yang et al., 2018). Usually,
eolocation information contained in time series data is ignored. How-
ver, similar to the SST, most of the remote sensing data have their
haracteristics. Such that the SST of all adjacent points interacts with
ach other. Therefore, analyzing the temperature data by isolating the
ata points from each other means ignoring the SST interaction (pat-
ern) among the points, which negatively affects the accuracy of the SST
rediction. Besides, not only using spatial and temporal information
s input but also predicting SST in a spatiotemporal format such as
ST maps is an important factor for the applications such as sports
vents, fisheries, and tourism (Sarkar et al., 2020). Therefore, an accu-
ate model capable of recognizing meaningful spatiotemporal patterns
n the dataset, and similarly performing spatiotemporal prediction is
reatly desired (Sun et al., 2017; Wang et al., 2017).

Although many studies in the literature indicate that they perform
patiotemporal predictions, in general, these algorithms only use these
ata as inputs and produce only a single output value (Alaka et al.,
018; Fan et al., 2020; Shao et al., 2022; Wang and He, 2022). In other
tudies where a spatiotemporal map was produced as output, mostly the
STM model was combined with the CNN model and used as a hybrid
pproach (Yang et al., 2018). However, CNN models were primarily
eveloped for tasks such as image recognition, image classification, and
bject detection. Thanks to their filters adjusted during the training
rocess, these models are able to detect certain features that can be
sed for image classification. On the other hand, if the CNN-based
odels are used in remote sensing data, the number of input data that

ffects the temperature value on the output map will be limited by the
2

size of the filters used. Thus, if there is a correlation between two points
on the SST map and these points are farther from each other than the
filter size, it will be challenging to detect this correlation with CNN
filters. Therefore, since the aim of the study is to evaluate models that
can be used on a large scale, CNN-based algorithms were not included
in this study.

Consequently, the limitations and disadvantages of the studies in
the literature can be summarized as follows; 1- Most of the current time
series prediction studies suffer from using only temporal information or
performing either on a few points or on the average values of the data.
2- There is a lack of studies in the literature that reveal the importance
of spatial information for time series prediction. 3- There is a lack of
comprehensive comparison of the performance of ML algorithms on
time series prediction. Thus, three main contributions of this study to
the literature can be explained as follows: 1-This study quantitatively
demonstrates the advantages of spatial information for the time series
prediction process . 2- A comprehensive experimental study including
the new family of NN algorithms, i.e., LSTM and GRU was conducted,
and the performance of the models was presented comparatively. 3- A
framework for spatiotemporal prediction was proposed, which could
form the basis for future studies.

2. Study area and data

The southern coasts of Turkey, located in the eastern part of the
Mediterranean Sea were considered. Although many studies have been
carried out in the Bohai Sea, South China Sea, East China Sea, South
Atlantic Ocean etc., to the best of our knowledge, there is no previous
study performed on the southern coasts of Turkey, located in the
eastern part of the Mediterranean Sea. In addition, the region of interest
has both temporal and spatial temperature patterns, indicating that this
region is very useful for analyzing the spatiotemporal prediction per-
formance of ML algorithms. The length of the coast is 1542 kilometers
from the Syrian border in the east to Marmaris in the west. The region
surrounded by the green rectangle in Fig. 1 points to the study area
with a size of 205 × 50 pixels. Additionally, the histogram graph of the
data is given in Fig. 2 along with its basic statistics information. This
Figure shows the presence and frequency of temperature values in the
study area for the whole date range.

In this study, a multi-sensor data acquired by Moderate-Resolution
Imaging Spectroradiometer (MODIS), Advanced Very High Resolution
Radiometer (AVHRR), Spinning Enhanced Visible and Infrared Imager
(SEVIRI), AVHRR-3, and Advanced Along-Track Scanning Radiometer
(AATSR) were used (ISAC, 2016). Dataset provided by NASA Earth
Observing System Data and Information System (EOSDIS). Since the
aim of the study is to evaluate the performance of ML algorithms in the
spatiotemporal prediction process regardless of the observation tech-
nology, in this study, the data sources are not examined separately. All
SST time series data were downloaded from the Physical Oceanography
Distributed Active Archive Center (PO.DAAC). The original dataset con-
sists of the daily gap-free maps (L4) at 0.01 deg. 𝑥 0.01 deg. horizontal
resolution over the Mediterranean Sea. Since the dimensions of the
original data (1025 × 250) belonging to the studied region are too large
to be processed on the existing hardware, scaling was applied to the
dataset as a preprocessing step and the size of the data was reduced to
205 × 50 (𝑊 × 𝐻). In the resampling process, the inter-area method,
which takes into account the pixel-area relationship, was applied with
the help of the Python OpenCV library. In this study, daily site data
from January 2008 to December 2020 were selected and reorganized
by taking their monthly averages. Consequently, 156 monthly SST
maps, the average of the daily temperature values measured from the
beginning to the end of each month, were generated for the selected
region. While the monthly average data generated for the date range
01.01.2008–31.12.2019 were used for the training&validation process,
the monthly average data created for the date range 01.01.2020–
31.12.2020 were used for the testing process. Moreover, 20% of the
training dataset was reserved for the validation process.
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Fig. 1. The study area located in the eastern part of the Mediterranean Sea (a), covers the southern coast of Turkey (b). The image corresponds to the monthly average SST map
from the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System.
Fig. 2. The histogram graph of the temperature data along with its basic statistics
nformation.

To consider the spatial information, each temperature value (corre-
ponding to a pixel in Fig. 1) was handled along with its coordinate
nformation. All the data have spatial information due to their latitude
nd longitude geographic locations. These spatial relative positions
eed to be converted into a format that ML models can easily handle.
hen SST data is converted into a matrix format depending on the

elative position of longitude and latitude, a spatial relative relationship
f the input data is revealed. Since the aim is to learn the spatial pattern
ccording to the distance of the coordinate information to each other,
n this study, row and column indexes were used instead of latitude
nd longitude coordinates. Similarly, month and year information were
dded to the data. Consequently, each data point was arranged to
onsist of 5 features (row, column, year, month, and SST). However,
o learn temporal dependencies and to predict the SST values of the
3

next time step, a certain length of historical observation must be added
to the system. In this study, data belonging to the previous 6 months
were used to predict the SST values of the one step ahead (7th month).
In other words, during the training process, the model only saw the
data from 01-2008 to 12-2019. To make an SST prediction for the first
month of 2020 of the test data set, 6-month data for the date range 07-
2019–12-2019 were given as input data (x) to the ML models, and the
01-2020 SST map (y) was predicted . The same process was repeated
by shifting the date range by 1 month until the final SST map belonging
to the test dataset (12-2020) was predicted. Similarly, in the last step,
the data between 06-2020 and 11-2020 were given as input and the
final SST map of 12-2020 was predicted.

Although the step size (length of historical observation) affects the
LSTM performance, there is no ideal step size for all datasets. The
step size is intuitively selected and tested based on the characteristics
and size of the data set. Depending on the temporal pattern of the
temperature values, there is no need to select a step size longer than
12 months. Considering that the maximum number of steps that can be
taken is 12 and the minimum number of steps is 1, it is thought that
6 months of historical information will be sufficient for the prediction
process. .

3. Methods

In this study, seven ML methods were utilized for SST predic-
tion. These algorithms are Linear Regression (LR), K-Nearest Neighbors
(KNN), Decision-Trees (DT), Support Vector Machine (SVM), Multi-
Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and Gated
Recurrent Unit (GRU). All the methods used are briefly described
below.

3.1. Linear Regression (LR)

The LR method is used to predict a dependent variable value (y)
based on the independent variables (x). The model tries to find the line
that best fits the independent variable data. This line aims to minimize
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the difference between the predicted and actual output values. The LR
model then allows to predict how the dependent variable (y) changes
depending on the independent variables (x). The advantage of the
model is that it has a simple and easy to interpret mathematical
formula. In this study, the LR method is considered as the basic model
to compare and evaluate the results of other models.

3.2. K-Nearest Neighbors (KNN)

The KNN algorithm is one of the simple and easy-to-implement ML
algorithms that can be used to solve regression and classification prob-
lems. Problems are solved by considering the k training data closest to
test data, according to a given distance metric. In general, the Euclidean
distance function is used for continuous values, and Hamming distance
for discrete values. The Inverse Distance Weighting (IDW) method is
used to define the contributions of the neighbors so that the nearer
neighbors contribute more than neighbors which are further away. The
only critical parameter that needs to be configured in the algorithm is
k. In this study, the KNN algorithm was utilized with three different k
alues 5, 10, and 20.

.3. Decision-Trees (DTs)

DT algorithm is based on the divide and conquer principle. As the
ame goes, it builds a tree-like classification or regression model. It
ivides the dataset into progressively smaller subsets, while at the
ame time an associated DT is progressively developed. This process
s called splitting. The final tree consists of decision and leaf nodes.
he decision node represents a condition on an attribute (e.g., month)
nd has branches that represent the outcome of the conditions. The al-
orithm measures the entropy of the attributes and thus decides which
ttribute to use in the condition expression. The critical parameter in
his algorithm is deciding when to terminate the splitting process. In
ur study, the ‘‘ minimum samples to split’’ parameter, which controls
he number of data that should be in the sub-branch to continue the
plitting process was used. While choosing a very large ‘‘minimum
amples to split’’ value will prevent the tree from learning the data
underfitting), a very small ‘‘minimum samples to split’’ value will
ause overfitting. In this study, the DT algorithm was utilized with three
ifferent ‘‘minimum samples to split’’ parameters (5, 10, and 20).

.4. Support Vector Machine (SVM)

SVM is another famous ML algorithm that analyzes data for classi-
ication and regression. SVM divides the feature spaces into subspaces
ia hyperplanes and performs the prediction according to the subspace
hat the test data belongs. The hyperplanes are constructed during
he training process by searching the maximum margin between the
yperplanes and the support vectors. Data points closest to the hyper-
lanes are called support vectors. All data except support vectors are
gnored when calculating hyperplanes. In this study, three different
ernel functions namely, polynomial, linear, and radial basis kernel
unctions were chosen to find hyperplanes that divide the feature spaces
ptimally.

.5. Multi-Layer Perceptron (MLP)

Unlike conventional ML algorithms, the structure of the NNs model
s inspired by the human brain. Therefore, in addition to the ML
lgorithms mentioned above, the MLP has been also utilized for com-
arison. The MLP is a forward-structure NN algorithm, designed to
stablish non-linear relationships between inputs and outputs. A typical
LP model consists of an input layer to receive data, an output layer

esponsible for prediction or classification, and one or more hidden
ayers between those two. Each hidden layer consists of neurons that
eceive the output of the previous hidden layer (except for the first
4

hidden layer that receives the output of the input layer), perform simple
operations, and transmit the output to the next hidden layer (except for
the last hidden layer, which transmits the output to the output layer).
The training process is based on the backpropagation method, which
aims to iteratively minimize the error value between the actual value
and the model output. Once the training process has been completed,
the neural network can be used for the predictions. An example of a
simple MLP architecture is given in Fig. 3.

3.6. Long Short-Term Memory (LSTM) network

So far, four different ML algorithms that are planned to be used
for SST prediction have been explained. Although these ML models
have been successfully applied to classification and regression problems
in the literature, these approaches still have some shortcomings in
analyzing large-scale time series datasets. On the contrary, the recent
application of the RNN-based models (LSTM and GRU) to time series
predictions has shown the strength of these models compared to other
ML models (Shen, 2018). Since the use of these two models in SST
prediction is quite new, in this study, more attention has been given
to these two models.

In contrast with MLP, RNN-based models have internal connections
to transmit the processed values to the adjacent neuron in the same
layer. In other words, these models receive information from both the
previous layer and the previous moment (in this study, ‘‘moment’’ cor-
responds to 1 day, 1 month, or 3 months, depending on the prediction
process performed). These two input values connected to each neuron
are shown in Fig. 4, where the inner structure of RNN cells is given,
and in Fig. 7, where the general structure of LSTM and GRU is given.
This structure makes RNNs more dynamic than standard MLPs. Thus,
RNN-based models have achieved incredible success in various areas
such as language modeling, translation, and time series prediction in
the last few years.

LSTM is a more sophisticated kind of RNN developed to deal with
the vanishing gradient problem encountered in the base model (Man-
aswi, 2018). In a standard RNN, each unit consists of a very simple
structure such as a hyperbolic tangent (Fig. 4), whereas an LSTM unit
(memory cells) consists of certain gates namely, forget gate, input
gate, and output gate (Fig. 5). The forget gate decides whether past
information should be deleted or stored. The input gate quantifies the
importance of the new information carried by the input data. The
output gate determines what output should be generated. These gates
surpass the vanishing gradient problem and make LSTM suitable for
learning long-term dependencies.

The entire calculation of the LSTM models can be expressed using
the equations given below:

𝑓𝑡 = 𝜎
(

𝑊𝑓
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

(1)

𝑖𝑡 = 𝜎(𝑊𝑖
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖) (2)

C′
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐

[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑐 ) (3)

C𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡∗C′
𝑡 (4)

𝑜𝑡 = 𝜎(𝑊𝑜
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜) (5)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6)

here 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the forget, input, and output gates, respectively.
𝑓 , 𝑊𝑖, 𝑊𝐶 , and 𝑊𝑜 are the weight parameters, ℎ𝑡−1 is the output of

he previous cell, and 𝑥𝑡 is the input of the current layer. 𝑏𝑓 , 𝑏𝑖, 𝑏𝐶 , and
𝑜 are the corresponding biases. 𝐶𝑡 points to the new cell state updated
ased on the information stored on C’𝑡 and 𝑓𝑡. 𝜎 and tanh represent
he sigmoid function and the hyperbolic tangent activation function,
espectively. The output values of the 𝜎 and tanh functions are between
0, 1) and (−1, 1), respectively.
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Fig. 4. The inner structure of RNN cells, where ℎ𝑡−1 is the output of the previous cell,
𝑥𝑡 is the input of the current cell, tanh is the hyperbolic tangent activation function,
𝑜𝑡 is the output of the current cell and input of the 𝑡th cell in the next layer, ℎ𝑡 is the
utput of the current cell and input of the (𝑡 + 1)th cell.

Fig. 5. The inner structure of LSTM cells.

3.7. Gated Recurrent Unit (GRU)

GRU is a relatively new variation of the LSTM and was introduced
in 2014 by Cho et al. (2014). In contrast to the LSTM, the GRU model
has only two gates: the update gate, which regulates the amount of
past information to be transferred into the future, and the reset gate,
which regulates the amount of information to be forgotten. The inner
structure of a GRU cell is given in Fig. 6.

Equations in a GRU model are as follows:

𝑍𝑡 = 𝜎
(

𝑊𝑧
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑧
)

(7)

𝑟𝑡 = 𝜎
(

𝑊𝑟
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑟
)

(8)

ℎ′ = 𝑡𝑎𝑛ℎ
(

𝑊
[

𝑟 ∗ ℎ , 𝑥
]

+ 𝑏
)

(9)
𝑡 ℎ 𝑡 𝑡−1 𝑡 ℎ p

5

Fig. 6. The inner structure of GRU cells.

ℎ𝑡 =
(

1 − 𝑧𝑡
)

∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ′𝑡 (10)

here 𝑍𝑡 is the update gate, and 𝑟𝑡 is the reset gate. Similar to LSTM,
𝑡 is the input of the current layer; ℎ𝑡−1 is the output of the previous
ell; 𝑊𝑧, 𝑊𝑟, and 𝑊ℎ are the weight parameters; 𝑏𝑧, 𝑏𝑟, and 𝑏ℎ are the
iases; 𝜎 and tanh are the sigmoid function and the hyperbolic tangent
ctivation function, respectively.

.8. Architecture of the LSTM/GRU models

In Section 3.4, the general view of the MLP architecture and the
nner structures of the hidden layers and neurons were explained.
n the other hand, in Sections 3.5 and 3.6, the inner structures and
roperties of LSTM and GRU cells were explained. However, to perform
rediction operations as in MLP, a complete LSTM/GRU model having
n input, an output, and several hidden layers must be constructed.
ach hidden layer must consist of a limited number of LSTM/GRU cells.

Based on the LSTM and GRU architectures, NN models having a
ifferent number of hidden layers and a different number of neurons
ere built. The general architecture of the LSTM/GRU models utilized

or SST prediction is given in Fig. 7.

. Experimental setup

Experiments have been conducted with seven ML models. The over-
ll workflow of an experiment is given in Fig. 8. The workflow steps
re as follows: Data are rescaled according to the given scale factor.
hen the whole dataset is split into two subsets: training&validation
80%), and testing (20%) sets. Training&validation set is used to train
he ML models. During the training process, the termination criterion
s checked after each epoch. Accordingly, if the maximum number of
pochs is reached, or the validation error not decreases for a certain
eriod of time, the training process is terminated. In the last step, the
rediction of the test dataset is performed.
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Fig. 7. The architecture of the utilized LSTM/GRU models for SST prediction.
Fig. 8. General workflow of the proposed methodology.

These models need some critical parameters to be optimized to
achieve accurate SST predictions. The selection of optimal parameters
directly affects the performance of the models and promotes higher
accuracy. However, since the parameters used in ML algorithms vary
depending on the size and characteristics of the data set, these param-
eters are usually decided based on the user’s experience, intuition, and
literature knowledge. Therefore, different parameters were applied and
the models were trained and evaluated based on them. However, since
it is not possible to test all configurations of the models by changing
each parameter separately, only the most critical parameters discussed
in the literature have been modified. The remaining parameters were
used with their standard configurations. Thus, the most critical parame-
ters of traditional ML models were considered. The KNN algorithm was
implemented with three different 𝐾 values (3, 5 and 10), which is the
most critical parameter and corresponds to the number of neighbors
to be considered. If the value of 𝑘 is chosen too small, means that

insufficient neighbor data will be used for temperature prediction, and

6

in this case, the model will not have enough generalization ability.
On the other hand, if the 𝑘 value is chosen too big, for example the
same size as the data set, then the result will be the average of all the
data and the entire temperature map will have the same value. The
DT algorithm was evaluated with three different ‘‘minimum samples
to split’’ values, 5, 20, and 50, respectively. A similar situation in the
KNN algorithm is also valid for the DT algorithm. While a too small
value of ‘‘minimum-samples split’’ may cause overfitting, a too large
‘‘minimum -samples split’’ value may cause underfitting. Furthermore,
the SVM was implemented with three different kernel functions (linear,
polynomial, and radial basis kernel functions). The kernel function is a
mathematical function used to convert input data into the required data
format. Detailed information about the kernel functions can be found
in the reference (Tharwat, 2019).

Since MLP, LSTM and GRU are NN-based models, the configurations
of these models are different from the traditional models. For these
models, the maximum number of epochs was set to 100. In addition,
an early stopping condition was determined to achieve a better gen-
eralized NN and to prevent overfitting. Therefore, a validation loss
was calculated by predicting unused data from the validation dataset
at each epoch. If there was no improvement in validation loss for
10 consecutive epochs, the learning rate was multiplied by 0.1 to
achieve a more precise learning process. Additionally, if there was no
improvement in validation loss during the patience periods (30 epochs),
the training process was terminated. Mean Square Error (MSE) was
used as a loss function. Considering the performance comparisons of
the optimizers in the literature,in this study, Adaptive Moment (ADAM)
optimizer was used to update the weights. Detailed information about
the optimizers can be found in the reference (Soydaner, 2020).

Each NN model was tested with 9 different configurations that
differed in (i) the number of hidden layers (1, 3, and 5) and (ii) the
number of neurons (5, 10, and 20). All NN models were terminated
with a single neuron output layer responsible for the output. The
number of layers and the number of neutrons are parameters that
determine the complexity and learning capacity of the model. While
using a simple model may cause an underfitting problem, using a very
complex model may cause an overfitting problem. All these algorithms
were implemented using Python (Cobos et al., 2022). While KNN, SVM,
and DT models were implemented with the Scikit-Learn library, the
MLP, LSTM, and GRU models were implemented with Keras Library
on top of Google TensorFlow (https://scikit-learn.org/stable/, accessed
07 October 2022; https://keras.io/, accessed 07 October 2022; https:
//www.tensorflow.org/, accessed 07 October 2022).

5. Performance evaluation metrics

Two well-known evaluation metrics, Mean Squared Error (RMSE)

and Mean Absolute Error (MAE) were used to evaluate the performance

https://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
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Table 1
Average RMSE and MAE of 37 configurations of 7 ML models.

Layer count Neuron count RMSE (◦C) MAE (◦C)

LSTM

1 5 0.6 0.53
2 5 0.53 0.46
3 5 0.59 0.51
1 10 0.65 0.57
2 10 0.69 0.63
3 10 0.75 0.68
1 20 0.7 0.62
2 20 0.82 0.75
3 20 0.72 0.64

GRU

1 5 0.74 0.66
2 5 0.58 0.51
3 5 0.59 0.52
1 10 0.74 0.66
2 10 0.61 0.54
3 10 0.83 0.75
1 20 0.73 0.65
2 20 0.74 0.67
3 20 0.64 0.55

MLP

1 5 0.59 0.52
2 5 0.63 0.56
3 5 0.69 0.62
1 10 0.57 0.55
2 10 0.75 0.68
3 10 0.88 0.81
1 20 0.62 0.55
2 20 0.7 0.62
3 20 1.22 1.13

Neighbor count

KNN 5 0.73 0.64
10 0.72 0.64
20 0.72 0.64

Min. sample count

DT 5 0.84 0.74
10 0.86 0.75
20 0.86 0.75

Kernel function

SVM Linear 0.81 0.72
Polynomial 1.08 0.98
Radial Basis 0.95 0.86

LR 0.78 0.71
of the models. Equations of the metrics are given below.

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − ŷ𝑖
)2 (11)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − ŷ𝑖|| (12)

where 𝑦𝑖 and ŷ𝑖, are the 𝑖th actual value and the 𝑖th predicted value
among n samples. The smallest values of RMSE and MAE indicate the
highest prediction accuracy.

6. Experiment results and discussion

Table 1 gives the evaluation scores of the one-month ahead SST
predictions based on 7 different ML models including LR, KNN, DT,
SVM, MLP, LSTM, and GRU. To make a better evaluation, the error
values of the models with different configurations are also given. Except
the basic LR, while each NN model was analyzed with 9 different con-
figurations, each traditional ML model was analyzed with 3 different
configurations. Consequently, a total of 37 different configurations of
7 different models were tested. Results reveal the performance of the
models on the test dataset. Two statistical evaluation metrics (RMSE
and MAE) were used to quantitatively evaluate the prediction perfor-
mance of the models. These metrics demonstrate the 12-month average

prediction errors for 2020. The evaluation was performed between

7

predicted SST and observed SST. The best results for each evaluation
metric are pointed out in bold.

According to the results given in Table 1, it is evident that all
models can predict temperature values with less than 1 ◦C differences
(MAE). This indicates that the achieved prediction results are highly
correlated with the actual monthly SST data. Nonetheless, none of
the traditional ML models (KNN, DT, and SVM) were able to perform
predictions with less than 0.64 MAE error. Among these models, the
lowest accuracy scores were produced by DT. Compared to DT, the SVM
model achieved slightly better results. KNN model outperforms both
DT and SVM models by a considerable margin (0.1 and 0.08) in terms
of MAE scores. Besides, even if different configurations of the models
were employed, these configurations did not have a significant effect on
the test results. For example, MLP and LSTM methods were tested with
more layers and number of neurons, but these tests were not included
in the study due to higher RMSE error values. All three different
configurations of the KNN model produced almost the same prediction
errors. The primary reason for this problem is that time-series data has
a time-dependent pattern in itself, and traditional methods have limited
ability to learn this pattern. Therefore, although successful results have
been achieved with traditional models, more capable algorithms such
as NN are needed to achieve even better results in such datasets that
have a time-dependent pattern.

When the results are examined in detail, it is clearly seen that all the

NN models significantly improve the prediction accuracy compared to
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Table 2
Std of monthly average temperature values, and one-month-ahead SST prediction performances of LSTM, GRU, and MLP
models in terms of RMSE and MAE.

Month LSTM GRU MLP

STD RMSE MAE RMSE MAE RMSE MAE

1 0.80 0.43 0.35 0.49 0.41 0.45 0.39
2 0.41 0.36 0.29 0.29 0.25 0.45 0.38
3 0.28 0.22 0.19 0.28 0.23 0.37 0.32
4 0.42 0.23 0.17 0.25 0.22 0.38 0.31
5 0.50 0.30 0.24 0.27 0.21 0.28 0.21
6 0.76 1.68 1.65 1.91 1.88 1.68 1.64
7 0.96 0.78 0.69 0.96 0.87 0.95 0.87
8 0.90 0.40 0.25 0.66 0.59 0.39 0.25
9 0.92 0.65 0.62 0.48 0.40 0.69 0.64
10 1.05 0.41 0.32 0.42 0.33 0.44 0.36
11 0.94 0.46 0.35 0.42 0.33 0.55 0.43
12 0.67 0.44 0.36 0.49 0.38 0.51 0.40
traditional ML models. The performance of the basic LR model is some-
where between NN algorithms and other ML algorithms. Compared to
the best KNN results, the MAE scores of the LSTM, GRU, and MLP mod-
els decreased approximately 28%, 20%, and 19%, respectively. These
results are not surprising given the strengths of the NN architectures,
especially the LSTM and GRU architectures on time series data sets.
Besides, these results reveal the great potential in the GRU, which has
not been adequately tested in a similar study before. Although the
difference was not huge, the GRU had a slightly better performance
than the MLP model. On the other hand, the LSTM model still had the
best performance. Overall, considering both RMSE and MAE metrics,
the prediction performances of all models ranked as LSTM > GRU >
MLP > KNN > LR > SVM > DT.

To further assess the prediction capability of the NN models and
examine the effect of the hidden layers structure, nine different config-
urations of each model were analyzed. Since the structure of the hidden
layers has a huge impact on the model output, both the number of
hidden layers and the number of neurons in each hidden layer must be
carefully decided. Employing a hidden layer structure that is too simple
or too complex may cause underfitting or overfitting issues. In addition,
the existing dataset should be large enough to train the designed model.
Trying to train a too complex model with a small dataset may also
cause an underfitting problem. Therefore, this balance should be taken
into account when deciding on the hidden layer structure. According
to the results, the best predictions for the LSTM and GRU models were
achieved with two hidden layer structures containing five neurons. In
MLP, on the other hand, the best predictions were achieved with a
single hidden layer structure containing five neurons. The first reason
is that the existing dataset is not large enough to train complex NN
models, or that even relatively simple NN models have the capacity to
learn the existing SST pattern. The second problem, which is frequently
mentioned in the literature, is the vanishing gradient problem. As the
number of layers increases in the NN, the value of the product of
derivative decreases, and the partial derivative vanishes (Manaswi,
2018).

In order to show the one-month-ahead prediction capability of the
LSTM model, the monthly average MAE scores of the models for the
test dataset (1.1.2020–1.1.2021) are given in Table 2. In order to see
whether there is a correlation between error values and temperature
variability, the standard deviations (std) of the monthly average tem-
perature values are also given in the table. It can be seen that there
is no correlation between std and error values. Besides, the results
given in this table indicate that the predictions of the SST variation,
except for the sixth month, are satisfactory and agree with the observed
SST. For eleven months the MAE error of the LSTM was between 0.17
and 0.69, and a relatively higher prediction error occurred in only the
6th month. To further prove the effectiveness of making one-month
ahead spatiotemporal SST prediction by the LSTM and GRU, the maps
of ground truth SST and predicted SSTs are presented in Fig. 9. This
way, models can be verified not only in temporal but also in spatial
8

dimensions. Each row in the figure corresponds to a month in the test
data set. As seen from the figures, LSTM and GRU models can make
effective predictions by learning various temperature patterns in spatial
dimensions. These visual results indicate that the SST maps predicted
with these models perfectly match the original monthly SST maps, and
the two time series models are trustworthy.

In the literature, researchers have mainly focused either on a few
points or on the average SST values of the study area. Unlike spa-
tiotemporal SST predictions, point-based or average SST predictions do
not take into account spatial information or the relationship between
spatial SST data. Thus, these algorithms are easier to implement, but
are not capable of providing sufficient information for studies where
spatial temperature pattern is required. In those studies, daily, weekly,
monthly and seasonal predictions have been conducted. In a recent
study, Liu et al. (2021) predicted 1 day, 3 days, and 7 days ahead SST
in the East China Sea with RMSE of 0.025, 0.061, 0.32, and in the
South China Sea with RMSE of 0.013,0.041, 0.238. They utilized the
B-spline interpolation and refining spatiotemporal attention mechanism
along with the LSTM. In the same area (China Sea), Yu et al. (2020),
predicted the SST values of 3 selected points for 3 days, 5 days, 1
week, 2 weeks, and 1 month ahead, with RMSE of 0.450, 0.457,
0.55, 0.663, 0.672, respectively. These findings indicate that, as the
prediction interval increases, the error rate increases. Zhang et al.
(2020) achieved the highest accuracy with an RMSE of 0.65 for 1 month
ahead SST prediction in the Bohai Sea, on the six selected locations. In
another study, Yang et al. (2018) combined CNN and LSTM to make
a spatio-temporal prediction on a National Oceanic and Atmospheric
Administration High-Resolution SST dataset covering the Bohai Sea and
a dataset covering the Chinese Coastal waters. They predicted the 1,
7, and 30 days ahead SST for the Bohai Sea with the RMSE of 0.146,
0.277, and 0.726, respectively. In the same study, SST values of the
coastal area of the China Sea for 1, 7, and 30 days were predicted
with the RMSE of 0.40, 0.63, and 1.07, respectively. Since of the open
seawater body is more stable than in the coastal area, the accuracy of
the studies carried out in these areas is also higher than in the coastal
areas. On the other hand, there is no acceptable exact error rate for
SST in the literature. Therefore, the prediction error values obtained in
these similar recent studies were taken into account in the evaluation
process.

Considering these studies in the literature, some points can be
highlighted. Firstly, it is clearly seen that as the predicted time interval
increases, the amount of error increases, that is, 1-month ahead pre-
diction performed in the same region with the same method produces
higher error than 1-day ahead prediction. Secondly, RMSE was used as
the common measurement metric in all studies. Thirdly, the minimum
and maximum error values obtained for the all predictions in these
studies ranged from 0.146 (◦C) to 1.07 (◦C). Therefore, methods that
perform prediction error of less than 1 (◦C) RMSE can be considered as
valuable for the literature. Based on these results, in our study, RMSE
and MAE metrics were used. Although our study was conducted in the
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Fig. 9. Comparison of original monthly SST and predicted SST images for 12 months.
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Table 3
SST prediction performances of the ML models for different configuration of the dataset.

Layer count Neuron count 1-Day 1-Month 3-Months 1-Month without
spatial info.

LSTM 2 5 0.335 0.53 0.649 0.713
GRU 2 5 0.38 0.58 0.685 0.748
MLP 1 5 0.395 0.59 0.675 0.764

KNN
Neighbor count

10 0.4936 0.72 0.897 0.935

DT
Min. sample count

5 0.516 0.84 0.887 0.951

SVM
Kernel function

Linear 0.5265 0.81 0.858 0.853

LR 0.532 0.78 0.827 0.855
coastal area, it is seen that a successful prediction process was carried
out compared to the studies in the literature.

Furthermore, to present the effect of time interval on the result as
given in the literature, and to reveal how spatial information affects the
prediction performance, the study was extended by testing on different
configurations of the dataset. Firstly, the time interval of the models
was changed and 1-day and 3-months temperature predictions were
carried out. However, considering the number of tests performed and
the time and hardware constraints, the related tests were carried out
only on the configurations that gave the best results for 1-month data.
Test results are given in Table 3 in the RMSE metric. When the results
are examined, it is clearly seen that as the time interval decreases, the
amount of prediction error decreases. The best RMSE error value ob-
tained with LSTM decreased by about 0.2 in the 1-day prediction, and
increased by about 0.12 in the 3-month prediction. Secondly, 1-month
estimation was performed again by removing spatial information from
the monthly data, that is, using only temporal information. The results
show a significant increase in the amount of error. The best RMSE error
value obtained with LSTM increased from 0.53 to 0.71 (∼40%). Similar
error increase can be seen in the results of all ML models (in Table 3).
These results numerically reveal that the spatio-temporal data provides
more accurate prediction than using only temporal data.

7. Conclusion

In this study, one month ahead spatiotemporal SST prediction ca-
pability of 4 traditional ML models (SVM, KNN, DT) and 3 NN models
(MLP, LSTM, and GRU) were examined and the comparative analysis
report was provided. Models were evaluated on the SST time series
dataset covering the southern coasts of Turkey, located in the eastern
part of the Mediterranean Sea. The main conclusions are as follows:

1. While NN-based models (LSTM, GRU, and MLP) outperform
traditional ML models, time series models (LSTM and GRU)
outperform traditional MLP and, in these two time series models,
the complex one (LSTM) outperforms the simpler one (GRU).
Consequently, the prediction performances of the models ranked
as LSTM > GRU > MLP > KNN > LR > SVM > DT.

2. In the one-month ahead SST prediction, RMSE, and MAE of the
LSTM and GRU are mostly concentrated in the range of 0–0.5
◦C. This result indicates that the RNN-based models are universal
and reliable models for spatiotemporal SST prediction.

3. It has been observed that the use of spatiotemporal information
in the prediction process significantly reduces the error values
compared to using only temporal information.

4. In the SST prediction, it is observed that as the time interval

decreases, the amount of prediction error decreases.
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