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ABSTRACT Ultrasound localization microscopy (ULM) is a vascular imaging method that provides a
10-fold improvement in resolution compared to ultrasound Doppler imaging. Because typical ULM acquisi-
tions accumulate large numbers of synthetic microbubble (MB) trajectories over hundreds of cardiac cycles,
transient hemodynamic variations such as pulsatility get averaged out. Here we introduce two independent
processing methods to retrieve pulsatile flow characteristics from MB trajectories sampled at kilohertz
frame rates and demonstrate their potential on a simulated dataset. The first approach follows a Lagrangian
description of the flow. We filter the MB trajectories to eliminate ULM localization grid artifacts and
successfully recover the pulsatility fraction Pf with a root mean square error (RMSE) of 3.3%. Our second
approach follows a Eulerian description of the flow. It relies on the accumulation of MB velocity estimates as
observed from a stationary observer. We show that pulsatile flow gives rise to a bimodal velocity distribution
with peaks indicating the maximum and minimum velocities of the cardiac cycle. In this second method,
we recovered the pulsatility fraction Pf by measuring the location of these distribution peaks with a RMSE
of 5.2%. We evaluated the impact of the MB localization precision σ on our ability to retrieve the bimodal
signature of a pulsatile flow. Together, our results demonstrate that pulsatility can be retrieved from ULM
acquisitions at kilohertz frame rate and that the estimation of the pulsatility fraction improveswith localization
precision.

INDEX TERMS Ultrasound localization microscopy, pulsatility, localization precision, velocity
distribution.

I. INTRODUCTION

THE resolution of conventional ultrasound images is lim-
ited by the wavelength (λ) dependent Rayleigh diffrac-

tion limit [1] while imaging depth is inversely proportional
with λ, leading to a fundamental trade-off between image
resolution and investigation depth. Recently, this trade-off
has been circumvented by the introduction of ULM. This
super-resolution vascular imaging technique relies on the
localization of sub-wavelength contrast agent [2]. By accu-
mulating thousands of micrometer-sized agent positions with
sub-wavelength precision, an image can be reconstructed
with a 10-fold resolution improvement compared to conven-
tional ultrasound while retaining the same imaging depth.

ULM has been demonstrated in vitro [3], [4], [5], [6], in pre-
clinical imaging [7], [8], [9], [10], [11] as well as in the clinic
[12], [13], [14], in 2D and in 3D [15], [16], [17], [18].

To date, ULM relies on synthetic ultrasound contrast
agents made of polydisperse gas-filled microbubbles (MBs).
Currently, ULM reconstruction algorithms rely on the
hypothesis that individual MBs can be localized with sub-
wavelength precision. Individual MBs are typically cap-
tured over multiple frames at kilohertz frame rates. The MB
positions in subsequent frames can thus be linked together,
forming trajectories that reveal the underlying vascular archi-
tecture. ULM images are then rendered using either the den-
sity of MBs per each pixel, blood velocity estimates, or other
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metrics associated with morphological features such as tortu-
osity [9], vessel orientation [10], or main flow direction [8].

The ULM velocity image displays the average velocity
found at each pixel location during the entire ULM acquisi-
tion. BecauseMB trajectories are accumulated over hundreds
of cardiac cycles, fast flow fluctuations are averaged out in
ULM velocity maps. By accelerating the ULM acquisition,
the averaging of velocities is reduced. An intuitive approach
to speed up ULM acquisition consists of increasing the MB
population density, as localizing larger numbers of MBs per
frame reduces the total number of frames accordingly. How-
ever, this poses a new imaging trade-off between acquisi-
tion time and MB localization precision. Huang et al. [19]
proposed to increase the MB sparsity via post-processing
methods. They separated MB echoes into subpopulations
using a spatiotemporal Fourier filter. Each subpopulation was
then individually processed by conventional ULM processing
steps. Alternatively, machine learning-based approaches for
MB localization were shown to be able to handle higher MB
concentrations by disentangling the interference pattern of
spatially overlapping MBs [20], [21], [22]. ULM can also be
triggered with electrocardiograms to observe phenomenons
independently from the cardiac cycle such as pulsatility [23],
or avoid big motion [24].

In this study, we investigate the possibility of retrieving
pulsatility in the microvasculature by post-processing a con-
ventional ULM dataset. Microangiopathy or small vessel
disease, if present in the brain, is shown to be related to stroke
and dementia [25]. Shi et al. [26] showed that white mat-
ter hyperintensities, which characterize cerebral small vessel
disease, are associated with increased intracranial pulsatility.
In their study, pulsatility was measured in the major arteries
and veins of the brain using phase-contrast MRI. Having
the capability to measure pulsatility in smaller vessels will
provide insight into the pathogenesis of small vessel disease.

We aim to retrieve pulsatility from conventional ULM
datasets without any change in the acquisition pipeline.
We hypothesize that the MB trajectories sampled at kilohertz
frame rate contain enough information to retrieve pulsatility.
We develop two methods capable of retrieving pulsatility
from raw ULM data. The first method follows a Lagrangian
description of the flow. That is, using velocity estimates of
a single MB, it relies on filtering to retrieve the pulsatility
fraction in the reconstructed trajectories. The second method
follows a Eulerian description of the flow. Specifically, the
temporal distribution of velocities found at a fixed location
in space is calculated. The pulsatility fraction was extracted
from the bimodality of the velocity distribution. We validate
both methods on simulated data generated using a custom
ULM simulator that was designed to mimic pulsatile flow in
rat cortical brain vessels.

II. METHODS
The ULM simulation pipeline is described in Subsection II-A
and pulsatility retrieval methods are described in II-B.
We provide a list of symbols in Appendix A.

A. ULM SIMULATOR DESIGN
The designed ULM simulator is presented in Fig. 1(a) and
is used to study two cases called the ‘MB Localization’ and
‘No MB Localization’ scenarios. In the former, the full ULM
process is simulated including B-mode images. In the latter
MB localization error is directly added to the MB positions.
In both scenarios the simulation was performed in 2D.

1) FIRST SIMULATION SCENARIO: LOCALIZATION
The ‘‘Localization’’ scenario mimics all steps of an experi-
mental ULM acquisition and consists of three main modules
(see Fig. 1(a)): a module simulating the MB positions (in
blue), a module simulating ultrasound frames (in green) and
a module performing ULM processing (in yellow).

In the first module, the ground truth flow uGTn (r) is sim-
ulated by modeling its temporal and spatial characteristics
separately, with r the lateral coordinate and n the time index.
The temporal behavior of the flow at the centerline of the

vessel (r = 0) is modelled following in vivo observations by
Santisakultarm et al. [27] performed in mouse cortical brain
vessels (see Fig. 1(b)). It is thus assumed that the shapes of
the pulsatile cycles of rat and mice are similar. The pulsatility
fraction is defined as

Pf =
maxn(uGTn (r))−minn(uGTn (r))

ūGTn (r)
(1)

where ūGTn (r) denotes the temporal average. To construct
the pulsatile flow at the centerline of the vessel uGTn (0) we
retrieved the temporal average ūGTn (0), Pf and the shape of
the pulsatile cycle from the results reported in [27]. The
frequency of pulsatility was fixed at 300 bpm. Fig. 1(b)
shows the simulation of uGTn (0) for three different values of
Pf corresponding to a steady-state flow (Pf = 0) a pulsatile
flow in a venule (Pf = 0.2) and in an arteriole (Pf = 0.4).
We calculate the flow uGTn (r) for a given temporal sampling

n = t/dt , from uGTn (0) following two assumptions on the
spatial characteristics of the flow (see Table 2). First, uGTn (r)
is assumed to be dependent on the lateral coordinate r only,
corresponding to the rigid vessel-hypothesis. Second, the
flow velocity profile along r is assumed to be parabolic,
corresponding to Poiseuille flow [28]. The parabolic profile
describing uGTn (r) along r is constructed from the centerline
velocity and enforcing zero velocity at the boundaries. The
separate simulation of the temporal and spatial behaviour of
the flow was assumed to be appropriate in the microvascula-
ture due to the low Womersley number flow [29], [30].

MB positions during the acquisition were simulated by ini-
tializing and propagating a fixed number of point scatterers in
the vessel. The axial MB coordinate l was uniformly sampled
along the vessel length L. The lateral MB coordinate r was
sampled from a distribution of parabolic shape found by nor-
malization of the parabolic velocity profile uGTn (r) such that
it represents a probability density function. The MBs were
propagated to the next frame by a spatial step given by the
local simulated flow velocity multiplied by the timestep dt .
An outlet condition was implemented so that once a MB left
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FIGURE 1. Simulation study pipeline. (a) Our simulator contains two simulation scenarios: MB Localization and No MB Localization.
In the former the full ULM process is simulated including B-mode images. In the latter a MB localization error is directly added to the
MB positions. (b) Simulated ground truth flow uGT

n (0) at the centerline (r = 0) for three values of Pf and a pulsatility frequency of 5 Hz.
Flow profiles were modelled based on experimental data in Santisakultarm et al. [27]. (c) Two steps of US simulation: firstly the point
spread functions (PSF) of the MBs are simulated. Secondly, a B-mode image is generated by adding speckle. Estimation of the MB
position in a region of interest (ROI) using the radial symmetry algorithm. The ground truth MB position (x, z) and the estimated
position (x̂, ẑ) are indicated by the black and red cross respectively. (d) A rigid vessel with a parabolic flow profile is assumed. r and l
are respectively the axial and lateral coordinates. Flow is considered fully developped and independent of l. (e) In the No-Localization
scenario a localization error (1x,1z) is sampled from two normal distributions and added to the ground truth MB position (x, z) to
obtain the estimated MB position (x̂, ẑ). The localization precisions σx , σz are simulation parameters. (f) Double vessel and single
vessel configurations showing a venule (blue) and arterioles (red). Simulation parameters in Table 1. The local coordinates are defined
at the inlet of the vessel. The vessel orientation angle θ is defined with respect to the x-axis in the counter clockwise direction.

the vessel, a new one was initialized at the inlet. The lateral
coordinate r of this new MB was drawn from the parabolic
distribution while the axial coordinate was drawn from a
uniform distribution on the interval [0, uGTn (r)dt)].

In the second module, the Verasonics Research Ultrasound
Simulator (VRUS, Vantage, Verasonics, Kirkland,WA,USA)
was used to simulate the ultrasound B-mode frames at 1kHz
[31]. The L22-14vX probe (Vermon, Tours, France) was
simulated to transmit a single plane wave at 0◦ with pulse
duration of 2 cycles and a main frequency of 17.6 MHz.
The Verasonics Reconstruction software was used to beam-
form the Radio-Frequency data. Additional parameters can
be found in Appendix A, Table 2. To improve computational
efficiency the frames were constructed in two steps: simula-
tion of the MB PSFs and addition of a speckle pattern (see
Fig. 1(d)).

The MB response was simulated as a subwavelength scat-
terer and was simulated as if theMBs were to flow in a homo-
geneous medium without speckle, resulting in a frame with
a few point spread functions (PSF). A speckle pattern was
randomly selected from a set of a priori simulated speckle
frames and added to the PSF frame. The speckle patterns

were simulated by placing 105 weaker scatterers of random
reflectivity at a uniform random position in the field of view.
The signal-to-noise ratio (SNR) of the resulting image can
be controlled by setting the intensity of the speckle pattern.
An average SNR of 14 dB was simulated.

In the third module, we performed ULM processing on
blocks of 1000 simulated frames using the LOTUS tool-
box [31]. We optimized ULM parameters based on the
visual improvement of the microvessel reconstruction indi-
cated by vessel filling, vessel separation and the presence
of a parabolic velocity profile. Their values are provided
in Appendix A, Table 3. We applied a SVD filter to the
simulated B-mode frames [32] (see Table 3). Since no static
tissue is present in our simulation, the SVD filter was solely
applied to reduce speckle noise. For the localization of MBs,
we used the radial symmetry algorithm, due to its low local-
ization error and low computation time in mid-to-low-SNR
scenarios [31], [33]. We calculated MB trajectories using
a Kuhn-Munkres assignment [34] and computed the cor-
responding velocity estimates un(r) by a backward Euler
method [7]. We smoothed MB trajectories using a mov-
ing average filter to generate the filtered velocity estimates
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TABLE 1. Simulation configuration parameters.

ufn(r) [31] and rendered these trajectories on a super resolved
grid to reconstruct the velocity map. Additionally, a density
map was constructed by finding the MB count for each pixel
and a flow orientation θ map was constructed, with θ the
angle between the x-axis and the direction of flow (in counter
clockwise direction).

2) SECOND SIMULATION SCENARIO: NO-LOCALIZATION
In the No-Localization simulation scenario a spatial offset
mimicking a MB localization error is added to the ground
truth MB positions simulated by the first module (orange
section in Fig. 1(a)). The MB positions with added localiza-
tion errors are then fed to the tracking module (Fig. 1(e)).
The localization errors in x and z direction were assumed
independent and identically distributed (i.i.d.) as N (0, σ 2),
with σ the localization precision. We assume that σ =
σx = σz. This simulation scenario allows us to investi-
gate the effect of localization precision on retrieval of pul-
satility since σ can be varied in simulation. It should be
noted that in practice, different localization algorithms lead
to different shapes and mean values of localization error
distributions [31].

3) SIMULATION CONFIGURATIONS
We defined two distinct microvascular configurations as
illustrated in Fig. 1(f), with specific simulation parame-
ters provided in Table 1. For both configurations the sim-
ulated flow characteristics were matched to that of in vivo
observations [27].

The double vessel configuration mimics the in vivo config-
uration of cortical brain vessels. Here, the vascular architec-
ture consisted of a straight 30 µm wide descending arteriole
and a straight 100 µm wide ascending venule that converge
towards each other. We used this configuration in combina-
tion with the Localization simulation scenario to evaluate the
performance of our ULM simulator.

The second configuration consisted of a single 100 µm
wide straight arteriole and was used in combination with
the No-Localization simulation scenario. This configura-
tion enables us to assess the performance of the pulsatil-
ity retrieval methods for different values of the localization
precision σ .

B. METHODS TO RETRIEVE PULSATILITY IN ULM DATA
In this section, we introduce two methods for pulsatility
retrieval in ULM data following respectively a Lagrangian
and Eulerian description of the blood flow.

1) SINGLE-TRAJECTORY VELOCITY FILTERING
In this Lagrangian method to recover pulsatility, the velocity
estimates of individual MB trajectories were filtered. The
velocity estimates un(r) are found by dividing the traveled
distance over one frame by the time-step, also known as
the backward Euler method [7]. To reduce the effect of MB
localization errors on the velocity estimates, we filtered tra-
jectories using a moving average filter defined as

ufn(r) =
1
s

n+bs/2c∑
i=n−bs/2c

ui(r) (2)

where s is the span of the moving average filter and b·c
is the floor operation. Note that the span is expressed in
number of frames and it was chosen to be an odd number
such that an equal number of velocity estimates before and
after frame n are included. It dictates the time window over
which the un(r) is averaged. Its value is therefore dependent
on the imaging frame rate. Here, s should be compared to
the 200 frames covering one simulated pulsatile cycle (5 Hz,
dt = 1 ms). Grid-based artifacts appear in the velocity
estimates when localization is dependent on the MB position
within the beamformed pixel of size dx. A MB of constant
steady-state velocity uGTss(r) passes a beamformed pixel
every dx/uGTss(r), i.e. with frequency fdx = uGTss(r)/dx.
Trajectory velocity estimates should inhibit this same fre-
quency in case of grid-dependent MB localization, since
they are computed directly from MB positions. Here, the
simulated MBs move along with the pulsatile flow uGTn (r).
Therefore fdx corresponds to a range of frequencies as

fdx =
uGTn (r)
dx

(3)

We inspected the frequency spectrum of un(r) to assess the
presence of these frequency-dependent grid-based artifacts.
To filter out the artifacts which could not be eliminated by
using the moving average filter, we applied a bandstop filter
in the frequency domain as a pre-filtering step. We set the
stopband corresponding to the derived fdx range. Then we
applied a moving average filter with span of 51 frames to
improve both the retrieval of the velocity extremes as well as
the visual appearance of the trajectories. We defined the fil-
tered velocity estimates obtained from our designed filtering
process as ufn(r).
We implemented this pulsatility retrieval method on trajec-

tories measured in the double vessel simulation for the Local-
ization scenario. The pulsatility fraction was calculated on the
filtered single-trajectory velocity estimates. To retrieve the
maximum and minimum velocity measured during a trajec-
tory the average of three points centered around respectively
the local maximum and minimum was taken.
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FIGURE 2. Eulerian pulsatility retrieval method based on the accumulation of velocity estimates (see Table 2). (a) Schematic and
notation for the steady state and pulsatile flow scenarios. For derivation purposes, the steady-state and pulsatile flow case were
considered. In the former the flow uGTss(r) is independent of the time index n. (b) Illustration of two MB positions ln and ln−1
localized with localization errors 1ln and 1ln−1 respectively. T localization error is only considered along the axial coordinate l.
(c) Velocity distribution Uf. The distribution UGTf is found through the histogram of the filtered ground truth flow uGTf

n (0) at the
centerline of the vessel. By convolution with the filtered velocity error distribution 1Uf we derive Uf. The derivation is illustrated for
the single vessel configuration for three different values of Pf and with σ = 5 µm and s = 21. The maximum and minimum flow can be
detected by the peaks in Uf.

2) ACCUMULATION OF TRAJECTORY VELOCITIES AS
OBSERVED BY A STATIONARY OBSERVER
We introduce a second method of retrieving pulsatility
that relies on the accumulation of velocity estimates in a
fixed lateral position r in the vessel, following an Eulerian
flow description. As multiple MBs go through the same
super-resolution pixel during a ULM acquisition, multiple
velocity estimates are found in each pixel forming a veloc-
ity estimate distribution. The average of these estimates is
reported in a conventional ULM velocity map. This method
retrieves a Pf estimate from the shape of the velocity estimate
distribution.

To design this method we start by considering the expected
shape of the velocity distribution at a fixed r for a fully
one-dimensional flow along the axial coordinate l. Note that
a one-dimensional flow is considered that is defined in a
two-dimensional space (l, r). Since the flow is assumed to
be fully developed, it is independent of l. We hypothesize a
steady-state flow, i.e. uGTn (r) = uGTss(r), after which the case
of a pulsatile flow is considered, see Fig. 2 (a).
For steady-state flow, we assume that the spread in mea-

sured velocities is solely caused by error in MB localization.
Consider two linked MBs at frame n and n− 1 as illustrated
in Fig. 2 (b). Each estimated MB position l̂n along axial
coordinate l is given by the ground truth MB position ln with
an added localization error 1ln, i.e. l̂n = ln + 1ln. The
velocity estimate at frame n is then given as

un(r) =
l̂n − l̂n−1

dt
(4)

=
ln − ln−1

dt
+
1ln −1ln−1

dt
(5)

= uGTn (r)+1un (6)

where 1un is the velocity error caused by error in MB
localization. We assume 1ln and 1ln−1 to be independent
and N (0, σ 2) distributed, with σ the localization precision.
The distribution of the velocity error 1un can be found by

a combination of the two independent normal distributions,
resulting in 1U ∼ N

(
0, 2

dt2
σ 2
)
.

The velocity estimates of a trajectory are smoothed by a
moving average filter. Substitution of (5) in (2) for general
odd-numbered s results in the filtered velocity estimate as

ufn(r) =
1
s

n+bs/2c∑
i=n−bs/2c

uGTi (r)

+
1
sdt

(
1ln+bs/2c −1ln−bs/2c−1

)
= uGTfn (r)+1ufn (7)

where uGTfn (r) is the filtered ground truth flow and 1ufn the
filtered velocity error resulting from localization error. The
distribution of the filtered velocity error is found to be1U f

∼

N (0, σ 2
u ), where σu =

√
2

sdt σ . In the steady-state scenario,
where the first term of (7) can be replaced by uGTss(r), we find
the filtered velocity estimates at a fixed lateral location r to
be distributed as U f

∼ N (uGTss(r), σ 2
u ).

In a pulsatile flow, the filtered ground truth flow uGTfn (r)
does not equal the steady state flow uGTss(r). The distribu-
tion of ufn(r) for pulsatile flow is then found to be U f

∼

N
(
uGTfn (r), σ 2

v
)
. Two effects cause the spread in this distribu-

tion. Similar to the steady-state case, the variance σu is caused
by the localization error. In contrast to the steady-state case,
an additional spread due to a varying mean uGTfn (r) is caused
by the pulsatile flow behaviour. The distribution UGTf of the
varying mean can be approximated by creating a histogram
of uGTfn (r) over one pulsatility cycle, as in Fig. 2 (c). Assum-
ing uGTfn (r) to be independent of1ufn we find the distribution
of ufn(r) in pulsatile flow to be

U f
= UGTf ~1U f (8)

where~ represents the convolution operation. In Fig. 2 (c) the
derivation is performed for three different values of Pf for
a fixed σ and s. By employing the moving average filter,
it is implicitly assumed that uGTfn (r) ≈ uGTn (r). The span s
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should be small enough compared to the pulsatile period for
this assumption to hold.

The minimum and maximum values of uGTfn (r) are given
by the peaks in the histogram UGTf. After convolution, these
peaks appear in U f as well. In ULM acquisitions U f can be
found by the accumulation of the filtered velocities found
at a fixed lateral location r . The pulsatility fraction can be
estimated by substitution of the found peaks in (1).

III. RESULTS
The results presented here are divided into three sections.
We first report the performance of the simulator, then the sim-
ulation results of the Lagrangian pulsatility retrieval method
that relies on the filtering of single MB trajectories, and
finally theoretical and simulation results found with the Eule-
rian method.

A. THE FULL ULM PROCESS IS SIMULATED AND
SUPER-RESOLUTION IS ACHIEVED
An average velocity map was reconstructed from the simula-
tion of the flow in the double vessel configuration in Fig. 3.
This average velocity map serves as the ground truth with
which the ULM velocity reconstruction should be compared.
Fig. 3 (b) displays a simulated B-mode image containing
three MBs.

Based on the acquired B-mode images, a contrast-
enhanced Power Doppler image is computed (Fig. 3 (c)),
and the ULM pipeline for localization and tracking is imple-
mented resulting in three super-resolved maps displaying
density (Fig. 3 (d)), velocity (Fig. 3 (e)) and orientation
(Fig. 3 (f)). The cross-sections of the ULM density map and
Power Doppler image taken at 3 different positions along the
axial direction are plotted in Fig. 3(g). The two vessels can
be separated as close as 15 µm (∼ λ/6), well below the
wavelength of λ = 86.2 µm. Separation of the vessels is also
visible in the velocity based renderings (Fig. 3 (h)). Finally,
the orientation map displays a clear separation of the two
vessels of opposite flow using a color code for the main orien-
tation of the velocity vector, the venule appearing in blue and
the arteriole in red. The root mean square error (RMSE) of
the average blood flow velocity and orientation are 1.3 mm/s
and 0.23 rad respectively.

Histograms of the found localization errors in 1x and 1z
are plotted in Fig. 3(i). The localization precisions σx and
σz were 8.5 µm and 12.7 µm respectively and are within
the same range as reported in [31], i.e. [0.09, 0.23]λ =
[7.76, 19.83] µm.

B. PULSATILITY FRACTION CAN BE RECOVERED FROM
SINGLE TRAJECTORIES BY FILTERING OUT
GRID-BASED ARTIFACTS
Three lateral vessel locations r1, r2 and r3 were defined,
corresponding to the center of the venule, the side of the
venule, and the center of the arteriole in the double vessel
configuration. Trajectories at these lateral locations were
found by controlling the inlet position of simulated MBs,

see Fig. 4 (a) and (b). ULM parameters (see Table 3) were
adjusted to recover longest trajectories.

The presence of a periodic grid-based artifact was noticed
upon post-processing via a moving average filter with a span
s = 51. At the position r2, the grid-based artifact is clearly
visible by the sawtooth-like behavior (see Fig. 4(c)). At r1 and
r3 this artifact was also noticed. Increasing the span s did
not result in elimination of this artifact which can be seen in
Fig. 7 of Appendix B. Therefore, additional filtering is needed
to eliminate the artifact.

The frequency spectrum of the trajectory at r2 was com-
puted with a Fast Fourier Transform (Fig. 4 (d)). A frequency
peak is visible in the frequency range fdx at which a simulated
MB passes a beamformed pixel, computed from (3) and
indicated as the gray shaded region. This peak was also found
for different beamformed pixel sizes and is always in the
fdx frequency range (Fig. 8 of Appendix B). This artifact is
referred to as a beamforming grid-based artifact in the rest of
this manuscript.

The filtered velocity estimates found by pre-filtering with
the bandstop filter and smoothing with the moving average
filter are shown in Fig. 4 (e). The pulsatility fraction estimates
calculated from the found maximum and minimum velocities
are given in Fig. 4 (f). The RMSE of the pulsatility fraction
estimates at r1, r2 and r3 are 0.022, 0.056 and 0.013, which
corresponds to 11%, 28% and 3.3% of the simulated pulsatil-
ity fraction respectively.

C. THE ABILITY TO RETRIEVE PULSATILITY FROM THE
MEASURED VELOCITY DISTRIBUTION IS
DICTATED BY σ AND s
1) THEORETICAL RESULTS
The theoretical velocity distributions corresponding to the
single vessel configuration are given in Fig. 5 (a). The cal-
culation was performed for different values of σ and a fixed
moving average span of s = 21. In Fig. 5 (b) and 5 (c) the cal-
culation was repeated for pulsatility fraction of Pf = 0.2 and
Pf = 0.
Pulsatility introduces a bimodal velocity distribution for

sufficiently low σ . For Pf = 0.4 two peaks could be retrieved
for σ ≤ 20 µm, while for Pf = 0.2 this was only possible for
σ ≤ 10 µm. The maximum and minimum velocity during
the pulsatile cycle were retrieved from the location of these
peaks and a pulsatility fraction estimate P̂f was found by
their application in (1), see Fig. 5 (a)-(c). No bimodality was
found in the distribution of the steady-state flow case. The
location of the centroid of the distribution (shown with aster-
isks in Fig. 5) indicates the mean ūGTfn (r). When rendering
the MB trajectories to a ULM reconstruction this mean value
is obtained and displayed in the velocity map. ūGTfn (r) is the
same for all distributions given in Fig. 5(a)-(d).

From the derivation in II-B.2 it was already found that
increasing the span s narrows1U f. This effect was also found
in U f when comparing Fig. 5 (a) with (d) with respectively
s = 21 and s = 51. We find that increasing the span aids the
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FIGURE 3. Simulation of the double vessel configuration with the designed ULM simulator shows its ability to simulate the full ULM
processing pipeline and achieve super-resolution. Length of all scalebars = λ (a) The simulated average bloodflow ūGT

n (r) serves as
the ground truth with which the ULM velocity map is to be compared. (b) A patch of a simulated B-mode image with 3 MBs at position
(x, z) beamformed at 50 µm ≈ λ/2. In the regions of interest, the MB position estimates (x̂, ẑ) are found using the radial symmetry
localization algorithm [31]. (c) Diffraction-limited Power Doppler rendering with cross- sections 1,2 and 3 at which the vessels have a
separation distance of respectively 45, 30 and 15 µm. (d) ULM density rendering. (e) ULM velocity rendering. (f) ULM orientation
rendering. (g) Cross-sections (1)-(3) of the ULM density rendering and Power Doppler image. (h) Cross-sections (4)-(6) of the ULM
velocity rendering (i) Histograms for measured localization errors 1x and 1z for a total of 29417 localized MBs.

retrieval of the bimodality. In Fig. 5 (d) two peaks could still
be retrieved for σ = 30 µm.

The localization precision σ influences the shape of the
distributions. For increasing σ the peaks move inwards and

the distribution flattens until no two peaks can be detected
any longer at σ = 20 µm for s = 21 and σ > 30 µm for
s = 51. To further study this, Fig. 5(e) plots the pulsatility
fraction estimate as a function of σ for a fixed value of the
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FIGURE 4. Pulsatility can be retrieved by filtering single-trajectory velocity estimates. (a)-(b) Three trajectories at different lateral
positions r1, r2, and r3 in the two vessels are highlighted. Scalebar = λ (c) The moving average filtered velocity estimates at r2 show a
disturbance with periodical behavior. (d) The frequency spectrum of the velocity estimates at r2 shows a peak at frequencies
corresponding to the frequency range fdx (grey). (e) The frequency filtered velocity estimates ufn(r) follow the simulated ground truth
velocity uGT

n (r). Multiple trajectories for each lateral location are shown. (f) Pf is estimated from the filtered estimates of (e).

span s = 21. The ground truth pulsatility fraction is indicated
as a dashed line. We find that Pf is biased and always under-
estimated. A deteriorated localization precision results in an
increased underestimation of Pf, well in accordance to what
is observed in Fig. 5(a)-(d). For σ > 20 µm only a single
peak was detected and thus, no P̂f was found.
Increasing the span of the moving average filter s leads

to increasing of the height of the velocity distribution peaks.
The velocity distributions are plotted in Fig. 5(a) and (d). The
peaks also move inwards for higher s. To further study this,
Fig. 5(f) plots the pulsatility fraction estimate as a function of
the span s for a fixed value of σ up to s = 51. In accordance to
what was previously described, P̂f is underestimated for all
the scenarios. The smallest theoretical attainable estimation
error is found at the maxima of the curves for each value of σ .
With this approach an optimal setting of s can be derived for
any obtained localization precision σ , as is shown in Fig. 5(f).
The curves show that a lower localization precision (higher σ )
requires a larger span s to enable retrieval of the pulsatility
fraction.

2) SIMULATION RESULTS
The velocity distributions as derived in Fig. 5(a) were
acquired in simulation for σ = 5, 10 and 20 µm (single
vessel No-Localization). The resulting histograms are given
in Fig. 6. The location of the peaks of the distributions found
in simulation are in good accordance with the theoretical peak
location. The simulations for σ = 5 µm and for σ = 10 µm
result in the same peak locations for the bin size of the
histogram used here.

Additionally, the method was applied to the same data set
as used in Fig. 4, where the double vessel configuration was
simulated with the Localization scenario. Histograms were
obtained by accumulation of velocity estimates at the lateral
coordinates r1, r2 and r3 (see Fig. 6 (b)). In the center of the
venule (r1), we found P̂f = 0.143 which is an underestima-
tion of 28.6%. It was needed to increase the moving average
span to 31 frames for retrieval of bimodality. In the histogram
found for r2 no bimodality could be retrieved despite fur-
ther increasing the span. In the center of the arteriole (r3) a
pulsatility fraction estimate of 0.379 corresponding to 5.2%
underestimation was found. Bimodality was already achieved
at s = 21. Using the Lagrangian method we achieved a
RMSE of 3% and 11% for respectively the arteriole and the
venule. We find that pulsatility retrieval is best performed at
the centerline of the vessel.

IV. DISCUSSION
In this study, we introduced two methods to retrieve flow
pulsatility with ULM. The Lagrangian method retrieves pul-
satility from single-trajectory velocity estimates after a two-
step filter. The second method takes on a Eulerian approach
of flow modeling, and relies on the accumulation of velocity
estimates at a fixed location in the microvessel of interest.
With this approach, the pulsatility fraction could be retrieved
from the location of the two peaks in the bimodal velocity
distribution. To validate these methods, we modelled pul-
satility in arterioles and venules from experimental data and
used the Verasonics Research Ultrasound Simulator to gen-
erate ultrasound B-mode frames. The low computation time
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FIGURE 5. Pulsatility fraction can be retrieved from the velocity distribution. The results shown here correspond to the parameters of
the single vessel configuration. (a) The derived velocity distributions for different values of σ with fixed s = 21. P̂f can be found from
the location of the two peaks in the distribution. Centroids of the distribution are given by asterisks and represent the conventional
ULM measurement. (b)-(c) Similar derivation for Pf = 0.2 and Pf = 0 respectively. (d) The derivation of (a) was repeated for s = 51.
(e) The effect of localization precision σ on P̂f for fixed s. The line stops when no two peaks could be detected. (f) The effect of s on P̂f
for a fixed σ . The different lines correspond to different σ values. A maximum (cross) can be found corresponding to the optimal
value of s. Derivation was performed up to s = 51.

of this simulator (as reported in Appendix A) compared to
k-space-based simulators makes it suitable for large dataset
generation. Our results show that ULM datasets contain rich
temporal information that can be processed to retrieve pul-
satility in addition to conventional ULM image reconstruc-
tions. By relying on kilohertz frame rates, we were able to
retrieve the temporal dynamics induced by pulsatility without
changing the localization, concentration, or tracking of the
ULM processing pipeline. In application to our simulated
data set, the Lagrangian method outperforms the Eulerian
method based on the reported errors in Pf estimate. Poten-
tially, the estimates of both methods could be combined to
create a Pf map of the vasculature.
Our derived velocity distributions were validated in simu-

lation. The peak locations in the acquired histograms (Fig. 6)
closely match those derived theoretically (Fig. 5). The larger
presence of high velocities in the histograms acquired from
the simulation is hypothesized to be a consequence of the spa-
tial interpolation of the trajectories. A MB of higher velocity
travels a longer distance on a frame-to-frame basis, causing
its velocity to be accumulated in the velocity distribution
of multiple pixels. This effect is beneficial to the retrieval
of pulsatility since it causes the peak corresponding to the
maximum velocity to be more prominent. The derivation of
U f should be updated to include this effect. Pulsatility induces
bimodality in the distribution of filtered velocity estimatesU f

(Fig. 5). Localization precision σ dictated both the ability to
find a Pf estimate as well as the quality of that estimate. In the
derivation ofU f the MB localization error was assumed to be

normally distributed as ∼ N (0, σ 2), which does not always
hold for all localization algorithms [31].

In the Lagrangian method, both the pre-filtering by the
bandstop filter and the smoothing by the moving average
filter were found critical to retrieve pulsatility from single
trajectories. In the trajectory velocity estimates, we observed
a large presence of noise resulting from MB localization
error. In the simulation of the double vessel configuration,
we obtained σ values higher than the average distance trav-
eled by the MBs over one frame, 12.7 µm versus 9.0, 3.3 and
8.6 µm for r1, r2 and r3 respectively. Additionally, we dis-
covered the presence of beamforming grid-based artifacts in
single-trajectory velocity estimates caused by grid-dependent
localization, as shown in Fig. 4(c). The presence of these
artifacts is consistent for different beamformed pixel sizes
dx and for localization using both a radial symmetry and a
Gaussian fitting algorithm (Fig. 8). Applying the Lagrangian
method to a dataset without speckle for which no SVD filter
was applied, validated that the artifacts result solely from
beamforming (Fig. 9). To eliminate the grid-based artifacts,
we designed a bandstop frequency filter with a stopband fdx
based on available ground truth MB velocity. In practical
applications this ground truth information is not available.
In this case, an iterative process based on the measured MB
velocities and its frequency spectrum should be applied to
determine an appropriate fdx . Additionally, further research
could focus on the replacement of the moving average filter
with an estimator that utilizes all intermediate MB local-
izations within the assigned span. Applying the minimum
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FIGURE 6. Validation of the Eulerian pulsatility retrieval method in simulation. (a) The histograms were constructed by collecting
velocity estimates along the centerline of the vessel in the single vessel configuration for the No-Localization scenario. The
theoretical location of the peak was extracted from derived Uf of Fig. 5(a). Bin size = 0.5 mm/s. (b) The acquired histograms for
the double-vessel configuration with Localization. The same data set as in Fig. 4 was used. Bin size = 0.1 mm/s.

variance unbiased estimator (MVUE) would result in lower
variance σ 2

u , which is especially beneficial in low frame rate
acquisitions.

The Lagrangian method relies on the temporal sampling of
a trajectory. For each trajectory, it will recover a pulsatility
fraction using (1). In the case of slow MBs - at the side
of the venule for example - trajectories spanning hundreds
of consecutive frames could be found (Fig. 4(e)). The main
factor limiting the trajectory length in our simulation was
the time during which the MB was present in the vessel.
Acquisition of long MB trajectories is therefore crucial in
the Lagrangian method. The trajectories in Fig. 4(e) succeed
each other every ∼100 frames. Due to the sparsity of in vivo
MBdata the intervals between two succeeding trajectories are
expected to be longer. The reported RMSE for the different
lateral locations scale inversely with the absolute velocity
deviation during the pulsatile cycle. Therefore, pulsatility
retrieval can best be performed at the center of a vessel.

The Eulerian method explores the distribution of the veloc-
ity estimates at a fixed spatial sample, rather than inspect-
ing the velocity estimates from individual MB trajectories.
Because it relies on the full acquisition time, we expect less
dependency on the frame-rate and on the retrieval of longMB
trajectories than the Lagrangian method. In the calculation
of U f we noticed two possible effects a change in frame
rate might cause. First, the temporal discretization causes
an additional numerical error in (6). This numerical error
will increase for lower frame rates with O(dt2). Second,
the time step dt , experimentally defined by the frame-rate,

influences the variance of the filtered velocity error through
σu =

√
2

sdt . When the span of the moving average filter is
increased to match the original temporal window, this effect
is compensated for.

The moving average filter was found to narrow the velocity
error distribution 1U f by dividing the standard deviation
by the value of s. It therefore reduces the adverse effect of
localization error on the velocity estimates. For estimation
of a steady-state flow it is advised to use a moving average
filter that spans the full trajectory length. However, beyond
a certain point increasing the span has adverse effects on
pulsatility retrieval (see Fig. 5(f)). The heavy smoothing leads
to an increased underestimation of the pulsatility fraction
due to the flattening of the pulsatile cycle (see Appendix
C). This underestimation effect of the moving average filter
is apparent in Fig. 5(e) where s = 21 was applied. Even
for perfect localization (σ = 0 µm) pulsatility fraction
was underestimated. Unfortunately, the span is currently not
reported in ULM studies. The theory introduced here can be
used to determine an optimal setting of the moving average
span for a specific flow scenario with given localization
precision.

The occurrence of false MB pairing by the tracking algo-
rithm will influence both methods. It will cause unexpected
behavior of the filtered trajectories (Fig. 4(e)) and introduce
additional contributions to the measured velocity histogram
(Fig. 6). To limit the adverse effect of false MB pairings,
an appropriate tuning of the maximum linking distance in
ULM tracking is necessary. The theoretical derivation of
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the velocity distribution performed in this study aids the
development of a systematic method to determine the optimal
maximum linking distance (Appendix D).

Pulsatility was simulated by our ULM simulator by mod-
elling the spatial and temporal characteristics of themicrovas-
cular blood flow separately corresponding to a straight vessel
with rigid wall of constant diameter. The ULM simulator
could be improved by adapting a more complex vascular
architecture corresponding to in vivo observations. Addition-
ally, introducing a third dimension in acoustic simulations
would describe more faithfully the physics at play in this
problem. The derivations of the velocity distribution should
be extended to take the elevational projection into account.

By investigating the effect of MB localization precision
on the retrieval of pulsatility, we focused on the spatial
quality of MB trajectories. Future research could focus on
the temporal sampling of the MB trajectories in relation to
pulsatility reconstruction. We expect the minimum frame rate
needed for resolving hemodynamics to depend mainly on the
time scale of the targeted hemodynamic phenomena, which
are usually in the tens of milliseconds to seconds timescale
for hemodynamic events. The methods reported here will
need to be validated on experimental data. We anticipate
specific challenges in an in vivo context, such as shorter
MB trajectories, sparser MB data and incomplete filling of
vessels for short-time acquisitions. In-vivo it is expected that
the vascular architecture contains crossings that will lead to
false MB linking. Since the Eulerian method does not rely
on capturing long MB trajectories, we expect it to be more
reliable for use on experimental data. However, for higher
sampling rate of the pulsatility, the Lagrangian method will
be more appropriate as each trajectory can give a pulsatility
measurement and thus will lower acquisition time.

V. CONCLUSION
We have introduced two methods to extract pulsatility from
raw ULM datasets. First, by filtering out grid-based artifacts
from single trajectory velocity estimates, second, by retriev-
ing the distribution of velocities found at a fixed location
in a vessel of interest. Both methods have been validated
on simulated ultrasound beamformed data featuring pulsatil-
ity induced flow variations. Our study shows that ULM
datasets contain more information on the hemodynamics of
the blood flow than that provided by conventional ULM
image reconstructions. By looking at reconstructed trajecto-
ries independently or at the distribution of velocities, more
insight can be gained into the hemodynamics experienced
by the microbubbles. By reporting vascular anatomy and
hemodynamic function, ULMhas the potential of becoming a
full-fledged ultrasound diagnostic method of unprecedented
resolution.

DATA AND CODE AVAILABILITY
The simulated data is available through the 4TU.Resear-
chData portal at https://doi.org/10.4121/21517878. The code

TABLE 2. List of symbols.

TABLE 3. US simulation parameters.

that incorporates the two pulsatility retrieval methods is avail-
able at https://github.com/qnano/ulm-pulsatility.

APPENDIX A
All symbols used in this study are given in Table 2 along with
their definition.

Total computation time of the ULM simulator was on
average 24 ms/B-mode frame excluding the time needed
for computing the speckle frames. Therefore, simulating a
ULM reconstruction of 10s acquisition time at 1kHz requires
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FIGURE 7. The periodical grid-based artifact found in single-trajectory velocity estimates is not eliminated by increasing the
span s (in number of frames). The velocity estimates filtered with a moving average filter of s = 111 still show the artifact
while their shape is heavily altered by the heavy smoothing, resembling the effect shown in Fig. 10(a).

FIGURE 8. The frequency spectra of the single-trajectory velocity estimates un(r) are shown for simulations in which
beamforming was perfomed on different pixel sizes dx. fdx corresponds to the range of frequencies at which a MB passes
a pixel. In the top row with dx = 100 µm, peaks lie within the frequency range fdx for localization performed with a radial
symmetry algorithm and with Gaussian fitting. In the bottom row a peak is visible in the fdx range for dx = 50 µm. For
dx = 10 µm ∼ 1/10λ the frequency range was not found to align with a distinct peak in the spectrum. On the right an
illustration of the grid-based artifact is included. The distance between the estimated MB positions (x̂, ẑ) is dependent on
the ground truth MB location within (x, z) a beamformed pixel.

a total average computation time of 240s. The hardware
specifications of the computer used in this study are given
in Table 5.

APPENDIX B
Increasing the moving average span did not eliminate the
beamforming grid-based artifacts (Fig. 7). Even at a span of

111 frames, which is more than half of the duration of the
pulsatile cycle, the artifact is still observed.

The artifact is likely to be a result of MB localization
that is dependent on the location in the beamformed pixel.
In Fig. 8 this is illustrated for a MB that moves at con-
stant speed with localization biased towards the center of
the pixel. The velocity estimates based on the estimated MB
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FIGURE 9. The grid-based artifact in a PSF simulation without speckle and without application of a SVD filter. (a) The
frequency spectrum shows a peak corresponding within the fdx region. Additionally, an increase in frequency content is
found at ∼ 2fdx . (b) The trajectory velocity estimates filtered by a moving average filter with a span of 51 frames. A clear
sawtooth-like behavior is visible.

FIGURE 10. The span of the moving average filter has a large influence on the obtained distribution uf. (a) The simulated ground truth
pulsatile cycle (s = 1) is filtered with a moving average filter for different values of the span s. A full cycle (200 frames) is displayed
here. (b) The histograms of UGTf change shape for different value of s. (c) The velocity error distribution 1Uf narrows for increased
span. The scenario of σ = 20 µm is derived here. The width of 1Uf for the non filtered case (black) extends far outside of the interval
given here. (d) The resulting velocity distribution Uf from the convolution of the results of (b) and (c). The two peaks are barely
noticeable for s = 21. Increasing the span to s = 51 improves the retrieval of the two peaks. The peaks move inwards with increasing s.

TABLE 4. ULM processing parameters.

positions (red) will fluctuate between a high value measured
for the MB crossing a pixel border and a low value measured
for a MB at a central pixel location (see the gray arrows in the
illustration).

TABLE 5. Hardware specifications.

To conclude that the artifact indeed results from this grid
dependent localization, the simulation was performed on
three different beamformed pixel sizes dx: 100 µm, 50 µm
and 10 µm. The resulting spectra are shown in Fig. 8 with
the fdx range given by the shaded area.
For dx = 100µm and 50µm a peak is found within the fdx

range. In the case of a 10 µm pixel size, this is not observed.
Note that this pixel size is approximately∼ 1/10λ and typical
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FIGURE 11. For specific scenarios the pulsatility fraction Pf can have an effect on the RMSE of the ULM velocity reconstruction.
(a) Velocity RMSE and the fraction of tracked MBs is plotted against the localization precision σ for different simulated values of Pf.
Left and right differ on the value of the maximum linking distance used in ULM processing. The shaded areaindicates the 95%
confidence interval as found from 1000 bootstrapped samples. (b) The non-filtered velocity distribution U for three values of Pf and
σ = 5 µm is shown. The MLD of 25 µm truncates the distributions at 25 mm/s causing the centroids of the distributions to shift to the
left. The average velocity of the truncated distribution as measured in a ULM reconstruction is given in the legend for the different Pf.

localization precisions that would be obtained are often larger
than 10 µm [31].
To validate that the grid-based artifact results solely from

beamforming, a simulation on PSF frames without any
speckle was performed. In processing of this data, no SVDfil-
ter was applied. The results in Fig. 9 show that the grid-based
artifact is also present in this data set.

APPENDIX C
When increasing the span of the moving average filter, two
effects cause the resulting velocity distribution U f to change.

Firstly, as introduced in section II-B.2, by employ-
ing a moving average filter one implicitly assumes that
uGTfn (r) ≈ uGTn (r). This assumption is violated when increas-
ing the span s, as can be seen in Fig. 10(a). Due to the
flattening caused by the moving average filter, the filtered
pulsatile cycle does not resemble the original pulsatile cylce
(s = 1) any longer. As a result, the shape of the histograms
of UGTf changes and their peaks move inwards.

Secondly, a more beneficial effect of increasing the span
is the fact that 1U f narrows. After convolution with UGTf

this gives rise to narrower peaks inU f. For lower localization
precision a higher span is needed to be able to resolve two
peaks. For example, in Fig. 10(d) for a localization precision

of σ = 20µm, the two peaks aremore distinct for s = 51 than
s = 21.

APPENDIX D
The ULM simulator was also used to inspect the influence
of the pulsatility fraction on the rendered ULM velocity
map. The quality of the reconstruction was assessed by
the RMSE of the average velocity prediction at each super
resolved pixel compared to the ground truth average velocity
(Fig. 11(a)). Additionally, the ULM velocity reconstructions
were inspected along the cross-section (Fig. 12).

In Fig. 11(a) the velocity RMSE and the fraction of tracked
MBs is plotted against the localization precision for different
values of Pf ranging from 0 to 1 and two maximum linking
distance (MLD) settings. In tracking, the linking of two MBs
is not permitted if the distance between them exceeds the
MLD.

Generally the RMSE increaseswith σ . The reported RMSE
values become unreliable, as seen by the enlarged 95% con-
fidence interval, when only a low number of MBs is tracked.
The fraction of MBs that is tracked drops for increasing
values of σ , since the distance between two MBs becomes
more likely to exceed the MLD.

The violins in the cross-sections of Fig. 12 report the
spread in ūfn(r) reported in the ULM velocity rendering at the
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FIGURE 12. Violin plots displaying the spread in reconstructed velocities along a cross-section of a 100 µm vessel. A total of
2000 cross-sections of ULM velocity reconstructions were acquired to construct the violins. The colorbars below show the average
number of MBs that passed that lateral location in the vessel. In all six cross-sections a localization precision of 5 µm was simulated.
Pf varies along the columns and the two rows show the results for MLD = 25 µm and 50 µm. Median velocities obtained at the
centerline for MLD = 25 µm and Pf = 0, 0.2 and 0.4 are respectively 18.69, 17.95 and 16.90 mm/s.

corresponding lateral position in the vessel. The violins were
constructed from 2000 cross-sections out of ULM velocity
renderings of a 100 µm vessel for acquisition time of 10 s.
Fig. 11 and 12 show that Pf has a small effect on the ULM

velocity reconstructions through twomechanisms. Firstly, for
an insufficient maximum linking distance the truncation of
the velocity distributions of different Pf results in different
values reported in the ULM reconstruction, see MLD =
25 µm of Fig. 11(a) and 12(b). We observe that the fraction
of MBs tracked varies for different Pf. Fig. 11(b) displays the
non-filtered velocity distributions U as found from UGT ~
1U forPf = 0, 0.2 and 0.4 and a fixed σ = 5µm. For aMLD
of 25 µm velocities over 25 mm/s can not be measured and
the velocity distributions are truncated at that location. The
truncation of these distributions by the insufficient setting of
the MLD results in different locations of the new centroids,
which represent the average velocity ūfn(r) as found in a ULM
reconstruction. Note that the non-filtered velocity distribution
is applicable here since theMLD is applied before themoving
average filter. Due to the truncation, the centerline velocity is
found to bemore underestimated for largerPf. The theoretical
explanation of Fig. 11 corresponds to the simulation results of
Fig. 12, where the underestimation at the center of the vessel
is clearly visible.

Additionally, the effect of insufficient MLD is visible in
the average density reconstruction over the cross-section. For
MLD = 25 µm the number of MBs tracked drops for the
central pixels.

A second effect ofPf on the reported RMSE values is found
in the high localization precision range (σ < 10 µm) even
for sufficient MLD setting of 50 µm. This can not be caused
by the truncation of the velocity distribution as described

above since no loss in tracked number ofMBs is found.When
inspecting the cross-sections of Fig. 11 we only observe a
slight increase in violin size for larger Pf, which indicates a
higher spread of reconstructed velocities in the ULM velocity
rendering.We expect this effect to fade for longer acquisitions
due to the averaging that is performed in rendering of the
reconstruction. To construct these cross-sections, the single
vessel configuration was simulated for a 10 s acquisition,
while typical in vivo acquisition length is > 100 s.
To prevent underestimation of the centerline velocities,

the MLD should ideally be set such that it captures the full
non filtered velocity distribution. It should therefore be set
significantly higher than the actual maximum blood flow
velocity present. Based on our velocity distribution theory,
new systematic ways of setting the MLD can be formed
replacing the trial and error tuning that is currently common.
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