

Delft University of Technology

An adaptive robust optimization model for parallel machine scheduling

Cohen, Izack ; Postek, Krzysztof; Shtern, Shimrit

DOI
10.1016/j.ejor.2022.07.018
Publication date
2022
Document Version
Final published version
Published in
European Journal of Operational Research

Citation (APA)
Cohen, I., Postek, K., & Shtern, S. (2022). An adaptive robust optimization model for parallel machine
scheduling. European Journal of Operational Research, 306(1), 83-104.
https://doi.org/10.1016/j.ejor.2022.07.018

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ejor.2022.07.018
https://doi.org/10.1016/j.ejor.2022.07.018

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

European Journal of Operational Research 306 (2023) 83–104

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An adaptive robust optimization model for parallel machine

scheduling

Izack Cohen

a , ∗, Krzysztof Postek b , Shimrit Shtern c

a Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
b Faculty of Electrical Enginnering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
c Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa, Israel

a r t i c l e i n f o

Article history:

Received 4 October 2021

Accepted 11 July 2022

Available online 16 July 2022

Keywords:

Scheduling

Robust optimization

Parallel machine scheduling

Robust scheduling

a b s t r a c t

Real-life parallel machine scheduling problems can be characterized by: (i) limited information about the

exact task duration at the scheduling time, and (ii) an opportunity to reschedule the remaining tasks

each time a task processing is completed and a machine becomes idle. Robust optimization is the natural

methodology to cope with the first characteristic of duration uncertainty, yet the existing literature on

robust scheduling does not explicitly consider the second characteristic the possibility to adjust decisions

as more information about the tasks duration becomes available, despite that re-optimizing the schedule

every time new information emerges is standard practice. In this paper, we develop an adaptive robust

optimization scheduling approach that takes into account, at the beginning of the planning horizon, the

possibility that scheduling decisions can be adjusted. We demonstrate that the suggested approach can

lead to better here-and-now decisions and better makespan guarantees. To that end, we develop the first

mixed integer linear programming model for adaptive robust scheduling, and a two-stage approximation

heuristic, where we minimize the worst-case makespan. Using this model, we show via a numerical study

that adaptive scheduling leads to solutions with better and more stable makespan realizations compared

to static approaches.

© 2022 Elsevier B.V. All rights reserved.

1

s

p

a

a

n

t

t

p

d

o

s

a

(

t

(

P

o

d

a

m

t

s

h

t

F

i

v

b

p

k

i

h

0

. Introduction

Parallel Machine Scheduling (PMS) problems are widely re-

earched owing to their theoretical importance and multiple ap-

lications in manufacturing, cloud computing, and project man-

gement, among others. Real-life PMS settings involve uncertainty

bout task duration, which may be characterized by the random-

ess of each task duration and, possibly, a dependence between

ask durations.

An ideal scheduling approach should accommodate uncertainty

o ensure realistic guarantees on the objective function value and

ermit adjustments of later-stage scheduling decisions based on

ifferent observed task lengths (e.g. , different duration realizations

f the task scheduled first may result in different allocation deci-

ions of the next tasks).

In the existing literature, commonly, scheduling problems are

nalyzed using various types of static schedules . Static Allocation

SA) is one of the most frequently used static policies, where the
∗ Corresponding author.

E-mail addresses: izack.cohen@biu.ac.il (I. Cohen), k.s.postek@tudelft.nl

(K. Postek), shimrits@technion.ac.il (S. Shtern) .

i

p

w

ttps://doi.org/10.1016/j.ejor.2022.07.018

377-2217/© 2022 Elsevier B.V. All rights reserved.
asks are allocated in a certain order to pre-specified machines

e.g., see the exact formulations in Xu, Cui, Lin, & Qian, 2013 , for

MS). In such policies, both the decision about the order of tasks

n each machine and their allocation to machines are static, and

o not change as more information is revealed. Another example

re Static List (SL) policies, where the scheduling order of tasks to

achines is pre-specified and tasks are allocated, by this order, to

he first idle machine (e.g., LPT for PMS makespan minimization,

ee Gupta & Ruiz-Torres, 2001). These policies can be viewed as

aving a static order of task allocations but as dynamic and adap-

ive in the choice of the machine to which each task is allocated.

or both types of policies, research has addressed the issue of find-

ng the optimal policy that minimizes the expectation/worst-case

alue of the objective function over uncertain task durations. For

oth policy types, however, it holds that the optimal SA and SL

olicies may change once the duration of some completed tasks is

nown. We are not aware of works that consider this issue explic-

tly.

We focus on a makespan minimization objective function that

s used for load balancing in PMS and many other scheduling ap-

lications. When deciding whether to use the expected value or

orst-case value, several factors should be considered. Optimizing

https://doi.org/10.1016/j.ejor.2022.07.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.07.018&domain=pdf
mailto:izack.cohen@biu.ac.il
mailto:k.s.postek@tudelft.nl
mailto:shimrits@technion.ac.il
https://doi.org/10.1016/j.ejor.2022.07.018

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

o

b

a

r

i

o

g

i

d

v

s

p

w

d

t

t

g

a

a

e

u

f

c

t

t

a

m

t

I

t

(

b

p

s

m

i

w

p

o

w

t

m

o

f

a

t

i

s

W

a

n

s

p

w

t

S

m

n

d

S

t

a

v

2

t

r

S

2

c

t

P

2

c

t

a

a

o

a

t

r

m

b

t

e

b

a

2

j

ver an expectation requires specifying the full probability distri-

ution of task duration, information that is often not readily avail-

ble or is costly to acquire. Moreover, the makespan of a single

ealization may significantly differ from the expected value; thus,

f the exact scheduling problem is not repeated multiple times,

ptimizing over the expected value may not be translated into

ood performance in practice. In contrast, much less information

s needed when specifying a set that includes all the reasonable

uration realizations, and a worst-case optimization approach pro-

ides a guarantee on the performance of any realization in such a

et. Therefore, we consider a scheduler who minimizes the worst-

ossible makespan of a set of tasks over some uncertainty set,

hich captures all reasonable scenarios within the support of the

istribution. This is in line with the paradigm of Robust Optimiza-

ion (RO), where the best solution is sought under the assump-

ion that the problem’s parameters are initially unknown and that,

iven the decisions, nature picks their worst-possible values from

n uncertainty set consisting of outcomes that include the true re-

lization with a high probability. A representative real-world PMS

xample is presented by Xu et al. (2013) who describe a new prod-

ct development division that needs to manufacture prototypes

or multiple newly developed mobile phones. These prototypes in-

lude sets of new parts that are being manufactured for the first

ime. In the absence of historical data regarding processing dura-

ion, stochastic models are irrelevant and RO becomes a leading

lternative for hedging against schedule delays.

In this mindset, we consider the classical version of PMS, where

 identical machines process n � m tasks that are available at

he start of the scheduling horizon. We construct an exact Mixed

nteger Linear Optimization (MILO) formulation for minimizing

he worst-case makespan, which includes all possible later-stage

re-)scheduling decisions and gives the best-possible Adaptive Ro-

ust (AR) policy. Since this formulation scales exponentially in the

roblem size, we also propose an adaptive heuristic – the Two-

tage Static Allocation (2SSA) – where only one re-optimization

oment is considered. Next, we compare the optimal schedul-

ng decisions of the adaptive formulation and the corresponding

orst-case makespan to those of the optimal SA and SL.

In contrast to the majority of previous works, which com-

are naive implementations of the SA and SL policies without re-

ptimization (i.e. , re-scheduling) as more information is revealed,

e consider the more realistic rolling-horizon implementation of

hese policies. Under this implementation, whenever one of the

achines becomes idle, the scheduler can alter the initial order

f tasks by re-solving an optimization problem with the extra in-

ormation included.

In this paper, we view adaptivity in two distinct ways: (a) the

bility of here-and-now decisions to account for future changes to

he schedule due to the revealed information, and (b) the flexibil-

ty to change future scheduling decisions (in terms of what task is

cheduled on which machine) in light of the revealed information.

hile a rolling-horizon implementation of any policy may provide

daptivity in terms of (b) with regard to future decisions, it does

ot provide more information regarding to the here-and-now deci-

ion. Thus, while AR is fully adaptive, our suggested 2SSA aims to

rovide partial adaptivity in terms of (a), similarly to SL. Moreover,

e show that 2SSA is practically more computationally tractable

han SL for the problem sizes we consider.

The main contributions of our research are as follows:

1. We characterize settings in which using adaptive policies

may be important. Specifically, we identify settings in which

the static and adaptive policies result in the same makespan,

and provide performance bounds for the SA policy as well

as any rolling-horizon policy with respect to a Perfect Hind-

sight (PH) policy, which determines the best allocation when
84
the durations are known exactly. The bounds are computed

for the popular budgeted uncertainty set (Bertsimas & Sim,

2004). Using these bounds, we determine that when the

budget is moderate relative to the number of tasks n , and

when n is not extremely large, planning for adaptivity may

be crucial for good promised and actual performance.

2. We provide a closed-form MILO formulation of the PMS

problem with re-scheduling and its heuristic variant. To the

best of our knowledge, this is the first such formulation.

The heuristic variant, named 2SSA, accounts for one stage of

adaptivity. We demonstrate, via experiments, that the way

2SSA partially accounts for adaptivity, balances well between

computational efficiency and performance.

3. We demonstrate, through stylised examples and numeri-

cal experiments, that both the adaptive robust policy and

its heuristic variant can significantly outperform their static

alternatives, even when the latter are implemented via a

rolling-horizon approach.

4. In terms of managerial insights, the main conclusion of our

paper is that, when possible, future re-scheduling of tasks

(adaptations) should be taken into account at the planning

stage as a way to obtain substantially better makespan guar-

antees as well as shorter actual makespans compared to

non-adaptive approaches.

The remainder of the paper is structured as follows. In

ection 2 , we review the relevant scheduling and robust opti-

ization literature. Section 3 introduces the notation and defi-

itions used in our formulations and analyses. In Section 4 , we

iscuss structural properties of static and adaptive policies. In

ection 5 , we introduce the Dynamic Programming (DP) formula-

ions of the adaptive robust scheduling from the scheduler’s and

dversary’s points of view. In Section 6 we develop, via the ad-

ersary view, the MILO formulation of the problem, as well as its

SSA variant. Section 7 demonstrates, through a numerical study,

he benefit of using adaptive policies. Section 8 presents manage-

ial insights gained from our investigation of adaptive policies and

ection 9 concludes and suggests future research directions.

. Literature review

We focus on adaptive robust makespan minimization for the

lassical PMS problem with identical machines. The determinis-

ic version of the problem, which is one of the most studied

MS problems (Ranjbar, Davari, & Leus, 2012), is NP-Hard (Pinedo,

002). We review the two main approaches for dealing with un-

ertain durations in the context of PMS: the stochastic optimiza-

ion approach and the robust optimization approach. The former

pproach is attractive if probability distributions of task durations

re known and the scheduler desires a policy that performs well

n average (see, Section 2.1). If, in contrast, the scheduler wants

ssurance that the policy will perform well for any realization of

he durations within a predefined set, or does not have an accu-

ate estimate of the underlying distribution, then a robust (min-

ax) approach that minimizes the worst-case performance is the

est option (see, Sections 2.2 –2.3).

Although this paper does not address the stochastic setting, due

o the connection between stochastic and robust settings, our lit-

rature review will first cover the more studied stochastic models,

efore transitioning to discuss the RO setting and its adaptive vari-

nt.

.1. Stochastic PMS models

This type of scheduling model optimizes an expected value ob-

ective, such as the expected makespan to process n tasks on m

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

m

s

a

t

t

t

d

d

t

n

a

s

f

o

t

a

t

i

i

o

s

a

2

k

k

p

k

u

d

p

a

s

s

s

s

a

r

s

s

D

j

i

c

a

t

e

&

e

n

t

2

t

w

c

j

l

g

m

i

a

a

e

t

s

(

v

i

s

R

v

m

m

m

c

V

m

m

a

M

b

s

B

v

w

a

i

f

M

s

o

m

o

p

t

u

C

2

a

t

a

f

l

n

R

p

l

u

R

m

c

u

n

p

t

t

c

n

w

achines. The probability distributions of task durations are as-

umed to be known or can be inferred based on historical data.

There are only a few known optimal policies for specific prob-

bility distributions. For example, the longest expected processing

ime (LEPT) priority rule – by which tasks are processed according

o a non-increasing order of their expected duration – minimizes

he expected makespan for exponentially distributed and indepen-

ent task durations (Cai, Wu, & Zhou, 2014).

Many studies looked at the stochastic PMS under various con-

itions and assumptions. A partial list of representative publica-

ions includes: Möhring, Schulz, & Uetz (1999) who developed

on-anticipative scheduling policies via linear programming relax-

tions to minimize the expected weighted flow time (that is, the

um of expected task completion times). They analyzed the per-

ormance of the weighted shortest expected processing time pri-

rity rule, which is simple to apply, and found that it is asymp-

otically optimal; Ranjbar et al. (2012) developed efficient branch-

nd-bound procedures to maximize the probability that a set of

asks with normally-distributed processing times completes before

ts due date. Their experiments included up to 20 tasks and five

dentical machines; Weber (1982) allowed preemptions and devel-

ped priority rules based on highest/lowest hazard rates; others

olved PMS problems using heuristics such as genetic algorithms

nd simulated annealing (e.g. , Balin, 2011; Yeh, Lai, Lee, & Chuang,

014).

We mention, for completeness, a scheduling approach which is

nown as proactive-reactive or predictive-reactive scheduling. Two

ey characteristics separate this approach from the current pa-

er: 1) Typically, proactive-reactive methods rely on probabilistic

nowledge of the uncertain variables to develop efficient sched-

les, and 2) these methods assume independence between the ran-

om variables (e.g., task durations) contrary to the suggested ap-

roach that accommodates dependence between the random vari-

bles. The main idea of reactive-proactive approaches is to con-

truct a proactive baseline schedule that takes into account pos-

ible disruptions (e.g., due to variations of task durations). When

chedule disruptions are realized they may be corrected using pre-

elected rules or by resolving the problem. The approach has been

pplied for different settings such as the weighted parallel machine

e-scheduling problem (Tighazoui, Sauvey, & Sauer, 2021), job-shop

cheduling (Beck & Wilson, 2007) and resource-constrained project

cheduling (Davari & Demeulemeester, 2019). In the latter research,

avari & Demeulemeester solve the proactive and reactive problem

ointly by optimizing over numerous realized scenarios while tak-

ng into account the baseline project execution schedule and the

ost of reactions.

Commonly, when historical data are not accessible or costly to

cquire or when the tasks are unique, probability distributions of

ask durations are not available and schedulers may have to rely on

stimations of upper and lower bounds of task durations (Balouka

 Cohen, 2019). For non-repetitive tasks, decision makers tend to

xhibit a risk-averse behavior that hedges against worst-case sce-

arios (Daniels & Kouvelis, 1995; Lin & Ng, 2011). In such cases,

he use of RO, which we review next, is natural.

.2. Static robust PMS

To the best of our knowledge, all previous research applying RO

o the PMS problem involved static policies that do not consider,

hen making scheduling decisions, the possibility that decisions

ould or should be changed later on. We suggest the option to ad-

ust task/machine allocations as new information is uncovered. Be-

ow are several studies that use static robust solution approaches.

The closest work to ours is by Xu et al. (2013) who investi-

ated the robust PMS with identical machines and a makespan

inimization objective under processing times specified via an
85
nterval-type uncertainty. The authors formulated the problem as

 MILO, and solved it via exact solution approaches based on iter-

tive relaxation algorithms and several heuristics. A computational

xperiment with up to five machines and 15 tasks demonstrated

hat the heuristics’ average deviation from the optimal value is

maller than 8%. The current research departs from Xu et al.

2013) by developing an adaptive RO model, which may use con-

ex uncertainty sets including (but not limited to) the conservative

nterval-type uncertainty set, showing the equivalence between the

tatic and adaptive solution in this case. Bougeret, Jansen, Poss, &

ohwedder (2021) ; Bougeret, Pessoa, & Poss (2019) focused on de-

eloping approximation algorithms for robust PMS with identical

achines and a budgeted uncertainty set.

Other studies adopted a min-max regret objective function that

inimizes the maximal deviation of a given solution from the opti-

um across all scenarios, since such objective is considered as less

onservative than the traditional robust objective (Aissi, Bazgan, &

anderpooten, 2009). Conde (2014) formulated a MILO problem to

inimize the maximal regret of the flow time for a PMS environ-

ent with unrelated machines in which the processing durations

re specified via an interval-type uncertainty set. They solved the

ILO for problems with up to 40 tasks and 10 machines using a

ound on the computation time. Importantly, even a simpler ver-

ion of this problem with identical machines is NP-Hard (de Ruiter,

rekelmans, & den Hertog, 2016). Xu, Lin, & Cui (2014) who in-

estigated PMS with unrelated machines showed that a solution

ith the nominal (midpoint) task processing durations is a two-

pproximation for the min-max regret problem. They suggested an

nteresting modeling idea by which the original problem is trans-

ormed into a robust single machine problem, which yielded an

ILO problem with fewer variables and constraints. The authors

tressed the importance of researching PMS problems with other

bjective functions – an idea we adopt by using the makespan

inimization objective.

Other papers addressed robust PMS problems with a variety of

bjectives and constraints such as cost minimization where task

rocessing can be outsourced (Wang & Cui, 2020) and maximiza-

ion of the probability that all tasks complete by their due dates

sing a distributionally robust approach (Liu, Liu, Chu, Zheng, &

hu, 2019).

.3. Adaptive robust optimization

Most RO research in scheduling implements a ‘static’ approach,

s detailed in the previous section. Yet, in problems spanning mul-

iple time periods, most schedulers would adjust their decisions

s the actual duration of each task emerges. A common approach

or emulating this is the rolling-horizon approach, where the prob-

em is re-solved at selected decision points, taking into account the

ew information. The downside of this approach is that if a static

O approach is used to solve each of the respective optimization

roblems, the here-and-now decisions are still optimized as if the

ater-stage decisions were not to going to change regardless of the

ncertainty realization.

A branch of RO research dealing with this issue is Adaptive

obust Optimization (ARO) (Ben-Tal, Goryashko, Guslitzer, & Ne-

irovski, 2004). Its main idea is to optimize the here-and-now de-

isions, taking into account all scenarios in which the problem may

nfold and the corresponding optimal decisions for each such sce-

ario. Optimal ARO solutions are favorable with respect to static

olicies since they result in better here-and-now decisions that

ake into account adaptations in later time stages. At the same

ime, solving problems via ARO is computationally demanding be-

ause of the need to account for the contingent decisions in a large

umber of scenarios. A particularly difficult case is problems in

hich later-stage decisions are discrete.

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

i

a

a

l

t

s

t

t

s

G

p

o

t

(

(

p

m

(

m

t

u

p

&

p

Y

t

t

v

t

t

M

F

f

b

3

1

a

t

d

u

v

c

t

w

o

f

t

e

c

e

t

w

w

(

l

F

k

t

i

s

s

d

t

r

i

t

t

u

t

W

s

b

o

p

b

t

w

i

c

Since solving ARO exactly is often computationally demand-

ng, one may restrict the space of considered policies to obtain

 tractable approximation. The most common restriction is using

ffine decision rules, as introduced by Ben-Tal et al. (2004) . There,

ater-stage decisions are affine functions of the unknown parame-

ers, and the coefficients of these functions are optimized as deci-

ion variables. For some problems, affine decision rules are shown

o be optimal (Bertsimas, Iancu, & Parrilo, 2010), but this is not

rue in general. Modeling of continuous variables as affine deci-

ion rules may yield computationally efficient solutions as Cohen,

olany, & Shtub (2007) demonstrate for the time-cost tradeoff

roject scheduling problem.

The four main approaches to approximating ARO in the case

f integer decisions, which we deal with in scheduling, are: (i)

he K-adaptability approach of Hanasusanto, Kuhn, & Wiesemann

2015) , (ii) the iterative partitioning approach of Postek & Hertog

2016) and Bertsimas & Dunning (2016) , (iii) cutting-plane-like ap-

roaches as used by Zeng & Zhao (2013) for two-stage robust opti-

ization problems with a continuous second-stage decisions, and

iv) decision rule approximations (see, Georghiou, Kuhn, & Wiese-

ann, 2019 , and references therein). All these approaches assume

hat one knows the time moments at which the values of initially

nknown parameters are revealed. This makes them applicable to

roblems such as unit commitment (Bertsimas, Litvinov, Sun, Zhao,

 Zheng, 2012), inventory control (Ben-Tal et al., 2004), or flood

rotection planning (Postek, Den Hertog, Kind, & Pustjens, 2019).

anıko ̆glu, Gorissen, & den Hertog (2019) gives a broad survey of

he adaptive robust optimization methods. In the PMS problem

hat we focus on, the above mentioned assumption is no longer

alid. The time moments at which new information (completion of

asks) becomes available depend on (i) the uncertain durations of

he currently running tasks and (ii) previous scheduling decisions.

oreover, all the decisions are discrete schedule-or-not binaries.

or this reason, the PMS problem structure is uncharted territory

or ARO, and exactly where our research makes a notable contri-

ution.

. Notation and definitions

We consider minimizing the processing makespan of tasks i =

 , 2 , . . . , n on m identical machines. Tasks and machines are avail-

ble at time t = 0 , there are no precedence relations between

asks, and tasks cannot be preempted while processing. The task

urations vector d = (d 1 , . . . , d n) is uncertain and lies within an

ncertainty set U which can be either finite and discrete or con-

ex, e.g., a polytope. The scheduler aims to minimize the worst-

ase makespan over this predefined uncertainty set, i.e. , assuming

hat for all scheduling decisions possible, the adversary (nature)

ill pick the worst-possible duration vector d ∈ U .

To model the problem, we need to describe the possible states

f the system. Using the notation summarized in Table 1 , in what

ollows, we develop our modeling framework. To explain the nota-

ion for the system state consider a system with m = 2 machines,

ach of which is either processing a task or idle. When a machine

ompletes a task and becomes idle, an unscheduled task, if one

xists, has to be immediately allocated to the machine. The sys-

em state at such a time moment t is described by (S, F , D, i, D̄ i) ,

here S is an ordered list of started tasks (in the order of starting

ith arbitrary tie-breaks), F is an ordered list of completed tasks

in the order of finishing with arbitrary tie-breaks), D is an ordered

ist of realized durations corresponding to the completed tasks in

 , i is a task that is currently being processed and its duration d i is

nown to be d i � D̄ i time units, where D̄ i is its processing time at

he instance the state is observed. There are also, however, states

n which both machines are busy, and when this occurs, no deci-

ion is made. Thus, to keep the state space limited, we only include
86
tates in which at least one machine is idle. Fig. 1 and Table 2

emonstrate the states of a system with two machines for a cer-

ain realization and schedule.

As the scheduling progresses in time, the up-to-now (total) du-

ations of the running (completed) tasks become known. This new

nformation might reduce the uncertainty about the possible dura-

ion of the remaining tasks, eliminating certain parts of the uncer-

ainty set. Therefore, we introduce the notion of state-dependent

ncertainty. This notion is formally expressed in the definition of

he uncertainty set induced by a system state as

U S,F,D,i, ̄D i
=

{
d ∈ U : d k = D k , ∀ k ∈ F , d i ≥ D̄ i

}
.

e call a state (S, F , D, i, D̄ i) feasible if U S,F,D,i, ̄D i
� = ∅ . We define the

et of feasible states as S .

Note that the notation discussed so far for the case of m = 2 can

e extended to m > 2 by replacing i and D̄ i with I and D̄ – the sets

f in-process tasks and their processing times until t , respectively.

We now define the notion of a scheduling policy . We define a

olicy P as a mapping from a state to the choice of the next task to

e scheduled. That is, P : S → [n] , where P (S, F , D, I, D̄) ∈ [n] \ S. In

his work, we compare three types of policies for minimizing the

orst-case makespan.

• SA policies, where each task is assigned to a machine ac-

cording to a predefined order. Thus, given an uncertainty set

U , an SA policy amounts to a partition of the tasks to ma-

chines J = (J 1 , . . . , J m

) such that ∪ j∈ [m] J j = [n] and J j ∩ J k = ∅
for all j � = k . Once the decision about the partition J is made,

it does not change. Assuming that the tasks in each J j are

given in a certain order (without loss of generality, we as-

sume it is lexicographic), the policy can be explicitly defined

as

P SA ,J (S, F , D, I, D̄)

= arg min { k ∈ [n] \ S : ∃ j ∈ [m] , k ∈ J j , i / ∈ J j ∀ i ∈ I} .
Thus, at each decision state, the next task to be scheduled is

the first task that has not yet started and has been allocated

to the machine that just became idle. Note that this policy

is independent of the information gained at each stage about

the durations of the tasks that have already begun process-

ing, meaning D and D̄ , and thus, it does not adapt to this

information.
• SL policies, where a task is processed on the first idle ma-

chine according to its location in an ordered list. Thus, given

an uncertainty set U , an SL policy amounts to a permutation

of the tasks: π = (π1 , π2 . . . , πn) , where for each i th place in

the list, πi ∈ [n] is a specific task, and all tasks must be allo-

cated once, i.e. , πi � = π j for any i � = j ∈ [n] . Once the decision

on the permutation is made, it does not change. Given per-

mutation π , the policy can be explicitly defined as

P SL ,π (S, F , D, I, D̄) = πi , i = arg min { k ∈ [n] : πk / ∈ S} .
Thus, at each decision state, the next in order on the list of

not-started tasks is scheduled on the idle machine. Note that

similarly to the SA policy, the SL policy also does not adapt

to the state-dependent information.
• The AR policy, denoted by P AR is the most flexible and con-

siders all possible scenarios for task realizations, choosing

the next task according to the actual scenario that was re-

alized. In particular, the scheduling decision for two dis-

tinct states with the same completed and processing tasks

may be different. Specifically, (D, D̄) � = (D

† , D̄

†) allows for

P AR (S, F , D, I, D̄) � = P AR (S, F , D

† , I, D̄

†) .

All three policy types can be applied in a rolling-horizon fash-

on by solving a new optimization problem once a machine be-

omes idle, where the uncertainty set is the one induced by the

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Table 1

Primary notation.

Indices, parameters and

variables Description

i, j, k Denote a task or a machine, by context

m Number of identical machines

n Number of tasks

t, τ Denote time from start of processing

d i , d Duration of task i and the vector of task durations, respectively

D i , D̄ i The realized duration of a completed task i ∈ F , and the amount of time task i ∈ I has been

processing at the observation time t , respectively

Sets and lists

R
n
� 0 An n -dimensional set of non-negative, real numbers

[n] A shorthand for the set { 1 , . . . , n }
S An ordered list of started tasks

F, D An ordered list of completed tasks and their realized durations, respectively

I, ̄D An ordered list of the in-process tasks at time t and their respective durations till t

U Uncertainty set for task durations

Fig. 1. A schematic representation of an example timeline for a system with two machines.

Table 2

System states for the timeline presented in Figure (1).

Time t State notation Decision

0 (∅ , ∅ , ∅ , 0 , 0) Start 1 and 2

D 1 ([1 , 2] , [1] , D 1 , 2 , D 1) Start 3

D 2 ([1 , 2 , 3] , [1 , 2] , [D 1 , D 2] , 3 , D 2 − D 1) Start 4

D 1 + D 3 ([1 , 2 , 3 , 4] , [1 , 2 , 3] , [D 1 , D 2 , D 3] , 4 , D 1 + D 3 − D 2) Start 5

D 2 + D 4 ([1 , 2 , 3 , 4 , 5] , [1 , 2 , 3 , 4] , [D 1 , D 2 , D 3 , D 4] , 5 , D 2 + D 4 − (D 1 + D 3)) Start 6

r

s

o

t

p

t

m

m

a

i

O

t

m

4

e

o

t

w

w

t

f

t

n

i

o

s

t

S

i

a

a

p

4

s

f

c

t

a

o

i

f

t

i

t
evealed state of the system. Nevertheless, only the AR policy takes

uch implementation into account at t = 0 . Hence, we expect the

ptimal AR policy to yield favorable worst-case makespan guaran-

ees due to its improved here-and-now scheduling decisions com-

ared to the optimal SL and SA policies that do not consider adap-

ations in later-stage decisions.

Finally, to formulate our problem of minimizing the worst-case

akespan, we introduce the function T (S, F , D, i, D̄ i) denoting the

inimal worst-case duration to process the unfinished tasks (i.e. , i

nd the tasks that have not started), assuming an optimal AR pol-

cy is applied. We refer to this function as the remaining makespan .

ur objective of minimizing the worst-case makespan is equivalent

o the function T (∅ , ∅ , ∅ , 0 , 0) .

In Section 5 , we use the above notation in developing DP for-

ulations for finding the optimal AR policy.

. Comparing the static and adaptive robust policies

In this section, we characterize and highlight potential differ-

nces between the three scheduling policies defined in the previ-

us section. In Section 4.1 , we demonstrate that if the uncertain

ask durations can vary independently of each other, then the best

orst-case makespan is identical for all policy types. In Section 4.2 ,

e use toy examples with task duration dependence for showing

hat an optimal AR policy may yield different first-stage decisions

rom those of SA and SL. Based on this result, in the remainder of

he paper, we focus on situations where task durations are con-
87
ected to each other via the shape of the uncertainty set. Accord-

ngly, in Section 4.3 we provide performance bounds for the case

f two machines under the commonly used budgeted uncertainty

et, for which the possible tasks’ durations are connected through

he budget. Specifically, we bound the performance of the optimal

A policy and of a rolling-horizon implementation of any schedul-

ng policy. These bounds quantify the possible gains from utilizing

n adaptive policy as a function of the problem’s parameters such

s the number of tasks, their durations and the uncertainty set’s

arameters.

.1. Equivalence of the scheduling policies under product uncertainty

ets

In Section 3 , we defined a scheduling policy P as a mapping

rom the system’s states into scheduling decisions. The schedule is

reated by deciding which tasks to schedule and observing which

ask completed first and at what time. Thus, for a given policy P

nd a vector of durations d, the schedule can be represented as an

rdered partition of the tasks to machines J = (J 1 , . . . , J m

) where

ts makespan is given by max j∈ [m]

∑

i ∈ J j d i . Let M (P, d) denote the

unction that maps a policy and a set of durations into such a par-

ition.

The optimal SA policy is equivalent to the optimal partition-

ng of tasks to machines J ∗ = (J ∗1 , . . . , J
∗
m

) . Thus, for a given dura-

ion vector d, we have M (P SA ,J ∗ , d) ≡ J ∗, which is independent of d.

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

T

a

o

J

I

m

π
d

t

a

s

w

t

d

W

t

π

F

A

p

m

P

t

i

d

r

a

i

u

m

i

d

w

P

U

o

p

4

t

a

u

s

o

s

u

p

t

h

o

t

t

m

c

o

a

m

c

t

t

t

t

m

4

e

fi

2

J

m

w

m

F

t

s

t

m

w

m

T

t

W

(

o

t

d

d

w

{

c

p

a

t

c

p

i
herefore, denoting all sets of partitions of n tasks to m machines

s J n.m

, an optimal SA policy is obtained by solving the following

ptimization problem:

min

∈J n,m

max
d∈U

max
j∈ [m]

∑

i ∈ J j
d i .

n contrast, the optimal SL policy is equivalent to an optimal per-

utation π ∗ of the tasks. Consequently, the allocation of tasks in

∗ to machines and the respective makespan depend on the task

uration vector d. For illustration, consider two machines, three

asks and the permutation (1,2,3). The schedule will start with 1

nd 2 on the two machines; then, if 1 completes first, 3 will be

cheduled on its machine and otherwise on the other machine. The

orst-case makespan for a given SL policy associated with permu-

ation π is, therefore:

max
 ∈U ,J= M (P SL ,π ,d)

max
j∈ [m]

∑

i ∈ J j
d i . (1)

e denote �n as the set of all permutations of [n] . Thus, the op-

imal SL policy is obtained by minimizing (1) over �n :

min

∈ �n

max
d ∈U ,J= M (P SL ,π ,d)

max
j∈ [m]

∑

i ∈ J j
d i .

inally, denoting the space of all possible policies as P , the optimal

R policy is given by the solution of the following optimization

roblem.

in

P∈P
max

d ∈U ,J= M (P,d)
max
j∈ [m]

∑

i ∈ J j
d i .

roduct uncertainty sets are a family of uncertainty sets where

he duration of each task varies independently of the other tasks,

.e. , the uncertainty set is a Cartesian product of individual tasks’

uration uncertainty set. A natural candidate for modeling task du-

ations in scheduling settings, is the box uncertainty set, which is

n example of a product uncertainty set where each task duration

s contained in an interval. The wide use of this uncertainty set

nderlines the importance of our next result – that the optimal

akespan achieved by all three robust policies is equal when us-

ng a product uncertainty set. In other words, the here-and-now

ecisions produced by all three policies are optimal (for brevity,

e placed all the proofs in Appendix A).

roposition 1. Let U be a product uncertainty set given by U = U 1 ×
 2 × . . . × U n , where U i ⊆ R is a closed set for all i ∈ [m] . Then, the

ptimal SA policy, the optimal SL policy, and the optimal AR policy

roduce the same worst-case makespan.

.2. Different first-stage decisions in RO and AR

Following the results of the previous section, in which we show

hat for product uncertainty sets the optimal SA, SL and AR policies

re equivalent, we focus on uncertainty sets that are not product

ncertainty set, and specifically not box shaped. That is, we con-

ider cases where the tasks’ durations are connected via the shape

f the uncertainty sets. Indeed, we experiment with a variety of re-

tricted uncertainty sets such as discrete, budgeted and ellipsoidal

ncertainty sets.

This section demonstrates the superiority of the adaptive AR

olicy with respect to the alternative SA and SL policies, even if

hey are implemented in a rolling-horizon fashion; that is, only the

ere-and-now decisions are implemented and the policies are re-

ptimized every time a task finishes. Rolling-horizon implemen-

ation of scheduling policies is a common practice for adapting

o new information across multiple domains such as supply chain

anagement and scheduling, just to name two examples. Specifi-

ally, we show via examples that the optimal first-stage decisions
88
f an optimal AR policy may be different than those of optimal SA

nd SL policies, which implies better performance by the former.

We begin with an example with three tasks in which the opti-

al here-and-now decisions are the same for the SL and AR poli-

ies (thus these two policies are equivalent), but are different for

he SA policy. Then, we present an example with four tasks, where

he AR policy has different here-and-now optimal decisions from

he SL policy. The takeaway is that an AR policy may achieve bet-

er objective function values compared to SA and SL policies (by

ore than 6% in our toy examples).

.2.1. A three-task example.

For the case of three tasks, we can obtain closed-form short

xpressions for the worst-case makespan for each policy. Consider

rst the SA policy in which, without loss of generality, tasks 1 and

 are processed first, and task 3 is processed after task 1. Thus,

 1 = (1 , 3) , J 2 = (2) . The worst-case duration is then

ax
d∈ U

max { d 1 + d 3 , d 2 } ,
hich is the maximum of these two terms:

ax
d∈ U

d 1 + d 3 , max
d∈ U

d 2 .

or AR, consider, without loss of generality, a schedule in which

asks 1 and 2 are processed first, and task 3 starts processing as

oon as the first of the two tasks is finished. The worst-case dura-

ion under AR is

ax
d∈ U

max { min { d 1 , d 2 } + d 3 , max { d 1 , d 2 }} ,
hich is the maximum of these three terms:

ax
d∈ U

min { d 1 + d 3 , d 2 + d 3 } , max
d∈ U

d 1 , max
d∈ U

d 2 .

o choose the optimal allocation for each policy, we can evaluate

he above expressions for every permutation of the three tasks.

ith respect to SL, we note that for any setting in which n = m + 1

 n = 3 and m = 2 for our example), the optimal SL policy and the

ptimal AR policy are equivalent.

To make things concrete, we consider a specific setting in which

ask durations are:

 1 = 0 . 0580 + 0 . 95 z 1 , d 2 = 0 . 1945 + 0 . 75 z 2 ,

 3 = 0 . 5866 + 0 . 48 z 3 ,

here the uncertain parameters are (z 1 , z 2 , z 3) ∈ Z =
 [0 , 1] 3 ,

∑ 3
i =1 z i ≤ 2 . 5 } (i.e. , a budgeted uncertainty set). Let us

ompare the optimal AR (here equivalent to SL) with the static

olicy of SA. The optimal solutions, respectively, are:

• AR: Start with tasks 1 and 2, and start processing task 3

whenever the first of these tasks has completed. This gives a

worst-case duration of 1.83. The worst-case duration is given

by the choice z 1 = 0 . 7420 , z 2 = 0 . 7579 , and z 3 = 1 . 0 , lead-

ing to d 1 = 0 . 7629 , d 2 = 0 . 7629 , and d 3 = 1 . 0 6 6 6 , i.e., tasks

1 and 2 finish simultaneously.
• SA: There are two equivalent solutions. (i) Start tasks 1 and

3, and process task 2 after 1 or, (ii) start tasks 2 and 3, and

process task 1 after 2. Both options give a worst-case dura-

tion of 1.95. Any other option in which the first tasks are 2

and 3 leads to a longer duration. In both cases the worst-

case durations are given by z 1 = z 2 = 1 and z 3 = 0 . 5 .

Thus, even in such a simple setting, the adaptive policy leads to

 makespan lower by about 6% compared to SA. Moreover, since

he first-stage decisions are different (i.e. , ‘allocate { 1 , 2 } ’ by AR

ompared to ‘allocate { 1 , 3 } or { 2 , 3 } ’ by SA), a rolling-horizon im-

lementation of the static policy will still be inferior to AR. In fact,

f we start with tasks { 1 , 3 } and schedule task 2 after the first of

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Table 3

Specification of the uncertainty set.

Task Task durations for:

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

1 3 4.5 4.75 2.5 0.25

2 2 2 2 3.5 5

3 3 3.5 3 3 3.5

4 5.5 4 4 4 4

t

(

w

c

a

s

t

w

s

c

i

o

u

d

l

u

d

c

4

S

t

o

f

m

S

p

w

t

l

h

o

m

a

s

4

c

n

r

m

a

l

p

W

w

d

w

p

m

i

b

u

l

W

s

u

A

d

s

U

t

p

o

p

f

4

o

t

x

W

t

o

m

S

a

P

T

P

hem is completed, we will obtain a worst-case makespan of 1.95

identical to the one in which we did not adapt the decision). If

e start with { 2 , 3 } and schedule task 1 after the first of them is

ompleted, we obtain a worst-case makespan of 1.88, which is still

lmost 3% more than that of AR. Indeed, our numerical study pre-

ented in Section 7 indicates that AR may be better than SA by up

o 30%.

Finally, this example also demonstrates that, contrary to SA, the

orst-case durations for AR are not necessarily extreme points of

et U . This implies that there is a distinction between convex and

ontinuous uncertainty sets and discrete ones. Thus, even when U

s polyhedral, one cannot simply replace the set U with the set

f its extreme points. Indeed, when solving this problem for the

ncertainty set ext (U) , we would obtain the same optimal initial

ecision { 1 , 2 } , albeit with a shorter worst-case makespan 1.77 re-

ated to the extreme point z = (1 , 1 , 0 . 5) . Moreover, in some cases

ncertainty set U and ext (U) may also result in different optimal

ecisions. Therefore, in this paper we address both discrete and

onvex uncertainty sets.

.2.2. A four-task example.

We now illustrate the difference between the three policies, SA,

L and AR, for a setting with n = 4 and m = 2 . We use an uncer-

ainty set that includes the five scenarios outlined in Table 3 .

Without providing the (tedious) calculations, we summarize the

ptimal choices of each of the three policies.

• AR: The optimal AR policy schedules tasks 1 and 4 first.

Then, for scenarios 1,2, and 3, task 3 is scheduled to start

when the first of 1 and 4 completes, and task 2 is scheduled

last. For scenarios 4 and 5, task 2 is scheduled to start im-

mediately when the first of 1 and 4 completes and task 3 is

last. The corresponding optimal worst-case makespan value

is 7.5.
• SL: There are four optimal list policies that achieve

the minimal makespan equal to 8, longer by 6 . 7%

compared to the optimal AR. The policies are:

(1 , 2 , 4 , 3) , (1 , 4 , 2 , 3) , (2 , 3 , 4 , 1) , (2 , 4 , 1 , 3) . Take for ex-

ample, (2,3,4,1). It achieves makespans of 7.5,8,7.75,7,7.5 for

scenarios 1 to 5, respectively. Thus, the optimal worst-case

makespan is 8.
• SA: The static allocation policy partitions the tasks to

machines upfront. The optimal partition is J 1 = (1 , 2) , J 2 =
(3 , 4) . It achieves makespans of 8.5,7.5,7,7,7.5 for scenarios

1 to 5, respectively. Thus, the robust makespan is 8.5. All

other partitions lead to longer makespans. The static allo-

cation policy leads to a makespan that is longer by 13.3%

compared to AR.

This example underscores the importance of AR in scheduling

or gaining better promised makespan guarantees and better actual

akespan. Regarding the former aspect, the three policies AR, SL,

A give different ‘promised worst-case’ makespans, which is im-

ortant from a managerial standpoint of providing guarantees (e.g. ,

hen submitting a contract proposal). Regarding the latter aspect,

he AR policy will perform better than both SL and SA even if the
89
atter two were re-optimized every time a task finishes (rolling-

orizon). The difference lies in the possibility of making a sub-

ptimal here-and-now decision in the case of SL and SA. Our nu-

erical study, in Section 7 , clearly shows that the performance of

 policy deteriorates as the number of its different first-stage deci-

ions with respect to AR increases.

.3. Performance bounds under the budgeted uncertainty set

In this section, we identify the cases in which taking into ac-

ount decision adaptivity in the planning stage may lead to a sig-

ificant makespan improvement compared to static policies and

olling-horizon implementations of policies. We focus on the two-

achine case, and establish upper performance bounds for the SA

nd for policies which do not allow leaving a machine idle. These

atter family of policies include SL and a Rolling Horizon (RH) im-

lementation of SA, and are denoted by RH in the formulas below.

e compare these policies to the perfect hindsight policy, which

e denote as PH – the optimal policy when all the uncertain task

urations are assumed to be known in advance. In other words,

e wish to bound, from above, the ratios SA
PH

and

RH
PH

. The first ratio

rovides a bound on the maximum suboptimality of the ‘promised’

akespan and the second one bounds the maximum suboptimal-

ty of the actual rolling-horizon ‘execution’ of a policy. These two

ounds will provide the potential benefit that can be obtained by

sing AR, and help us to identify regions in which accounting for

ater adaptivity would be the most useful.

To provide bounds, we need to choose an uncertainty setting.

e choose the well known and widely used budgeted uncertainty

et, first suggested by Bertsimas & Sim (2004) . The structure of the

ncertainty set is captured by the following assumption.

ssumption 1. The nominal length of any task i is bounded, i.e. ,

0
i

∈ [a , ā] for some 0 < a ≤ ā < ∞ . Moreover, there exists α > 0

uch that d̄ i = αd 0
i

for all i ∈ [n] , and

 =

{

d ∈ R

n : d i = d 0 i + d̄ i u i , u i ∈ [0 , 1] ,

n ∑

i =1

u i ≤ �

}

.

This uncertainty set implies that in the considered realizations

he nominal duration vector d 0 can be augmented by a maximal

erturbation d̄ proportional to d 0 (can be thought of as a percent

f the nominal). However, not all tasks will achieve this maximal

erturbation, since the sum of the ratio of the perturbations used

or each task cannot exceed a given budget �.

.3.1. Bound on the promised durations of SA versus PH.

We start by bounding the ratio between SA and PH. For the case

f two machines, an allocation can be represented as a binary vec-

or x ∈ { 0 , 1 } n such that

 i =

{
1 if the i -th task is on machine 1 ,

0 otherwise.

ith this notation, the processing time on machine 1 is x � d and

he processing time on machine 2 is (e − x) � d where e is a vector

f ones. Thus, the total makespan is max { x � d, (e − x) � d} . Mathe-

atically, the makespans of SA and PH are

A = min

x ∈{ 0 , 1 } n sup

d∈ U
max

{
x � d, (e − x) � d

}
,

nd

 H = sup

d∈ U
min

x ∈{ 0 , 1 } n max
{

x � d, (e − x) � d
}
.

o bound the SA
PH ratio, we will upper bound SA and lower bound

H. We choose a common allocation to work with, corresponding

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

t

m

c

v

b

t

o

t

t

t

p

T
A

i
S

a

w

.

t
P

m

r

c

e

t

a

t

b

4

p

t

s

r

P

p

t

e

i

c

o

d

p

t

a

w

R

R

N

b

T

A

r

b

∞

c

a

m

5

t

t

r

t

b

d

v

w

m

5

p

a

c

i

w

i

o

r

T

w

s

m

i

b

n

T

c

p

h

T

1 In this and later formulations, we seemingly ignore the case where two or more

tasks finish processing at exactly the same time. This case can be dealt with explic-

itly; however, it significantly complicates the presentation of the problems and is,

therefore, omitted for clarity in all following formulations.
o the optimal allocation of PH for d = d 0 . This allocation, which

ight be sub-optimal for SA, provides an upper bound on SA that

an be found by computing the worst-case d ∈ U . To bound the

alue of this worst-case, we note that the uncertainty budget will

e allocated first to tasks on a single machine before allocating it

o the tasks on the other machine.

In order to find a lower bound on PH, we use a specific choice

f d ∈ U , in which the budget is allocated equally between the

asks, such that each task is perturbed by �/n of its maximal per-

urbation. Finally, we use the fact that the optimal allocation x for

his realization is equal to the nominal allocation.

Below, we summarize the bound obtained by using this ap-

roach.

heorem 1. Let the number of machines be m = 2 and let
ssumption 1 hold. Let ˜ x be the partition to machines which min-

mizes the makespan for the deterministic problem where d = d 0 .
pecifically, we denote by I and Ī = [n] \ I the set of tasks that x̃
llocates to the first and second machine, respectively. Furthermore,

e denote the ordering of d 0
i

for tasks in I and [n] \ I by d 0 , I
(1)

≥
 . . ≥ d 0 , I

(|I|) and d 0 , ̄I
(1)

≥ . . . ≥ d 0 , ̄I
(n −|I|) , respectively. Then, the ratio be-

ween the worst-case makespan resulting from the SA policy and the
H policy is bounded from above by

SA

PH

≤ n

n + �α

(

1 + α max
S∈{I, ̄I }

∑ min {|S| , � ��}
k =1

d 0 , S
(k)

+ �S (�) d 0 , S
(min {|S| , � ��} +1) ∑

i ∈S d
0
i

)

,

where for any S ⊆ [n] we have �S (�) = min { �, |S|} −
in {� �� , |S|} .

Indeed, the above theorem shows that for � = 0 and � = n the

atio is bounded from above by 1, i.e. , the value of adaptivity de-

reases as the budget goes to 0 or n . Thus, for any value of d 0 there

xists some 0 < � < n for which this ratio is maximized, and so is

he potential value of adaptivity. We also note that as n increases

nd � stays proportional to n , the bound does not necessarily go

o 1, indicating that employing the SA without re-optimizing may

e extremely suboptimal even for large n .

.3.2. Bound on the rolling-horizon implementation of any scheduling

olicy

We now turn to bound the ratio of any RH policy and PH. In

his case, we lower bound the worst-case makespan of PH, by as-

uming that we can perfectly balance the two machines, thus ar-

iving to the bound:

 H ≥ sup

d∈ U

∑ n
i =1 d i
2

.

In order to bound the RH implementation of any scheduling

olicy, we make the following observation. The difference between

he individual makespan of the two machines must be less than or

qual to the maximum duration of the last task to finish (note that

n an extreme case, this can be an extremely long task, which oc-

upies the entire makespan of one of the machines). The identity

f this last task depends on both the policy and the adversary’s

ecision. Regardless, we can bound the makespan of any RH im-

lementation by bounding from above the time at which the last

ask starts by and adding to it the duration of the last task. For ex-

mple, if the last task to start is i , the time at which it will start

ill not be longer than

∑ n
j =1 , j � = i d j / 2 . Therefore, we can bound the

H makespan by

H ≤ max
1 ≤i ≤n

sup

d∈ U

∑ n
j =1 , j � = i d j

2

+ d i .

ext, we introduce Theorem 2 , which uses the above bounds to

ound the desired ratio.
90
heorem 2. Let the number of machines be m = 2 and let

ssumption 1 hold. Then the ratio between the worst-case makespan

esulting from the RH policy and the PH policy is bounded from above

y

RH

PH

≤ 1 +

ā min { (1 + α) , (1 + α�) }
a (n + α�)

.

The above theorem implies that for any fixed 0 < a ≤ ā <

 , α > 0 and any � > 0 , as n → ∞ any RH implementation gets

loser to that of PH. Thus, for very large values of n there will be

lmost no benefit to computing AR, since one can get good perfor-

ance by using any arbitrary RH policy.

. Dynamic programming formulations

In the previous section, we highlighted potential differences be-

ween the three types of policies SA, SL, and AR. We now begin

o develop a general method to optimize the AR policy. A natu-

al first step is to formulate a scheduler-perspective DP model of

he problem – this is the focus of this section. Solving this DP will

e computationally intractable, but its formulation lays the foun-

ation of the adversary-perspective DP of Section 5.2 that we solve

ia an MILO formulation in Section 6 . To keep the exposition clear,

e consider the two-machine setting here, with the general m -

achine cases considered in Appendices B.1 and B.2 .

.1. Scheduler’s dynamic programming formulation

At decision points, which occur at (i) the beginning of the

lanning horizon and (ii) when a task completes, the scheduler

llocates to an idle machine a task that minimizes the worst-

ase makespan from that time point and on (hereafter, remain-

ng makespan). We denote by T (·) the function that outputs the

orst-case remaining makespan at a state described by S, F , D, i, D̄ i

n which task i is still being processed on a machine and the sec-

nd machine is idle (e.g. , it just completed processing a task). The

ecursive formulation for T is then given by

T (S, F , D, i, D̄ i)

= min

k / ∈ S
max

{
max

d k : d∈ U [S,k] ,F,D,i, ̄D i
,

d k ≤d i −D̄ i

d k + T ([S, k] , [F , k] , [D, d k] , i, D̄ i + d k) ,

max
d i : d∈ U [S,k] ,F,D,i, ̄D i

,

d k >d i −D̄ i

d i − D̄ i + T ([S, k] , [F , i] , [D, d i] , k, d i − D̄ i)

}
.

he objective (outer min) is to allocate a task k that minimizes the

orst-case remaining makespan. For each k , there are two possible

cenarios from which an adversary chooses the worst of the first

ax . The first term within the parentheses relates to the possibil-

ty that under the worst-case scenario, k completes its processing

efore the completion of the processed task i . In such a case, the

ext decision point is due when k completes and i is still running.

he second term considers the possibility that under the worst-

ase scenario, i completes before k , in which case the next decision

oint is when task i finishes processing. 1

For the boundary case, given by | S| = n , | F | < n , when all tasks

ave already been scheduled, we have that

 (S, F , D, i, D̄ i) = max
d i : d∈ U S,F,D,i, ̄D i

d i − D̄ i ,

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

i

t

s

h

f

t

t

f

i

5

p

w

u

c

m

a

c

s

t
b

a

s
f
m

a

a

n

m

s

t

T

A

m

s

c

v

r

i

a

6

6

S

o

t

s

t

p

s

s

t

c

e

u

m

j

n

(

i

o

f

6

T

(

t

s

t

t

s

d

w

a

t

m

i

a

i

E

.e. , the remaining makespan will only be the time until the current

ask i is completed.

The takeaway from this section is that in order to solve the

cheduler-perspective DP for a general uncertainty set U , we may

ave to optimize over an infinite dimension decision space, i.e. , all

unctions from an infinite number of states for continuous uncer-

ainty sets to scheduling decisions. For that reason, determining

he optimal policy is a difficult task, calling for an approach dif-

erent from the usual DP solution techniques, which we introduce

n the next section.

.2. The adversary dynamic programming formulation

Our approach to determining the optimal schedule takes the

erspective of an adversary who seeks the scenario with the

orst-possible task durations, taking into account that the sched-

ler will make the best-possible scheduling decisions at each de-

ision point. In other words, the adversary tries to make the

akespan as long as possible given that the scheduler implements

n optimal scheduling policy. We will see that for continuous un-

ertainty sets, while the adversary has an infinite number of pos-

ible decisions the dimension of its decision space is finite.
The adversary’s decision points are the states in which a certain

ask has just been scheduled so that either (i) all machines are
usy, or (ii) there are no tasks left to schedule. An example of such

 state is: ([S, k] , F , D, i, D̄ i) , where task k / ∈ S ≡ F ∪ { i } has just been
cheduled. To present the recursion, we define the function T ′ (·)
or all the adversary’s decision points as the worst-case remaining

akespan. Thus, the recursive formula for T ′ is given by

T ′ ([S, k] , F , D, i, ̄D i) =

max

{
max

d k : d∈ U [S,k] ,F,D,i, ̄D i
,

d k ≤d i −D̄ i

d k + min
l / ∈ S∪{ k }

T ′ ([S, k, l] , [F , k] , [D, d k] , i, ̄D i + d k) ,

max
d i : d∈ U [S,k] ,F,D,i, ̄D i

,

d k >d i −D̄ i

d i − D̄ i + min
l / ∈ S∪{ k }

T ′ ([S, k, l] , [F , i] , [D, d i] , k, d i − D̄ i)

}
,

s long as | S| ≤ n − 2 , i.e. , not all tasks have started. For the bound-

ry case of | S| = n − 1 , with just one task left being processed and

o more tasks to schedule, we have that the worst-case remaining

akespan is the maximum of all possible cases in which the newly

cheduled task k either completes before the currently processing

ask i , or after it:

′ ([S, k] , F , D, i, D̄ i) = max

{
max

d i : d∈ U [S,k] ,F,D,i, ̄D i

d i − D̄ i , max
d k : d∈ U [S,k] ,F,D,i, ̄D i

d k

}
.

n important feature of the adversary-perspective DP, which is

issing from the scheduler-perspective problem, is that its deci-

ion space can be reduced to one with a finite dimension, and thus

an be optimized over. From a mathematical optimization point of

iew, we can roughly say that the adversary DP problem is a dual

epresentation of the scheduler-perspective DP problem, which, as

t turns out, is easier to solve. In the following section, we present

n MILO reformulation of this DP.

. MILO formulation and the 2SSA heuristic

.1. Mixed-integer problem formulation

In this section, we formulate the adversarial perspective DP of

ection 5.2 as an MILO. It is important to note that the adversary

ptimizes over an entire s cenario tree rather than on a single vec-

or of task durations d (i.e. , a branch). This is because the adver-

ary is also non-anticipative, in the sense that at each point in

ime, it makes a decision on the duration of the next task to com-

lete while taking into account all possible future decisions of the

cheduler.
91
To construct the scenario tree, we utilize two elements of the

tate description: S and F – the ordered lists of tasks according to

heir starting and completion orders, respectively; we denote their

ombination by σ = (S, F) . We consider different states in which

ither (i) one of the tasks has just been completed and the sched-

ler needs to make a decision (in association with the inner mini-

um in the DP recursion presented in (12)), or (ii) a new task has

ust been scheduled and the adversary decides which of the run-

ing tasks finishes first and what its remaining duration would be

associated with the outer maximization and inner maximizations

n the DP recursion presented in (12)). Before presenting the rigor-

us notation, let us discuss the main idea behind the scenario tree

or a setting with four tasks.

.1.1. Illustrative case: Two machines and four tasks.

Consider the following states :

• σ = (S, F) = (∅ , ∅) : Initial state, no tasks are scheduled yet –

both machines are idle; a task needs to be scheduled imme-

diately.
• σ = ([1] , ∅) : Task 1 has been scheduled on one of the ma-

chines – one machine is idle; a task needs to be scheduled.
• σ = ([1 , 2] , ∅) : Task 1 has been scheduled on one machine

and task 2 on the other machine – no machine is idle; the

scheduler needs to wait until either task 1 or task 2 finish

processing.
• σ = ([1 , 2] , [2]) : Having initially scheduled tasks 1 and 2,

task 2 finishes first – a machine becomes idle; the sched-

uler has to schedule another task.
• σ = ([1 , 2 , 3] , [2]) : Having initially scheduled tasks 1 and 2,

task 2 finishes first and task 3 is scheduled immediately –

now the scheduler needs to wait until either task 1 or task

3 to finish processing.

The states evolve until both S and F contain all four tasks.

o see how σ = (S, F) defines the order of events, consider σ =
S, F) = ([1 , 2 , 3 , 4] , [1 , 3 , 2 , 4]) , which describes an end state ob-

ained after the following sequence of decisions/events:

• Tasks 1 and 2 are scheduled first,
• task 1 finishes first,
• task 3 is scheduled on the machine where task 1 was pro-

cessing,
• the next task to finish is task 3 (task 2 is still running),
• Task 4 is scheduled on the newly available machine (where

task 3 was processing), and

• task 2 finishes followed by task 4, which finishes last.

Given the order of events as depicted by σ (or more generally, a

tate within the scenario graph), we can formulate the inequalities

hat define the sequence of events by comparing the duration of

he tasks scheduled on the different machines. Specifically, for the

equence presented above, the corresponding inequalities are:

d 1 � d 2

d 1 + d 3 � d 2

 1 + d 3 + d 4 � d 2 ,

here the first inequality follows from the fact that tasks 1 and 2

re scheduled at the same moment but the duration of 1 is shorter,

he second inequality follows from the fact that task 3 started im-

ediately after task 1 but completed before task 2, and the third

nequality follows from task 4 that started immediately after task 3

nd completed after task 2. We can present the system of inequal-

ties as:

 σ d ≤ 0 , E σ =

[

1 −1 0 0

1 −1 1 0

−1 1 −1 −1

]

, d = [d 1 d 2 d 3 d 4]
� .

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

T

m

i

w

b

w

e

t

fi

d

r

t

I

d

m

w

i

t

t

f

e

d

s

m

r

l

b

o

t

o

s

c

t

u

r

s

(

v

t

t

n

a

i

t

6

s

a

Table 4

The sets of states for the scheduler D (left) and

the adversary N (right) when m = 2 .

S -length F -length S -length F -length

0 0 2 0

2 1 3 1

3 2
.
.
.

.

.

.

.

.

.

.

.

. n − 1 n − 3

n − 2 n − 3 n n

o

t

o

s

m

l

t

F

t

r

(

t

F

t

i

s

E

w

[

(

A

g

s

s

a

i

t

s

(

n

hus, for a general σ = (S, F) such that | S| = | F | = 4 , we can define

atrix E σ ∈ R

3 ×4 , such that its rth row is associated with compar-

ng the sums of scheduled tasks’ durations on the two machines

hen the r-th task, with index F r , completes. For all tasks started

efore F r completes, i.e. , j ∈ { S 1 , . . . , S r+1 } , (E σ) r, j = 1 if the task

as scheduled to the same machine as F r , and −1 otherwise. In our

xample, the second row of E σ corresponds to task F 2 = 3 . Thus,

ask S 1 = 1 and S 3 = 3 scheduled to the same machine get a coef-

cient of 1 and task S 2 = 2 gets a coefficient of −1 .

Given σ , we can also express the total makespan in terms of the

uration of different tasks. For example, denoting the makespan

epresented by σ as t σ , t σ = d 1 + d 3 + d 4 , or equivalently

 σ = e � σ d, e σ =

[
1 0 1 1

]�
.

n general, e σ ∈ R

4 is a binary vector encoding which of the tasks’

urations constitute the makespan. Since the makespan is deter-

ined by the last completed tasks, for each j ∈ [4] , (e σ) j = 1 if j

as scheduled to the same machine as F 4 , and 0 otherwise. Thus,

n our example, F 4 = 4 , and thus the makespan is determined by

asks 1, 3, and 4 which are scheduled to the same machine.

In a similar way, we can encode all the states within a scenario

ree, where its root node represents the initial state σ = (∅ , ∅)
rom which one proceeds to the next nodes by adding a task to

ither S or F . Fig. 2 illustrates a part of the tree. Note that we

iscarded states with | S| = 1 when moving from the initial state

ince it is always optimal to schedule two tasks on the initially idle

achines. In other words, state (∅ , ∅) (initial state) progresses di-

ectly to states in which | S| = 2 such as ([1 , 2] , ∅) . The scheduler’s

ast ‘real’ decision is the one after which a single task is left to

e scheduled. After that, the adversary decides on the completion

rder of the tasks. In our setting of n = 4 , the last state in which

he scheduler makes a decision has two started tasks where one

f them already completed. After this decision, three tasks have

tarted and one completed and the adversary makes the final de-

isions about the completion times of the in-process tasks and the

ask not yet started (the last remaining task is automatically sched-

led when a machine becomes available).

As shown in Fig. 2 , task durations corresponding to certain

oot-to-leaf paths are ‘common’. For example, consider the two

eparate vectors of task duration corresponding to leaves (S, F) =

[1 , 2 , 3 , 4] , [1 , 3 , 2 , 4]) and (S, F) = ([1 , 2 , 3 , 4] , [1 , 3 , 4 , 2]) . In both

ectors, the decision about the duration of task 1 was made before

he last scheduling decision was made, and thus the duration of

ask 1 has to be the same for both paths.

Overall, in Fig. 2 , the scheduler aims to progress from the root

ode to the lowest level in the tree such that

• at a gray node, the scheduler selects the direct children node

to go to, and

• at a white node, the adversary selects the direct children

nodes to go to.

The adversary’s optimization problem is, therefore, to set the

rc lengths in such a way that the shortest path for the scheduler

s as long as possible. In the next section, we shall explicitly define

his problem.

.1.2. Formulating the adversary’s MILO problem.

We denote the set of all states σ = (S, F) as V . To decrease the

tate space of the scenario tree, certain states are discarded (see

lso the example described in Section 6.1.1). In particular,

• We omit states where | S| = 1 , since they correspond to an

initialization of the system in which one machine is idle,

thus an additional task must be scheduled immediately.

Hence, the states that follow the initial state are character-

ized by | S| = 2 (both machines are busy).
92
• Similarly, the last decision to be made is the one after which

a single task remains to be scheduled. Such a decision is

made at a state where the length of S is n − 2 and the length

of F is n − 3 . Afterwards, the adversary decides which tasks

to complete and in which order. Hence, the states that fol-

low states with | S| = n − 1 and | F | = n − 3 are the end states

in which | S| = | F | = n .

Given this, we consider the state space V consisting of the sets

f the scheduler states D and adversary states N (Table 4).

Let t σ denote the optimal worst-case makespan corresponding

o being in state σ ∈ D ∪ N . We denote the set of all final states

f the tree, for which | S| = | F | = n , by L . For each state σ ∈ D, the

cheduler selects the task that minimizes the worst-case remaining

akespan (corresponding to the inner minimum of the DP formu-

ation in (12)). Thus,

 σ = min

δ∈ Children (σ)
t δ, σ ∈ D.

or each state σ ∈ N \ L , the adversary determines task comple-

ion times that maximize the worst-case remaining makespan (cor-

esponding to the outer maximum within the DP formulation in

12)). Thus,

 σ = max
δ∈ Children (σ)

t δ, σ ∈ N \ L .

or each end state σ ∈ L , we define a separate decision variable of

he adversary being a vector d σ ∈ R

n .

As illustrated in Section 6.1.1 , for each final state σ , the set of

nequalities that accommodates the task durations within the given

cenario can be formulated in terms of the vector d σ as follows:

 σ d σ ≤ 0 , t σ = e � σ d σ ,

here, E σ ∈ R

(n −1) ×n and e σ ∈ R

n , and for any r ∈ [n − 1] and j ∈
 n] ,

E σ) r, j =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

1 , j ∈ { S 1 , . . . , S r+1 } , j and F r were scheduled

to the same machine ,
−1 , j ∈ { S 1 , . . . , S r+1 } , j and F r were not scheduled

to the same machine ,
0 , otherwise ,

(e σ) j =

{
1 , j and F n were scheduled to the same machine ,
0 , otherwise .

n explicit algorithm for deriving E σ and e σ directly from σ is

iven in Appendix B.3 . To achieve non-anticipativity of the adver-

ary decision with respect to future scheduler decisions, the adver-

ary decision vectors d σ , d δ ∈ R

n for σ, δ ∈ L have to be the same

s long as sequences σ and δ are indistinguishable from each other

n terms of scheduler decisions. Therefore, denoting A (σ, δ) ∈ D as

he last common ancestor of both states σ and δ before a different

cheduling decision is made, we can define

d σ) i = (d δ) i , ∀ i ∈ F , (S, F) = A (σ, δ) .

The combination of task duration inequalities, E δd δ ≤ 0 , and the

on-anticipativity constraints can potentially lead to a situation

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Fig. 2. A partial representation of a scenario tree for the case of n = 4 and m = 2 . As the scheduling process progresses, one moves from the initial node (∅ , ∅) downwards.

On gray nodes the scheduler decides to move to one of the direct children. The other nodes are adversary nodes, in which the adversary controls the branching direction.

The labels on the edges starting from the adversary nodes denote the time it takes to move from one node to another.

w

t

{
i

i

E

o

n

d

s

t

(

t

E

z

w

(

c

fi

u

a

n

i

c

m

o

t

v

t δ
here a realization chosen for some σ ∈ L , denoted by d̄ σ , makes

he feasible set for another δ ∈ L empty:

 d ∈ U : E δd δ ≤ 0 , (d δ) i = (d̄ σ) i , ∀ i ∈ F , (S, F) = A (σ, δ) } = ∅ ,
.e. , a specific realization of the first (few) tasks makes ending up

n a given δ ∈ L impossible. We will use big- M reformulations of

 σ d σ ≤ 0 to account for this possibility correctly.

We proceed to the problem formulation. If we denote by t 0 the

ptimal worst-case makespan corresponding to the root decision

ode σ = (∅ , ∅) , the adversary’s problem (P) can be stated as:

max
 σ ,t σ ,z σ

t 0 (P)

.t. t σ = min

δ∈ Children (σ)
t δ ∀ σ ∈ D (2)

 σ = max
δ∈ Children (σ)

t δ ∀ σ ∈ N \ L (3)

d σ) i = (d δ) i ∀ i ∈ F , (S, F) = A (σ, δ) , σ, δ ∈ L (4)
93
 σ = e � σ d σ − z σ M ∀ σ ∈ L (5)

 σ d σ ≤ z σ M ∀ σ ∈ L (6)

 σ ∈ { 0 , 1 } , d σ ∈ U ∀ σ ∈ L ,

here M is a large positive number. The big- M constraints, (5) and

6) , jointly with the binaries z σ , enable one of two situations to oc-

ur for each of the corresponding paths d σ for σ ∈ L : (i) d σ satis-

es constraint (6) with z σ = 0 (which is possible depending on the

ncertainty set structure and the non-anticipativity constraint (4))

nd has a corresponding finite makespan, (ii) if constraint (6) can-

ot be satisfied, then z σ is set to 1 and the makespan correspond-

ng to this path will be −∞ , thus it will never qualify as the worst-

ase makespan. We also note that since the adversary solves a

aximization problem, it will never allow all the children leaves

f a certain scheduler decision branch to take a value of −∞ , since

hat would imply that this will be the value of the entire problem.

Because the problem is a maximization one, constraints (2) , in-

olving minimum terms, can be reformulated as

 σ ≤ t , ∀ δ ∈ Children (σ) , σ ∈ D,

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

w

m

f

t

δ

w

I

w

c

s

R

i

f

o

i

i

b

π
a

t

o

m

6

t

t

a

f

i

o

r

s

i

(

c

s

t

t

d

i

w

o

w

p

l

S

x

t

m

I

b

f

t

r

o

m

a

g

o

w

s

w

t

fi

n

t

w

h

a

a

a

o

4

e

7

t

w

b

e

l

a

2

t

v

t

t

7

e

g

a

2

s

e

m

w

i

n

t

t

l

a

d

t

w

o

d

r

hile constraints (3) , involving maximum terms, need to be imple-

ented using auxiliary binary variables and a big- M constraint as

ollows:

 σ ≤ t δ + M · w σ,δ, ∀ δ ∈ Children (σ) , σ ∈ N \ L

∑

∈ Children (σ)

w σ,δ ≤ | Children (σ) | − 1 ∀ σ ∈ N \ L

 σ,δ ∈ { 0 , 1 } , ∀ δ ∈ Children (σ) , σ ∈ N \ L .

n Appendix B.4 , we present the MILO formulation for settings

ith more than two machines. Although exact, this formulation’s

omplexity is exponential, as shown in Appendix C . For that rea-

on, in the next section we develop an adaptive heuristic.

emark 1. The MILO formulation (P) is also useful for comput-

ng the worst-case makespan of a specific SL policy. Specifically,

or a given permutation of the tasks, π , we can eliminate some

f the branches of the tree, which do not correspond to the pol-

cy. For example, for n = 4 and permutation π = (1 , 2 , 3 , 4) nodes

n L , which are children of a state σ in which S = [1 , 2 , 4] , will

e eliminated. The optimal worst-case makespan for permutation

is obtained by eliminating the irrelevant leaves from the set L

nd solving the MILO for the reduced problem. Thus, one can find

he optimal SL by solving the problem for every permutation π
f the n tasks, and choosing the one with the lowest worst-case

akespan.

.2. Two-stage SA heuristic (2SSA)

As the exact MILO formulation of AR does not scale well with

he problem size, we propose a heuristic for the two machine set-

ing (m = 2) that takes into account only one adaption of the task

llocations, as opposed to n − 2 such adaptations in the exact re-

ormulation.

The idea of the heuristic is as follows: for every task pair

 < j, we schedule the two tasks in parallel initially and, based

n which task finishes first and its duration, apply the SA to the

emaining tasks. The schedule of the remaining tasks adapts it-

elf thus only to the durations of the two initial tasks, remain-

ng fixed afterwards. This process is repeated for each pair of tasks

 (n − 1) n/ 2 times), and the pair with the lowest predicted worst-

ase makespan is chosen to be scheduled. Intuitively, the heuristic

trives to place tasks whose durations are most informative about

he remaining task durations as the initial tasks. The heuristic is

hen implemented in a rolling-horizon fashion, allowing to change

ecisions about tasks not yet scheduled based on newly available

nformation.

For each pair i < j, in order to predict worst-case makespan,

e look at the problem in two stages: before and after the first

f the two initial tasks completes. Thus, in order to compute the

orst-case makespan, we solve a two-stage robust optimization

roblem from the adversary point of view. To formulate this prob-

em, we define x ∈ { 0 , 1 } n to be a vector of task allocations as in

ection 4.3.1 where without loss of generality we have x i = 1 and

 j = 0 , i.e. , task i is scheduled on the first machine and task j on

he second machine. The two-stage problem is then given by:

ax

⎧ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎩

sup

˜ d i : ˜ d ∈ U,
˜ d i < ̃ d j

min

x ∈{ 0 , 1 } n :
x i =1 , x j =0

sup

d∈ U: d i = ̃ d i ,
d i <d j

max { x � d, (e − x) � d} ,

sup

˜ d j : ˜ d ∈ U, ˜ d i ≥ ˜ d j

min

x ∈{ 0 , 1 } n :
x i =1 , x j =0

sup

d∈ U: d j = ̃ d j
d i ≥d j

max { x � d, (e − x) � d}

⎫ ⎪ ⎪ ⎪ ⎬

⎪ ⎪ ⎪ ⎭

. (7)

n this formulation, the first-stage adversary decision, represented

y the outer maximum and the first supremum, is which task, i or
94
j, finishes first and its corresponding duration. Based on this in-

ormation, in the next minimum stage, the scheduler decides on

he SA schedule for the remaining tasks. In the second-stage, rep-

esented by the last supremum and max, the adversary decides

n the exact durations of the remaining tasks to maximize the

akespan.

For fixed i < j, this two-stage problem, can be solved using

 discrete uncertainty modification of the Column-and-Constraint

eneration algorithm of Zeng & Zhao (2013) for two-stage robust

ptimization problems with continuous uncertainty. In Appendix E ,

e outline the exact implementation of 2SSA. In Section 7 , we

how that 2SSA admits reasonable running times for problems

ith n ≤ 20 with which we experimented.

In order to illustrate the 2SSA heuristic, we go back to the four

ask example presented in 6.1.1 . Assume that (1,4) are scheduled

rst, then 2SSA separates the rest of the schedule as follows: sce-

arios 4 or 5 (1 finished before 4 and has duration lower than 2.5),

ask 2 will be scheduled after task 1 and task 3 after task 4, with a

orst-case duration of 7.5. For scenario 1 (1 finishes before 4 and

as duration 3) we will schedule task 3 after task 1 and task 2

fter task 4, resulting in a makespan of 7.5. Finally for scenarios 2

nd 3 (4 finishes before 1 with duration 4) task 3 will be scheduled

fter 4 and task 2 after task 1, resulting in a worst-case makespan

f 7.5. Thus, we can conclude that initially scheduling tasks 1 and

 is optimal for 2SSA, since it has a worst-case makespan of 7.5,

qual to the optimal AR policy.

. Numerical study

Our analytical work is accompanied by a numerical study

hat focuses on problem instances with two machines. We start

ith five-task instances, which are large enough to differentiate

etween alternative policies and elicit some insights, yet small

nough to allow us to run the MILO formulation presented in the

ast section. We use these instances to demonstrate the value of

daptivity, and to compare the performance of SA, SL, AR, and

SSA. We then proceed to investigate larger instances with 10–20

asks, comparing the performance of SA to that of 2SSA in favor of

alidating our theoretical bounds in terms of identifying the set-

ings in which accounting for adaptivity in the planning stage leads

o a significant benefit.

.1. The setup

We investigate the SA, SL, AR and 2SSA policies. In the coming

xperiments, SA is computed using a standard MILO formulation

iven in Appendix D . AR and SL are implemented using the full

nd pruned versions of the MILO problem of Section 6.1 . Finally,

SSA is computed using the algorithm outlined in Appendix E .

For a realistic comparison, we implement the policies for each

cenario in a rolling-horizon fashion similarly to the way they are

xpected to be applied in reality. We note that while we imple-

ented the policies without the re-optimizing via rolling-horizon

e do not include the related results, since they were consistently

nferior compared to the rolling-horizon implementations. A sce-

ario represents a particular realization of task durations for the

asks. We conduct each experiment as follows: At the beginning of

he planning horizon, when task durations are only known to be-

ong to U , we select the optimal two first tasks to be scheduled,

ccording to the considered policy. If multiple initial scheduling

ecisions give the same worst-case makespan, we choose between

hem according to lexicographic ordering (w.r.t. task indices). Then,

e determine which of the two running tasks finishes first (based

n the known duration for the considered scenario). Next, we up-

ate the uncertainty set to include the information about the du-

ation of the completed task and for how long the other task has

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

b

d

s

a

f

m

t

s

a

i

s

m

m

s

m

{

a

b

p

t

w

s

i

t

f

r

o

t

(

fi

p

o

p

u

c

s

c

w

l

m

m

w

s

t

t

X

R

7

w

5

k

r

t

d

{
d

w

t

c

t

s

r

d

t

m

fi

s

i

c

T

m

s

c

m

a

p

t

2

f

t

p

m

t

t

i

o

m

een processing so far, and calculate the optimal next scheduling

ecisions by the considered policy. For AR, for example, this means

olving the MILO using the current information about task duration

nd completion times in order to select the task to be scheduled

or the idle machine. Once both machines are busy, we again deter-

ine which of the running tasks finishes first, and optimally select

he next task to be scheduled for the first-to-be-idle machine. This

equence of events continues until all tasks have been scheduled

nd finished processing.

We find a lower bound on the obtainable makespan, by apply-

ng a PH policy for each scenario. Namely, we assume that the

pecific scenario is known in advance and determine the opti-

al task-to-machine allocations that minimize the makespan. The

akespan obtained by the PH policy is a lower bound on the pos-

ible makespan achieved by any policy. Therefore, we use the PH

akespan as a benchmark for the investigated policies.

To define the performance measures, we denote p ∈

 AR, SL, SA, 2 SSA, P H} as the selected policy, k ∈ { 1 , . . . , N} identifies

 problem instance and s ∈ { 1 , . . . , R } denotes the scenario num-

er. Accordingly, we denote ˜ T k,p, · and T k,p,s for problem instance k ,

olicy p, and scenario s , as the promised worst-case makespan at

he beginning of the planning horizon and the realized makespan

hen the policy is applied via a rolling-horizon approach, re-

pectively. Notice that the promised worst-case makespan

˜ T k,p, · is

ndependent of the scenario’s realization and is only affected by

he specification of the uncertainty set, since it is the makespan

or the case in which the worst-case scenario is realized.

The mathematical formulas and names of the measures that we

eport are described in Table 5 . The first measure is the percentage

f instances where the policy’s initial decision was not optimal for

he AR policy. The next three measures specify the actual values

max and average) of the makespan, for comparison purposes. The

nal four measures give us an indication of how well the policies

erform relative to the AR and PH solutions:

• Promised to max PH. The upper bound on the “price” that

a risk-averse scheduler who commits (e.g. , in a contract) to

the promised makespan is expected to pay with respect to

a PH policy. The reasoning behind this measure is that be-

fore any of the tasks starts processing, the scheduler does

not know which scenario will be realized, thus she com-

pares the promised makespan to the maximal perfect hind-

sight makespan across scenarios.
• Max makespan to max PH. Following the previous measure,

a ratio between the maximal realized makespan to the max-

imal perfect hindsight makespan gives an indication into the

expected price that a risk averse scheduler who applies the

rolling-horizon policies would contractually pay with respect

to the PH policy.
• Makespan to PH. While RO does not optimize for non-

worst-case scenarios, we approximate the average ratio for

each scenario between the realized makespan by the applied

policy and its perfect hindsight policy. This measure gives an

indication into the expected price of the risk-averse sched-

uler for an “average” scenario when compared with the cor-

responding perfect hindsight makespan.
• Max makespan to max AR. To benchmark the best robust

policy, which is AR with its alternatives – SA, SL and 2SSA –

we replicate the “Max makespan to max PH” measure with

AR replacing PH as the reference point.

We note that these experiments evaluate the performance

f the policies under conditions of worst-case (denoted as the

romised makespan) and non-worst-case scenarios in which we

niformly sample task durations from the respective scenario un-

ertainty sets. It is important to experiment with both conditions

ince the RO methodology is indifferent with respect to non-worst-
95
ase scenarios, thus an optimal robust policy may perform poorly

hen applied on such scenarios (see, Iancu & Trichakis, 2014).

We conduct two types of experiments, one includes small prob-

em instances and the second larger problem instances. For the for-

er experiment, we use discrete uncertainty sets, which enable to

anually verify the optimal policy. For the latter experiment type,

e use continuous budgeted uncertainty sets in order to demon-

trate the connection to the theoretical results. Moreover, using

his variety of uncertainty sets allows us to demonstrate the versa-

ility of the suggested solution approach.

The code was run on a PowerEdge R740xd server with two Intel

eon Cold 6254 3.1GHz processors, each with 18 cores, and a total

AM of 384GB.

.2. Small problem instances

First, we test the policies over N = 500 problem instances,

here each instance k has a discrete uncertainty set U

k ⊆ R

n (n =
) consisting of | U

k | = R = 15 scenarios. Each problem instance

 ∈ { 1 , . . . , N} is generated by drawing a vector of the nominal du-

ations d 0 ,k and their perturbations d̄ k out of a uniform distribu-

ion according to d 0 ,k = (d 0 ,k
1

, d 0 ,k
2

, . . . , d 0 ,k n) ∼ Unif ([0 . 1 , 2 . 0] n) and

 ̄

k = (̄d k
1
, d̄ k

2
, . . . , d̄ k n) ∼ Unif ([0 . 1 , 5 . 0] n) , respectively. Each of the s ∈

 1 , . . . , R } scenarios of instance k is sampled as

˜

k,s
j

= d 0 ,k
j

+ u

k,s
j

d̄ k j , j = 1 , . . . , n,

ith u k,s ∈ R

n sampled uniformly from one of the following sets:

(I) An n -dimensional ball { u ∈ R

n + : ‖ u ‖ 2 ≤ 1 } (type I).

(II) An n -dimensional box { u : ‖ u ‖ ∞

≤ 1 } (type II)

We rounded

˜ d k,s to multiples of 0.1 to allow for the situation

hat two tasks finish simultaneously. We refer to the resulting dis-

rete uncertainty sets as uncertainty sets of type I and II based on

he method in which we generate u k,s . Because the results for both

et types are very similar, we discuss here only the type I sets, and

elegating the type II results in Appendix F .

In Table 6 we summarise the first 4 measures comparing the

ifferent methods and the average CPU times required to obtain

he optimal initial decisions and run the entire RH sequence, per

ethod. The significance of AR is underlined by the fact that its

rst-stage decisions were different from the other policies in a

ubstantial portion of the problems. Indeed, we found that there

s a high correlation between percent of different initial decisions

ompared to AR and the policies performances compared to AR.

hat is, 2SSA is expected to be the best performing among the re-

aining policies, followed closely by SL and SA being the last.

Our results indicate that the AR promised makespan was the

hortest, with 2SSA nearly the same (longer by 0 . 4%), SL very

lose behind (longer by 0 . 7%) and SA trailing behind with a longer

akespan by 9 . 7% . The upper bound on the “price” that a risk-

verse scheduler, who commits to the promised makespan, is ex-

ected to pay upfront with respect to a PH policy (as indicated by

he Promised to max PH measure) was very small for AR (0 . 1%),

SSA (0 . 5%), SL (0 . 8%), and much higher for SA (3 . 6%).

As visible from the CPU times results, 2SSA provides a per-

ormance similar to SL, albeit at a significantly lower computa-

ional cost. As expected, SA is the fastest of all methods, however,

roviding very poor performance. Summarizing, 2SSA is the only

ethod that provides good performance at a reasonable computa-

ional cost.

Fig. 3 presents the Cumulative Distribution Function (CDF) of

he last four performance measures in Table 5 , by means of empir-

cal CDF across instances. Fig. 3 (a) shows the inferior performance

f SA compared to the other policies in providing good promised

akespans. Among the remaining policies, AR is the best, followed

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Table 5

Description and formulas of the performance measures.

Short name Description Calculation

Suboptimal initial decision Percentage of instances with initial decisions different from AR -

Promised makespan Average promised makespan of policy p 1
N

∑ N
k =1 ̃

 T k,p, ·
Max makespan Average maximal makespan of policy p 1

N

∑ N
k =1 max s ∈ [R] T k,p,s

Makespan Average makespan of policy p 1
N

∑ N
k =1

1
R

∑ R
s =1 T k,p,s

Promised to max PH Ratio between the promised of policy p to the maximal makespan under perfect hindsight
˜ T k,p, ·

max s ∈ [R] T k,PH,s
− 1

Max makespan to max PH Ratio between the maximal of policy p to the maximal makespan under perfect hindsight
max s ∈ [R] T k,p,s

max s ∈ [R] T k,PH,s
− 1

Makespan to PH Ratio between the makespan of policy p to the makespan under perfect hindsight 1
R

∑ R
s =1

T k,p,s

T k,PH,s
− 1

Max makespan to max AR Ratio between the maximal makespan of policy p to the maximal makespan the AR policy
max s ∈ [R] T k,p,s

max s ∈ [R] T k,AR,s
− 1

Table 6

Performance measure results for type I uncertainty sets.

Short name AR 2SSA SL SA PH

Suboptimal initial - 7% 11% 50% -

Promised makespan 5 . 628(0 . 914) 5 . 653(0 . 913) 5 . 668(0 . 928) 6 . 174(1 . 034) -

Max makespan 5 . 628(0 . 914) 5 . 641(0 . 913) 5 . 648(0 . 918) 5 . 824(0 . 962) 5 . 624(0 . 913)

Makespan 4 . 832(1 . 013) 4 . 821(1 . 015) 4 . 830(1 . 017) 4 . 874(1 . 042) 4 . 743(1 . 015)

CPU time initial decision (sec) 8.27 0.26 17.09 0.004 -

CPU time RH (sec) 19.26 1.93 40.53 0.05 -

Average makespan values are presented with their standard deviations in parentheses.

Fig. 3. Empirical CDF (over instances) of the last four performance measures of Table 5 for Type I uncertainty set.

96

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Fig. 4. Promised to Max PH ratio for n = 10 , 15 , 20 over N = 50 instances: (a) average for different values of � (b) empirical CDF for � = 0 . 3 n .

b

d

o

b

o

a

I

p

c

a

u

a

i

f

w

y

7

t

S

0

s

U

U

w

a

U

s

d

t

i

p

t

1

W

a

a

h

n

s

t

t

t

w

c

b

f

T

t

c

a

a

a

t

b

m

t

a

t

o

s

h

s

7

a

b

t

r

m

l

t

t

f

t

t

y 2SSA and SL. Fig. 3 (b) shows similar relationships between the

ifferent methods with respect to the ratio of the worst-realization

f a given policy compared to the worst PH duration, with the SA

eing clearly the worst. When taking the less conservative measure

f taking the average ratio of scenarios (Fig. 3 (c)), the four policies

re closer to each other, with 2SSA becoming surprisingly the best.

n the end, in Fig. 3 (d) we see the worst-case performance of the

olicies SL, SA and 2SSA compared to AR. While 2SSA and SL with

omparable performance to that of the AR, the SA can go as much

s 20% worse.

To recapitulate, AR is the best policy for the risk-averse sched-

ler but it is not scalable. Our heuristic, the 2SSA, and the SL

chieve comparable performance with respect to AR, while 2SSA

s more computationally efficient. SA demonstrates the worst per-

ormance. As expected, the gaps between all policies are smaller

hen applying the policies on average (non-worst-case) scenarios,

et SA is still inferior with respect to the other policies.

.3. Large problem instances

In this set of experiments, we test the policies for n = 10 , 15 , 20

asks. Because of the problem sizes we could only test the

A and 2SSA policies. For each value of n , and budget � =

 . 1 n, 0 . 2 n, 0 . 3 n, 0 . 4 n, 0 . 5 n, 0 . 6 n , we generated N = 50 problem in-

tances. For each instance, we used a budgeted uncertainty set

k ⊆ R

n of the form

k =

{

d ∈ R

n : d i = d 0 ,k
i

+ u i d̄
k
i , i ∈ [n] , u ∈ [0 , 1] n ,

n ∑

i =1

u i ≤ �

}

,

here the nominal durations d 0 ,k and their perturbations d̄ k

re randomly generated such that d 0 ,k
i

∼ Unif (0 . 5 , 5 . 0) and d̄ k
i

∼
nif (0 . 5 , 1 . 0) · d 0

i
, respectively for each i ∈ [n] . For each realized

cenario, we found the PH solution by assuming that the realized

urations are known in advance.

We start by comparing the promised duration of SA and 2SSA

o the worst-case duration of PH on a sample of K = 50 scenar-

os, which we present in Fig. 4 . We observe the same phenomenon

redicted by our bound in Section 4.3.1 , i.e. , SA promised dura-

ion gets close to those of the PH when �/n gets close to 0 or

, and is further away from PH when �/n ∈ [0 . 3 , 0 . 4] in Fig. 4 (c).

e also note that this maximal difference is around 22% implying

 potential for improvement by methods which take into account
97
daptivity. Indeed, we see that the promised makespan of the 2SSA

euristic improves upon SA in this region, by 2% − 4% . Moreover, as

 increases both methods’ have worse promised duration with re-

pect to the PH, and the gap between them decreases. We explain

he latter by the limited way in which 2SSA accounts for adap-

ivity in the planning stage. Since only one stage of adaptivity is

aken into account, as n increases there are more stages for which

e do not account for adaptivity and thus, the relative benefit de-

reases. We note that the increase in the promised to PH ratio for

oth methods as n grows larger, is in contrast to their actual per-

ormance when implemented in a RH fashion, as we discuss next.

his gap between the promised and actual performance due to not

aking into account enough of the future adaptivity may put a de-

ision maker at a disadvantage when contractually committing to

 specific makespan.

To observe the actual performance of the methods, as they are

pplied in a RH fashion, we generated K = 50 random scenarios

nd computed, for each, the makespan to PH ratio. Fig. 5 depicts

he performance measures of RH-SA and RH-2SSA as a function of

oth n and �. Additionally, we present the empirical CDF of ‘Max

akespan to max PH’ for � = 0 . 3 n . We see that as n increases both

he average and maximum gap between RH-SA and PH decreases,

s predicted by the bound in Section 4.3.2 . In Fig. 5 (b) we observe

hat for the lower values of �/n , 2SSA reduces the suboptimality

f SA w.r.t. the PH by roughly 50%. Importantly, Fig. 5 demon-

trates that, even in the rolling-horizon implementation, 2SSA

as favorable performance compared to the SA for all tested

ettings.

.4. Computational times

We compared the computational times of the two policies, SA

nd 2SSA, over instances with n = 5 , 10 , 15 , 20 tasks and under

udgeted uncertainty. As the 2SSA can be easily parallelized over

he n (n − 1) / 2 pairs of tasks to be scheduled first, we tested the

unning times with and without 2SSA parallelization. Fig. 6 sum-

arizes the average run times of the entire rolling-horizon simu-

ations for different �/n ratios. It indicates that, given paralleliza-

ion, the performances of SA and 2SSA are comparable for the

ested problem sizes. We note that the presented running times

or both SA and 2SSA include all the re-optimization rounds over

he entire rolling-horizon. Thus, for the case of n tasks, the time

o adapt the scheduling decision each time a task completes is,

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Fig. 5. Makespan to PH ratios for n = 10 , 15 , 20 over N = 50 instances: (a) average ‘Makespan to PH’ (b) average ‘Max makespan to max PH’ (c) CDF of ‘Max makespan to

max PH’ for � = 0 . 3 n .

Fig. 6. Computational times for n = 5 , 10 , 15 , 20 over the entire rolling-horizon: (a) average ‘raw’ computational times (b) average computational times with parallelization

on up to 100 cores.

r

p

f

o

t

c

d

i

t

8

t

s

c

s

t

t

b

t

d

t

a

t

c

s

o

s

p

t

w

s

p

v

c

p

a

w

m

s

i

c

o

t

t

f

i

f

p

oughly, the presented time divided by the n − 2 times that each

olicy is re-optimized. These times are expected to be reasonable

or most real-world settings, in the sense that machine will be idle

nly a short time while the problem is resolved. Practically, even

hese idle times can be decreased in classical manufacturing pro-

esses; this is due to the fact that the machines can accurately pre-

ict residual processing times when a part is close to completing

ts processing, allowing to solve the next re-optimization ahead of

ime.

. Conclusions

We study adaptive and static robust optimization policies for

he PMS, which is an important problem in multiple domains

uch as production lines in which machines process a set of tasks,

omputer multiprocessors (“cloud processing”) for processing jobs,

hipyards and ports in which ships are loaded and unloaded, doc-

ors who treat patients in a walk-in clinic or triage setting, and

eachers who educate student groups.

The suggested methodology suits settings in which the proba-

ilistic knowledge about task durations is limited or costly to at-

ain. In such circumstances, it is rather easy to design a polyhe-

ral or ellipsoidal uncertainty set that frames the involved uncer-

ainty. Ben-Tal, El Ghaoui, & Nemirovski (2009) provide guidance

nd probabilistic guarantees in favor of designing uncertainty sets

hat balance the level of conservatism and the probability that a

onstraint is violated by a scenario.
98
We demonstrate that ARO models that consider, in the planning

tage, the optimal future (wait-and-see) decisions are preferable

ver non-adaptive RO models since they lower the maximum pos-

ible makespan that the scheduler can promise. Our experiments

oint out that the average advantage of adaptive-based bids is es-

imated to be 9 − 10% over its non-adaptive RO policy. To this end,

e offer a heuristic adaptive policy, the 2SSA, that can be used to

olve larger problems.

Our analyses indicate that a good adaptive policy may be im-

ortant for mid-range � values rather than when uncertainty is

ery small (i.e. , � → 0) or large (i.e. , � → n).

Adaptive robust policies are not only superior over static poli-

ies in the planning stage – they are also preferable in the im-

lementation stage. Specifically, policies that take the later-stage

daptivity of the decisions into account remain preferable even

hen the static policies are re-optimized every time new infor-

ation becomes available (rolling-horizon). A hint into the rea-

on for this is provided by the 42 − 59% of the problem instances

n which an adaptive policy yielded different first-stage decisions

ompared to a SA policy. That means that the adaptive policies not

nly offer better makespan guarantees, but also select decisions

hat lead to better realized duration. Our results shows clearly that

he algorithms’ performance deteriorate with the fraction of dif-

erent first-stage decisions compared to fully adaptive AR. Accord-

ngly, 2SSA (7% different first-stage decisions) was the best per-

orming algorithm, followed by SL (11%), and lastly the static SA

olicy (50%).

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

a

f

p

o

t

2

t

9

r

A

e

S

w

V

A

P

J

m

m

a

m

N

i

m

w

s

i

o

S

e

c

π
A

m

π

t

a

r

l

p

t

p

w

e

t

t

i

a

o

a

P

m

t

P

P

M

u

S

To conclude, while robust SA policies are widely investigated

nd used in risk averse settings, they may achieve inferior per-

ormance in practice compared to adaptive alternatives. Since the

erformance gap between an optimal adaptive policy and a static

ne is quite significant, and alternative existing policies such as

he SL are not computationally efficient, we suggested the new

SSA heuristic. 2SSA can grant the scheduler competitive advan-

ages both in the planning stage and in the implementation stage.

. Future research

Following this research, we recommend pursuing the following

esearch directions:

1. Extending the scope of scheduling problems beyond PMS. As

a first step, we suggest two problems that consider prece-

dence constraints between tasks: the job-shop problem, in

which tasks require a unitary resource (machine) and the

task includes sub-tasks with precedence constraints, and the

resource constrained project scheduling problem, in which a

task may require more than one type and/or more than one

resource unit to be processed.

2. It would be interesting to investigate the types of problems

and settings under which first-stage decisions are different

for adaptive and non-adaptive scheduling policies.

3. Finally, it would be worthwhile to explore more efficient

MILO formulations that are more amenable to approxima-

tion algorithms.

cknowledgements

We are grateful to Michael Pinedo for consultations at the

arly stage of this work. The research was supported by the Israel

cience Foundation grant No. 226/21 (IC). The second author’s

ork was financed by The Dutch Research Council (NWO) Grant

I.Veni.191E.035.

ppendix A. Proofs

roof of Proposition 1. For all i ∈ [m] , let d̄ i = max d i ∈U i d i . Let

 ∈ J n.m

be some partition of the tasks to machines. Then, the

akespan duration induced by this partition is given by

ax
d∈U

max
j∈ [m]

∑

i ∈ J j
d i = max

j∈ [m]

∑

i ∈ J j
d̄ i ,

nd the optimal SA policy J ∗ = (J ∗
1
, . . . , J ∗m

) satisfies

ax
j∈ [m]

∑

i ∈ J ∗
j

d̄ i ≤ max
j∈ [m]

∑

i ∈ J j
d̄ i , ∀ J ∈ J n.m

.

ow let d̄ = (̄d 1 , . . . , d̄ n) and define J AR ∗ = M (P AR ∗, d̄) , where P AR ∗

s an optimal AR policy. Then,

ax
j∈ [m]

∑

i ∈ J ∗
j

d̄ i ≤ max
j∈ [m]

∑

i ∈ J AR ∗

d̄ i ≤ max
d ∈U ,J= M (P AR ∗,d)

max
j∈ [m]

∑

i ∈ J j
d i , (8)

here the first inequality follows from the optimality of J ∗ with re-

pect to J AR ∗, and the last inequality follows from adding the max-

mum over all d ∈ U . Since, however, the worst-case makespan of

ptimal AR is always shorter than or equal to that of the optimal

A policy, both worst-case makespans are equal, and thus both in-

qualities in (8) are in fact equalities.

We now turn to prove the equality with respect to the worst-

ase makespan by the optimal SL. We first show that for any

∈ �n , using the realization d̄ results in the worst-case makespan.

ssume, to the contrary, that for some π ∈ �n a worst-case

akespan is achieved by a realization

˜ d that contains a component
99
j such that ˜ d π j
< d̄ π j

. The starting times (and, therefore, ending

imes) of all tasks πi for i > j using ˜ d would be earlier or the same

s those with d̄ , leading to a shorter or identical makespan. Thus,

ealization d̄ would always lead to the worst-case makespan. Now,

et π † ∈ �n be a permutation such that M (P SL ,π †
, d̄) ≡ J ∗ (such a

ermutation can always be constructed by the order of starting

imes), let π ∗ be the permutation associated with the optimal SL

olicy, and let J SL ∗ ≡ M (P SL ∗, d̄) ≡ M (P SL ,π∗
, d̄) . Then,

max
d ∈U ,J= M (P SL ,π†

,d)

max
j∈ [m]

∑

i ∈ J j
d i = max

j∈ [m]

∑

i ∈ J ∗
j

d̄ i ≤ max
j∈ [m]

∑

i ∈ J SL ∗

d̄ i

= max
d ∈U ,J= M (P SL ,π∗

,d)
max
j∈ [m]

∑

i ∈ I j
d i ,

here the first equality follows from the definition of π † , the in-

quality follows from the optimality of the static policy J ∗ (from

he point of view of SA, J SL ∗ is suboptimal) and optimality of d̄ for

he worst-case for static allocation policies, and the second equal-

ty follows from the definition of J SL ∗ and again the fact that d̄ is

 worst-case for π ∗. Combining this inequality with the optimality

f π ∗, we obtain that the worst-case makespans of the optimal SL

nd SA policies must be equal. �

roof of Theorem 1. In order to lower bound the worst-case

akespan of the PH policy, we can restrict the adversary to split

he uncertainty equally between the tasks. For these scenarios the

H policy would use allocation ˜ x . Thus,

 H = max
d∈ U

min

x ∈{ 0 , 1 } n
max { x � d, (e − x) � d}

≥ max

{
˜ x �

(
d 0 +

�

n

d̄

)
, (e − ˜ x) �

(
d 0 +

�

n

d̄

)}

= max

{ ∑

i ∈I
d 0 i

(
1 +

α�

n

)
,
∑

i ∈ ̄I
d 0 i

(
1 +

α�

n

)}

=

(
1 +

α�

n

)
max

{ ∑

i ∈I
d 0 i ,

∑

i ∈ ̄I
d 0 i

}

oreover, the SA worst-case is not worse than the one obtain by

sing ˜ x as the allocation, and thus,

A = min

x ∈{ 0 , 1 } n max
d∈ U

max { x � d, (e − x) � d}
≤ max

d∈ U
max { ̃ x � d, (e − ˜ x) � d}

= max
d∈ U

max

{ ∑

i ∈I
d i ,

∑

i ∈ ̄I
d i

}

= max

⎧ ⎨

⎩

∑

i ∈I
d 0 i + α max

S ⊆I, |S | = min {� �� , |I|}
j∈I\S { ∑

k ∈S
d 0 k + (min { �, |I|} − |S|) d 0 j

}

,

∑

i ∈ [n] \I
d 0 i + α max

S ⊆[n] \I, |S | = min {� �� ,n −|I|}
j∈ [n] \I∪S { ∑

k ∈S
d 0 k + (min { �, n − |I|} − |S|) d 0 j

} }

.

https://doi.org/10.13039/501100003977

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

U

S

D

l

a

�

e

P

P

M

t

R

U

A

B

a

t

t

t

w

s

m

s
r

c

w

o

n

t

c

p

o

b

d

s

p

y

s

c

T

B

d

s

f

a

s

T

w

B

E

A

x

B

d
sing our defined notation, can rewrite the above inequality as

A ≤ max

{ ∑

i ∈I
d 0 i ,

∑

i ∈ ̄I
d 0 i

}

+ α max
S∈{I, ̄I }

{

min {|S| , � ��} ∑

k =1

d 0 , S
(k)

+ �S (�) d 0 , S
(min {|S| , � ��} +1)

}

.

ividing the two bounds we obtain

SA

PH

≤ 1

1 +

α�
n

+

α max S∈{I, ̄I }
{ ∑ min {|S| , � ��}

k =1
d 0 , S

(k)
+ �S (�) d 0 , S

(min {|S| , � ��} +1)

}
(1 +

α�
n

) max
{∑

i ∈I d
0
i
,
∑

i ∈ [n] \I d 0 i

}
≤ n

n + �α
+

αn

n + α�
max
S∈{I, ̄I }

∑ min {|S| , � ��}
k =1

d 0 , S
(k)

+ �S (�) d 0 , S
(min {|S| , � ��} +1) ∑

i ∈S d
0
i

=

n

n + �α

(

1 + α max
S∈{I, ̄I }

∑ min {|S| , � ��}
k =1

d 0 , S
(k)

+ �S (�) d 0 , S
(min {|S| , � ��} +1) ∑

i ∈S d
0
i

)

. (9)

We now look at (A.9) for different values of �. Specifically, we

ook at the term inside the maximum. When � = 0 , �S (�) = 0 ,

nd thus it is equals zero and upper bound is equal to 1. When

= n then again �S (�) = 0 , its numerator and denominator are

qual, and so the upper bound is again equal to 1. �

roof of Theorem 2. By construction we have that

H ≥ max
d∈ U

∑ n
i =1 d i
2

.

oreover, as explained above, for any RH methodology, we have

he following upper bound

H ≤ max
d ∈ U, j ∈ [n]

∑ n
i =1 d i
2

+

d j

2

.

sing these bounds and Assumption 1 , we have that

RH

PH

≤
max d ∈ U, j ∈ [n]

{ ∑ n
i =1

d i
2

+

d j
2

}

max d∈ U
∑ n

i =1
d i
2

≤ max d∈ U
∑ n

i =1
d i
2

+

ā min { (1+ α) , (1+ α�) }
2

max d∈ U
∑ n

i =1
d i
2

≤ 1 +

ā min { (1 + α) , (1 + α�) }
a (n + α�)

.

�

ppendix B. Extensions for more than two machines

1. The scheduler’s DP

When m > 2 , more than one task may still be in process when

 given task completes. Thus, we extend the definition of a state

o S, F , D, I, D̄ , where I is the set of indices of running tasks, and

heir respective processing duration thus far is represented by vec-

or D̄ . Decisions can be made when there is an idle machine, i.e. ,

hen one task completes (| I| < m ,) and there are still tasks to

chedule, (| S| < n). When | S| = n , all decisions have been already

ade.
100
Similar to m = 2 machines, at each decision point, the scheduler
eeks the allocation policy that achieves the minimal worst-case
emaining makespan. The recursive formulation is:

T (S, F, D, I, ̄D) =

min
k / ∈ S

max

{
max

d k : d∈ U S,F,D,I, ̄D ,

d k ≤min
j∈ I

(d j −D̄ j)

d k + T ([S, k] , [F, k] , [D, d k] , I, (̄D j + d k) j∈ I)

max
(l,d l):

d∈ U S,F,D,I, ̄D

l= arg min
j∈ I

(d j −D̄ j)

d k >d l −D̄ l

d l − D̄ l + T ([S, k] , [F , l] , [D , d l] , [I \ { l} , k] , [(̄D j) j ∈ I\{ l} , 0] + d l −D̄ l)

}
.

(10)

The objective is to allocate the task k that minimizes the worst-

ase remaining makespan. For each k , there are two types of

orst-case scenarios to consider. The first term in the first max

f (10) relates to the possibility that under the worst-case sce-

ario, k completes its processing before the completion of any of

he other tasks already underway in I. In such a case, the next de-

ision point is when task k completes and all tasks in I are still in

rocessing (thus, the composition of I does not change). The sec-

nd term describes the scenarios in which the next task completes

efore the newly scheduled task k . Thus, the time until the next

ecision point is min j∈ I (d j − D j) , in which case the composition of

et I changes to include k and to exclude the task that just finished

rocessing.

The boundary case occurs when all tasks have been scheduled,

et some of them are still in processing; that is, | S| = n , | F | < n . In

uch a case, the remaining makespan amounts to the time until the

ompletion of the last task among the tasks still being processed:

 (S, F , D, I, D̄) = max
i ∈ I

max
d i : d∈ U S,F,D,I, ̄D

d i − D̄ i .

2. The adversary’s DP

As in the two-machine formulation, the adversary makes her

ecisions immediately after a new task k has been scheduled in

tates ([S, k] , F , D, I, D̄) where k / ∈ S ≡ F ∪ I. The recursive formula

or the worst-case remaining makespan T ′ is:

T ′ ([S, k] , F, D, I, ̄D) = max

{
max

d k : d∈ U [S,k] ,F,D,I, ̄D ,

d k ≤min j∈ I (d j −D̄ j)

d k + min
l / ∈ S∪{ k }

T ′ ([S, k, l] , [F, k] , [D, d k] , I, ̄D + d k } , 0]) ,

max
(i,d i): d∈ U [S,k] ,F,D,I, ̄D ,

i ∈ arg min j∈ I (d j −D̄ j) ,

d k >d i −D̄ i

d i − D̄ i + min
l / ∈ S∪{ k }

T ′ ([S, k, l] , [F , i] , [D , d i] , [I \ { i } , k] , [(̄D j + d i −D̄ i) j∈ I\{ i } , d i −D̄ i]

}
,

(11)

s long as | S| � n − 2 (meaning that there are still more tasks to

chedule). For the case | S| = n − 1 and | F | < n , we have

′ ([S, k] , F , D, I, D̄]) = max

{
max

i ∈ I
max

d i : d∈ U [S,k] ,F,D,I, ̄D

d i −D̄ i , max
d k : d∈ U [S,k] ,F,D,I, ̄D

d k

}
hich is the longest possible time until the last task completes.

3. Computing E σ and e σ for two-machines MILO

Here, we present a formal algorithm that constructs the matrix

 σ and vector e σ for the case of m = 2 . The algorithm, shown in

lgorithm 1 is based on iteratively constructing two binary vectors

 and y for tasks assigned to machine 1 and 2, respectively.

4. MILO formulation for m machines

We consider a setting with m machines and n tasks (m < n) and

enote the set of all states σ = (S, F) as V . To decrease the state

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Algorithm 1 Algorithm determining the E σ and vector e σ for m =

2 machines.

Initialize: x = 0 n ×1 , y = 0 n ×1 , x S 1 = 1 , y S 2 = 1 .

for r = 1 , . . . , n − 2 do

if x F r = 1 then

(E σ) r, · = (x − y) �

Set x S r+2
= 1

else

(E σ) f, · = (y − x) �

Set y S r+2
= 1

end if

end for

if x F n −1
= 1 then

(E σ) n −1 , · = (x − y) �

e σ = y

else

(E σ) n −1 , · = (y − x) �

e σ = x

end if

Table 7

The sets of states for the scheduler D (left) and the

adversary N (right).

S -length F -length S -length F -length

0 0 m 0

m 1 m + 1 1

m + 1 2
.
.
.

.

.

.

.

.

.
.
.
. n − 1 n − m − 1

n − 2 n − m − 1 n n

s

t

o

i

A

l

fi

l

t

t

i

c

m

t

|

T

|

T

m

|
b

s

c

S

a

fi

A

s

t

I

o

f

m

A

t

l

c

w

c

v

&

c

u

c

l

v

c

w

p

pace of the scenario tree, certain states are discarded (see also

he example described in Section 6.1.1). In particular,

• we omit states where the length of S is smaller than m , since

they correspond to an initialization of the system in which

at least one machine is idle, thus additional tasks must be

scheduled immediately. Hence, the states that follow the

initial state are characterized by | S| = m (all machines are

busy).
• Similarly, the last decision to be made is the one after which

a single task remains to be scheduled. Such a decision is

made at a state where the length of S is n − 2 and the length

of F is n − m − 1 . Afterwards, the adversary decides which

tasks to complete and in which order. Hence, the states that

follow states with | S| = n − 1 and | F | = n − m − 1 are the

end states in which | S| = | F | = n .

Given this, we consider the state space V consisting of the sets

f the scheduler states D and adversary states N (Table 7).

With these formulations, we can define the MILO formulation

n the same way as in Section 6 .

ppendix C. Complexity of the MILO formulation (P)

In this appendix, we study the complexity of the MILO formu-

ation (P) needed to solve the scheduling problem. The scheduler’s

rst decision concerns which m tasks out of the n to schedule, fol-

owed by the adversary’s decision regarding which of the m tasks

o end first. Next, the scheduler has to choose one of the remaining

asks to schedule to the newly idle machine. This sequence repeats

tself until the scheduler has no more tasks to schedule, in which

ase the adversary has to decide on the termination order of the

 in-process tasks. Thus, the number of end states in the scenario
101
ree of the mixed-integer formulation is given by

L| =

(
n

m

)
m (n − m) m (n − m − 1) · . . . · m · 2 · m !

=

(
n

m

)
m

n −m −1 (n − m)! m !

= n ! m

n −m −1 .

he number of scheduler nodes is:

D| = 1 +

(
n

m

)
m +

(
n

m

)
m (n − m) m + . . .

+

(
n

m

)
m (n − m) m (n − m − 1) m . . . 3 · m

= 1 +

n −m −2 ∑

i =0

(
n

m

)
(n − m)!

(n − m − i)!
m

i +1

= 1 +

n !

m !

n −m −1 ∑

i =1

m

i

(n − m − i + 1)!
.

he number of binary variables required for the nature nodes’

aximum reformulation as MILO constraints is, therefore, |D| +

L| − 1 . Thus, the MILO formulation requires an exponential num-

er of binary variables.

Consequently, the MILO problem (P) is not scalable. In the next

ection we conduct a numerical study with small problems to

ompare the MILO formulation (i.e. , AR) to other alternatives (e.g. ,

A, SL), which will enable us to evaluate the possible benefits of

pplying an adaptive or at least partially adaptive policy for which

nding solutions is less computationally demanding.

ppendix D. MILO formulation for the SA policy

The following optimization problem is the MILO problem to be

olved to obtain the optimal SA policy.

min

,x ∈{ 0 , 1 } n t

s.t. t ≥ x � d ∀ d ∈ U

t ≥ (e − x) � d ∀ d ∈ U.

f U is finite, the constraints can be enforced by enumerating each

f them over the elements of U . If U is convex, they can be en-

orced using standard RO techniques of dualizing the inner maxi-

ization problem in sup d∈ U x � d and sup d∈ U (e − x) � d.

ppendix E. Column-and-constraint generation algorithm for

he 2SSA

In this section, we will discuss how to solve the two-stage prob-

em (7) , which computes the worst-case makespan of 2SSA for the

hoice of i, j as the tasks initially scheduled. We focus on the case

here d i < d j (first term in the outer max in (20)). The second

ase, in which d i ≥ d j is solved similarly. We solve this problem

ia a column-and-constraint generating procedure, similar to Zeng

 Zhao (2013) , that is given in Algorithm 2 . We note that of U is

onvex the condition d i < d j can be replaced by d i ≤ d j (which we

se for the rest of the section), while for discrete U , the original

ondition needs to be maintained.

The algorithm, consists of iterating between solving two prob-

ems. The master problem (12) , corresponds to the first-stage ad-

ersarial problem and provides an upper bound t̄ k on the worst-

ase makespan, and the scheduler subproblem (13) is associated

ith the scheduler best response to the adversarial decision and

rovides a lower bound v̄ k on the worst-case makespan.

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Algorithm 2 Adversarial CCG.

Initialization: Set X = { x 1 } for some x 1 ∈ { 0 , 1 } n satisfying x 1
i

= 1 ,

and x 1
j
= 0 .

For k = 1 , 2 , . . . , :

(1) Solve the master problem, given by

t̄ k = max
t , ̃ d i ,t k ,d k ∈ U,z k ∈{ 0 , 1 }

t (12)

s.t. t ≤ t k ∀ k = 1 . . . , |X |
t k ≤ x k � d k + M(1 − z k) ∀ k = 1 . . . , |X |
t k ≤ (e − x k) � d k + Mz k ∀ k = 1 . . . , |X |
d k i =

˜ d i ∀ k = 1 . . . , |X |
d k i ≤ d k j ∀ k = 1 . . . , |X | .

Denote by d̄ i the optimal value of ˜ d i .

(2) Solve the scheduler subproblem for the choice of d̄ i :

v̄ k = min

x ∈{ 0 , 1 } n , v v (13)

s.t. v ≥ d � x ∀ d ∈ U : d i =

˜ d i , d i ≤ d j

v ≥ (e − x) � d ∀ d ∈ U : d i =

˜ d i , d i ≤ d j

x i = 1 , x j = 0 .

Denote its optimal solution by x k +1 .

(3) If v̄ k < t̄ k set X := X ∪ { x k +1 } . Otherwise, finish and return

worst-case makespan t̄ k .

s

s

e

c

d

m

m

s

fi

t

a

t

m

s

t

t

l

i

t

b

t

A

F

d

n

t

o

p

P

v

f

In the master problem (12) , the adversary aims to find the first-

tage decision

˜ d i that maximizes the worst-case makespan, for all

chedules x k in a specified set of static allocation X . Specifically, for

ach x k ∈ X , a different second stage duration d k ∈ U vector can be
Table 8

Performance measure results for type II uncertainty sets.

Short name AR 2SSA

Suboptimal initial - 2%

Promised makespan 7 . 784(1 . 430) 7 . 788(1 . 428)

Max makespan 7 . 784(1 . 430) 7 . 787(1 . 429)

Makespan 6 . 105(1 . 493) 6 . 097(1 . 496)

Makespan values are presented with their standard deviat

102
hosen, as long as it satisfies d j ≥ d i and d i = d̄ i . The auxilary in-

icator z k , identifies which machine finished last, and thus deter-

ined the makespan. Thus, t k is an upper bound on the worst-case

akespan that can be obtained, since it only considers a subset of

cheduler responses.

In the scheduler subproblem (13) , the scheduler attempts to

nd a static schedule x k +1 ∈ { 0 , 1 } n , x k +1
i

= 1 , x k +1
j

= 0 which solves

he robust problem of minimizing the worst-case makespan for

ny duration realization d ∈ U satisfying d i ≤ d j and d i = d̄ i . Thus,

he optimal value v̄ k provides a lower bound for the worst-case

akespan. If v̄ k < t̄ k it means that the schedule x k +1 provides a re-

ponse to d̄ i which improves the makespan. Thus, x k +1 is added

o X and the master problems needs to be resolved. If v̄ k = t̄ k

hen the worst-case makespan is obtained. Importantly, subprob-

em (13) is a standard linear one-stage robust problem. Specifically,

f U is a convex set the first two constraint in the problem can be

ransformed from semi-infinite constraints to their robust variant

y dualization, and if U is a discrete set the problem can be solved

hrough enumeration or a feasibility cut method.

ppendix F. Box uncertainty set sampled results

The results for this uncertainty set are presented in Table 8 and

ig. 7 . For SA, SL, and 2SSA, the percentages of different first-stage

ecisions, compared to AR, are 32% , 4% , and 2% respectively.

The AR promised makespan was the shortest, with 2SSA being

early the same, SL very close behind (longer by 0 . 17%), and SA

railing behind with a longer makespan by 5 . 3% . The upper bound

n the “price” that a risk-averse scheduler, who commits to the

romised makespan, is expected to pay upfront with respect to a

H policy (as indicated by the Promised to max PH measure) was

ery small for AR (0 . 0%), 2SSA (0 . 1%) SL (0 . 2%), and much higher

or SA (5 . 8%).
SL SA PH

4% 32% -

7 . 798(1 . 429) 8 . 217(1 . 470) -

7 . 791(1 . 429) 7 . 913(1 . 425) 7 . 783(1 . 430)

6 . 098(1 . 495) 6 . 139(1 . 513) 5 . 966(1 . 493)

ions in parentheses.

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

Fig. 7. Empirical cumulative distribution functions (over instances) of the last four performance measures of Table 5 for Type II uncertainty set.

R

A

B

B

B

B

B

B

B

B

B

B

B

C
C

C

D

D

G

G

H

I

L

L

M

P

eferences

issi, H., Bazgan, C., & Vanderpooten, D. (2009). Min–max and min–max regret ver-
sions of combinatorial optimization problems: A survey. European Journal of Op-

erational Research, 197 (2), 427–438 .
alin, S. (2011). Parallel machine scheduling with fuzzy processing times using a ro-

bust genetic algorithm and simulation. Information Sciences, 181 (17), 3551–3569 .
alouka, N., & Cohen, I. (2019). A robust optimization approach for the multi-mode

resource-constrained project scheduling problem. European Journal of Opera-
tional Research .

eck, J. C., & Wilson, N. (2007). Proactive algorithms for job shop scheduling with

probabilistic durations. Journal of Artificial Intelligence Research, 28 , 183–232 .
en-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization . Princeton

University Press .
en-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable ro-

bust solutions of uncertain linear programs. Mathematical Programming, 99 (2),
351–376 .

ertsimas, D., & Dunning, I. (2016). Multistage robust mixed-integer optimization

with adaptive partitions. Operations Research, 64 (4), 980–998 .
ertsimas, D., Iancu, D. A., & Parrilo, P. A. (2010). Optimality of affine policies

in multistage robust optimization. Mathematics of Operations Research, 35 (2),
363–394 .

ertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., & Zheng, T. (2012). Adaptive robust
optimization for the security constrained unit commitment problem. IEEE Trans-

actions on Power Systems, 28 (1), 52–63 .

ertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52 (1),
35–53 .

ougeret, M., Jansen, K., Poss, M., & Rohwedder, L. (2021). Approximation results for
makespan minimization with budgeted uncertainty. Theory of Computing Sys-

tems, 65(6) , 903–915 .
ougeret, M., Pessoa, A . A ., & Poss, M. (2019). Robust scheduling with budgeted un-

certainty. Discrete Applied Mathematics, 261 , 93–107 .
103
ai, X., Wu, X., & Zhou, X. (2014). Optimal stochastic scheduling . Springer .
ohen, I., Golany, B., & Shtub, A. (2007). The stochastic time–cost tradeoff prob-

lem: A robust optimization approach. Networks: An International Journal, 49 (2),
175–188 .

onde, E. (2014). A MIP formulation for the minmax regret total completion
time in scheduling with unrelated parallel machines. Optimization Letters, 8 (4),

1577–1589 .

aniels, R. L., & Kouvelis, P. (1995). Robust scheduling to hedge against process-
ing time uncertainty in single-stage production. Management Science, 41 (2),

363–376 .
avari, M., & Demeulemeester, E. (2019). The proactive and reactive resource-con-

strained project scheduling problem. Journal of Scheduling, 22 (2), 211–237 .
eorghiou, A., Kuhn, D., & Wiesemann, W. (2019). The decision rule approach to

optimization under uncertainty: Methodology and applications. Computational

Management Science, 16 (4), 545–576 .
upta, J. N. D., & Ruiz-Torres, A. J. (2001). A LISTFIT heuristic for minimizing

makespan on identical parallel machines. Production Planning & Control, 12 (1),
28–36 .

anasusanto, G. A., Kuhn, D., & Wiesemann, W. (2015). K -adaptability in two-stage
robust binary programming. Operations Research, 63 (4), 877–891 .

ancu, D. A., & Trichakis, N. (2014). Pareto efficiency in robust optimization. Man-

agement Science, 60 (1), 130–147 .
in, J., & Ng, T. S. (2011). Robust multi-market newsvendor models with interval

demand data. European Journal of Operational Research, 212 (2), 361–373 .
iu, M., Liu, X., Chu, F., Zheng, F., & Chu, C. (2019). Service-oriented robust par-

allel machine scheduling. International Journal of Production Research, 57 (12),
3814–3830 .

öhring, R. H., Schulz, A. S., & Uetz, M. (1999). Approximation in stochastic schedul-

ing: The power of LP-based priority policies. Journal of the ACM (JACM), 46 (6),
924–942 .

inedo, M. (2002). Scheduling: Theory, algorithms and systems . Prentice Hall .

http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0025

I. Cohen, K. Postek and S. Shtern European Journal of Operational Research 306 (2023) 83–104

P

P

R

d

T

W

W

X

X

Y

Y

Z

ostek, K., Den Hertog, D., Kind, J., & Pustjens, C. (2019). Adjustable robust strategies
for flood protection. Omega, 82 , 142–154 .

ostek, K., & Hertog, D. d. (2016). Multistage adjustable robust mixed-integer opti-
mization via iterative splitting of the uncertainty set. INFORMS Journal on Com-

puting, 28 (3), 553–574 .
anjbar, M., Davari, M., & Leus, R. (2012). Two branch-and-bound algorithms for the

robust parallel machine scheduling problem. Computers & Operations Research,
39 (7), 1652–1660 .

e Ruiter, F., Brekelmans, R., & den Hertog, D. (2016). The impact of the existence

of multiple adjustable robust solutions. Mathematical Programming, 160 (1–2),
531–545 .

ighazoui, A., Sauvey, C., & Sauer, N. (2021). Predictive-reactive strategy for
identical parallel machine rescheduling. Computers & Operations Research ,

105372 .
ang, S., & Cui, W. (2020). Approximation algorithms for the min-max regret iden-

tical parallel machine scheduling problem with outsourcing and uncertain pro-

cessing time. International Journal of Production Research , 1–14 .
104
eber, R. R. (1982). Scheduling jobs with stochastic processing requirements on
parallel machines to minimize makespan or flowtime. Journal of Applied Prob-

ability , 167–182 .
u, X., Cui, W., Lin, J., & Qian, Y. (2013). Robust makespan minimisation in identical

parallel machine scheduling problem with interval data. International Journal of
Production Research, 51 (12), 3532–3548 .

u, X., Lin, J., & Cui, W. (2014). Hedge against total flow time uncertainty of the
uniform parallel machine scheduling problem with interval data. International

Journal of Production Research, 52 (19), 5611–5625 .

anıko ̆glu, I., Gorissen, B. L., & den Hertog, D. (2019). A survey of adjustable robust
optimization. European Journal of Operational Research, 277 (3), 799–813 .

eh, W., Lai, P., Lee, W., & Chuang, M. (2014). Parallel-machine scheduling to min-
imize makespan with fuzzy processing times and learning effects. Information

Sciences, 269 , 142–158 .
eng, B., & Zhao, L. (2013). Solving two-stage robust optimization problems using

a column-and-constraint generation method. Operations Research Letters, 41 (5),

457–461 .

http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00571-9/sbref0037

	An adaptive robust optimization model for parallel machine scheduling
	1 Introduction
	2 Literature review
	2.1 Stochastic PMS models
	2.2 Static robust PMS
	2.3 Adaptive robust optimization

	3 Notation and definitions
	4 Comparing the static and adaptive robust policies
	4.1 Equivalence of the scheduling policies under product uncertainty sets
	4.2 Different first-stage decisions in RO and AR
	4.2.1 A three-task example.
	4.2.2 A four-task example.

	4.3 Performance bounds under the budgeted uncertainty set
	4.3.1 Bound on the promised durations of SA versus PH.
	4.3.2 Bound on the rolling-horizon implementation of any scheduling policy

	5 Dynamic programming formulations
	5.1 Scheduler’s dynamic programming formulation
	5.2 The adversary dynamic programming formulation

	6 MILO formulation and the 2SSA heuristic
	6.1 Mixed-integer problem formulation
	6.1.1 Illustrative case: Two machines and four tasks.
	6.1.2 Formulating the adversary’s MILO problem.

	6.2 Two-stage SA heuristic (2SSA)

	7 Numerical study
	7.1 The setup
	7.2 Small problem instances
	7.3 Large problem instances
	7.4 Computational times

	8 Conclusions
	9 Future research
	Acknowledgements
	Appendix A Proofs
	Appendix B Extensions for more than two machines
	B1 The scheduler’s DP
	B2 The adversary’s DP
	B3 Computing and for two-machines MILO
	B4 MILO formulation for machines

	Appendix C Complexity of the MILO formulation (P)
	Appendix D MILO formulation for the SA policy
	Appendix E Column-and-constraint generation algorithm for the 2SSA
	Appendix F Box uncertainty set sampled results
	References

