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ABSTRACT
A continuous-time Markov process X can be conditioned to be in
a given state at a fixed time T > 0 using Doob’s h-transform. This
transform requires the typically intractable transition density of X.
The effect of the h-transform can be described as introducing a guid-
ing force on the process. Replacing this force with an approximation
defines the wider class of guided processes. For certain approxima-
tions the lawof a guided process approximates – and is equivalent to
– the actual conditional distribution, with tractable likelihood-ratio.
The main contribution of this paper is to prove that the principle of
a guided process, introduced in [M. Schauer, F. van der Meulen, and
H. van Zanten, Guided proposals for simulating multi-dimensional dif-
fusion bridges, Bernoulli 23 (2017a), pp. 2917–2950. doi:10.3150/16-
BEJ833] for stochastic differential equations, can be extended to a
more general class of Markov processes. In particular we apply the
guiding technique to jump processes in discrete state spaces. The
Markov process perspective enables us to improve upon existing
results for hypo-elliptic diffusions.
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1. Introduction

1.1. Problem description andmotivation

Continuous-time Markov processes are widely used for modelling phenomena that evolve
over time. Examples include Brownian motion, the Poisson process, Lévy processes in
general, anddiffusion processes generated by a stochastic differential equation.Many appli-
cations require sampling corresponding bridge processes, that is sampling the Markov
process X conditional on the value of its trajectory at some time T. For example in the
statistical context, with Xt the state of the process at time t, the process is typically only
observed at times t0 < t1 < . . . < tn . Based on these observations one may be interested
in estimating a parameter θ appearing in the forward description of the process X. In
this setting, likelihood based inference is difficult if the transition densities of the process
are intractable. However, if the process were observed continuously rather than discretely,
then likelihood computations for the continuously observed process on [0, tn] would typ-
ically be easier. This observation has led many authors to employ a data-augmentation
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scheme, where one samples iteratively (i) (Xt , t ∈ [0, tn]) conditional on {Xti}ni=0 and θ ; (ii)
θ conditional on (Xt , t ∈ [0, tn]).

Clearly, step (i) requires a way to sample (Xt , t ∈ (ti−1, ti)) conditional on Xti−1 and Xti ,
i.e. a bridge process. More generally, both data augmentation approaches and approaches
based on particle samplers naturally lead to the problem of sampling a bridge process.
Whereas for Brownian motion the corresponding bridge process, the Brownian bridge, is
fully tractable, for general continuous-time Markov processes this is not the case. It is the
aim of this paper to provide a general framework for this.

Without loss of generality, we can state the problem as simulating (Xt , t ∈ [0,T]) con-
ditional on (X0,XT) = (x0, xT). When feasible, we sometimes consider generalizations of
this setting, such as conditioning on (X0, LXT) = (x0, v) for a given matrix L.

1.2. Approach: conditioning by guiding

Our approach builds upon earlier work in the specific setting whereX is a diffusion process
generated by a stochastic differential equation (SDE). That is, X satisfies the equation

dXt = b(t,Xt) dt + σ(t,Xt) dWt , X0 = x0.

In this case the problem of bridge sampling has attracted much attention over the past two
decades. The approach that we adopt here consists of guiding, the terminology originating
from [13], the underlying ideas going back to [7,8]. Guiding refers to adjusting the dynam-
ics of the process X to ensure that it hits xT at time T. This can be done in multiple ways.
Following [7], [8] proposed to superimpose the drift of a Brownian bridge to the original
drift, leading to the process

dX◦
t = b(t,X◦

t ) dt + xT − X◦
t

T − t
dt + σ(t,X◦

t ) dWt , X0 = x0.

If σσ ′ is strictly positive definite, then indeed X◦
T = xT , provided certain smoothness and

boundedness conditions on b and σ are satisfied. Equally importantly, they derived an
expression for the Radon–Nikodym derivative of the law of the conditioned process, P�,
with respect to the lawofX◦ = (X◦

t , t ∈ [0,T]), whichwedenote byP
◦. IfP�

t andP
◦
t denote

the restrictions of P� and P
◦ to [0, t], respectively, then proving P

�
t � P

◦
t is relatively easy,

but the limiting operation t ↑ T requires careful arguments.
[5,16] considered different, more flexible, guiding terms which can also handle hypo-

elliptic diffusions. A major effort in these papers consists of formulating sufficient condi-
tions that justify taking the limit t ↑ T. For diffusions on manifolds, introducing guiding
terms has recently been introduced in [2,6]. While these works contain numerically
convincing results of absolute continuity, no proof is given. Recently [10] proved that
the approach of [8] can be extended to simulating Brownian Bridges on Riemannian
manifolds.

1.3. Contribution

A first contribution of this paper is to define guided processes by means of an exponen-
tial change of measure, rigorously studied in [12]. The beauty of this approach is that it is
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not restricted to diffusion processes, but applies generally to continuous-timeMarkov pro-
cesses, including for example jump processes. Ourmain result, Theorem 3.3, gives a simple
expression for dP

�/ dP
◦ and states sufficient conditions to justify the aforementioned lim-

iting operation t ↑ T. These conditions are designed to facilitate this operation in specific
examples. We first illustrate the power of our approach to non-homogeneous jump pro-
cesses and a continuous-time process evolving over a Delaunay triangulation. Secondly,
we apply this to diffusion processes, thereby lifting restrictions on the dynamics of the
process from [5] which then enable us to fully theoretically justify the bridge simulations
in [3]. Some technical proofs are gathered in the appendix.

1.4. Outline

We start this paper by stating the general setting and briefly describingDoob’s h-transform.
We will also use this section to introduce guided processes that are similar to the guided
proposals presented in [5,16,17] for SDEs. In Section 3, we formulate conditions and prove
equivalence between the tractable guided process and the intractable true conditional pro-
cess. In Sections 4 and 5, we apply the theory to Markov processes in a discrete state space
and Markov processes that arise as solutions to SDEs.

1.5. Frequently used notation

The transpose of amatrixA is denoted byA′.We denote the smallest and largest eigenvalue
of a squarematrixA by λmin(A) and λmax(A), respectively. Formatrices, we use the spectral
norm, which equals the largest singular value of the matrix and is denoted by ‖·‖. We will
also use that for a symmetric, positive definite matrix A, ‖A‖ = √

λmax(A′A) = λmax(A).
The determinant and trace of the matrix A are denoted by |A| and tr (A), respectively.

For stochastic differential equations with diffusion coefficient σ , we denote a = σσ ′.

2. General setting, Doob’s h-transform and guided processes

Throughout we assume existence of an underlying probability space (�,F ,P). Let X =
{Xt}t∈[0,T] be a Markov process on a Polish space S equipped with a σ -algebra B and
define the filtration Ft = σ({Xs : s ≤ t}). Let x0 ∈ S . Throughout this paper, we denote
Pt = P|Ft , Et = E|Ft and assume all probabilities and expectations are taken conditional
on X0 = x0. For a P-Markov process starting at x0 ∈ S and generated by a family of
operators L = {Lt}t∈[0,T] defined on the same domainD(L), it holds that

Mf
t := f (Xt) − f (x0) −

∫ t

0
Lsf (Xs) ds, t ∈ (0,T),

is a local martingale for any function f ∈ D(L). We denote the space-time generator of the
space-time process {(t,Xt)}t∈[0,T] by Af (t, x) = ∂f

∂t (t, x) + Ltf (t, x) and we extend D(L)

to the domainD(A) ofA. For simplicity, we omit the subscript and writeLf for f ∈ D(L).
Observe that for g ∈ D(A), the process

Mg
t := g(t,Xt) − g(0, x0) −

∫ t

0
Ag(s,Xs) ds, t ∈ (0,T), (1)

defines a local martingale as well.
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Definition 2.1 (S-good function): Let S ≤ T. We call h ∈ D(A) an S-good function if h
is positive and

Dh
t = h(t,Xt)

h(0, x0)
exp

(
−

∫ t

0

Ah
h

(s,Xs) ds
)
, 0 ≤ t ≤ S, (2)

is a martingale adapted to the filtration {Ft}t∈[0,S].

The following proposition is an adaptation of Proposition 3.2 of [12] and provides
conditions for verifying that h is an S-good function

Proposition 2.2 (Adaptation of Proposition 3.2 of [12]): Suppose that h ∈ D(A) is such
that h and Ah

h are bounded and measurable on [0, S] × S . Then h is an S-good function.

Definition 2.3 (Conditioned process): Let S ≤ T and h be an S-good function. Define
the change of measure

dP
�
t = Dh

t dPt , t ∈ [0, S]. (3)

We refer to the new measure P
�
t as the conditioned measure induced by h and the process

X under P
� is referred to as the conditioned process induced by h. We denote expectations

with respect to P
�
t by E

�
t .

The transformation of measures is known as Doob’s h-transform. The function h is
typically chosen such that the process X has particular properties under P

�
t , which it does

not possess under Pt . The following example is a key example to illustrate this.

Example 2.4: Suppose the transition kernel of X admits a transition density with respect
to a measure ν on S , i.e. P(Xt ∈ A | Xs = x) = ∫

A p(s, x; t, y) dν(y) for s ≤ t and A ∈ B.
For T>0, let the measure P

� be the measure induced by h(t, x) = ∫
p(t, x;T, y) dμ(y)

for a probability measure μ under which p is also measurable. Since Ah = 0, we have for
measurable f

E
�f (Xt) = E

(
f (Xt)

h(t,Xt)

h(0, x0)

)

=
∫

f (x)p(0, x0; t, x)
∫
p(t, x;T, y) dμ(y)∫

p(0, x0;T, y′) dμ(y′)
dν(x)

=
∫ (∫

f (x)
p(0, x0; t, x)p(t, x;T, y)

p(0, x0;T, y)
dν(x)

)
p(0, x0;T, y) dμ(y)∫
p(0, x0;T, y′) dμ(y′)

=
∫

E
(
f (Xt) | XT = y

)
dξ(y),

where

dξ(y) = p(0, x0;T, y) dμ(y)∫
p(0, x0;T, y′) dμ(y′)

.

In particular, for xT ∈ S , the measure μ = δxT induces the process X� = (X | XT = xT).
Measurement error on the value at the endpoint can be incorporated using dμ(y) =
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qxT (y) dμ̄(y), for a a probability density function qxT and dominating measure μ̄. Lastly,
this approach can also be used when forcing diffusions to have a certain distribution at
time T, such as seen in [4]. Here one can choose dμ(y) = q(y)

p(0,x0;T,y) dν(y)

Unfortunately, many interesting choices of h require the transition density p of the
Markov process to be tractable, which is usually not the case. Instead, one can try to use a
tractable approximation h̃ to h. This leads to the following definition.

Definition 2.5 (Guided process): Suppose h̃ ∈ D(A) is an S-good function for S ≤ T and
define the change of measure

dP
◦
t = Dh̃

t dPt , t ∈ [0, S].

The process X under the law P
◦ is denoted by X◦ and is referred to as the guided process

induced by h̃. We denote expectations with respect to P
◦
t by E

◦
t .

By formula (1.2) in [12] the extended generators of X� and X◦ are given by

A�f = 1
h

[A (
fh

) − fAh
]

and A◦f = 1
h̃

[
A

(
f h̃

)
− fAh̃

]
, (4)

which characterizes the dynamics of X� and X◦, respectively.

Proposition 2.6: Suppose h and h̃ are S-good functions for some S ≤ T and that h is space-
time harmonic for A, i.e. Ah = 0. Assume Dh̃

t > 0 on [0, S]. Then, for all t ≤ S, P
�
t ∼ P

◦
t

and

dP
�
t

dP
◦
t

(X) = h(t,Xt)

h̃(t,Xt)

h̃(0, x0)
h(0, x0)

�t(X), t ∈ [0, S], (5)

where

�t(X) = exp

(∫ t

0

Ah̃
h̃

(s,Xs) ds

)
. (6)

Proof: Note that, since h and Dh̃
t are positive, both P

�
t and P

◦
t are equivalent to Pt .

Moreover, dPt = (Dh̃
t )

−1 dP
◦
t and thus

dP
�
t

dP
◦
t

= dP
�
t

dPt

dPt

dP
◦
t

= Dh
t

Dh̃
t

.

The proof now follows from substituting (2) and usingAh = 0. �

In applications, we typically obtain a candidate for h̃ via an auxiliary process.

Definition 2.7 (Auxiliary process): Let X̃ be a Markov process with generator L̃ and
space-time generator Ã. When we consider a guided process induced by a tractable h̃ that
satisfies Ãh̃ = 0, we refer to X̃ as the auxiliary process. Conditions for absolute continuity
can then be stated as properties of X̃.
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If h̃ is obtained from an auxiliary process then � takes the form

�t(X) = exp

⎛
⎝∫ t

0

(
L − L̃

)
h̃

h̃
(s,Xs) ds

⎞
⎠ . (7)

In the setting of Example 2.4 it is often not too hard to find S-good functions h and h̃where
S<T. We would like to strengthen this to S ≤ T, i.e. to take the limit t ↑ T in (5). Sufficient
conditions are given in Theorem 3.3, the main result of this paper.

If we assume dμ(y) = qxT (y) dμ̄(y) in Example 2.4, with qxT strictly positive, then it
is natural to take h̃(t, x) = ∫

qxT (y)p̃(t, x;T, y) dμ̄(y). This simplifies showing that h̃ is a
T-good function, as under mild conditions Proposition 2.2 can be applied.

For ease of reference, we summarize some of the introduced notation. In the table below,
the third column gives the measure on the path space, the fourth column gives the corre-
sponding expectation with respect to the measure, while the rightmost column gives the
infinitesimal space-time generator of the process.

X original, unconditioned Markov process Pt Et A
X� corresponding conditioned processes induced by h P

�
t E

�
t A�

X◦ guided process induced by h̃ P
◦
t E

◦
t A◦

3. Conditions and proof of absolute continuity of X� and X◦ on [0, T]

Assume h and h̃ are S-good functions for all S<T. By Proposition 2.6, the processes X�

and X◦ are absolutely continuous onFt for t<T. In this section, we provide conditions to
ensure that absolute continuity also holds in the limit t ↑ T.

To prove this, we fix a constant t0 ∈ [0,T) and impose the following assumptions.

Assumption 3.1: There exists a positive continuous scaling function κ : [t0,T) → (0,∞)

and a family of Ft-measurable events {Ak(t)}k for each t ∈ [t0,T) so that the following
assumptions hold

(3.1a) For all k and t0 ≤ s ≤ t ≤ T, Ak(t) ⊆ Ak+1(t) and Ak(t) ⊆ Ak(s).
(3.1b) The transition kernel of X admits a transition density p under P with respect to

a dominating measure ν, that is P(Xt ∈ A | Xs = x) = ∫
A p(s, x; t, y) dν(y) for 0 ≤

s ≤ t ≤ T, A ∈ B, and x ∈ S . Moreover, for all s<T and y ∈ S ,

lim
t↑T

h(t; s, x) = h(s, x),

where

h(t; s, x) =
∫

κ(t)h̃(t, y)p(s, x; t, y) dν(y). (8)

(3.1c) For all t0 ≤ s < t < T, the random variable h(t; s,Xs) isP-almost surely bounded.
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(3.1d) κ is such that

lim
k→∞

lim
t↑T

E
�
t

(
h̃(t,Xt)

h(t,Xt)
κ(t)1Ak(t)

)
= P

�
T(A(T)),

where Ak(T) = ∩t<TAk(t), A(t) = ⋃
k Ak(t) and A(T) = ∩t<TA(t).

(3.1e) For all fixed k, �t(X)κ(t)1Ak(t) is P
◦-almost surely uniformly bounded in t.

Lemma 3.2: Under Assumption 3.1, there exists a random variable �κ
T(X) so that for all k,

�κ
T(X)1Ak(T) = limt↑T �t(X)κ(t)1Ak(t)

Proof: Note that log� is an integral and κ is continuous, and thus, as Ak(T) ⊆ Ak(t) for
all t and by (3.1e), the map t �→ �t(X)κ(t) is continuous and bounded on Ak(T) under
P

◦. Hence limt↑T �t(X)κ(t)1Ak(T) exists in the P
◦-almost sure sense. Clearly, a random

variable �κ
T(X) also exists so that limt↑T �t(X)κ(t)1Ak(T) = �κ

T(X)1Ak(T). Moreover,∣∣�t(X)κ(t)1Ak(t) − �κ
T(X)1Ak(T)

∣∣ ≤ ∣∣�t(X)κ(t) − �κ
T(X)

∣∣ 1Ak(T)

+ |�t(X)κ(t)| 1Ak(t)\Ak(T)

It follows from the preceding that the first term tends to 0while the second term is bounded
by (3.1e) and the indicator tends to 0. �

Theorem 3.3: Suppose Assumption 3.1 is satisfied. Then for any measurable function f,

E
�
T

(
f (X)1A(T)

) = E
◦
T

(
f (X)

h̃(0, x0)
h(0, x0)

�κ
T(X)1A(T)

)
(9)

In particular, if P◦
T(A(T)) = 1, the measures are equivalent with

dP
�
T

dP
◦
T
(X) = h̃(0, x0)

h(0, x0)
�κ

T(X).

Proof of Theorem 3.3: For simplicity, we denote h̄ = h̃(0, x0)/h(0, x0). The proof is struc-
tured as follows. First we show that E

◦
T(h̄�κ

T(X)1A(T)) = P
�
T(A(T)), then we show that

E
◦
t (h̄�t(X)κ(t)1A(t)) → P

�
T(A(T)) as t ↑ T. Finally, we finish the proof via Scheffé’s

lemma.
First note that for any fixed k, it follows from dominated convergence, combined with

(3.1e), Lemma 3.2 and Proposition 2.6 that

E
◦
T

(
h̄�κ

T(X)1Ak(T)

) = lim
t↑T

E
◦
t

(
h̄�t(X)κ(t)1Ak(t)

) = lim
t↑T

E
�
t

(
h̃(t,Xt)

h(t,Xt)
κ(t)1Ak(t)

)
.

We now send k → ∞ on both sides and find that, by (3.1a) combined with monotone
convergence, the left hand side tends to E

◦
T(h̄�κ

T(X)1A(T)) while the right hand side tends
to P

�
T(A(T)) by (3.1d). Hence E

◦
T(h̄�κ

T(X)1A(T)) = P
�
T(A(T))
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Now note that for any fixedm, it follows from Proposition 2.6 that

lim
t↑T

E
◦
t

(
h̄�t(X)κ(t)1A(t)

) ≥ lim
t↑T

E
◦
t

(
h̄�t(X)κ(t)1Am(t)

) = lim
t↑T

E
�
t

(
h̃(t,Xt)

h(t,Xt)
κ(t)1Am(t)

)
.

Upon sendingm → ∞, we have, by (3.1d), limt↑T E
◦
t (h̄�t(X)κ(t)1A(t)) ≥ P

�
T(A(T)). For

the other inequality, we note that for any s<T, by Proposition 2.6,

lim
t↑T

E
◦
t

(
h̄�t(X)κ(t)1A(t)

) ≤ lim
t↑T

E
◦
t

(
h̄�t(X)κ(t)1A(s)

)
(10)

= lim
t↑T

E
�
t

(
1A(s)

h̃(t,Xt)

h(t,Xt)
κ(t)

)
= P

�
s (A(s)) (11)

where the last equality follows upon taking gs = 1A(s) in Lemma A.1. Upon sending s ↑ T,
we find by monotonicity of measures, limt↑T E

◦
t (h̄�t(X)κ(t)1A(t)) ≤ P

�
T(A(T)).

We thus conclude thatE◦
t (h̄�t(X)κ(t)1A(t)) → E

◦
T(h̄�κ

T(X)1A(T)). Nownote that upon
taking limk→∞ as well in Lemma 3.2 and interchanging limk→∞ and limt↑T , we have that
�t(X)κ(t)1A(t) → �κ

T(X)1A(T) in theP
◦-almost sure sense. Here the interchange of limits

is allowed as the sequence is monotone in k. Hence, by Scheffé’s lemma,�t(X)κ(t)1A(t) →
�κ

T(X)1A(T) in L1(P◦).
Now let s<T and let fs be any bounded positive Fs-measurable function such that

the support of fs(X) is contained in A(T). Then it follows from L1 convergence and
Proposition 2.6 that

E
◦
T

(
fs(X)h̄�κ

T(X)1A(T)

) = lim
t↑T

E
◦
t

(
fs(X)h̄�t(X)κ(t)1A(t)

)

= lim
t↑T

E
�
t

(
fs(X)

h̃(t,Xt)

h(t,Xt)
κ(t)1A(t)

)
.

Since fs(X) has support only on A(T) and for t ∈ [s,T), A(T) ⊆ A(t) ⊆ A(s), we have that
fs(X)1A(s) = fs(X)1A(t) = fs(X)1A(T). Hence, upon applying Lemma A.1 to fs1A(s),

lim
t↑T

E
�
t

(
fs(X)

h̃(t,Xt)

h(t,Xt)
κ(t)1A(t)

)
= lim

t↑T
E

�
t

(
fs(X)

h̃(t,Xt)

h(t,Xt)
κ(t)1A(s)

)

= E
�
s

(
fs(X)1A(s)

) = E
�
T

(
fs(X)1A(T)

)
.

For the equivalence, it suffices to show that P◦
T(A(T)) = 1 =⇒ P

�
T(A(T)) = 1. Note that

by monotonicity P
�(A(T)) = limt↑T P

�(A(t)). Now for all t<T, P
◦(A(t)) ≥ P

◦(A(T))

and thus the result follows from Proposition 2.6. �

3.1. Discussion of Assumption 3.1

The order of verifying the assumptions in Assumption 3.1 is often as follows. We first
choose the function κ so that (3.1d) holds, then we compute �t(X)κ(t) and find V so
that �t(X)κ(t) is bounded whenever V is bounded to ensure (3.1e) holds. We then have
(3.1a) via Lemma. 3.4 and, if possible, eliminate the indicator in the expression for the
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Radon–Nikodym derivative and thereby proof equivalence by showing that V is almost
surely bounded.

The function κ is incorporated to enable compensating for a possible difference of
smoothness in X̃ and X. In Section 4.2, we consider an example where X is a process in
a discrete state space, while X̃ is a continuous process. In such a setting, incorporating a
nonconstant κ is essential. If for example bothX and X̃ are solutions to SDEs, we can always
take κ = 1.

Proposition 3.4: If the events Ak(t) are defined by

Ak(t) =
{

sup
t0≤s<t

V(x,Xs) ≤ k

}
(12)

for a nonnegative function V : [t0,T) × S → [0,∞), then (3.1a) is satisfied. If also
supt V(t,Xt) is P

◦-almost surely bounded, then the Radon–Nikodym derivative in
Theorem 3.3 can be simplified since P

◦
T(A(T)) = 1 and thus the measures are equivalent.

The following proposition gives a condition for verifying P
◦-almost sure boundedness

of V and thus showing P
◦
T(A(T)) = 1.

Proposition 3.5: Suppose A◦V ≤ 0, then there exists a random variable C such that
supt0≤t<T V(t,Xt) ≤ C and P

◦(C ≥ λ) ≤ λ−1
EP◦V(t0,Xt0) for any λ > 0.

Proof: Wefirst show that {V(t,Xt)}t0≤t<T is a supermartingale. Note that by (1), aP
◦-local

martingaleMV exists so that under P
◦

V(t,Xt) = V
(
t0,Xt0

) + MV
t +

∫ t

t0
A◦V(s,Xs) ds.

Since V is nonnegative and A◦V ≤ 0, it follows that MV is bounded from below by
−V(t0,Xt0). Hence, by Lemma. A.4, MV is a supermartingale. Moreover, it follows that
V(t,Xt) is integrable for all t since

E
◦
t |V(t,Xt)| = E

◦
t V(t,Xt) ≤ E

◦
t0V(t0,Xt0) + E

◦
t M

V
t

The supermartingale property follows as for t0 ≤ s ≤ t < T,

E
◦
t (V(t,Xt) | Fs) − V(s,Xs) = E

◦
t

(
MV

t | Fs
) − MV

s + E
◦
t

∫ t

s
A◦V(u,Xu) du ≤ 0

Doob’s supermartingale inequality, see e.g. Theorem 1.3.6 of [11], now states that for all
λ > 0,

λP
◦

(
sup

t0≤t<T
V(t,Xt) ≥ λ

)
≤ E

◦
t0V

(
t0,Xt0

)
.

Hence, a random variable C exists so that P
◦-almost surely supt0≤t<T V(t,Xt) ≤ C where

P
◦(C ≥ λ) ≤ λ−1

EP◦V(t0,Xt0). �
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4. Application 1: discrete state-space processes

Here we discuss two Markov processes that take values in a discrete state space.

4.1. Inhomogeneous poisson process

Let X be an inhomogeneous Poisson process with state-dependent rate λ, that is

P (Xt+� = x + 1 | Xt = x) = λ(x)� + o(�). (13)

The infinitesimal generator of X is given by

Lf (x) = λ(x)
(
f (x + 1) − f (x)

)
. (14)

We assume X0 = x0, fix xT > x0 and we consider the process X� = (X | XT = xT). More-
over, we assume that λ takes finite values on the set {x0, x0 + 1, . . . , xT}. X� is obtained
from Doob’s h-transform with h(t, x) = P(XT = xT | Xt = x). It follows from (4) that X�

is an inhomogeneous Poisson process with rate λ�(t, x) = λ(x)h(t,x+1)
h(t,x) on {x0, . . . , xT − 1}

and 0 at x = xT . Since λ is state-dependent, the transition probabilities forX are intractable
and thus the exact form of the processX� cannot be determined.We thus simulate a guided
process with a homogeneous Poisson process with rate λ̃ as auxiliary process, i.e.

h̃(t, x) =
⎧⎨
⎩

(
λ̃(T−t)

)xT−x

(xT−x)! e−λ̃(T−t), (t, x) ∈ [0,T) × {x0, . . . , xT}
0 elsewhere

. (15)

Proposition 4.1: Both h and h̃ are S-good functions for all S<T.

Proof: Let S<T. Since h is a non-zero probability and Ah = 0, it immediately follows
from Proposition 2.2 that h is a good function. It follows from a direct computation that

Ah̃
h̃

(t, x) =
(
λ(x) − λ̃

) (
xT − x

λ̃(T − t)
− 1

)
, (t, x) ∈ [0, S] × {x0, . . . , xT}

Hence, since S<T, both h̃ and Ah̃
h̃
are boundedmeasurable on [0, S] × S and h̃ is an S-good

function by Proposition 2.2. �

Theorem 4.2: Let X◦ be the guided process induced by (15) and suppose that λ̃ ≤
min{λ(x) : x ∈ {x0, . . . , xT}}. Then the laws of X� and X◦ are equivalent on [0,T]. Moreover,

dP
�
T

dP
◦
T
(X) = h̃(0, x0)

h(0, x0)
exp

(∫ T

0

[
λ(Xs) − λ̃

] [
xT − Xs

λ̃(T − t)
− 1

]
ds

)
. (16)

Proof: Set κ(t) = 1, t0 = 0 and define {Ak(t)}k,t as in (12) with

V(t, x) = xT − x
λ̃(T − t)

, (t, x) ∈ [0,T) × {x0, . . . , xT}, (17)

so that (3.1a) is satisfied. The result follows follows from an application of Theorem 3.3,
where the assumptions from Assumption 3.1 are satisfied via Lemmas 4.3– 4.5. The form
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of the Radon–Nikodym derivative is obtained via (7) and upon noting that P◦
T(A(T)) = 1

by Proposition 3.5 and Lemma 4.6. The latter also implies equivalence. �

In the remainder of this section, we prove the results used in the proof of Theorem 4.2
and we thus assume the conditions stated in this theorem are satisfied and take κ , t0,V and
{Ak(t)}k,t as stated in the proof.

Lemma 4.3: Assumptions (3.1b) and (3.1c) are satisfied.

Proof: First note thatX admits a transition density pwith respect to the countingmeasure.
Let s ∈ [0,T) and y ∈ {x0, . . . , xT}. Then

h(t; s, x) =
∫

κ(t)h̃(t, y)p(s, x; t, y) dν(y)

=
v∑

y=x0

(
λ̃(T − t)

)xT−y

(xT − y)!
e−λ̃(T−t)p(s, x; t, y)

= e−λ̃(T−t)p(s, x; t, xT) +
xT−1∑
y=x0

(
λ̃(T − t)

)xT−y

(xT − y)!
e−λ̃(T−t)p(s, x; t, y).

As t ↑ T, the first term on the right hand side tends to p(s, x;T, xT) = h(s, x), while the
second term vanishes as p is bounded by 1. It can also be observed that h is uniformly
bounded by 1 and thus h(t; s,Xs) is clearly bounded. �

Lemma 4.4:

lim
k→∞

lim
t↑T

E
�
t

(
h̃(t,Xt)

h(t,Xt)
1Ak(t)

)
= P

�
T(A(T)).

Proof: We first show that for all k, h̃(t,Xt)
h(t,Xt)

1Ak(t) → 1Ak(T) in the P
�-almost sure sense as

t ↑ T. By (12) and (17),

Ak(t) =
{

sup
0≤s<t

xT − Xs

λ̃(T − s)
≤ k

}

Hence, for all trajectories ω ∈ Ak(T), we must have an ε(ω) > 0 such that X�
t (ω) = xT for

t ∈ (T − ε(ω),T].
By (13) for t sufficiently close to T,

h(t, x) =
{

λ(x)(T − t) + o(T − t), x < xT
1 − λ(x)(T − t) + o(T − t), x = xT

.

It thus follows that limt↑T h(t,X�
t (ω)) = 1 for all ω ∈ Ak(T). Similarly, we deduce

from (15) that also limt↑T h̃(t,X�
t (ω)) = 1 for all ω ∈ Ak(T). Now

h̃(t,Xt)

h(t,Xt)
1Ak(t) = h̃(t,Xt)

h(t,Xt)
1Ak(T) + h̃(t,Xt)

h(t,Xt)
1Ak(t)\Ak(T)
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We proceed to show that h̃(t,Xt)
h(t,Xt)

is bounded on Ak(t) \ Ak(T). Note

Ak(t) \ Ak(T) =
{

sup
t≤s<T

xT − Xs

λ̃(T − s)
> k

}
(18)

Hence, on Ak(t) \ Ak(T), we must have Xt < xT . Now

h̃(t,Xt)

h(t,Xt)
= λ̃xT−Xt (T − t)xT−Xt−1(

λ(Xt) + o(T−t)
T−t

)
(xT − Xt)!

e−λ̃(T−t)

Since, xT − Xt ≥ 1, this term is clearly bounded in t. By the preceding, under P
�, the first

term tends to 1Ak(T) as t ↑ T, while the second term in (18) tends to 0. The preceding also
implies that h̃(t,Xt)

h(t,Xt)
1Ak(t) is bounded in t, and thus by dominated convergence,

lim
k→∞

lim
t↑T

E
�
t

(
h̃(t,Xt)

h(t,Xt)
1Ak(t)

)
= lim

k→∞
E

�
T1Ak(T) = P

�
T(A(T)),

where the last equality follows from monotone convergence �

Lemma 4.5: For all k, �t(X)1Ak(t) is P
◦-almost surely uniformly bounded in t.

Proof: Observe that for x ∈ {x0, . . . , xT − 1},

V(t, x) = h̃(t, x + 1)
h̃(t, x)

Now note that, by (7),

log�t(X) =
∫ t

0

(
L − L̃

)
h̃

h̃
(s,Xs) ds

=
∫ t

0

λ(Xs) − λ̃

h̃(s,Xs)

(
h̃(s,Xs + 1) − h̃(s,Xs)

)
ds

=
∫ t

0

(
λ(Xs) − λ̃

)
(V(s,Xs) − 1) ds.

Now since λ is nonnegative and λ̃ ≤ λ(x) for all x ∈ {x0, . . . , xT}, we have that for all t ∈
[0,T),

�t(X)1Ak(t) ≤ exp
(

(k − 1)
∫ t

0

(
λ(Xs) − λ̃

)
ds

)
≤ exp

(
(k − 1)

∫ T

0

(
λ(Xs) − λ̃

)
ds

)
,

where the last term is P
◦-almost surely integrable. �

Lemma 4.6: A◦V(t, x) ≤ 0 for all t ∈ [0,T] and x ∈ {x0, . . . , xT}.
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Figure 1. The blue points indicate a realization of a unit rate planar Poisson process with (left) the
Delaunay triangulation and (right) the Voronoi diagram of the set.

Proof: The result follows from a direct computation. A◦(t, xT) = 0 and for x ∈
{x0, . . . , xT − 1},

A◦V(t, x) = ∂V
∂t

(t, x) + λ◦(t, x) [V(t, x + 1) − V(t, x)]

= ∂V
∂t

(t, x) + λ(x)
h̃(t, x + 1)
h̃(t, x)

[V(t, x + 1) − V(t, x)]

= xT − x
λ̃(T − t)2

− λ(x)
xT − x[

λ̃(T − t)
]2 = xT − x

λ̃(T − t)

(
1 − λ(x)

λ̃

)
≤ 0. �

4.2. Jump process on a delaunay triangulation

Here, we consider a toy example to model electric flow through a city. In [9], electricity
is modelled as a random walk on a discrete grid and here we slightly alter this model by
considering jump processes on a triangulation of a random set of points in the plane R

2.
The network is constructed by first sampling points in the plane according to a planar
Poisson process, followed by adding connections according to a Delaunay triangulation
(we recap its definition below). We assume that at a given location electricity moves to a
randomly chosen neighbour. We condition the model by a starting point and a final point
on the grid and model the flow of electricity between the two points.

Definition 4.7 (Voronoi diagram and Delaunay triangulation): Let P be a set of points
in R

d. The Voronoi diagram associated with P is the collection of Voronoi cells

VP(x) :=
{
y ∈ R

d :
∣∣y − x

∣∣ ≤ ∣∣y − z
∣∣ , for all z ∈ P

}
, x ∈ P.

The Delaunay triangulationD(P) of P is the dual graph of the Voronoi diagram. It has P as
vertex set and there is an edge between x and y inD(P) if VP(x) and VP(y) share a (d − 1)-
dimensional face. An example of a Delaunay traingulation and a Voronoi diagram can be
found in Figure 1.
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In this section, we consider a realization ξ of a unit rate planar Poisson process that
satisfies the following properties:

• for all compact A ⊆ R
2, the set A ∩ ξ is finite.

• There is a constant K such that for any pair x, y of vertices inD(ξ) satisfies
∣∣y − x

∣∣ ≤ K.

Note that properties are events of probability 1.
Denote the Delaunay triangulation of ξ by D(ξ). Consider a unit rate jump process

X = {Xt}t≥0 on D(ξ) defined through the generator

Lf (x) =
∑

y∈Nξ (x)

(f (y) − f (x)), x ∈ ξ , (19)

where Nξ (x) denotes the set of neighbours to x ∈ ξ in D(ξ). For fixed xT ∈ ξ and T>0,
we consider the process conditioned X� = (X | XT = xT) induced by h(t, x) = P(XT =
xT | Xt = x). By Theorem 1 of [15], the time-changed scaled process Xε = {εXt/ε2}t≥0
converges in law to a scaled Brownian motion as ε ↓ 0. Moreover, the scale parameter
σ̃ > 0 of the Brownian motion does not depend on the realization of ξ , but it does depend
on the rate of ξ . We thus have an immediate candidate for h̃ in

h̃(t, x) = η(t) exp (−H(t, x)) , with

η(t) = 1
2π ã(T − t)

and H(t, x) = |xT − x|2
2ã(T − t)

, (20)

with ã = σ̃ 2. By (4), the guided process X◦ induced by h̃ is generated by

L◦f (x) = 1
h̃(t, x)

[
L

(
h̃f

)
(t, x) − f (x)Lh̃(t, x)

]
=

∑
y∈Nξ (x)

h̃(t, y)
h̃(t, x)

(f (y) − f (x)). (21)

Hence the guided process is a jump process onD(ξ) with state-dependent jump rates. The
rate of jumping from x to y ∈ Nξ (x) is given by

h̃(t, y)
h̃(t, x)

= exp

(
−

∣∣xT − y
∣∣2 − |xT − x|2

2ã(T − t)

)
(22)

Proposition 4.8: Both h and h̃ are S-good functions for all S<T.

Proof: Let S<T. h is defined as a non-zero probability andAh = 0 and thus h is S-good
by Proposition 2.2. Since A solves the martingale problem for the process X under P, it
follows from Lemma 3.1 of [12] that Dh̃

t is a P-local martingale. We proceed to show that
Dh̃
t isP-almost surely bounded on [0, S], so that the result follows fromTheorem 47 of [14].
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direct computation yields

Ah̃
h̃

(t, x) = Lh̃
h̃

(t, x) + d log η

dt
− ∂H

∂t
=

∑
y∈Nξ (x)

(
h̃(t, y)
h̃(t, x)

− 1

)
+ d log η

dt
− ∂H

∂t
(23)

Using (23), we obtain

Dh̃
t = exp

⎛
⎝∫ t

0

∂H
∂s

(s,Xs) ds − H(t,Xt) + H(0, x0) −
∫ t

0

∑
y∈Nξ (Xs)

(
h̃(s, y)
h̃(s,Xs)

− 1

)
ds

⎞
⎠

Notice that ∫ t

0

∂H
∂s

(s,Xs) ds − H(t,Xt) =
∫ t

0

|xT − Xs|2
2ã(T − s)2

ds − |xT − Xt|2
2ã(T − t)

is P-almost surely bounded on [0, S]. It remains to be shown that

∑
y∈Nξ (x)

h̃(t, y)
h̃(t, x)

= exp
(

− 1
2ã(T − t)

[∣∣xT − y
∣∣2 − |xT − x|2

])

is bounded in x. For any x ∈ ξ and y ∈ Nξ (x),
∣∣xT − y

∣∣2 − |xT − x|2 = 〈
2xT , x − y

〉 +∣∣y∣∣2 − |x|2. Since, y ∈ Nξ (x), if follows fromCauchy-Schwartz that
〈
2xT , x − y

〉 ≤ 2 |xT |K.
Moreover, since the function (a, b) �→ b2 − a2 is bounded on any compact disc and∣∣∣∣y∣∣ − |x|∣∣ ≤ ∣∣y − x

∣∣ ≤ K,
∣∣y∣∣2 − |x|2 is bounded as well. �

Theorem 4.9: The guided process induced by (20) is equivalent to X� = (X | XT = xT) on
[0,T]. Moreover,

dP
�
T

dP
◦
T
(X) = 2π ãT

h̃(0, x0)
h(0, x0)

exp

⎛
⎝∫ T

0

⎡
⎣ ∑
y∈Nξ (Xs)

(
h̃(s, y)
h̃(s,Xs)

− 1

)
− |xT − Xs|2

2ã(T − s)2

⎤
⎦ ds

⎞
⎠ .

Example 4.10: Figure 2 demonstrates an application of Theorem 4.9. We simulated a
Poisson-Delaunay grid with intensity 5000 and chose as starting point the vertex closest
to coordinates (1.25, 1.25). We considered the problem of conditioning on ending in the
vertex with coordinates approximately equal to (1.75, 1.75) at time T = 30. Although the
scale ã is not affecting the validity of Theorem 4.9, a good choice can help to improve the
quality of the samples. That is, a wrong choice can lead to samples arriving at the endpoint
too early or too late and, if a Metropolis-Hastings sampling algorithm is used to sample
from the Radon–Nikodym derivative in Theorem 4.9, the acceptance rate suffers. Here, we
estimated ã ≈ 0.13 by generating a long trajectory of the jump process and computing its
quadratic variation.

For the proof of Theorem 4.9, we need the following property of D(ξ)

Proposition 4.11: Let x, v ∈ ξ with x �= xT. Then there exists an y ∈ Nξ (x) so that∣∣xT − y
∣∣ < |xT − x|.
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Figure 2. Illustration for Example 4.10. Left: jump process bridge between two vertices in a random
Poisson-Delaunay graph – simulated using a guided process derived from the Brownian motion scaling
limit of the random walk. Right: coordinate processes versus time corresponding to the same bridge
realization.

Proof: If xT ∈ Nξ (x), set y = xT . If xT /∈ Nξ (x) we denote the Voronoi cell of x by Vξ (x).
Since x is not on the boundary of Vξ (x), there is an edge in the boundary of Vξ (x) that
intersects the line segment between xT and x. If two edges in Vξ (x) meet on this line seg-
ment, we may choose either one of them. We choose y as the point in the Voronoi cell
adjecent to this boundary edge of Vξ (x). By construction, y ∈ Nξ (x) and by the triangle
inequality

∣∣xT − y
∣∣ < |xT − x|.

Note that the inequality is strict, as two points x, ywith |xT − x| = ∣∣xT − y
∣∣ cannot have

the Voronoi edge in between them also intersecting the prescribed line segment between
x and xT as the triangle with vertices x, y, xT is an isosceles triangle. �

Proof of Theorem 4.9: We prove Theorem 4.9 via Theorem 3.3. Set t0 = 0, κ(t) = 1/η(t)
and let

V(t, x) =
∑

y∈Nξ (x)

h̃(t, y)
h̃(t, x)

(24)

As in Lemma 3.4, define the events

Ak(t) =
{

sup
0≤s<t

V(s,Xs) ≤ k

}
, (25)

We first note that (3.1a) is satisfied by construction. The remaining assumptions of
Assumption 3.1 are satisfied by Lemmas 4.12, 4.4 and 4.5. Finally, the equivalence and
the form of the Radon–Nikodym derivative follows from a direct computation and upon
noting that P

◦
T(A(T)) = 1 by Corollary 4.16. �

In the remainder of this section, we prove the lemmas needed for Theorem 4.9.We thus
assume that the conditions are satisfied and set t0 = 0 and κ(t) = 1/η(t) and choose the
events {Ak(t)}k,t as in (25) with V as in (24).
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Lemma 4.12: Assumptions (3.1b) and (3.1c) are satisfied.

Proof: The proof is similar to the proof of Theorem 4.3. First note that κ(t)h̃(t, x) =
exp(−H(t, x)). Now X admits a transition density p with respect to the counting measure
and thus for s ∈ [0,T) and y ∈ ξ ,

h(t; s, x) =
∫

κ(t)h̃(t, y)p(s, x; t, y) dν(y)

=
∑
y∈ξ

exp
(−H(t, y)

)
p(s, x; t, y)

= p(s, x; t, xT) +
∑

y∈ξ\{xT}
exp

(
−

∣∣xT − y
∣∣2

2ã(T − t)

)
p(s, x; t, y).

Clearly all terms are uniformly bounded in s, t and x and, as t ↑ T, the first term tends to
h(s, x), while the second term tends to 0 as p stays between 0 and 1. �

Lemma 4.13:

lim
k→∞

lim
t↑T

E
�
t

(
κ(t)

h̃(t,Xt)

h(t,Xt)
1Ak(t)

)
= P

�
T(A(T)).

Proof: Through the same reasoning as in the proof of Lemma 4.4, it can be deduced that

lim
k→∞

lim
t↑T

E
�
t

(
κ(t)

h̃(t,Xt)

h(t,Xt)
1Ak(t)

)
= lim

k→∞
E

�
T1Ak(T) = P

�
T(A(T)). �

Lemma 4.14: For all k, �t(X)κ(t)1Ak(t) is uniformly bounded in t with P
◦-probability 1.

Proof: A direct computation yields

�t(X)κ(t)

= exp

(
log κ(t) +

∫ t

0

Ah̃
h̃

(s,Xs) ds

)

= exp

(
− log η(t) +

∫ t

0

d
ds

log η(s) ds −
∫ t

0

∂H
∂s

(s,Xs) ds +
∫ t

0

Lh̃
h̃

(s,Xs) ds

)

≤ exp

⎛
⎝− log η(0) +

∫ t

0

∑
y∈Nξ (Xs)

(
h̃(s, y)
h̃(s,Xs)

− 1

)
ds

⎞
⎠ .

Here the final inequality is obtained as ∂H
∂s (s, x) ≥ 0 for any pair (s, x). Note that under

Ak(t), the final term is bounded by exp{kt − log η(0)} and thus supt �t(X)κ(t)1Ak(t) is
uniformly bounded by exp{kT − log η(0)}. �

Finally, we show that P
◦(A(T)) = 1. Proposition 4.11 demonstrates that if X◦

t �= xT
for t<T, then miny∈Nξ (X◦

t )

∣∣xT − y
∣∣ <

∣∣xT − X◦
t
∣∣, i.e. there is always an y ∈ Nξ (X◦

t ) that
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takes X◦
t closer to xT . Since X◦ is piecewise constant, it follows from the preceding

and (24) that supt V(t,X◦
t ) is bounded on the event {X◦

T = xT} and infinite otherwise since
miny∈Nξ (X◦

t )

∣∣xT − y
∣∣ − ∣∣xT − X◦

t
∣∣ ≥ 0 if and only if X◦

t = xT . This leads to the following
theorem.

Theorem 4.15: P
◦(XT = xT) = 1.

Proof: Given X◦
t = x, X◦ jumps to y ∈ Nξ (x) with rate h̃(t,y)

h̃(t,x)
. Hence, as ε ↓ 0,

P
◦ (
Xt+ε = y | Xt = x

) = h̃(t, y)
h̃(t, x)

ε + o(ε). (26)

Define the first time the process is closer to xT as τ+. That is,

τ+ = inf {s ≥ t : |xT − Xs| < |xT − Xt|}
It can be quickly derived that the distribution of τ+ satisfies

P
◦(τ+ > s | Xt = x) ≤ exp

(
−

∫ s

t
V+(u, x) du

)
, x �= xT , (27)

where

V+(u, x) =
∑

y∈Nξ (x)
|xT−y|<|xT−x|

h̃(u, y)
h̃(u, x)

=
∑

y∈Nξ (x)
|xT−y|<|xT−x|

exp

(
−

∣∣xT − y
∣∣2 − |xT − x|2

2ã(T − u)

)

Upon plugging in s = T in (27), we deduce that for any t<T and x �= xT , the probability,
conditional on Xt = x, of reaching a point closer to xT before time T equals 1. That is, for
all t<T and x ∈ ξ \ {xT},

P
◦ (∃s ∈ [t,T) such that |xT − Xs| < |xT − x| | Xt = x) = 1. (28)

Since (28) holds for any t<T,X◦ keeps reaching points close to xT with probability 1. Since
there are only finitely many points in all compact sets around around xT ,

P(∃s ∈ [t,T) such that Xs = xT | Xt = x) = 1

for all x ∈ ξ . Hence, by the law of total probability, for all t<T,

P
◦(∃s ∈ [t,T) such that Xs = xT) = 1 (29)

Define the collection of events Bt = ⋃
t≤s<T{Xs = xT}. By (29), P◦(Bt) = 1 for all t<T.

By monotonicity of probability measures

P
◦(XT = xT) = P

◦
(⋂
t<T

Bt

)
= lim

t↑T
P

◦(Bt) = 1 �

Corollary 4.16: P
◦(sup0≤t<T V(t,Xt) < ∞) = 1.

Proof: Clearly, for each ω ∈ {X◦
T = xT}, we have that sup0≤t<T V(t,Xt(ω)) < ∞, which

finishes the proof as {X◦
T = xT} is an event with probability 1 by Theorem 4.15. �
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5. Application 2: conditional stochastic differential equations

In this section, we focus on Markov processes that arise as the solution to Euclidean SDEs
and verify Assumption 3.1 under certain conditions on the coefficients.

5.1. Setting, assumptions andmain result

We assume that b : [0,T] × R
d → R

d and σ : [0,T] × R
d → R

d×d′
are such that X,

solving the SDE

dXt = b(t,Xt) dt + σ(t,Xt) dWt , X0 = x0, (30)

uniquely exists (in the strong sense). Here,W is a d′-dimensional Wiener process with all
components independent. A Doob h-transform then yields a process X� that solves

dX�
t = b�(t,X�

t ) dt + σ(t,X�
t ) dWt , X�

0 = x0, (31)

where, with a = σσ ′,

b�(t, x) = b(t, x) + a(t, x)∇x log h(t, x).

The guided process induced by a function h̃ is found as the solution to

dX◦
t = b◦(t,X◦

t ) dt + σ(t,X◦
t ) dWt , X◦

0 = x0, (32)

where

b◦(t, x) = b(t, x) + a(t, x)∇x log h̃(t, x).

This can be derived using (4). This setting has initially been considered in [16], fol-
lowed by generalization in [5]. However, especially when the diffusion is hypo-elliptic with
state-dependent diffusivity, the results in these papers are insufficient to obtain absolute
continuity of P

� with respect to P
◦. The following example exemplifies the setting that we

wish to study that is not covered by theoretical results in [5].

Example 5.1 (Integrated diffusion): Suppose we study the movement of a particle and
Xt,1 denotes its position and Xt,2 its velocity at time t. Assume the velocity is driven by a
Wiener process, so that we have the system of SDEs given by

dXt,1 = Xt,2 dt

dXt,2 = β(t,Xt) dt + γ (t,Xt,1) dWt
.

This example was studied in [5] in the special case where γ is a constant. Computational
results in there suggest that absolute continuity may also hold if γ is state-dependent, but
the assumptions imposed in the main result are too strong to be verified for this example.

As in [5], we will consider the process X, conditioned on LXT = v, where L is anm × d
matrix withm ≤ d and v ∈ R

m. Without loss of generality, we assume rank (L) = m. The
conditional process X� = (X | LXT = v) arises from a Doob h-transform. In Section 1.3.2
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of [5], it is shown that it suffices to choose h(t, x) as the density of the measure P(LXT ∈
· | Xt = x), i.e.

h(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
p(t, x;T, v) ifm = d∫

Rd−m
p

(
t, x;T,

d∑
i=1

ξifi

)
dξm+1 · · · dξd ifm < d

. (33)

Here, p denotes the transition density of X and we assume without loss of generality that
L = I in the case where rank (L) = d. Moreover, f1, . . . , fm form an orthonormal basis
of Col(L′) and fm+1, . . . , fd form an orthonormal basis of ker L. ξ1, . . . , ξd are so that
L

∑d
i=1 ξifi = v, for which ξ1, . . . , ξm are uniquely determined.

5.1.1. Choice of appropriate Doob’s h-transform h̃
Since h, as defined in (33) is generally intractable, we define a guided process induced by
h̃, which is derived similarly to (33), but with the transition density p̃ from an auxiliary
process X̃ that satisfies the SDE

dX̃t = b̃
(
t, X̃t

)
dt + σ̃ (t) dWt ,

where

b̃(t, x) = B̃(t)x + β̃(t).

Here B̃ : [0,T] → R
d×d, β̃ : [0,T] → R

d and σ̃ : [0,T] → R
d×d′

should be so that X̃ exists
uniquely and possesses smooth transition densities. We introduce the following notation,
assuming t<T

L(t) = L exp
{∫ T

t
B̃(s) ds

}

μ(t) =
∫ T

t
L(s)β̃(s) ds

M(t) =
(∫ T

t
L(s)ã(s)L(s)′ ds

)−1

ζ(t, x) = v − μ(t) − L(t)x

(34)

Here, we implicitly assume the inverse appearing in the definition of M(t) exists and set
ã = σ̃ σ̃ ′. By Lemma 2.5 of [5],

h̃(t, x) = η(t) exp{−H(t, x)}, (35)

where

η(t) = (2π)−m/2 |M(t)|1/2 and H(t, x) = 1
2
ζ(t, x)′M(t)ζ(t, x). (36)
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5.1.2. Main result
Let �(t) be an invertible m × m diagonal matrix valued measurable function on [0,T)

with t �→ �ii(t) nondecreasing for i ∈ {1, . . . ,m}. Define

L�(t) = �(t)L(t)

M�(t) = �(t)−1M(t)�(t)−1

ζ�(t, x) = �(t)ζ(t, x)

(37)

Note that for t ≈ T, we have L(t) ≈ L and μ(t) ≈ 0 and thus ζ�(t,X◦
t ) ≈ �(t)(v − LX◦

t ).
For a uniformly elliptic diffusion we will always take �(t) = I. In the hypo-elliptic set-
ting, the matrix �(t) is included to account for potential differences in smoothness of
components X◦

t .

Assumption 5.2: Let t0 ∈ [0,T). The scaling matrix �(t) and the coefficients of the
process X and X̃ are such that

(5.2a) There exist positive constants c, c so that for all t ∈ [t0,T)

c(T − t)−1 ≤ λmin(M�(t)) ≤ λmax(M�(t)) ≤ c(T − t)−1.

(5.2b) There exists a positive constant c1 so that for all t ∈ [t0,T),∣∣∣L�(t)
(
b̃(t,X◦

t ) − b(t,X◦
t )

)∣∣∣ ≤ c1.

(5.2c) There exists a positive constant c2 so that for all t ∈ [t0,T),

tr
(
L�(t)a(t,X◦

t )L�(t)′
) ≤ c2.

(5.2d) There exists a positive constant c3 and a function θ : [t0,T) × R
d → [0,∞) so that

for all t ∈ [t0,T),∥∥L�(t)
(
ã(t) − a(t,X◦

t )
)
L�(t)′

∥∥ ≤ c3
∣∣ζ�(t,X◦

t )
∣∣ + θ(t,X◦

t ),

where there exist positive c4,α so that for all x,

θ(t, x) ≤ c4(T − t)α .

Assumption 5.2 is similar toAssumption 2.7 of [5]. However, instead of (5.2d) a stronger
assumption is formulated in there, which excludes diffusions with state-dependent diffu-
sivity apart from a few exceptional cases. The present assumption is less restrictive and
therefore provides a solution to a conjecture posed in section 7.2 of [5].

We require one final assumption on the transition density of the process underP for the
proof of Theorem 5.6.

Assumption 5.3: For K>1 and u ≥ 0, define gK(u) = max(1/K, 1 − Ku). There exist
constants�,C > 0, K>1 and a functionμt(s, x) : {s, t : 0 ≤ s ≤ t ≤ T} × R

d → R
d with
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|μt(s, x) − x| < K(t − s) |x| and |μt(s, x)|2 ≥ gK(t − s) |x|2, so that for all s < t ≤ T and
x, y ∈ R

d,

p(s, y; t, x) ≤ C(t − s)−d/2 exp

(
−�

∣∣x − μt(s, y)
∣∣2

t − s

)

Remark 5.4 (On Assumption 5.3): This assumption is the same as Assumption 2 in
[16] and is implied by the stronger Aronson inequality. However, Assumption 5.3 is also
satisfied for example for linear diffusion processes that have unbounded drift.

Proposition 5.5: Let S<T. Then h and h̃, defined in (33) and (35), respectively, are S-good
functions.

Proof: Note that by Itô’s formula,

dh(t,Xt) = σ(t,Xt)
′∇xh(t,Xt) dWt + Ah(t,Xt) dt.

Hence, since Ah = 0, Dh
t = h(t,Xt)

h(0,x0) is a P-local martingale. Since also E sups≤t h(s,Xs) <

∞ for all t ∈ [0, S], h is an S-good function by Theorem 47 of [14].
To see that h̃ is an S-good function, denote γ (t, x) = σ(t, x)′∇x log h̃(t, x). Following

the reasoning in the proof of Theorem 3.3 in [17], we deduce that

Dh̃
t = exp

(∫ t

0
γ (s,Xs)

′ dWs − 1
2

∫ t

0
|γ (s,Xs)|2 ds

)
�

In the proof of Theorem 1 of [8], it is shown that the right hand side is a positive P-
martingale and thus h̃ is an S-good function.

Our main result of this section is that Assumptions 5.2 and 5.3 suffice to justify the
limiting operation t ↑ T and hence absolute continuity of P

� with respect to P
◦.

Theorem 5.6: Let X, X� and X◦ be defined through (30)–(32), respectively. Here X� and X◦
are induced by (33) and (35). Suppose Assumptions 5.2 and 5.3 are satisfied and there exists
a positive � such that |�(t)| � (T − t)−δ . Then P

�
T and P

◦
T are equivalent and

dP
�
T

dP
◦
T
(X) = h̃(0, x0)

h(0, x0)
�T(X).

Moreover, using (7), it can be deduced that �t(X) = exp(
∫ t
0 G(s,Xs) ds), where G denotes

the tractable quantity

G(s, x) =
(
b(s, x) − b̃(s, x)

)′
r̃(s, x)

− 1
2
tr

(
[a(s, x) − ã(s)]

[
L(s)′M(s)L(s) − r̃(s, x)r̃(s, x)′

])
with r̃(s, x) = ∇x log h̃(s, x).

The proof is deferred to the next subsection. The following result can simplify verify-
ing (5.2d).
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Lemma 5.7: Suppose

• there exists a map ā : [t0,T] × R
m → R

d×d such that ā(t, Lx) = a(t, x) for all (t, x) ∈
[t0,T] × R

d.
• themap t �→ L�(t)ã(t)L�(t)′ is Lipschitz and themap (t, y) �→ L�(t)ā(t, y)L�(t)′ is Lip-

schitz in y, uniformly in t. Moreover, aT = limt↑T L�(t)ã(t)L�(t)′ = limt↑T L�(t)ā(t, v)
L�(t)′ exists.

Then Assumption (5.2d) is satisfied.

Proof: By the Lipschitz-assumptions, there exist constants k1 and k2 such that∥∥L�(t)
(
ã(t) − ā(t, Lx)

)
L�(t)′

∥∥ = ∥∥L�(t)ã(t)L�(t)′ − aT + aT − L�(t)ā(t, Lx)L�(t)′
∥∥

≤ k1 |v − Lx| + k2(T − t).

Now note that

v − Lx = v − μ(t) − L(t)x + μ(t) + L(t)x − Lx

= �(t)−1ζ�(t, x) + μ(t) + (L(t) − L)x.

Hence

|v − Lx| ≤ ∥∥�(t)−1∥∥ |ζ�(t, x)| + |μ(t) + (L(t) − L)x| .
Recall that � has nondecreasing entries and therefore

∥∥�(t)−1
∥∥ ≤ ∥∥�(t0)−1

∥∥. We can
thus choose c3 = k1

∥∥�(t0)−1
∥∥ and θ(t, x) = k2(T − t) + k1 |μ(t) + (L(t) − L)x|. �

Example 5.8 (Example 5.1 continued): Following up onExample 5.1, note that if wemea-
sure a location v at time T, we impose the condition LXT = v where L = (

I 0
)
. Now σ is

constant on {x : Lx = v} and thus we may choose xv ∈ {x : Lx = v} arbitrarily and define
the coefficients of the auxiliary process via

B̃(t) =
(
0 I
0 0

)
, β̃(t) = 0 and σ̃ =

(
0

γ (T, xv)

)
.

Now observe that L(t) = (
I (T − t)I

)
and M(t) = 3

(T−t)3 (γ γ ′)−1(T, xv). Direct com-
putations now show that Assumptions (5.2a), (5.2b) and (5.2c) are satisfied with �(t) =
(T − t)−1I. Another direct computation now shows that

L�(t)
(
ã(t) − a(t, x)

)
L�(t)′ = (γ γ ′)(T, xv) − (γ γ ′)(t, x).

Hence, under smoothness conditions on γ γ ′, Assumption (5.2d) is also satisfied.

5.2. Proof of theorem 5.6

We show that Assumptions 5.2 and 5.3 imply that Assumption 3.1 holds and then the result
follows by an application of Theorem 3.3 and proving P

◦(
⋃

k Ak(T)) = 1.
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Choose κ(t) = 1. Suppose t0 is so that log( 1
T−t ) > 0 for all t ≥ t0 and define

V(t, x) = log−1
(

1
T − t

)
H(t, x), (t, x) ∈ [t0,T) × R

d, (38)

withH as defined in (36). We choose the events Ak(t) cf. Lemma 3.4 so that (3.1a) is satis-
fied. Note that it is an immediate consequence of Lemma 6.3 of [5] that (3.1b) is satisfied as
well. Moreover, (3.1c) is a direct consequence of Assumption 5.3 as the proof of Lemma 2
of [16] can be repeated with h̃ also denoting a normal density.

Theorem 5.9: Suppose Assumption 5.3 holds and δ > 0 exists so that |�(t)| � (T − t)−�.
Then (3.1d) is satisfied.

Proof: Note that

E
�
t

(
κ(t)

h̃(t,Xt)

h(t,Xt)
1Ak(t)

)
= E

�
t

(
κ(t)

h̃(t,Xt)

h(t,Xt)

)
− E

�
t

(
κ(t)

h̃(t,Xt)

h(t,Xt)
1Ak(t)c

)
.

It follows from Lemma A.1 and Lemma 6.5 in [5] upon noticing that the stopping
time used there coincides with T ∧ inf t0≤t<T{V(t,Xt) ≥ k} that the right hand side
tends to 1. By monotonicity, P

�(A(T)) = limt↑T P
�(A(t)). Now note that for any t<T,

P
◦(A(t)) ≥ P

◦(A(T)) = 1, by Theorem 5.11 and thus by Proposition 2.6, P
�(A(T)) =

limt↑T P
�(A(t)) = 1. �

Theorem 5.10: For fixed k and �, defined through (6), supt0≤t<T �t(X)1Ak(t) is bounded.

Proof: This proof is located in Appendix A.2. �

Theorem 5.11: Under Assumption 5.2 lim supt↑T V(t,Xt) is P
◦-almost surely bounded by

a finite random variable with V as in (38).

Proof: The proof is located in Appendix A.1. �

We conclude that, as stated in the first part of this section, (3.1a), (3.1b) and (3.1c)
are satisfied. (3.1d) is satisfied by Theorem 5.9 and (3.1e) by Theorem 5.10. Lastly, by
Theorem 5.11, P

◦
T(A(T)) = P

◦
T(supt0≤t<T V(t,Xt) < ∞) = 1 and thus Theorem 5.6 is

proven via Theorem 3.3.

5.3. Application: stochastic landmarks registration

In this section we apply our results to a class of models that has recently appeared in
shape analysis. Suppose a shape is characterized by a finite set of points, referred to as
landmarks. One problem in landmarks registration consists of finding a flow of diffeo-
morphisms mapping an ordered set of landmarks of one shape to that of another shape,
assuming both shapes are summarized by an equal number of landmarks (see for instance
[18]). Whereas traditional models assume the flow to be generated by an ordinary differ-
ential equation, stochastic differential equations have been proposed more recently. Here,
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we consider specifically the model proposed in [2]. Suppose q = (q1, . . . , qn) denotes a
configuration of n distinct landmarks qi ∈ � in a domain � ⊆ R

d. Suppose that to each
position qi a momentum vector pi is attached. Define the Hamiltonian

H(q, p) = 1
2

n∑
i,j=1

pTi K(qi, qj)pj,

the kernel K typically being chosen as Gaussian. The Eulerian model proposed by [2]
specifies a flow on landmark positions induced by the system of stochastic differential
equations

dqi = (∂piH)(q, p) dt +
J∑

l=1

σl(qi) ◦ dWl
t ,

dpi = −(∂qiH)(q, p) dt −
J∑

l=1

(
∂qi〈pi, σl(qi)〉

)
(qi, pi) ◦ dWl

t , (39)

where we have surpressed dependence of qi and pi on t, for readability. Here, σ1, . . . , σJ are
noise fields centred at prespecified locations �1, . . . ,�J ∈ � defined by

σα
� (qi) = γα�τ (qi − δ�), α = 1, . . . , d (40)

for noise-amplitudes γ ∈ R
d and kernel�τ with length-scale τ . For more explanation and

details on the derivation of this model, we refer the reader to [2].
We illustrate the stochastic landmarks registration problem using Figure 3, where the

number of landmarks equals n = 75. Here, the black and orange points correspond to
q(0) := (q1(0), . . . , qn(0)) and q(1) := (q1(1), . . . , qn(1)), respectively. If initial momenta
p(0) := (p1(0), . . . , pn(0)) are specified, then the system (39) defines a flow that takes
x(0) := (q(0), p(0)) to x(1) at time 1. The landmarks registration problem corresponds
to conditioning the process such that the vector of positions at time 1, “the q-part of x(1)”,
equals q(1). The left-hand panel of the figure shows an unconditional forward simulation
of the process; the right-hand panel shows a sample of the guided process defined below.

Conditioning the system (39) on q(1) is challenging as the diffusivity coefficient in the
system (39) is state-dependent with the dynamics of each qi and pi driven by all Wiener
processesWj. As in [3] we define a guided process based on the auxiliary process

dq̃i = (∂piH)(q(1), p̃) dt +
J∑

l=1

σl(qi(1)) ◦ dWl
t

dp̃i = −
J∑

l=1

(
∂qi〈pi, σl(qi)〉

)
(qi(1), pi(1)) ◦ dWl

t ,

(41)

where qi(1) are the landmarks of the shape that we condition on and pi(1) can be freely
chosen.

Then it follows from an Itô-Stratonovich conversion, see Proposition 1 of [3], that X̃ =(
q̃ p̃

)
satisfies the linear stochastic differential equation dX̃t = (B̃X̃t + β̃) dt + σ̃ dWt
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Figure 3. Illustration of the landmarks registrationproblem. In both figures, the black andorangepoints
are landmarks that represent the shape at time 0 and time 1, respectively. Left: a sample path of the
unconditioned process. Right: a sample path of the guided process.

where B̃ is of the form

B̃ =
(
0 G
0 C

)

and where G and C are known, constant matrices.

Theorem 5.12: Let σ̃ =
(

σ̃q
σ̃p

)
. If

• σ̃qσ̃
′
q is strictly positive definite;

• K, �τ and ∇�τ are continuous on �;
• the maps σqσ

′
q, σpσ ′

q and σpσ
′
p are Lipschitz in space.,

then Assumption 5.2 is satisfied.

Proof of Theorem 5.12: Clearly, we have L = (
I 0

)
and since all elements of X have the

same Hölder-regularity as Brownian motion, we choose �(t) = I. A direct computation
yields L(t) = (

I Q(t)
)
where Q(t) = ∑∞

n=1 GC
n−1 (1−t)n

n! . We have

∫ 1

t
L(s)ãL(s)′ ds = (1 − t)σ̃qσ̃ ′

q +
∫ 1

t
Q(s) dsσ̃pσ̃ ′

q + σ̃qσ̃
′
p

∫ 1

t
Q(s)′ ds

+
∫ 1

t
Q(s)σ̃pσ̃ ′

pQ(s)′ ds

= (1 − t)σ̃qσ̃ ′
q + O (

(1 − t)2
)
.
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Now observe that λmax(M(t)) = λmin(M(t)−1)−1 and λmin(M(t)) = λmax(M(t)−1)−1

and thus (5.2a) is satisfiedwhen σ̃qσ̃
′
q is positive definite.Wenownote that (5.2b) is satisfied

by continuity assumptions on K, �τ , and ∇�τ . We also note that

L(t)a(t, x)L(t)′ = σqσ
′
q + Q(t)σpσ ′

q + σqσpQ(t)′ + Q(t)σpσ ′
pQ(t)′.

Since Q(t) is of order 1−t, we see that tr
(
L(t)a(t, x)L(t)′

)
behaves as tr

(
σqσ

′
q

)
as t ↑ 1

and thus (5.2c) is satisfied as well. Lastly, we note that the map (t, x) �→ L(t)a(t, x)L(t)′ is
Lipschitz in space since σqσ

′
q, σpσ ′

q and σpσ
′
p are. Since σ̃qσ̃

′
q, σ̃pσ̃ ′

q and σ̃pσ̃
′
p are constant,

t �→ L(t)ãL(t)′ is Lipschitz. By choice of the auxiliary process, La(t, x)L′ and LãL′ are equal
on the set {x : Lx = {qi(1)}ni=1} and thus (5.2d) is satisfied through Lemma 5.7. �

Remark 5.13: Note that the requirement of σ̃qσ̃
′
q being positive definite implies that the

number of noise fields J should satisfy J ≥ nd. Numerical simulations have confirmed that
if this assumption is not satisfied, the guided processes used in [2] behave erratically.
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Appendices

Appendix 1: Proof of Theorems 5.10 and 5.11

Notation: For convenience, we denote a subscript t for evaluation of a space-time function in (t,X◦
t )

throughout this section.

A.1 Proof of Theorem 5.11

We start by studying A◦V and assume that t0 is so that log( 1
T−t ) > 0 for all t ∈ [t0,T). It follows

that

A◦V(t, x) = ∂V
∂t

+ L◦V(t, x)

= − H(t, x)

(T − t) log2
(

1
T−t

) + log−1
(

1
T − t

)
A◦H(t, x)

= log−1
(

1
T − t

) [
A◦H(t, x) − V(t, x)

T − t

]
.

(A1)

Here, the second equality follows form the product rule and the fact that L◦ only acts on the space-
variable x. To computeA◦H, we note that by Itô’s formula,

dHt = A◦Ht dt + σ ′
t∇xHt dX◦

t

https://projecteuclid.org:443/euclid.bj/1076364805
https://doi.org/10.1214/EJP.v20-4006
https://doi.org/10.3150/16-BEJ833
https://doi.org/10.1080/17442508.2017.1381097
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Hence, it follows from (32) and Lemma 5.3 of [5] that

A◦Ht =
(
b̃t − bt

)′
L�(t)′M�(t)ζ�,t

+ 1
2
ζ ′
�,tM�(t)L�(t)

(
ã(t) − at

)
L�(t)′M�(t)ζ�,t

+ 1
2
tr

(
atL�(t)′M�(t)L�(t)

)
− 1

2
ζ ′
�,tM�(t)L�(t)atL�(t)′M�(t)ζ�,t .

(A2)

Now in order to upper bound lim supt↑T V(t,X◦
t ), we start by upper boundingA◦H by applying the

assumptions stated in Assumption 5.2 to each of the terms of (A2). First, we note that it is trivial
to verify that H(t, x) = 1

2ζ�(t, x)′M�(t)ζ�(t, x) and therefore, it follows from a standard quadratic
forms inequality that

1
2
λmin(M�(t)) |ζ�(t, x)|2 ≤ 1

2
ζ�(t, x)′M�(t)ζ�(t, x) ≤ 1

2
λmax(M�(t)) |ζ�(t, x)|2 ,

and thus, by Assumption (5.2a), we have the relation

√
2(T − t)H(t, x)

c
≤

√
2H(t, x)

λmax(M�(t))
≤ |ζ�(t, x)| ≤

√
2H(t, x)

λmin(M�(t))
≤

√
2(T − t)H(t, x)

c
. (A3)

For the first term of (A2), it follows from the Cauchy-Schwarz inequality, Assumption (5.2b)
and (A3) that ∣∣∣∣(b̃t − bt

)′
L�(t)′M�(t)ζ�,t

∣∣∣∣ ≤ λmax(M�(t))
∣∣∣L�(t)

(
b̃t − bt

)∣∣∣ ∣∣ζ�,t
∣∣

≤ c(T − t)−1c1

√
2(T − t)Ht

c

= γ1(T − t)−1/2H1/2
t ,

(A4)

where γ1 = cc1
√
2/c.

For the second term, we first note that∣∣∣∣12ζ ′
�,tM�(t)L�(t)

(
ã(t) − at

)
L�(t)′M�(t)ζ�,t

∣∣∣∣
≤ 1

2
ζ ′
�,tM�(t)2ζ�,t

∥∥L�(t)
(
ã(t) − at

)
L�(t)′

∥∥ .

Since M�(t) is symmetric and strictly positive definite, its matrix square root exists and thus
1
2ζ�(t, x)′M�(t)2ζ�(t, x) ≤ λmax(M�(t))H(t, x). We now apply Assumption (5.2d) to upper bound
the absolute value of the second term of (A2) by

λmax(M�(t))Ht
[
c3

∣∣ζ�,t
∣∣ + θt

] ≤ c(T − t)−1Ht

[
c3

√
2(T − t)Ht

c
+ θt

]

≤ γ2(T − t)−1/2H3/2
t + γ3(T − t)−1+αHt ,

(A5)

where γ2 = cc3
√
2/c and γ3 = cc4.
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For the third term of (A2), we note that, for positive definitem × mmatrices A and C, there is a
relation |tr (AC)| ≤ tr (A) tr (C) ≤ mλmax(A)tr (C). It thus follows from Assumption (5.2c) that∣∣∣∣12 tr

(
atL�(t)′M�(t)L�(t)

)∣∣∣∣ ≤ 1
2
mλmax(M�(t))tr

(
L�(t)atL�(t)′

)
≤ γ4(T − t)−1,

(A6)

where γ4 = mcc3/2.
Now by combining (A2) with (A4) –(A6), we deduce that∣∣A◦Ht

∣∣ ≤ γ1(T − t)−1/2H1/2
t

+ γ2(T − t)−1/2H3/2
t + γ3(T − t)−1θtHt

+ γ4(T − t)−1

− 1
2
ζ ′
�,tM�(t)L�(t)atL�(t)′M�(t)ζ�,t .

(A7)

For t ≥ t0 we can go back to Equation (A1) substituteVt = log−1( 1
T−t )Ht in these equations to find

that

A◦Vt ≤ �0(t) + �1(t)V
1/2
t + �2(t)Vt + �3(t)V

3/2
t

− 1
2
ζ ′
�,tM�(t)L�(t)atL�(t)′M�(t)ζ�,t ,

where

�0(t) = γ4

(T − t) log
(

1
T−t

)
�1(t) = γ1√

(T − t) log
(

1
T−t

)

�2(t) = γ3

(T − t)1−α
− 1

(T − t) log
(

1
T−t

)

�3(t) = γ2

√√√√ log
(

1
T−t

)
T − t

.

(A8)

Now recall that a martingaleMV exists so that

Vt = Vt0 + MV
t +

∫ t

t0
A◦Vs d.s

It is a consequence of Itô’s formula that

[MV ]t = ζ ′
�,tM�(t)L�(t)atL�(t)′M�(t)ζ�,t .

Hence,

Vt ≤ Vt0 + MV
t − 1

2
[MV ]t +

∫ t

t0
�0(s) ds +

∫ t

t0
�1(s)V

1/2
s ds

+
∫ t

t0
�2(s)Vs ds +

∫ t

t0
�3(s)V

3/2
s ds

(A9)
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Now by Lemma A.2, we have an almost surely finite random variable C so that MV
t − 1

2 [M
V ]t ≤

C log( 1
T−t ). Moreover, by Lemma A.3, we now have

Vt ≤ 4

⎡
⎢⎢⎣ 4 exp

{
− 1

2
∫ t
t0 �2(s) ds

}
2
√
V

(
t0,X◦

t0
) + C log

(
1

T−t

)
+ ∫ t

t0 �0(s) ds + ∫ t
t0 �1(s) ds

−
∫ t

t0
�3(s) ds

⎤
⎥⎥⎦

−2

.

Direct computations show that

κ0(t) :=
∫ t

t0
�0(s) ds = γ4 log

log
(

1
T−t

)
log

(
1

T−t0

)

κ1(t) :=
∫ t

t0
�1(s) ds = γ1

∫ log
(

1
T−t

)
log

(
1

T−t0

) u−1/2e−u/2 du

κ2(t) :=
∫ t

t0
�2(s) ds = γ3

(T − t0)α − (T − t)α

α
− log

log
(

1
T−t

)
log

(
1

T−t0

)

κ3(t) :=
∫ t

t0
�3(s) ds = γ2

∫ log
(

1
T−t

)
log

(
1

T−t0

) u1/2e−u/2 du.

(A10)

Now note that κ1 and κ3 are bounded in the limit t ↑ T. A substitution of the results in (A10) and
some direct computations now yields

Vt ≤ 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 log−1/2
(

1
T−t0

)
exp

{
− 1

2γ3
(T−t0)α−(T−t)α

α

}
√√√√√√V

(
t0,X◦

t0

)
+C log

(
1

T−t

)
+γ4 log

log
(

1
T−t

)
log

(
1

T−t0

)

log
(

1
T−t

) − κ1(t)√
log

(
1

T−t

)

− κ3(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−2

,

which is almost surely bounded in the limit t ↑ T.

A.2 Proof of Theorem 5.10

To determine the form of � , we note that direct computations show that

∂H
∂t

(t, x) = b̃(t, x)′L�(t)′M�(t)ζ�(t, x) + 1
2
ζ�(t, x)′M�(t)L�(t)ã(t)L�(t)′M�(t)ζ�(t, x). (A11)

Moreover,

∇xH(t, x) = −L�(t)′M�(t)ζ�(t, x) and HessH(t, x) = L�(t)′M�(t)L�(t). (A12)
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Using the formulas derived in (A11) and (A12) for ∂H
∂t ,∇xH and HessH and the relation∇xh̃(t, x) =

−h̃(t, x)∇xH(t, x), it can be derived that

Ah̃
h̃

(s, x) =
(
b(s, x) − b̃(s, x)

)′
L�(s)′M�(s)ζ�(s, x)

+ 1
2
ζ�(s, x)′M�(s)L�(s)

(
a(s, x) − ã(s)

)
L�(s)′M�(s)ζ�(s, x)

− tr
((
a(s, x) − ã(s)

)
L�(s)′M�(s)L�(s)

)
.

(A13)

We now apply the upper bounds derived in Appendix A.1 for each of the terms. First note that under
{supt0≤s<t V(t,X◦

t ) ≤ k}, we have that H(s,X◦
s ) ≤ k log( 1

T−s ) ≤ k log( 1
T−t ) for all s ∈ [t0, t). It now

follows from Equation (A4) that the absolute value of first term of (A13) can be upper bounded by

γ1

√√√√
k
log

(
1

T−t

)
T − t

,

which is integrable over [t0,T] (see the last line of (A10)). Using a similar approach, we can also
combine (A5) and (A10) to see that the absolute value of the second term of (A13) is integrable.
Similarly, the relation |tr (AC)| ≤ tr (A) tr (C) ≤ mλmax(A)tr (C) for m × m matrices A and C, in
combination with Assumption (5.2d) and the known integrals in (A10) yields that the final term is
integrable.

Appendix 2: Additional lemmas

In this section,we discuss some lemmas that were used in various proofs throughout the paper.

LemmaA.1: Suppose (3.1b) and (3.1c) hold, let s<Tand let gs be a boundedFs-measurable function.

lim
t↑T

E
�
t

(
gs(X)κ(t)

h̃(t,Xt)

h(t,Xt)

)
= E

�
s gs(X).

Proof: By (3), upon notingAh = 0,

E
�
t

(
gs(X)κ(t)

h̃(t,Xt)

h(t,Xt)

)
= Et

(
gs(X)κ(t)

h̃(t,Xt)

h(0, x0)

)

= Es

(
gs(X)

h(0, x0)
Et

(
κ(t)h̃(t,Xt) | Fs

))
= Es

(
gs(X)

h(0, x0)
h(t; s,Xs)

)

We now take limt↑T . Note that it follows from (3.1c), dominated convergence and (3.1b) that

lim
t↑T

Es

(
gs(X)

h(0, x0)
h(t; s,Xs)

)
= Es

(
gs(X)

h(s,Xs)

h(0, x0)

)

The result now follows upon changing measures using (3) again withAh = 0. �

Lemma A.2 (Exponential martingale bound): Suppose {Nt}t≥t0 is a martingale. Then an almost
surely finite random variable C exists so that Nt − 1

2 [N]t ≤ C log( 1
T−t ).
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Proof: First note that, for any fixed t<T and positive λ, Doob’s maximal inequality yields

P

(
sup

t0≤s≤t
exp

{
Ns − 1

2
[N]s

}
> eλ

)
≤ e−λ

E

(
exp

{
Nt − 1

2
[N]t

})
= k0e−λ,

where k0 = exp{Nt0 − 1
2 [N]t0} is a bounded random variable. It follows that

P

(
sup
0≤s≤t

{
Ns − 1

2
[N]s

}
> λ

)
≤ k0e−λ.

Now set tn = T − 1
n and assume n is sufficiently large so that tn > 0. It follows from the preceding

that we can choose an arbitrary positive sequence {λn}n and have that

P

(
sup

0≤s≤tn+1

{
Ns − 1

2
[N]s

}
> λn

)
≤ k0e−λn .

Upon choosing λn = 2 log n, one has
∑

n e
−λn < ∞ and thus, by the Borel-Cantelli lemma

P

(
lim sup
n→∞

{
sup

0≤s≤tn+1

{
Ns − 1

2
[N]s

}
> λn

})
= 0.

We can thus almost surely find a random variable n0(ω) so that for all n ≥ n0(ω)

sup
0≤s≤tn+1

{
Ns − 1

2
[N]s

}
≤ λn

Now notice that for any t ∈ [tn, tn+1], one has λn ≤ 2 log( 1
T−t ) and therefore

sup
0≤t<T

Nt − 1
2 [N]t

log
(

1
T−t

) = sup
n

sup
tn≤t≤tn+1

Nt − 1
2 [N]t

log
(

1
T−t

)

≤ sup
0≤t≤tn0

Nt − 1
2 [N]t

log
(

1
T−t

) ∨ sup
n≥n0

sup
tn≤t≤tn+1

λn

log
(

1
T−t

)

≤ C ∨ sup
n

2 log n

log
(

1
T−tn+1

)

= C ∨ 2 sup
n

log n
log(n + 1)

≤ C ∨ 2,

where C is a random variable depending on n0, which is finite since tn0 is almost surely bounded
away from T. �

Lemma A.3 (Application of Theorem 2.1 of [1]): Suppose V satisfies (A9) with �0, �1, �2 and �3 as
in (A8). Then

V(t,X◦
t ) ≤ 4

⎡
⎢⎢⎣ 4 exp

{
− 1

2
∫ t
t0 �2(s) ds

}
2
√
V

(
t0,X◦

t0
) + C log

(
1

T−t

)
+ ∫ t

t0 �0(s) ds + ∫ t
t0 �1(s) ds

−
∫ t

t0
�3(s) ds

⎤
⎥⎥⎦

−2

.

Proof: By Lemma A.2, we have an almost surely finite random variable C so thatMV
t − 1

2 [M
V ]t ≤

C log( 1
T−t ). The lemma is an application of Theorem 2.1 of [1] with, in their notation, a(t) =
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V(t0,X◦
t0) + C log( 1

T−t ) + ∫ t
t0 �0(s) ds, fi(t, s) = �i(s) and bi(t) = t for i = 1, 2, 3, w1(u) = √

u,
w2(u) = u, w3(u) = u

√
u. To achieve the result, we choose u1 = 0, u2 = 1 and u3 = 4. �

Lemma A.4: Suppose M is a local martingale bounded from below with EM0 < ∞, then M is a
supermartingale.

Proof: Without loss of generality, we assume M is bounded from below by 0. Now let {τn}n be a
sequence of stopping times such that τn ↑ ∞ and {Mt∧τn}t is a martingale for all n. It follows from
Fatou’s lemma that

E |Mt| = EMt = E

(
lim inf
n→∞ Mt∧τn

)
≤ lim inf

n→∞ EMt∧τn = EM0 < ∞.

Hence,M is integrable. Moreover, for s ≤ t, if also follows from Fatou’s lemma that

E (Mt | Fs) = E

(
lim inf
n→∞ Mt∧τn | Fs

)
≤ lim inf

n→∞ E
(
Mt∧τn | Fs

) = lim inf
n→∞ Ms∧τn = Ms �
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