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SUMMARY

For the development of regional landslide early warning systems, empirical-statistical
thresholds are of crucial importance. The thresholds indicate the meteorological and
hydrological conditions initiating landslides and are an affordable approach towards re-
ducing people’s vulnerability to landslide hazards. This thesis defined different landslide
hydro-meteorological thresholds in Rwanda and evaluated their predictive capabilities.
Chapter 1 identifies the landslide problem to society, opportunities for possible solu-
tions, overview of the previous research and knowledge gap. It defines the research con-
cepts, research objectives and outlines.

Chapter 2 describes the study area and landslide hazards in Rwanda. It includes
the geographic location, hydro-geology and tectonic movements, topography and ge-
omorphology, climatic controls and variability, land use changes and population pres-
sure, and involvement in landslide hazards occurrence. Chapter 3 provides an under-
standing of the hydro-geological and meteorological behaviours of the typical landslide
prone hillslopes and possible implication for landslide initiation. Field and laboratory
tests were conducted to quantify various geotechnical and hydrological parameters on
two hillslopes in north-western Rwanda renown to be prone to landslide hazards. The
geotechnical characterization indicated instability conditions at the Karago hillslope and
marginally stable conditions at the Rwaza hillslope. A strong correlation was found be-
tween surface displacement and depth to groundwater and thus stressing its role on
landslide initiation. The role of rainfall was also significant with long lasting low inten-
sity rainfall being more impactful than short and high intensity rainfall events. Rainfall
was identified as a trigger of landslides in Karago and Rwaza and is of course also the
source of other hydrological processes and stocks such as local and regional groundwa-
ter levels and soil moisture water content.

Following these insights, chapter 4 assessed the landslide hazard in Rwanda at na-
tional scale by using the landslide inventory that was made for this study and rainfall
data in an empirical-statistical approach to identify the precipitation-related variables
to explain landslide initiation. This chapter defines both rainfall thresholds referred to
as landslide trigger and the antecedent precipitation index as a proxy for soil moisture
content prior to landslide initiation referred to as landslide cause. Both precipitation
and antecedent precipitation index were combined to define the hydro-meteorological
thresholds. The findings indicated the rainfall event volume and the cumulative one day
rainfall that coincide with the landslide day to be the most powerful explanatory fac-
tors to statistically describe the landslide triggering. The antecedent precipitation index,
calculated over the 10 days prior to the landslide triggering, showed the highest explana-
tory power for the causal conditions prior to landslide initiation. The highest landslide
prediction capability (in terms of predicted positive alarms) was found to be a single

xi



xii SUMMARY

rainfall variable; so a trigger-based threshold. However, at the same time this trigger-
based threshold resulted in a high number of false alarms. Constraining this trigger-
based threshold with a causal variable in a bilinear hydro-meteorological framework,
improved the overall prediction capability by reducing the number of false alarms.

Chapter 5 aimed to improve the national scale landslide prediction capability by in-
corporating catchment specific hydrological information in empirical-statistical land-
slide threshold models. Specifically, this chapter tested the value of regional ground-
water level information, as a proxy for water storage (i.e. wetness of the entire catch-
ment), to improve landslide predictions. As this type of information is scarce in Rwanda,
a parsimonious transfer function noise model was used to simulate and extend regional
groundwater level time series to the same period covered by the Rwanda landslide in-
ventory. The standardized groundwater levels modelled on a landslide day and the event
rainfall volume were identified as the hydrological and meteorological variables with the
highest discriminatory power to distinguish landslide from no landslide conditions and
thus the dominant control on landslide occurrence in the studied region. Interestingly,
using only regional groundwater levels (single variable threshold) gave the best predic-
tion of landslide initiation (true positives) despite the resulting number of false alarms.
Similarly, the single variable thresholds using rainfall event volume and rainfall inten-
sity revealed also high predictive skill in terms of true positive landslide initiation pre-
dictions, however associated with quite high number of false alarms. Moreover, it was
noticed that relying exclusively on single variable thresholds derived from precipitation
data like rainfall event volume and rainfall intensity, could lead to biased results due to
the fact that many landslides occur not only due to the trigger itself but rather a combina-
tion of both trigger and pre-event hydrological conditions. Contrarily, relying exclusively
on single variable thresholds using groundwater levels, lead to unbiased landslide pre-
dictions as this considers the long-term antecedent wetness conditions until the day of
landslide occurrence. Further combination of the groundwater level and precipitation to
predict landslide initiation using bilinear hydro-meteorological thresholds reduced the
number of false alarms at the expense of reduced number of true positive alarms. How-
ever, for Rwanda the bilinear hydro-meteorological threshold models using groundwa-
ter and rainfall information indicated higher landslide predictive skill than the classical
rainfall intensity-duration threshold models.

The hydro-meteorological thresholds for Rwanda defined from both Chapter 4 and
5 relied on in-situ rain gauges and groundwater monitoring wells with the highest data
accuracy but constrained by the coarse spatial resolution of the networks, and providing
data at point scale. Chapter 6, tested the reliability of satellite derived precipitation and
soil moisture content data as well as soil moisture content derived from a simple regional
hydrological model as alternatives to the in-situ based information. Both precipitation
and soil moisture content information were integrated in landslide threshold models
and we evaluated their landslide predictive capabilities in Rwanda. Based on statistical
indicators, the NASA GPM-based precipitation product IMERG showed the highest skill
to reproduce the main spatiotemporal precipitation patterns. Similarly, the satellite and
model derived soil moisture content time series broadly reproduce the most important
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trends of the in-situ measured soil moisture content and show interesting potential for
regional landslide hazard assessment. The root zone antecedent soil moisture content
was found the most useful in landslide hazard assessment in the study area. The hydro-
meteorological thresholds that incorporate the antecedent soil moisture from the root
zone and the recent 3day cumulative rainfall over performed other threshold models
and thus useful alternative for landslide hazard assessment and early warning system
development in Rwanda.

Chapter 7 provides a synthesis of research findings, overall comparison of the defined
hydro-meteorological thresholds, constraints and perspectives for future researchers for
Rwanda landslide hazard assessment. The overall comparison of the defined hydro-
meteorological thresholds for Rwanda shows that the consideration of the pre-wetting
conditions of the terrain using either soil moisture or groundwater levels improves the
landslide prediction as compared to the exclusive use of the classical precipitation thresh-
olds. We concluded that the hydrological information, especially regional groundwater
levels, was the most important landslide predictor, and therefor potentially useful for
landslide hazard assessment in Rwanda. The landslide hydro-meteorological thresholds
defined using satellite-based information performed somewhat less than using in-situ
information but are still considered very useful for landslide early warning system de-
velopment in data scarce areas like Rwanda.





SAMENVATTING

Voor de ontwikkeling van regionale waarschuwingssystemen voor aardverschuivingen
zijn empirisch-statistische drempelwaarden van cruciaal belang. De drempelwaarden
geven de meteorologische en hydrologische omstandigheden aan waarboven aardver-
schuivingen plaatsvinden en zijn een betaalbare methode om de kwetsbaarheid van
mensen voor aardverschuivingen te verminderen. Dit proefschrift definieert verschil-
lende hydro-meteorologische drempelwaarden voor aardverschuivingen in Rwanda en
evalueert hun voorspellende vermogen. Hoofdstuk 1 identificeert het aardverschuivings-
probleem voor de samenleving, mogelijke oplossingen, overzicht van eerder onderzoek
en kennishiaten. Het definieert de onderzoek concepten en doelstellingen.

Hoofdstuk 2 beschrijft het studiegebied en de aardverschuivingsgevaren in Rwanda.
Het omvat de geografische locatie, hydrogeologie en tektonische bewegingen, topografie
en geomorfologie, klimatologische controles en variabiliteit, veranderingen in landge-
bruik en bevolkingsdruk, en de betrokkenheid van dit alles bij het optreden van aardver-
schuiving in Rwanda. Hoofdstuk 3 geeft inzicht in het hydro-geologische en meteorolo-
gische gedrag van typische hellingen die vatbaar zijn voor aardverschuivingen en moge-
lijke implicaties voor het initiëren van aardverschuivingen. Er werden veld- en labora-
toriumtesten uitgevoerd om verschillende geotechnische en hydrologische parameters
te kwantificeren op twee hellingen in het noordwesten van Rwanda die bekend staan
om hun risico op aardverschuivingen. De geotechnische karakterisering wees op insta-
biliteit op de Karago-heuvels en marginaal stabiele omstandigheden op de Rwaza heu-
vels. Er werd een sterke correlatie gevonden tussen oppervlakteverplaatsing en diepte
tot grondwater, wat de rol ervan bij het initiëren van aardverschuivingen benadrukt. De
rol van regenval was ook significant, waarbij langdurige regenval met lage intensiteit
meer impact had dan korte regenbuien met hoge intensiteit. Neerslag wordt geïden-
tificeerd als een trigger van aardverschuivingen in Karago en Rwaza en is natuurlijk ook
de bron van andere hydrologische processen en waterberging, zoals lokaal en regionaal
grondwater en bodemvochtgehaltes.

In navolging van deze inzichten wordt in hoofdstuk 4 het gevaar voor aardverschui-
vingen in Rwanda op nationale schaal beoordeeld. Hiervoor is gebruik gemaakt van de
voor deze studie gemaakte aardverschuivingsinventaris en beschikbare neerslaggege-
vens. Vervolgens zijn empirisch-statistisch de neerslaggerelateerde variabelen geïden-
tificeerd die het begin van aardverschuivingen verklaren. Dit hoofdstuk definieert zo-
wel de neerslagdrempels die aardverschuivingstriggers worden genoemd als de vooraf-
gaande neerslagindex die als een proxy dient voor het bodemvochtgehalte voorafgaand
aan de aardverschuiving. Zowel de neerslag- als de voorafgaande neerslagindex werden
gecombineerd om de hydro-meteorologische drempels te definiëren. De bevindingen
gaven aan dat zowel het volume van de regenvalgebeurtenis als de cumulatieve een-
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daagse regenval die samenvalt met de dag van de aardverschuiving, de beste verklarende
factoren zijn om de triggers van aardverschuivingen statistisch te beschrijven. De neer-
slagindex, berekend over de 10 dagen voorafgaand aan de aardverschuiving, bleek de de
oorzakelijke omstandigheden voorafgaand aan de aardverschuiving het best te beschrij-
ven. De beste voorspelling van aardverschuivingen (percentage positieve alarmen) werd
genoteerd met behulp van slechts een enkele regenvalvariabele zonder de hydrologische
condities voorafgaand aan de aardverschuiving mee te nemen. Tegelijkertijd resulteerde
dit echter in een hoog aantal valse alarmen. Door de neerslag drempelwaarde te beper-
ken tot hydrologisch nattere condities verbeterde het algehele voorspellingsvermogen
doordat het aantal valse alarmen verminderde.

Hoofdstuk 5 had als doel het voorspellen van aardverschuivingen op nationale schaal
te verbeteren door de stroomgebiedspecifieke hydrologische informatie op te nemen
in empirisch-statistische modellen voor aardverschuivingsdrempels. Dit hoofdstuk test
met name de waarde van regionale grondwaterstandinformatie, als een proxy voor wa-
terberging (d.w.z. nattigheid van het gehele stroomgebied), om de voorspellingen van
aardverschuivingen te verbeteren. Aangezien dit soort informatie schaars is in Rwanda,
werd een eenvoudig statisch tijdserie model (Transfer Noise Model) gebruikt om regio-
nale tijdreeksen van grondwaterstanden te simuleren en uit te breiden tot dezelfde pe-
riode die wordt bestreken door de Rwandese aardverschuiving database. De gemodel-
leerde regionale grondwaterstanden op de dag dat een aardverschuiving was opgetre-
den en de hoeveelheid regen op deze dag bleken de aardverschuivingen goed te kunnen
voorspellen in de bestudeerde regio. Als alleen gemodelleerde regionale grondwater-
standen werden gebruikt, werd het optreden van aardverschuiving het best voorspeld
(positieve alarmen) ondanks het aantal valse alarmen. Het toevoegen van neerslag als
verklarende variabele verminderden de kans op vals alarm maar echter ten koste van een
iets verminderd aantal goed voorspelde aardverschuivingen (positieve alarmen). Echter,
deze gecombineerde hydro-meteorologische drempelwaarden op basis van regionale
grondwater en neerslag zijn duidelijk beter in het voorspellen van aardverschuivingen
dan de klassieke modellen die uitsluitend vertrouwen op neerslag.

De hydro-meteorologische drempelwaarden voor Rwanda, gedefinieerd in zowel hoofd-
stuk 4 als hoofdstuk 5, waren gebaseerd op in-situ regenmeters en grondwatermonito-
ringputten met hoge nauwkeurigheid maar beperkt door de grove ruimtelijke verdeling
van de netwerken, en de puntschaalresolutie. Hoofdstuk 6 test de betrouwbaarheid van
satelliet metingen van neerslag en bodemvocht en ook van bodemvocht zoals gemodel-
leerd met een eenvoudig regionaal hydrologisch model als alternatieven voor de in-situ
gebaseerde informatie. Zowel informatie over neerslag als bodemvochtgehalte werd ge-
ïntegreerd in de modeldefinitie van aardverschuivingsdrempels en hun voorspellende
vermogen voor aardverschuivingen in Rwanda werd geëvalueerd. Op basis van statisti-
sche indicatoren toonde het NASA GPM-gebaseerde neerslagproduct IMERG de groot-
ste vaardigheid om de belangrijkste spatiotemporele neerslagpatronen te reproduceren.
Evenzo bleken de tijdreeksen van de satelliet en het model afgeleide bodemvochtgehal-
ten in grote lijnen overeen te komen met de in-situ gemeten bodemvochtgehalte en to-
nen ze interessante mogelijkheden voor regionale risicobeoordeling van aardverschui-
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vingen. Het antecedent bodemvochtgehalte in de wortelzone bleek het meest bruik-
baar bij de beoordeling van aardverschuivingsgevaar in het studiegebied. De hydro-
meteorologische drempels die antecedent bodemvocht in de wortelzone combineert
met de 3-daags cumulatieve neerslag bleek een nuttig alternatief voor regionale aard-
verschuivingsvoorspellingen in Rwanda.

Hoofdstuk 7 biedt een synthese van onderzoeksbevindingen, een algemene verge-
lijking van de gedefinieerde hydro-meteorologische drempelwaarden, beperkingen en
perspectieven voor toekomstig onderzoek voor de risicobeoordeling van aardverschui-
vingen in Rwanda. De algehele vergelijking van de gedefinieerde hydro-meteorologische
drempels laat zien dat het in aanmerking nemen van de mate van natheid van het terrein
door middel van bodemvocht of grondwaterniveaus, de voorspelling van aardverschui-
vingen verbetert in vergelijking met het exclusieve gebruik van de klassieke neerslag-
drempelwaarden. Geconcludeerd wordt dat de hydrologische informatie, met name re-
gionale grondwaterstanden, de belangrijkste voorspellers van aardverschuivingen zijn,
mogelijk nuttig voor de beoordeling van het gevaar van aardverschuivingen in Rwanda.
De hydro-meteorologische drempels voor aardverschuivingen die zijn gedefinieerd met
behulp van op satellieten gebaseerde informatie presteerden iets minder dan het ge-
bruik van in-situ informatie, maar zijn nog steeds erg nuttig voor de ontwikkeling van
systemen voor vroegtijdige waarschuwing voor aardverschuivingen in gebieden met schaarse
gegevens, zoals Rwanda.
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2 1. INTRODUCTION

1.1. LANDSLIDE HAZARD PROBLEMS AND OPPORTUNITIES FOR

SOLUTIONS

Water induced landslides are one of most prevalent hazards in mountainous regions of
the world associated with rates of fatalities, injuries and economic loss globally (Froude
and Petley, 2018; Haque et al., 2016; Kirschbaum et al., 2015; Petley, 2012). According to
a recent estimate (Froude and Petley, 2018), precipitation-induced landslides were re-
sponsible for a global total of about 55000 deaths over the 13-year period from 2004 to
2016. In landslide-prone regions, much effort is therefore put on the implementation of
prevention and protection measures to control the most sensitive factors. These mea-
sures include the slope stabilization approaches and landslide early warning systems
(LEWS). Both reliable warning systems and sustainable slope stabilisation approaches
require an understanding of the hydro-geological and meteorological behaviours of the
hillslopes prone to failures including the failure mechanism, potential predisposing and
triggering conditions and their respective thresholds. However, in many places, stabili-
sation approaches may be expensive in terms of financial and environmental limitations
and hence early warning systems are adopted to timely inform the public about the land-
slides imminent dangers.

LEWS are defined as “set of capacities needed to generate and disseminate timely
and meaningful landslide warning information to enable individuals, communities and
organizations threatened by a hazard to act appropriately and in sufficient time to re-
duce the possibility of harm or loss” (UNISRDR, 2009). LEWS are used as non-structural
and cost effective mitigation approach adopted to minimize the landslides’ harms and
fatalities (Calvello et al., 2020). However, global landslide research shows a bias in geo-
graphical distribution of landslide research and LEWS with a major gap in Africa (Kirschbaum
et al., 2010, 2015; Gariano and Guzzetti, 2016; Guzzetti et al., 2020). According to Guzzetti
et al. (2020), there is no LEWS in African countries despite the high number of fatal land-
slides recorded (Kirschbaum et al., 2015; Broeckx et al., 2018) and the high landslide sus-
ceptibility (Broeckx et al., 2018). The East African Rift (EAR) was identified as a major
hotspot of hazardous landslides in Africa with high rate of population exposure (De-
picker et al., 2020, 2021c; Monsieurs et al., 2018a). On the long term, this is due to the
active continental rifting caused by the persistent divergence of the Victoria and Nubia
microplates (Glerum et al., 2020) while on the short term it is controlled by the interac-
tions of prolonged, intense rainstorms and hydro-geological processes.

Rwanda is among the tropical countries located in the East African Rift region, threat-
ened by landslide hazards (Bizimana and Sönmez, 2015; Nsengiyumva et al., 2018; Nsen-
giyumva and Valentino, 2020). About 43% of its surface area is classified as moderate to
very high susceptibility to landslide with about 49% of the total population exposed to
landslide risks (Nsengiyumva et al., 2018). The long term landslide predisposing fac-
tors include its topographic nature, inherent geological and lithological units, weather-
ing process, demographic pressure and related anthropogenic activities such as defor-
estation, expansion of agriculture, buildings and slope incision through roads construc-
tion activities (Bizimana and Sönmez, 2015; Moeyersons, 1989; Nsengiyumva et al., 2018;
Valentino et al., 2021; Depicker et al., 2021c). Development of mining sites and con-
nected feeder roads also change the nature of natural hillslope through excavation and
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thus exacerbating landslide susceptibility and risks of slope failures. The urban expan-
sion also forces the society to bring infrastructures like buildings and roads in hazardous
areas that are naturally unstable (Valentino et al., 2021) and thus increasing the number
of elements at landslide risks. In the past 15-year period from January 2006 to May 2021,
the landslide inventory in Rwanda (Uwihirwe, 2021) indicated about 425 landslide vic-
tims (0.6% of the global landslide induced death) with about 2000 injuries. The lack of
operational LEWS is one of the key causal factors of the landslide victims.

Empirical and physically based landslide threshold models are of crucial importance
for LEWS development to reduce people’s vulnerability to landslide hazard. Empirical-
statistical threshold models indicate the meteorological and hydrological conditions ini-
tiating landslides. Physical, process-based models aim to understand and describe the
dynamic processes responsible for landslide initiation. They typically combine slope
stability and hydrological models in which dynamic hydrological processes are used to
evaluate the slope failure probabilities (Anderson and Lloyd, 1991; Montgomery and Di-
etrich, 1994; Van Beek, 2002; Rosso et al., 2006; Kuriakose et al., 2009). However, phys-
ically based dynamic models require high resolution spatio-temporal data, which are
largely unavailable in most of the areas worldwide. Applications of this type of models
are thus highly limited to few regions with sufficient data and typically to local scales
only (Aleotti, 2004).

Due to their less detailed data requirements, empirical-statistical models have been
widely adopted to define the landslide early warning thresholds at local (Crozier, 1999;
Prenner et al., 2018; Mirus et al., 2018b,a); regional (Martelloni et al., 2012; Roccati et al.,
2018; Ciavolella et al., 2016); national (Robbins, 2016; Peruccacci et al., 2017; Rosi et al.,
2016; Brunetti et al., 2010; Hong et al., 2017); and global scales (Caine, 1980; Guzzetti
et al., 2008). The empirical-statistical models typically relate precipitation character-
istics, such as antecedent precipitation, cumulative event precipitation, precipitation
intensity and precipitation duration or combination thereof to the occurrence of land-
slides. Despite the considerably lower data requirements of empirical-statistical thresh-
old models, landslide initiation thresholds remain poorly explored and defined through-
out Africa (Gariano and Guzzetti, 2016). This is due to the lack of accurate and complete
landslide inventories and insufficient spatio-temporal resolution of the available pre-
cipitation (Monsieurs et al., 2018c) and hydrological data. The development of a robust
LEWS hinges on the availability of sufficient spatio-temporal resolution meteorological
and hydrological data and accurate landslide inventory which are still scarce.

Recently, numerous river catchments in Rwanda have been equipped with ground-
water monitoring wells, piezometers, river water level gauges as well as the automated
weather stations equipped with soil moisture sensors (https://waterportal.rwb.rw/,
last access: 2 June 2021). However, often, the recorded data are insufficient to build his-
torical time series that overlap the time period of landslide inventories and that could be
incorporated into landslide hazard assessment thresholds. The Landslide Inventory for
the central section of the Western branch of the East African Rift LIWEAR has also made
an effort to systematically document landslide hazards in Africa and hence shaping in-
terests for landslide researchers in the region (Depicker et al., 2020, 2021b; Monsieurs
et al., 2018c,a,b, 2019). Despite that, however, many landslide events are likely to be
missed in the inventory due to the fact that for Africa mostly only newspapers, govern-

https://waterportal.rwb.rw/
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ment reports, and other media are used as a source for landslide inventory. While the
reliance on these data sources is likely to result in a bias towards large and/or impact-
ful landslides that involve casualties and economic damage, this landslide inventory can
nevertheless serve as basic starting point to define landslide thresholds in Rwanda.

While in-situ gauge based precipitation are accurate but often sparse and point based,
satellite precipitation data have proven to offer valuable, spatial and temporal informa-
tion for use in landslide hazard assessment (Hong et al., 2006; Kirschbaum et al., 2009,
2017; Brunetti et al., 2018; Monsieurs et al., 2018b). Similar to precipitation, hydrological
processes also exhibits high spatial variability influenced by the spatial variation of other
soil properties like soil texture and land cover in addition to the high dependence on spa-
tial variability of precipitation in tropical areas (Dewitte et al., 2022; Kirschbaum et al.,
2012; Sekaranom et al., 2020). This spatial variability is hardly covered by the on-site hy-
drological monitoring equipment due to the sparse observation networks, themselves
providing point-scale observations only. Therefore, hydro-meteorological information
from satellite and hydrological models could be a potential alternative for meaningful
landslide hazard assessment over large regions in Rwanda.

1.2. RESEARCH CONCEPTS AND STATISTICAL APPROACHES

1.2.1. LANDSLIDE TRIGGER-BASED THRESHOLDS

The majority of landslide thresholds are mainly inferred from empirical methods which
are based on statistical analysis of historical precipitation characteristics and landslides
inventories to distinguish the landslide conditions from no-landslide conditions. How-
ever, some limitations, constraints and uncertainties associated with empirical precipi-
tation thresholds have been highlighted (Peres et al., 2017; Prenner et al., 2018; Bogaard
and Greco, 2018). Some limitations are due to the fact that empirical thresholds are
mainly based on the rainfall events during which one or more landslide occurred, which
is in reality the actual landslide trigger. Hereafter, these thresholds are therefore referred
to as landslide trigger-based thresholds with various time scales depending on rainfall
event duration. Such landslide trigger-based thresholds include the intensity-duration
(I-D) (Caine, 1980; Guzzetti et al., 2007, 2008; Ma et al., 2018; Roccati et al., 2018; Hong
et al., 2017); event-duration (E-D) and event-intensity (E-I) (Peruccacci et al., 2017; Rob-
bins, 2016). These landslide trigger-based thresholds have been increasingly recognized
to neglect the causal hydrological processes that predispose the slope to near failure
(Peres et al., 2017; Bogaard and Greco, 2018; Mostbauer et al., 2018). Disregarding this
information may thus be one of the reasons for the typically occurring rates of both, false
and missed alarms associated with the empirical trigger-based precipitation thresholds
and hence less suitable for a robust LEWS.

1.2.2. LANDSLIDE CAUSE-TRIGGER-BASED THRESHOLDS

The dynamic hydrological conditions regulate the disposition of a slope to near fail-
ure (Bogaard and Greco, 2018; Sidle et al., 2019) and thus the root cause of landslide
occurrence in a region. To include this, a number of researchers considered the pos-
sible hydrological causes in terms of antecedent precipitation, catchment storage, soil
moisture indices and or soil water status prior to the landslide triggering event or storm



1.2. RESEARCH CONCEPTS AND STATISTICAL APPROACHES

1

5

(Crozier, 1999; Glade, 2000; Ciavolella et al., 2016; Mostbauer et al., 2018). These hydro-
logical conditions are defined prior to the landslide triggering conditions and then com-
bined with precipitation to make landslide cause-trigger-based thresholds. The concept
of the landslide cause-trigger was proposed by Bogaard and Greco (2018) and has been
adopted using either in-situ observed or modelled soil moisture and precipitation to de-
fine the landslide hydro-meteorological thresholds (Mirus et al., 2018a; Prenner et al.,
2018). Similar concepts were also adopted in other studies (Crozier, 1999; Glade, 2000;
Aleotti, 2004; Ciavolella et al., 2016; Mostbauer et al., 2018; Prenner et al., 2019; Mon-
sieurs et al., 2019, 2018a). Some landslide studies discussed different effects that ground-
water system may have on landslide initiation (Bronnimann, 2011; Cascini et al., 2010;
Corominas et al., 2005a; Duan et al., 2019; Hong and Wan, 2011; Trigo et al., 2005; Zhao
et al., 2016). However, the asset that regional groundwater level information may have in
predicting landslide initiation thresholds on a regional scale is still underexplored. The
novelty of this work is therefore not only on the landslide thresholds definition approach
in a country where they have not been defined before, but also on the use of groundwater
data and soil moisture information derived from both satellite and hydrological models.

1.2.3. SINGLE VARIABLE AND BILINEAR THRESHOLDS

Traditional trigger-based threshold models commonly used the power-law function be-
tween precipitation variables like intensity-duration I-D and event-duration E-D (e.g.
Caine (1980); Guzzetti et al. (2007, 2008); Ma et al. (2015); Hong et al. (2017). A thresh-
old model line is used as the best separator for landslide and no-landslide conditions
sometimes defined based on the experts judgment.

More advanced statistical approaches that include the frequentist, probabilistic and
receiver operating characteristics methods have been adopted and replaced the deter-
ministic method. The frequentist methods (Brunetti et al., 2010; Peruccacci et al., 2017;
Melillo et al., 2018; Piciullo et al., 2018) define the threshold line separating landslide
from no-landslide conditions based on the targeted exceedance probabilities. The prob-
abilistic methods (Berti et al., 2012; Robbins, 2016) fundamentally rely on Bayes’ prior
and marginal probabilities for landslide occurrence. The probabilistic methods are criti-
cized for the biased prior and marginal probabilities due to the incompleteness of typical
landslide inventory data (Berti et al., 2012). The frequentist methods are also constrained
by their high dependency on a large and well distributed dataset to achieve significant
results (Brunetti et al., 2010; Monsieurs et al., 2019). The receiver operating characteristic
(ROC) curve method compares the landslide and no-landslide conditions based on the
area under the curve (AUC) while indicating the trade-off between true and false positive
rates associated to each level of the tested predictor variable or model. In landslide stud-
ies, the ROC approach has been mostly used to evaluate the performance of landslide
prediction models (Hong et al., 2017; Wicki et al., 2020) despite its capability to define
the landslide initiation thresholds once associated with other statistical metrics like the
true skill statistics and radial distance.

Some research that incorporate the hydrological parameters in landslide prediction
models also used the exponential or power-law function (e.g.Crozier (1999); Monsieurs
et al. (2018a, 2019). Monsieurs et al. (2018a, 2019) used the frequentist statistical meth-
ods to define the landslide power-law threshold model line between antecedent rain-
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fall and landslide susceptibility. Similarly, Crozier (1999) defined the exponential func-
tion between antecedent water status and daily rainfall in Wellington City, NewZealand.
However, recent research (Mirus et al., 2018a) used the ROC curve and other statisti-
cal metrics (true skill statistics, radial distance, and threat score) to define the land-
slide threshold for each tested landslide predictor variable. These statistical metrics are
used to identify the optimum threshold of each tested predictor variable. Then after,
these optimum thresholds are plotted in 1D here referred to as single variable threshold
model line beyond which landslide are high likely to occur. Furthermore, these optimum
thresholds are combined and plotted in 2D here referred to as bilinear threshold model
lines beyond which landslide are high likely to occur and have been firstly proposed by
Mirus et al. (2018a). In this work, the bilinear relationship between hydrological and me-
teorological variables has been adopted based on the fact that the majority of landslide
conditions were clustered in the upper right corner of the 2D plane.

1.3. RESEARCH OBJECTIVE
This research aims to define the landslide hydro-meteorological thresholds following
the cause-trigger concept in a bilinear framework towards the development of landslide
early warning system in Rwanda. Specifically, the following objectives were addressed:

1. To determine the key hydro-geological and meteorological characteristics of the
typical hillslopes prone to landslide and possible implication in landslide initia-
tion;

2. To identify precipitation-related variables with the highest landslide explanatory
power and predictive capability;

3. To evaluate the asset that regional groundwater level information have on land-
slide initiation thresholds and warning capabilities;

4. To assess the potential of satellite and model derived precipitation and soil mois-
ture information for landslide initiation thresholds

1.4. RESEARCH OUTLINE
Following the introduction chapter, the content of this thesis is structured as follow:
Chapter 2 provides a description of the study area that includes the geographic location,
climatic controls, topography and geomorphology, hydro-geology and tectonic move-
ment, land use change, population pressure, and landslide hazards experience. Chap-
ter 3 identifies the key hydro-geological and meteorological characteristics of the typi-
cal hillslopes prone to landslides hazards in northwestern Rwanda. Chapter 4 identifies
precipitation-related variables with the highest explanatory power for landslide occur-
rence and defines the cause-trigger hydro-meteorological thresholds using antecedent
precipitation index and rainfall. Chapter 5 assesses the added value of regional ground-
water level information to precipitation, to improve landslide predictions with an empirical-
statistical model based on the concept of cause-trigger hydro-meteorological thresholds.
Chapter 6 evaluates the prospect of satellite and model derived precipitation and soil
moisture information in landslide hazard assessment thresholds. Chapter 7 summarizes
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the overall knowledge generated by the research, presents the capabilities of the defined
hydro-meteorological thresholds, their limitations and potentialities for future research.
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2.1. GEOGRAPHIC LOCATION

This research has been conducted in Rwanda, an evergreen landlocked country geo-
graphically located between 1º – 3º S and 28º – 31º E in African Great Lakes region of the
central east Africa, with a total area of 26,338km2. Rwanda, south of equator, extends
over the western branch of the East African Rift characterised by active continental rift-
ing due to the persistent divergence of the Victoria and Nubia microplates (Glerum et al.,
2020) and hence a potential spot for landslide hazards (Dewitte et al., 2021; Froude and
Petley, 2018; Monsieurs et al., 2018c). The tectonic rifting gave rise to the two parallel
North-south oriented mountainous rift shoulders enclosing Lake Tanganyika and Lake
Kivu, ones of the African great Lakes. The Lake Kivu is located on the western edge of
Rwanda bordering to the Democratic Republic of the Congo. Lake Kivu outflows by Ruz-
izi river in the southwest of Rwanda and drains into lake Tanganyika. Rwanda is bounded
by Uganda on the north, Burundi in the south, Tanzania on the east and Democratic Re-
public of Congo on the west (Figure 2.1).

Figure 2.1: Location of Rwanda in Africa, elevation, rain gauges and isohyets (mm) indicating rainfall distribu-
tion; spatial and temporal distribution of landslides with light to dark red dots indicating old to new landslides
recorded from 2006–2019 (Uwihirwe, 2021), 5km buffer for Satellite precipitation foot prints

2.2. CLIMATIC CONTROLS AND VARIABILITY
Rwanda is characterised by a subtropical highland climate with a long term mean annual
rainfall greater than 1200mm in highland regions of northwest and less than 1000mm in
eastern Savanah (Figure 2.1) and a mean annual temperature of about 19ºC. The country
has two rainy seasons, the long and heavy rainy season that extends from March through
mid-May (MAM) and the shorter one from September to December (SOND) (Kimani
et al., 2017; Ngarukiyimana et al., 2017; Nicholson, 2017). The MAM has more and in-
tense rainy days and thus referred to as long rain season while the SOND has less and
low intensity rainy days and hence referred to as short rainy season. A number of factors



2.3. TOPOGRAPHY AND GEOMORPHOLOGY

2

11

is known to influence the seasonal rainfall regime and the high spatio-temporal variabil-
ity of rainfall. These factors include the topography, lakes, and the seasonal dynamics
of tropical circulation. The tropical air circulations that influence the immense spatial
and temporal variability of rainfall are seasonal variation of the location of the Inter-
Tropical Convergence Zone (ITCZ), subtropical anticyclones, tropical cyclones, mon-
soons, El Niño Southern Oscillation (ENSO) and la Niña episodes (Ngarukiyimana et al.,
2017; Nicholson, 2017). During the MAM and SOND, the ITCZ is boosted by the conver-
gence of strong westerly winds from the Atlantic Ocean and southeasterly winds from
the Indian Ocean. During the extreme rainy years, these winds convey moist air mass,
leading to rainfall events. These extreme wet years coincided with the El Niño events.
On the other hands, the easterly winds carry dry air during the dry years that coincide
with the La Niña episodes (Ngarukiyimana et al., 2017). Overall, the topography, large
water bodies and tropical air circulations, lead to frequent extreme and prolonged rain-
fall events that consequently result into flooding and landslide hazards during the MAM
and SOND rainy seasons in Rwanda.

2.3. TOPOGRAPHY AND GEOMORPHOLOGY

Rwanda is topographically characterised by rounded, angular hills and headlands, moun-
tains and volcanoes (Figure 2.2) with elevation in the north western regions reaching up
to about 4500m and steep slope reaching up to abour 29 degrees.
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The highest peak is on Mount Karisimbi at 4,507 m.a.s.l, located in the Volcanoes Na-
tional Park while the lowest point is at 950 m.a.s.l. situated in the south-west in the Ruzizi
river. Alongside the mountains and hills, the clouds often prevail in the sky and temper-
atures may drop to zero especially during nights. In mountainous areas also, rainfall
is more frequent and can occur throughout year. The steep slope and distance to the
drainage and road networks have been also identified as one of the geomorphological
variables that have an impact on landslide occurrence in Rwanda (Bizimana and Sön-
mez, 2015; Depicker et al., 2020; Nsengiyumva et al., 2018).

2.4. HYDRO-GEOLOGY AND TECTONIC MOVEMENTS
The geology of Rwanda consists of Precambrian metasedimentary rocks mainly quartzite,
sandstones and shales intruded by granites. Granitic-gneisses are dominants in north-
east and south of Rwanda while Neogene and Quaternary volcanic deposits are domi-
nants in northwest and southwest (Figure 2.3).
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The western Rift comprises of alluvium and lake sediments of Quaternary age. The
general lithostratigraphy consists of gneisses, mica schists, and granites of Paleoprotero-
zoic age (Depicker et al., 2021a). The lithostratigraphy of Paleoproterozoic age is deeply
weathered and hence susceptible to landslide hazards. The hydro-geology of Rwanda
is dominated by fractured granite and gneiss aquifers, semi-permeable and permeable
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fractured schist and mica schist aquifers and basaltic rock complex aquifers. Landslides
are most dominant in granite and mica schist units while basaltic units are quite resis-
tant to landslide activities.

Rwanda is located in a tectonic and seismically active region. The earthquakes, vol-
canoes and mountains being the results of tectonic movement exposes Rwanda, espe-
cially the western and northwest regions, susceptible to landslides (Depicker et al., 2020).
In the longer term, the landslide occurrence in Rwanda is controlled by tectonic move-
ment, and the distance to active and inactive faults. Inactive faults are found in the vicin-
ity of the volcanoes chain while active faults are specifically found in the western parts
of the country in the close proximity of Kivu Lake and thus being the most landslide
susceptible region in Rwanda (Depicker et al., 2020; Nsengiyumva et al., 2018).

2.5. LAND USE CHANGE AND DEMOGRAPHIC PRESSURE
Conversion of forest land into agricultural and built up lands in Rwanda had intensively
taken place over the last 2 decades (Nambajimana et al., 2020) and thus induced change
in landslide intensity (Depicker et al., 2021a,b). Expansion of agricultural and construc-
tion activities coupled with deforestation have led to several environmental hazards, the
most deadly ones being landslides and flooding (MIDIMAR, 2012, 2014, 2015; Nahayo
and Mupenzi, 2017; Nsengiyumva et al., 2018). The large scale deforestation had been
necessary to sustain life of the population that increased from 94 inhabitants per km2 in
1958 to 495 inhabitants per km2 by 2018 (Imasiku and Ntagwirumugara, 2020) leading
to the growing demand for agricultural products, fuel wood, and natural resources and
thus exacerbating landslide hazards (Depicker et al., 2021a,c).

2.6. LANDSLIDE EVENTS AND CHARACTERISTICS
The landslide inventory (with the highest temporal accuracy) in Rwanda indicated about
425 landslide victims and about 2000 injuries for the past 15 years period from January
2006 to May 2021 (Uwihirwe, 2021). The inventory counted about 68 hazardous land-
slides from January 2006 to May 2021. In that inventory only fatal and highly damaging
landslides are mostly reported while others are likely to be missed. A field based sur-
vey conducted in the south of Mukungwa catchment located in northwestern Rwanda
recorded about 560 landslides (spatially accurate but temporally not accurate). Based
on Cruden and Varnes (1996), these landslides were classified as rotational slide (34%),
flow (26%), translational slide (17%), fall (15%) and complex type of mass movement
(7%), involving rock, debris and earth materials. The flow type of landslide include earth
flow, debris flow, and debris avalanches. It has to be noted that most of the recent land-
slides are frequently shallow while much older landslides are deep seated ones. This is
is due to the fact that small shallow landslides have signatures in the landscape that last
much less time than larger deep-seated landslides. Hence a temporal bias with more
deep seated landslides in long timescale and shallow landslides in short timescale.
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Figure 2.4: Photos of typical landslides in Rwanda taken in 2018



2.6. LANDSLIDE EVENTS AND CHARACTERISTICS

2

15

‘





3
HYDRO-GEOLOGICAL AND

METEOROLOGICAL BEHAVIOURS OF

TYPICAL LANDSLIDE-PRONE

HILLSLOPES

17



3

18
3. HYDRO-GEOLOGICAL AND METEOROLOGICAL BEHAVIOURS OF TYPICAL
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Abstract

Landslide hazard prevention measures that include slope stabilization or an early warning system
require an understanding of the hydro-geological and meteorological behaviours of the hillslopes
prone to failures. This chapter aimed to understand the hydro-geological and meteorological pro-
cesses and the relationship thereof using two typical hillslopes (Karago and Rwaza) that experience
slow moving rotational deformation. For each case study, geotechnical characterization and hydro-
logical field and laboratory information was collected, i.e., saturated permeability measurements,
soil moisture and groundwater monitoring. The surface displacements were also monitored and
their linkage with hydrological processes was assessed. The geotechnical characterization indicated
instability conditions (Fs<1) at the Karago hillslope and marginally stable conditions (1<Fs<2) at the
Rwaza hillislope. The slope deformation and landslides occurred during the wettest conditions (i.e.
soil moisture close to saturation and groundwater rises up to near surface). The surface displace-
ments control points revealed the toe and head units to move faster than the intermediate units.
The highest acceleration at the toe was attributed to the external incision agents like stream erosion
while cracks and steeper failure plane were responsible for acceleration at the head units. The re-
gression analysis indicated a strong correlation (R2=79%) between surface displacement and depth
to groundwater and thus impactful for slope deformation and landslide initiation. The role of rain-
fall was also significant with long lasting low intensity rainfall being more important than short
and high intensity rainfall.
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3.1. INTRODUCTION

In chapter 2, the landslide prone regions in Rwanda, possible causes and triggers have
been broadly underlined. This chapter provides the key hydro-geological, and meteo-
rological behaviours of the two hillslopes with one deep-seated and one shallow land-
slides (Karago and Rwaza) in northwestern Rwanda (Figure 3.1). The link between the
key hydro-meteorological processes and surface displacement has been tested to pro-
vide an insight on the possible implication in landslide warning thresholds definition in
Rwanda.

The role of water, either as groundwater in saturated zone or as soil moisture in un-
saturated zone, on slope stability has been recognised for many years as highlighted
in standard soil mechanics and hydrology books (Craig, 1997). Most slope failures can
be induced by high intensity short lasting rainfall as well as low intensity long lasting
rainfall. However, the timing of the initiation of slope displacement is controlled by the
hydro-geological behaviour of the slope, the infiltration, temporarily storage and subse-
quent drainage in the slope. A thorough understanding of the slope failure mechanism
involves therefore an understanding of the hillslope response to the dynamics of hydro-
geological processes (i.e. groundwater and soil moisture).
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Figure 3.1: Location of the study hillslopes in the north-western region of Rwanda and lithological units

Since Rwanda hillslopes are recognised to be morphologically active landscapes (De-
picker et al., 2021c) strongly affected by changes in land use that modify the hydrological
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and geotechnical characteristics, this chapter aimed to make an understanding of these
characteristics that could lead to the implementation of appropriate landslide preven-
tion measures.

3.2. KARAGO HILLSLOPE
The western region of Rwanda has been identified as the most prone to landslide haz-
ards. About 40% of its surface area is classified as high to very high susceptibility to
landslide with more than 1 million of local population exposed to landslide risks (Nsen-
giyumva et al., 2018). The region receives abundant rainfall with a long-term mean
annual rainfall of around 1500mm/yr and an estimated potential evaporation of about
900mm/yr. The Karago hillslope is geographically located at 1°39’3.3 S, 29°30’30.7 E in
the western province, downslope of a paved road Mukamira-Ngororero. It is underlain
by granite pegmatite geological unit and represents a landslide-prone zone with slow
moving rotational landslides. The slope failure initiation occurred in April 2012 and
completely failed at the end of March 2016 (Walraven, 2018). Before the slope failure,
the area was under Eucalyptus trees that undergone a clear cut. Currently, there is a slow
moving landslide with clear rupture, cracks/fissures at the scarp (Figure 3.2).

The scarp of the Karago landslide reveals three main layers, a sand layer, a clay layer
and a rock layer, which have been further subdivided into 5 layers (Figure 3.2) based on
visual observation and consistency of the soil materials. The first layer, made of light
coloured sandy soil deposited from road excavation, contains no plant roots and ex-
tends from 0-4.8m. The second layer extending from 4.8-5.5m is made of the original
terrain soil, some decaying roots with quite softer sand than the first layer. The third
layer from 5.5-6.1m contains very hard yellowish sand with no plant roots. The fourth
layer with hard light clay extends from 6.1 to 6.9m deep. The fifth layer, the failure plane
of the landslide, is made of saturated soft clay at >6.9m deep. The landslide geome-
try is about 60m long, 40m wide, and 8m deep. The landslide body was divided into 3
separate units (Figure 3.2): head, main body and toe units for further analysis of the rela-
tionship between hydrological processes and slope displacement. On each unit, surface
displacement control points were installed for weekly recording of surface displacement
rates. Groundwater observation wells were installed on the landslide body as indicated
by the letter M in Figure 3.2. Additionally, soil moisture monitoring tubes (T) and other
groundwater observation wells (S) were installed along the hillslope for daily monitoring
of groundwater and soil moisture. Downslope is a stream that undermines the landslide
toe during the rainy season, causing secondary landslides.

3.3. RWAZA HILLSLOPE
The northern region has been also identified as susceptible to landslide hazards. About
23% of its total area is classified as high to very high susceptibility to landslide with
more than 600,000 of local population exposed to landslide hazard risks (Nsengiyumva
et al., 2018). The north region receives rainfall with a long-term mean annual rainfall
of around 1200mm/yr and an estimated potential evaporation of about 800mm/yr. The
Rwaza hillslope is geographically located at 29°40’39.9"E 1°34’6.7"S in northern province
of Rwanda.
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Figure 3.2: Conceptual illustration of Karago hillslope and the location of hydrological monitoring equipment
along the hillslope: On the upper left image (Google imagery, 2022), T is the soil moisture access tubes; M and
S are groundwater monitoring wells on the landslide body and the stable slope respectively; on the upper right
is the photo of Karago hillslope taken in 2018; the conceptual illustration of Karago landslide and its different
units, groundwater observation wells and surface displacement control points, Ks is the saturated hydraulic
conductivity

The hillslope overlays the mica schists rock that represents a typical landslide prone
zone with a slow moving reactivating rotational landslide triggered by heavy rain of April
2017. The landslide is actively advancing downslope during the rainy season and thus
exposing the local people to high risks. The slope length of the landslide is about 50m
long, 15m wide, and an estimated depth of about 3m. The scarp reveals four layers (Fig-
ure 3.3). The first layer ranges from 0 to 0.80m with ploughed soft clay soil layer, plant
roots and no stones. The second layer made of very compact clay layer extends from
0.8m to 1.6m with no roots and no stones. The third layer, from 1.6m to 2.8m, contains
a mixture of clay soil and stones of about 10-25cm diameter. The fourth layer which is
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made of saturated clay layer with few stones, no roots, stands for the slope failure plane
located at >2.8m.

3.4. GEOTECHNICAL ANALYSIS

For each hillslope, soil samples were collected from distinct soil layers along the land-
slide scarp. Geotechnical properties such as soil texture (% sand, % silt and % clay), den-
sity, Atterberg limits, and shear strength parameters were tested. The soil texture was
tested using sieving and sedimentation methods and classified according to the unified
soil classification system (USCS) (Casagrande, 1948). The bulk density ρd was tested us-
ing the core method and was used to compute the unit weight of soil γ. The cohesion
C and angle of internal friction φ were derived from direct shear tests. In-situ and labo-
ratory measurement of saturated hydraulic conductivity Ks was undertaken on each soil
layer and at different landslide units (head, body, and toe) using the inverse auger hole
and bottomless bucket methods (Mirus and Perkins, 2012). The results of these geotech-
nical parameters and the mean groundwater level were used for the slope stability (fac-
tor of safety Fs) analysis using the SLIP5EX model developed by Greenwood et al. (2004);
Van Beek and Van Asch (2004). SLIP5EX has been developed to facilitate comparison of
various stability analyses given the slope geometry and geotechnical parameterization.

3.5. HYDRO-METEOROLOGICAL PROCESSES AND SLOPE FAILURE

The monitoring of hydro-geological processes was conducted from September 2018 to
June 2020 at the Karago hillslope and from April 2019 to June 2020 at the Rwaza hillslope.
We installed different hydrological and meteorological monitoring equipment to have
an overview of the soil moisture dynamics, groundwater fluctuation and rainfall with re-
spect to the slope failure and landslide occurrence. For the Karago hillslope, we used
meteorological data recorded from the installed rain gauge at the hillslope. Data from
Ruhengeri meteorological station, located around 5km, were used for the Rwaza hills-
lope analysis. The soil moisture was monitored through installed soil moisture monitor-
ing tubes using Delta-T, PR2/6 and PR1/6 soil moisture profile probes. At both hillslopes,
we installed eight soil moisture monitoring tubes distributed in different land use spots
to ensure for the entire hillslope representativity. Both hillslopes are covered by spots of
eucalyptus trees, agricultural crops, and built-up areas.

In each land use, two soil moisture monitoring tubes were installed as indicated by
the letters T in Figure 3.2 and Figure 3.3. The soil moisture was recorded daily using a dis-
turbed soil moisture profile probe measuring at six depth: 10, 20, 30, 40, 60 and 100cm.
We installed also eight groundwater monitoring wells (S and P) in the close proximity
of the soil moisture monitoring tubes as shown in Figure 3.2 and Figure 3.3. Additional
groundwater monitoring wells were installed on the moving landslide bodies to monitor
changes in groundwater levels and their effect on surface displacement. Since the stud-
ied landslides occurred before the start of the monitoring period, we referred to another
landslide that occured during the monitoring period to have an insight on the impact of
the observed hydrological processes on slope deformation.
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Figure 3.3: Conceptual illustration of Rwaza hillslope, hydrological and displacement monitoring equipment:
On the upper left image (Google imagery, 2022), letter T represent the soil moisture access tubes; P (Piezome-
ter) represent the groundwater monitoring wells, the upper right is the photo of Rwaza hillslope taken in 2018;
the conceptual illustration of Rwaza landslide and its different units, groundwater observation wells and sur-
face displacement control points, Ks is the saturated hydraulic conductivity
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3.6. SLOPE RESPONSE TO HYDRO-METEOROLOGICAL PROCESSES
The measurements of surface displacements have been undertaken to identify the most
influential hydrological and meteorological factors. On each landslide body, one line
transect of seven displacement control points P1 - P7 were installed at different land-
slide units from the head, main body to the toe as shown in Figure 3.2 and Figure 3.3.
A stable reference control point P0 was installed at a stable upslope and was used as a
benchmark for weekly measurement of the relative distance between the control points
and reference point using a measuring tape. The weekly measurement of changes in
distances between the stable reference point P0 and displacement control points P1 - P7
were conducted for a period of 14 months. The GPS receiver was also used for weekly
records of the location of each control points in x, y coordinates which were used for
computation of the surface displacement rates with Equation 3.1.

D =
√

(X t −X t−1)2 + (Yt −Yt−1)2 (3.1)

With D the surface displacement rate (mm week−1), Xt and Yt are the weekly measured
locations of the control points (mm) while Xt−1 and Yt−1 are prior measurements (mm).
A simple regression analysis was used to test the relation between the hydro-meteorological
parameters and surface displacement rates.

3.7. RESULTS AND DISCUSSION

3.7.1. GEOTECHNICAL CHARACTERISTICS

The results of the geotechnical parameters are summarised in Table 3.1 and Table 3.2
for the Karago and Rwaza hillslopes respectively. Based on the results of soil texture, At-
terberg limits and according to the unified soil classification system (USCS), the soil of
the Karago hillslope is classified as a well graded sand (SW) except the failure plane with
poorly graded sand (SP). The soil of the Rwaza hillslope is classified as a low plastic silt
(ML). However, referring to the results of texture analysis, some values of the angle of
internal friction φ and cohesion C derived from the peak stresses at the failure envelope
are likely overestimated (Table 3.1). The overestimation of C was attributed to the addi-
tional resistance required to overcome the interlocking and rearranging the soil particles
especially in the upper most layer that have undergone artificial consolidation at Karago.
It may also due to the size of the coarse-grained soil with some proportion of large soil
particles which causes the shearing of individual grains instead of the core soil sample
and thus yielding higher values of C (Kim and Ha, 2014).

Despite that however, by using the tested soil strength parameters C and φ, the unit
weight γ from each soil layer, the measured mean depth to groundwater, and land-
slide geometry, the Fellenius method of stability analysis indicated unstable state of the
Karago hillslope with a safety factor Fs < 1. Further sliding and displacement processes
are therefore expected which may affect the neighbouring infrastructures and commu-
nities due to the instability of the scarp and the linked retrogressive, enlargement and
advancing reactivation processes.

Based on both infinite slope and Fellenius methods, existing conditions of the perched
groundwater level (1.4m), geotechnical parameters, and landslide geometry, the scarp of
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Table 3.1: Geotechnical parameters and USCS classification of Karago landslide a

Layer Depth γsat CU CC C φ USCS SL SA GW Fs Fs
No [m] [K N m−3] [KPa] [°] Class [m] [°] [m] (ISM) (FM)
L1 0-4.8 23.6 13 2 18 28 SW

60 26 0.20 1.12 0.90
L2 4.8-5.5 21.6 14 1 0 35 SW
L3 5.5-6.1 20.6 12 2 0 40 SW
L4 6.1-6.9 20.7 11 2 0 50 SW
L5 >6.9 20.7 17 1 11 40 SP
a Moist bulk unity weight γ; Saturated bulk unity weight γsat ; Groundwater GW ( m below surface); Coefficient
of uniformity CU; Coefficient of curvature CC; Factor of safety FoS; Slope length SL; Slope angle SA; Well
graded sand SW; Infinite slope method ISM; Felenius method FM

Table 3.2: Geotechnical parameters and USCS classification of Rwaza hillslope b

Layer Depth γsat WP WS WL IP IC Cu φu IP IC USCS SL SA GW Fs Fs
No [m] [K N m−3] [KPa] [°] Class [m] [°] (ISM) (FM)
L1 0-0.8 27 0.34 0.24 0.39 0.05 1.0 10 26 LP Hard ML 50 26 1.4 1.6 1.8
L2 0.8-1.6 25 0.34 0.22 0.43 0.09 1.0 16 23 LP Hard ML
L3 1.6-2.9 23 0.32 0.21 0.40 0.07 1.2 21 23 LP Very hard ML
L4 >2.9 25 0.31 0.19 0.36 0.05 1.0 27 21 LP Hard ML
b Plastic limit WP; Shrinkage limit WS ; Liquid limit WL; Plasticity index IP; Consistency index IC; Water content
WP; Low plasticity LP; Low plastic silt ML; Groundwater GW ( m below surface)

Rwaza shows marginally stable conditions with 1<Fs<2. This indicates no current retro-
gression but there is a rather advancing reactivation and thus exposing the downslope
local population at high risks.

3.7.2. SOIL MOISTURE DYNAMICS AND LANDSLIDE OCCURRENCE

The dynamics of soil moisture at the Karago and Rwaza hillslopes are summarized in
Figure 3.4 and Figure 3.5. The highest soil moisture content at the Karago hillslope was
recorded in deep layers from 40-100cm resulting from water exchange between ground-
water and unsaturated zone. Contrarily, at the Rwaza hillslope, the highest soil moisture
content was recorded in shallow layers, 0-40cm, indicating a very low permeable or im-
pediment layer at around 40cm depth.

The soil moisture response time to rainfall was quite similar in all soil profile layers at
the Karago hillslope while at the Rwaza hillslope, shallow layers respond faster than deep
layers due to the high clay content that slows down the infiltration rate and the wetting
process. Figure 3.4 and Figure 3.5 show that landslide occurred at the peak soil moisture
in deep layers at Karago and shallow layers at Rwaza.

Furthermore, the effect of different land uses on soil moisture response was noticed.
The soil moisture in deep layers of the built-up and fully grown eucalyptus was fre-
quently lower (< 0.5 m3m−3) than other land uses due to the low infiltration rate in built
up area and high rainfall interception by trees canopy and transpiration in fully grown
trees.

The high soil moisture recorded in agricultural land implies the loss of soil strength
not only due to the lack of additional strength provided by trees roots but also the built
up of high pore water pressure, lack of pressure dissipation processes like transpira-
tion and thus frequent slope failures. While the influence of groundwater is obvious



3

26
3. HYDRO-GEOLOGICAL AND METEOROLOGICAL BEHAVIOURS OF TYPICAL

LANDSLIDE-PRONE HILLSLOPES

Figure 3.4: Soil moisture content, rainfall and landslide occurence at Karago hillslope a) agricultural land, b)
built up land c) Eucalyptus coppices, d) fully grown Eucalyptus
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Figure 3.5: Soil moisture content, rainfall and landslide occurence at Rwaza hillslope a) agricultural land b)
built-up land c) Eucalyptus forest land
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on shear strength and the factor of safety, the soil moisture content also influence the
shear strength through changes in suction forces and the saturation index. This role of
soil moisture on suction force and soil strength is not frequently considered probably
due to the fact that the main soil strength parameters (c

′
,φ

′
) are not directly affected.

Talebi et al. (2007) studied the role of soil moisture by considering the total cohesion
Ct , the moist unit weight γm , degree of saturation and matric suction on slope stability
conditions but found no significant effect on the factor of safety Fs.

3.7.3. GROUNDWATER FLUCTUATIONS AND LANDSLIDE OCCURRENCE

Groundwater levels at the Karago hillslope were monitored from three groundwater ob-
servation wells located in three land use spots: agricultural land S0, eucalyptus coppices
S6 and fully grown eucalyptus trees S7 as presented in Figure 3.6.

At the Rwaza hillslope, the groundwater levels were measured under three land use
spots: Agriculture P1, Built-up P2 and Built-up P7 as depicted in Figure 3.7.

The groundwater observation wells installed in built-up land at Karago and in Euca-
lyptus trees at Rwaza were dry during the entire monitoring period and are not presented
here. The results of groundwater levels in different observation wells are plotted in Fig-
ure 3.6 and Figure 3.7 for both Karago and Rwaza respectively. The groundwater infor-
mation indicated shallower and slow responding groundwater levels in agricultural land
as compared to other land use. The built-up and forest lands respond very fast to the dry-
ing conditions as compared to agricultural lands. This can be explained by the high level
of surface evaporation and overland flow in built-up areas and high level of rainfall inter-
ception and transpiration in forest areas and thus less groundwater inputs compared to
outputs. The landslide occurred at the peak groundwater level and after the long lasting
rainfall. The impact of groundwater levels on shear strength (saturated soil) is caused by
the increase in pore water pressure that increases shear stress, reduces the effective nor-
mal stress and thus soil strength and the factor of safety. Even though the fluctuations of
groundwater levels may have been affected by land use type and the linked hydrological
processes such as evaporation, transpiration, and interception, these processes are be-
yond the scope of this study. Furthermore, the impact of tensile strength of roots either
from forest trees or crops have not been tested to confirm their effect on soil stresses and
strength parameters.

3.7.4. SURFACE DISPLACEMENT

The weekly records of the locations of the displacement control points were carried out
from 3r d April 2019 to 27th May 2020 at the Karago hillslope and from 6th April 2019
to 30th June 2020 at the Rwaza hillslope. Figure 3.8 indicates that both the Karago and
Rwaza hillslopes undergone obvious surface displacement. The mean horizontal cu-
mulative displacements of the landslide bodies were 340mm and 176mm with a mean
weekly displacement rate of about 6.4mm week−1 and 2.7mm week−1, equivalent to
about 330mm year−1 and 140mm year−1 at Karago and Rwaza, respectively.

The measurements of displacements show that the landslide body movements have
never completely stopped since the start of the continuous monitoring, although the
rates reduced significantly during the dry periods from July to August and from January
to March as shown by the white background in Figure 3.8. Even though the landslide
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Figure 3.6: Groundwater information from different groundwater observation wells installed in agricultural
land (S0), in Eucalyptus coppices (S6) and fully grown eucalyptus (S7) and landslide occurrence at the Karago
hillslope: a) depth to groundwater (m below surface) and landslide b) groundwater level changes (m/day) and
landslide
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Figure 3.7: Groundwater information from different groundwater observation wells installed in agricultural
land (P1), in built-up 1 (P2) and built-up 2 (P7) and landslide occurrence at the Rwaza hillslope: a) depth to
groundwater (m below surface) and landslide b) groundwater level changes (m/day) and landslide occurrence
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bodies move quite synchronically, the fastest displacement rates for both hillslopes were
generally observed in control points P3 and P1 located at the toe unit of the landslides
with cumulative displacement of about 540mm and 385mm for the Karago and Rwaza
hillslopes, respectively. Note that the control point P1, located at the toe of the Karago
landslide, was quickly displaced and lost at the very beginning of the monitoring period.
The control points located at the head of the landslide also exhibited faster displacement
as compared to the control points located in the intermediate units of the landslide body
(P4, P5). This indicates that the intermediate units of landslides are less active as com-
pared to other parts. The intermediate units are quite stable probably due to the new
equilibrium created by the reverse slope at the arc shaped failure plane.

The fastest displacement rates at the toe of Karago landslides are accelerated by
a stream that undercuts the landslide toe during the rainy season, causing secondary
slides. When the destabilised soil materials are removed from the edge of the toe unit,
the materials in the intermediate unit starts moving at a distance that depends on the
velocity of the destabilised materials, the strength, the angle and the resistance along its
path.

Figure 3.8: Cumulative surface displacement and rainfall at a) Karago and b) Rwaza hillslopes

3.7.5. SLOPE RESPONSE TO HYDRO-METEOROLOGICAL PROCESSES
The recorded surface displacements rates were separated into two classes to facilitate
the regression analysis. The values of 10mm/week and 5mm/week were subjectively
found as separating lines between the two classes. The first class with displacement rates
<10mm/week and <5mm/week were hypothesised to be small and referred to as “minor
displacements” while the class with >10mm/week and 5mm/week were hypothesised to
be significant and referred to as “major displacements”. The relationships between the
tested hydrological processes and the defined classes of surface displacement are shown
in Figure 3.9 and Figure 3.10.

At the Karago hillslope, the regression analysis (Figure 3.9) indicated a strong nega-
tive correlation (R2=0.79) between groundwater levels and major displacement rates.

The regression model express that 79% of the proportion of the major displacements
could be explained by the depth to groundwater. The model indicates that the major
displacement rates decrease with increasing depth to groundwater and that the former
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Figure 3.9: Karago hillslope: Regression analysis between hydro-meteorological processes and slope displace-
ment

Figure 3.10: Rwaza hillslope: Regression analysis between hydro-meteorological processes and slope displace-
ment
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could be easily predicted using the latter. Contrarily, there was no correlation between
minor displacements and groundwater. However, it is generally observed that the major-
ity of the minor displacements occur when the groundwater rises to near surface while
the major displacements frequently occur during the groundwater drawdown phase at
Karago hillslope. A negative correlation was also found between rainfall and displace-
ment rates. It indicated that only about 50% (R2 = 0.50) of the variance in major dis-
placement could be explained by the rainfall information.

Most of the displacement either major or minor occurred at low long-lasting rain-
fall intensities between 20-60mm/week. This explains that the long lasting low rainfall
intensity have sufficient time to infiltrate and rise up the groundwater and pore water
pressure and thus inducing more surface displacement as compared to short and high
intensity rainfall with frequent overland flow than infiltration. The soil moisture infor-
mation in the unsaturated zones showed no significant impact on surface displacement
at the Karago hillslope. This suggests that the movement of deep seated landslides in
sand rich soils like Karago (>6.9m) are more linked to groundwater rather than rain-
fall and soil moisture. The groundwater induced displacement frequently occurs in a
considerable time after rainfall as function of the rainfall infiltration time, the distance
between the surface and the ground water table, the hydraulic properties of the soil ma-
terials and the depth of the slip plane.

Contrarily, at the Rwaza hillslope whose slip plane is shallow (2.8m) with clay domi-
nated soil texture, the major displacement occurred at higher soil moisture> 0.25m3/m3.
This suggests that in clay dominated soil textures, shallow landslides are likely due to the
above normal soil moisture or rainfall. Similar findings were noted by Bordoni et al.
(2015), who indicated that shallow landslides with < 2m thickness are easily induced by
rainfall due to the progressive infiltration of the rainwater up to the hard layer while deep
seated landslide are frequently induced by groundwater fluctuations.

Despite the role of hydro-meteorological processes as accelerators, it has to be noted
that the minor surface displacements frequently occur due to gravity force in sloppy ar-
eas.

3.8. CONCLUSION
This chapter aimed to understand the hydro-geological and meteorological processes
and the relationship thereof using two typical hillslopes (Karago and Rwaza prone to
landslides in northwestern Rwanda. The geotechnical characterization indicated insta-
bility conditions at the Karago hillslope and marginally stable conditions at the Rwaza
hillislope. It was observed that landslides occur during the wettest period (i.e. soil mois-
ture close to saturation and groundwater rises to near surface). Even though, the land-
slide body masses moved quite synchronically, the surface displacements control points
revealed the toe and head units to move faster than the intermediate units. The highest
acceleration at the toe was attributed to the external incision agents like stream erosion
while cracks and steeper failure plane are responsible for acceleration at the head unit.
The regression analysis indicated a strong correlation between surface displacements
and depth to groundwater at Karago and thus important for landslide initiation thresh-
olds definition. The role of rainfall was also significant with long lasting low intensity
rainfall being more impactful than short and high intensity rainfall.
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Abstract

This chapter aims to use landslide and precipitation data in an empirical-statistical approach to
(1) identify precipitation-related variables with the highest explanatory power for landslide occur-
rence and (2) define both trigger and trigger-cause hydro-meteorological thresholds for landslides
in Rwanda. Receiver operating characteristics (ROC) and area under the curve (AUC) metrics were
used to test the suitability of a suite of precipitation-related explanatory variables. A Bayesian prob-
abilistic approach, maximum true skill statistics and the minimum radial distance were used to
determine the most informative threshold levels above which landslides are highly likely to occur.
The results indicated that the event precipitation volumes E, cumulative one day rainfall (RD1) that
coincide with the day of landslide occurrence and 10 days antecedent precipitation (API10) are vari-
ables with the highest discriminatory power to distinguish landslide from no landslide conditions.
The highest landslide prediction capability in terms of true positive alarms was obtained from sin-
gle rainfall variables based on trigger-based thresholds. However, that predictive capability was
constrained by the high rate of false positive alarms and thus the elevated probability to neglect the
contribution of additional causal factors that lead to the occurrence of landslides and which can
partly be accounted for by the antecedent precipitation indices. Further combination of different
variables into trigger-cause pairs and the use of suitable hydro-meteorological thresholds in bilin-
ear format improved the prediction capacity of the real trigger-based thresholds.
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4.1. INTRODUCTION

In chapter 3, precipitation was identified as the most important trigger and the main
source of other hydrological processes that induce the slope displacement and land-
slides in Rwanda. It is worthwhile to test its value in landslide hazard assessment and its
predictive capability using empirical-statistical approaches. Empirical-statistical mod-
els defined from precipitation data have been widely adopted to define the landslide
early warning thresholds at local (Crozier, 1999; Prenner et al., 2018; Mirus et al., 2018b,a);
regional (Martelloni et al., 2012; Roccati et al., 2018; Ciavolella et al., 2016); national (Rob-
bins, 2016; Peruccacci et al., 2017; Rosi et al., 2016; Brunetti et al., 2010; Hong et al., 2017);
and global scales (Caine, 1980; Guzzetti et al., 2008). These empirical-statistical mod-
els typically relate precipitation characteristics, such as cumulative event precipitation,
precipitation intensity and precipitation duration or combination thereof to the occur-
rence of landslides. However, some limitations are associated with these widely used
precipitation thresholds due to the fact that empirical thresholds are mainly based on
the precipitation event during which a landslide occurred, which is in reality the actual
landslide trigger. Such landslide trigger-based thresholds include the intensity-duration
(I-D) (Caine, 1980; Guzzetti et al., 2007, 2008; Ma et al., 2018; Hong et al., 2017; Roccati
et al., 2018) event-duration (E-D) and event-intensity (E-I) (Peruccacci et al., 2017; Rob-
bins, 2016).

Landslide trigger-based thresholds have been increasingly recognized to neglect the
causal hydrological processes that predispose the slope to failure (Peres et al., 2017; Bo-
gaard and Greco, 2018; Mostbauer et al., 2018). To include this, a number of researchers
considered the possible hydrological causes in terms of antecedent precipitation, catch-
ment storage, soil moisture indices and or soil water status prior to the landslide trig-
gering event or storm (Crozier, 1999; Glade, 2000; Aleotti, 2004; Ciavolella et al., 2016;
Mostbauer et al., 2018). These temporally variable hydrological conditions, define the
hydrological predisposition of a region to landslide occurrence and are thus, besides
its geomorphological predisposition the root cause of landslide occurrence in a region.
The hydrological conditions are defined prior to the landslide triggering conditions and
then combined to make landslide trigger-cause based thresholds referred to as hydro-
meteorological thresholds. As a first step towards the integration of landslide hydrolog-
ical processes in landslide empirical statistical thresholds in Rwanda, this chapter ex-
plores the usefulness of antecedent precipitation index to account for the soil wetness
state prior to the triggering precipitation conditions. Specifically, we aimed to:

1. identify precipitation-related variables with the highest explanatory power for land-
slide occurrence in Rwanda

2. quantify both, landslide trigger-based and cause-trigger-based hydro-meteorological
thresholds as a first step towards robust landslide early warning systems in Rwanda

4.2. LANDSLIDE DATA

4.2.1. LANDSLIDE INVENTORY
Part of the landslide inventory for Rwanda was accessed from the NASA global landslide
catalogue (https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/

https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
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h9d8-neg4, last access: 26 June 2019) uploaded mainly by the LIWEAR project. The
catalogue was extended through compilation of other rainfall-induced landslides as re-
ported from local newspapers, blogs, technical reports and field observations. For the
catalogue extension, we followed the global landslide inventory methods using stan-
dard indices adopted by Kirschbaum et al. (2012) and Monsieurs et al. (2018c). Seven
elements were recorded for each landslide: i) landslide location (e.g. village, cell, sec-
tor, district or town); ii) time of occurrence (date); iii) triggering event (e.g. rainfall); iv)
landslide type based on Hungr et al. (2014) classification depending on the availability
of background information; v) latitude and longitude with relative locational accuracy;
vi) information about the impact (number of fatalities, injuries and damages); vii) the
accessible source of information was also mentioned with links to online source of in-
formation. Only hazardous (fatal and highly damaging) landslides are mostly reported
while nonhazardous ones are likely to be missed. Based on the inventory, about 99% of
landslides occurred from 2006 while the remaining occurred far before 2006. Therefore,
2006 was taken as the threshold year and landslides that occurred between 2006 and
2018 were used in this Chapter.

4.2.2. RAINFALL AND REPRESENTATIVE RAIN GAUGES

We used daily rainfall time series recorded from 35 rain gauges in Rwanda over a period
of 13 years from 2006 to 2018. The rainfall dataset was accessed from Rwanda Meteo-
rology Agency. Among the 35 rain gauges, representative rain gauges (Figure 2.1) were
selected to identify the rainfall conditions for each or multiple landslide. The represen-
tative rain gauges were selected based on their weights (W) estimated based on the rain-
fall event volume E (mm) until the landslide day, the distance between rain gauge and
landslide d (mm), and duration D (days) firstly proposed by Melillo et al. (2018) using
Equation 4.1.

W = E 2

d 2D
(4.1)

The number of rain gauges to be weighted for each landslide were chosen based on their
location inside the buffer radius around the landslide location. The higher the weight,
the higher the chance for the rain gauge to represent the rainfall conditions responsible
for the landslide. Based on the highest weights (W), 22 rain gauges out of 35 were found
to be representative for the rainfall conditions responsible for the landslide occurrence.
A single dataset of rainfall conditions from 22 rain gauges was made to pinpoint the land-
slide triggering conditions from non-triggering conditions.

4.3. METHODOLOGY

4.3.1. DEFINITION OF LANDSLIDE RAINFALL CONDITIONS

The landslide conditions were divided into 4 categories based on their time scale. The
first category considers the entire rainfall event during which, one or more landslides oc-
curred and is referred to as the maximum probable rainfall event (MPRE). The second,
third and fourth categories respectively consider the accumulation of very recent rainfall
over the last 3 days (RD3), 2 days (RD2), and 1 day (RD1) with the last day coinciding with

https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
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the day of landslide occurrence. The RD3, RD2 and RD1 for each day during the 2006-
2018 study period were calculated, irrespective of a landslide occurring or not. MPRE
was here defined as individual periods of days with recorded rain≥ 1mmd−1 interrupted
by dry periods of at least two dry days. The rainfall event E (mm/E) was then computed
as the accumulated rainfall during each MPRE which is equivalent to the event duration
D (d). The event intensity (mmd−1) was then computed as a ratio of E and D. Landslide
causal conditions were represented by the Antecedent Precipitation Index (API) consid-
ered as a proxy for soil moisture accumulation. The API was calculated as a cumulative
rainfall occurring over a predefined time periods prior to the landslide triggering con-
ditions. For this study, time periods of T= 30, 10 and 5 days were considered to define
the API30; API10 and API5, respectively. A decay coefficient k = 0.95 was used to estimate
APIT (t) for each day t over the study period according to the Equation 4.2.

APIT (t ) = R(t )+kR(t −1)+k2R(t −2)+k3R(t −3)......R(t −T ) (4.2)

Where R is the daily rainfall (mmd−1), k is the decay coefficient (-), t is the individual day
and T is the antecedent accumulation period (d) (30, 10 and 5d) prior to the starting day
of the rainfall triggering conditions (MPRE, RD3, RD2, and RD1).

4.3.2. QUANTIFICATION OF LANDSLIDE EXPLANATORY PRECIPITATION VARI-
ABLES

The landslide explanatory precipitation variables which include the landslide causal (pre-
disposing) and triggering conditions were explored using receiver operating characteris-
tic (ROC) curves (Hong et al., 2017; Postance and Hillier, 2017; Mirus et al., 2018a; Pren-
ner et al., 2018). The ROC is a graphical representation created by plotting the false pos-
itive rate (FPR) of wrongly predicted landslides against the true positive rate (TPR) of
correctly predicted landslides. The ROC curves are made of a suite of possible thresh-
old levels at which a balance between each threshold’s true positive rate and the corre-
sponding false positive rate is evaluated. The area under the ROC curve (AUC) is used
as an indicator of the variable performance, where a perfect test variable would result in
an AUC = 1. The AUC indicates the capacity of the considered test variable to correctly
distinguish landslide from no-landslide conditions. Thus, the AUC was used on the one
hand as a statistical metric to compare the tested precipitation variables against ran-
dom guessing i.e AUC = 0.5. On the other hand, it was used to find precipitation-related
variable with the highest explanatory power for landslide. The true positive rate (TPR)
associated with each threshold level on ROC curves is calculated with Equation 4.3.

TPR = TP

TP+FN
(4.3)

The false positive rate (FPR) is calculated by Equation 4.4.

FPR = FP

FP+TN
(4.4)

Where TP are true positives i.e. the number of landslides correctly predicted by the
threshold; FN are false negatives, and thus the number of landslides that occurred in
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reality but that were not predicted, i.e. the number of landslide triggered by rainfall con-
ditions below the defined threshold. FP are false positives i.e. incorrect predictions of
landslide occurrence by the threshold model while in reality there was no landslide re-
ported. TN are true negatives, i.e. are correct predictions of no landslide occurring.

4.3.3. THRESHOLD DEFINITION TECHNIQUES
Since the AUC only indicate which precipitation variable or combination of variables
that can significantly distinguish landslide from no landslide and the ROC curves indi-
cating all possible thresholds and their respective balance of TPR and FPR, it is also nec-
essary to define the optimum threshold levels above which landslide are high likely to
occur. We used 3 different techniques to do that: Bayesian probabilistic approach (Prob),
maximum true skill statistic (TSS) and minimum radial distance (Rad). The Bayes’ theo-
rem defines the conditional probability of an event A (here: landslide occurrence) given
an event B, here represented by different precipitation variables. To reduce the high rain-
fall data scattering, specific magnitude-frequency distributions for each rainfall variable
were defined using bins. Based on the extent of the dataset, bins of 5 mm were used for
E, RD, and API while 2mm d−1 and 2d were used for event intensity and event duration
respectively. The specific magnitude-frequency pairs were then converted into proba-
bilities based on Bayes terminologies. The Bayes prior probability of an event A, P(A)
stands for the global probability of landslide to occur regardless of the event B. If NAT

denotes the total number of landslide conditions (total number of landslides) and NBT

the total number of rainfall events (landslide + no landslide conditions) recorded over
the predefined period (here 2006-2018), P(A) is calculated with Equation 4.5.

P (A) = NAT

NBT
(4.5)

If we define also NBS as the number of events B with specific magnitude (e.g: 20 mm
< E < 25 mm), the prior probability for an event B denoted as P(B) is thus expressed
with Equation 4.6 and indicate the probability to have an event B regardless of whether
landslide occurs or not.

P (B) = NBS

NBT
(4.6)

The conditional probability P(A|B) expressed in Equation 4.7 indicates the probability
for landslide occurrence given the specific magnitude of rainfall variable.

P (A|B) = P(B|A).P (A)

P(B)
(4.7)

P (B |A) = P(A|B).P (B)

P(A)
(4.8)

or

P (B |A) = NAS

NAT
(4.9)

With NAS denoting the number of landslides that occur within a specific rainfall magni-
tude BS (e.g number of landslide that occurs when rainfall intensity was between 8 and
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10 mmd−1 (8 < I <10). The probabilistic threshold values are defined by comparing the
prior P(A) to the posterior probability P(A|B) (Berti et al., 2012; Robbins, 2016; Peres et al.,
2017). If the posterior landslide probabilities P(A|B) differ from the prior landslide prob-
ability P(A), the rainfall variable (B) has a significant effect on landslide occurrence (A).
Contrary, when P(A|B) is objectively smaller or equal to P(A), there is no significant effect
of variable B. The probabilistic threshold value for a variable B to initiate landslide (A)
is objectively taken as the specific magnitude or level at which the posterior probability
distribution curve P(A|B) goes beyond the prior probability distribution curve of P(A) as
shown in Figure 4.1. The cumulative probability curve cumP(B|A) indicates the proba-
bility to have landslides below and above the threshold level of B, respectively. This is
equivalent to the false negative (FNR) and true positive rates (TPR) on the ROC curve as
expressed by equations Equation 4.10 to Equation 4.12.

F N R = cumP (B |A) (4.10)

or

FNR = FN

FN+TP
(4.11)

T PR = 1− cumP (B |A) (4.12)

The thresholds definition based on the maximum true skill statistics TSS (Ciavolella et al.,
2016; Peres et al., 2017) and the minimum radial distance Rad (Postance and Hillier, 2017;
Mirus et al., 2018a) have been particularly used in landslide studies. The true skill statis-
tics is expressed as a balance between the true positive rate and false positive rate as
indicated on Equation 4.13 and its maximum value indicate the optimum threshold. For
a perfect threshold, the TSS would be a unity, i.e. with zero false positive rate. On the
ROC curve, the radial distance (Equation 4.14) indicates the relative distance from the
defined threshold to the optimum point whose TPR is a unit and FPR is zero. Thus, the
minimum radial distance would be zero for a perfect threshold (Postance and Hillier,
2017).

T SS = T PR −F PR (4.13)

R AD =
√

F PR2 + (T PR −1)2 (4.14)

4.3.4. HYDRO-METEOROLOGICAL/CAUSE-TRIGGER-BASED THRESHOLDS DEF-
INITION

The cause-trigger-based thresholds were defined by combining the best performing thresh-
olds selected from one of the techniques described in section 4.3.3. According to Postance
and Hillier (2017), the ideal landslide warning threshold is the one leading to the maxi-
mum positive alarms (TP), minimum missed alarms (FN) and also with minimum num-
ber of false alarms (FP). Based on these criteria, the most realistic threshold was se-
lected among the ones defined either by Bayesian probabilistic approach, maximum
true skill statistics or minimum radial distance. These thresholds were plotted on both
axis of landslide triggering and causal variables in Y, X pairs as I-API30, I-API10, I-API5,
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Figure 4.1: Probabilistic threshold definition: on X axis is the magnitude of event intensity I; on Y primary
axis: the red constant curve is the prior landslide probability P(A); the black axis represent the conditional
probability to have landslide given a specific magnitude of I (P(A|B)). On secondary Y axis: the light green axis
is the cumulative probability to have an event intensity I of specific magnitude given that landslide occurs Cum
P(B|A); the blue axis represent the cumulative probability of I regardless of landslide occurrence or not (Cum
P(B)). The dark green sphere and 2 vertical lines indicate the specific magnitude or level at which P(A|B) goes
beyond P(A) and this represent the probabilistic threshold intensity which is between 8 and 10 mm/day. The
dark green horizontal lines indicate the resulting false negative rate equivalent to the Cum P(B|A) represented
by the light green curve.

E-API30, E-API10, E-API5, RD1-API30, RD1-API10, RD1-API5, RD2-API30, RD2-API10, RD2-
API5, RD3-API30, RD3-API10, RD3-API5. To evaluate the performance of the newly adopted
method, a confusion matrix for each pair was performed and the resulting rate of posi-
tive alarms, false alarms, missed alarms and true negatives were quantified.

4.4. RESULTS AND DISCUSSION

4.4.1. LANDSLIDE EXPLANATORY RAINFALL VARIABLES AND THRESHOLDS
A total number of 9353 MPRE from 34438 rainy days (RD) that include landslide and
no landslide conditions were recorded in Rwanda from 2006 to 2018. From this MPRE
and RD catalogue, 59 MPRE and 60 RD (total number of landslides) were highlighted
as conditions responsible for the occurrence of one or more landslides recorded in the
inventory. The area under the curve (AUC) of each variable of the MPRE and RD in Fig-
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ure 4.2 indicated the probability of all test variables to correctly distinguish landslide
from no-landslide conditions. The AUC was highest for entire rainfall event volume E
and the cumulative 1day rainfall RD1 as compared to other landslide triggering precip-
itation variables. This suggests that in the study region the cumulative rainfall received
on the day of a landslide has more impact to trigger landslides than previously recorded
rainfall. It also indicates that shorter timescale triggering conditions are more relevant
for landslide occurrence than longer timescales. Even though, rainfall event volumes E
have also scored higher at distinguishing landslide from no-landslide conditions, it is
critical to note that E has variable timescales that should be normalised by the event du-
ration D and thus ending up with event intensity I as the most informative test variable.

The overall performance of antecedent precipitation indices (API), here considered
as landslide cause, indicate that the cumulative rainfall over 10 days (API10) prior to the
landslide triggering conditions has the most influential effect on landslide occurrence
as compared to longer (30days) and shorter (5days) antecedent periods. On one hand,
this can be attributed to the hydro-geotechnical properties of soil like hydraulic con-
ductivity, permeability and soil texture that contribute to subsequent interplay between
infiltration, evaporation and drainage and thus the drawdown of the longer antecedent
precipitation (API30) period. On other hand, this may indicate the lags in water flow to
reach the critical layer of the regolith for shorter periods like API5. The ROC curves in Fig-
ure 4.2 indicates the possible threshold levels for each tested variable and the respective
balance of TPR and FPR. The optimum threshold levels above which landslide are high
likely to occur are presented with different symbols on the curve depending on the tech-
nique used. The detailed information of the defined optimum thresholds is summarized
in Table 4.1.

The maximum true skill statistics (TSS) indicated that landslide are high likely to
occur when the cumulative rainfall event volume E goes beyond 29.9 mm/E and this
threshold level resulted to about 93% of correct predictions of landslide i.e. true posi-
tive alarms and about 41% of false alarms. A similar threshold was obtained based on
Prob, indicating the highest probability for landslides to occur beyond 30-35 mm/E with
a mean value of 32.5 mm/E. However, the minimum radial distance (Rad) approach re-
vealed a higher threshold level of about 45.9 mm/E associated with quite lower positive
alarms (76.3%) in favour of a lower rate of false alarms (26.2%). From TSS, Prob and
Rad, the critical event duration was inferred to be around 4 days which would lead to
the normalized event En thresholds of about 7.5 mmd−1, 8.1 mmd−1 and 11.5mmd−1

respectively. These thresholds are similar to the defined event intensity thresholds of 7.9
mmd−1, between 8-10 mmd−1 and 10.1 mmd−1 respectively from TSS, Prob and Rad.
Based on daily rainfall (RD) variables in Table 4.2, the optimum threshold levels above
which landslide are high likely to occur were 12.5 mmd−1(Prob), 20.9 mmd−2 (Rad) and
27.0 mmd−3 (TSS and Rad) for RD1, RD2 and RD3 respectively.

The optimum API threshold levels were also defined as indicated on Figure 4.2 and
Table 4.1 and Table 4.2. The most informative thresholds were 45.5 mm (Prob), 23.6mm
(Rad) and 7.7mm (Rad) for API30, API10 and API5 respectively prior to the landslide trig-
gering event (MPRE). The API thresholds for RD variables are also presented in Table 4.2.
It has to be understood that the API thresholds indicate the levels below which no influ-
ence of antecedent precipitation would be expected to contribute to the landslide trig-



4

44 4. LANDSLIDE PRECIPITATION THRESHOLDS IN RWANDA

Tab
le

4.1:
M

P
R

E
lan

d
slid

e
exp

lan
ato

ry
p

recip
itatio

n
variab

les
an

d
th

eir
th

resh
o

ld
s

d
efi

n
ed

u
sin

g
p

ro
b

ab
ilistic

ap
p

ro
ach

(P
ro

b
),m

axim
u

m
tru

e
skillstatistics

(T
SS)

an
d

m
in

im
u

m
rad

iald
istan

ce
(R

ad
)

V
ariab

les
B

ayesian
p

ro
b

ab
ilistic

th
resh

o
ld

p
M

axim
u

m
Tru

e
skillstatistics

(T
SS)

M
in

im
u

m
rad

iald
istan

ce
(R

ad
)

T
h

resh
o

ld
1-

P
(B

\A
)/T

P
R

F
P

R
T

SS
R

ad
T

h
resh

o
ld

T
P

R
F

P
R

T
SS

R
ad

T
h

resh
o

ld
T

P
R

F
P

R
T

SS
R

ad
1.Trigger-b

ased
th

resh
o

ld
s

E
ven

tE
(m

m
E −

1)
32.5

0.847
0.376

0.472
0.406

29.95
0.932

0.409
0.523

0.415
45.90

0.763
0.262

0.501
0.353

In
ten

sity
(m

m
d −

1)
9.00

0.746
0.419

0.327
0.490

7.87
0.915

0.517
0.399

0.524
10.05

0.712
0.362

0.350
0.463

D
u

ratio
n

(d
ays)

4.00
0.695

0.279
0.415

0.414
4.50

0.695
0.279

0.415
0.414

4.50
0.695

0.279
0.415

0.414
2.C

au
se

b
ased

th
resh

o
ld

s
A

P
I30

(m
m

)
47.50

0.712
0.485

0.227
0.564

66.81
0.559

0.286
0.273

0.526
66.81

0.559
0.286

0.273
0.526

A
P

I10
(m

m
)

37.50
0.475

0.201
0.273

0.563
37.73

0.475
0.199

0.276
0.562

23.57
0.627

0.399
0.228

0.546
A

P
I5

(m
m

)
12.50

0.542
0.283

0.260
0.538

12.49
0.542

0.283
0.260

0.538
7.65

0.644
0.398

0.247
0.534



4.4. RESULTS AND DISCUSSION

4

45

gering conditions. However, it has to be noted that API thresholds are very sensitive to
the timescale of the triggering conditions. Shorter time scale triggering conditions like
RD1 require higher threshold levels of API as compared to RD2 or MPRE. This shows
that relying on trigger-based thresholds for landslide early warning could lead to biased
results rather than relying more on API’s thresholds. Thus, shorter timescale triggering
conditions should be preferred as confirmed based on AUC.

Figure 4.2: Receiver operating characteristic (ROC) curves for: a) MPRE variables, b) RD1 variables, c) RD2
variables and d) RD3 variables; variable significance based on the area under the curve (AUC) and the opti-
mum thresholds defined using Bayesian probabilistic approach (triangle shaped marker); maximum true skill
statistics (rectangle shaped marker) and the minimum radial distance (sphere shaped marker). Once two or
more techniques revealed similar threshold with similar TPR and FPR only one symbol is used. The figure also
indicates corresponding true positive rate (TPR) and false positive rate (FPR) for each threshold level
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4.4.2. LANDSLIDE TRIGGER AND TRIGGER-CAUSE BASED HYDRO-METEOROLOGICAL

THRESHOLDS AND IMPLICATION FOR LANDSLIDE PREDICTION
The results of bilinear combinations of explanatory variables show that in some cases a
single variable threshold can be sufficient to predict landslides (Figure 4.3 and Figure 4.4,
horizontal bleu lines). Based on the maximum TSS threshold (Figure 4.2, Table 4.1 and
Table 4.2) 91.5% of the landslides are correctly predicted once an event intensity thresh-
olds level of 7.9 mmd−1 is exceeded. Similarly, 93.5% of the landslides are highly likely
to occur when the rainfall event E exceeds 30.0 mm while 71.7% of the landslides are
highly likely to occur when daily rainfall (RD1) exceed 12.5mmd−1. These threshold lev-
els are all trigger-based as they only refer to the recent rainfall/event during which one or
more landslides occur. However, these trigger-based thresholds should be constrained
by relatively high rates of false alarm (FPR) of about 52% , 41% and 30% for I, E and RD1

respectively. Moreover, it should be noted that many landslides occur not only due to
the trigger itself but rather due to a combination of trigger and cause, the latter repre-
sented by API. For example in Figure 4.3a, it can be seen that only 23.7% of the observed
landslides which is equivalent to about 26% of the correctly predicted landslides using
event intensity (I) threshold, was due to the triggering event while the remaining 74% of
the predicted landslides were due to the combined effect of both I and API. As pointed
out, the API thresholds indicate the critical level below which the impact of antecedent
precipitation is considered unimportant for landslide predictions.

On the contrary, once the API threshold is exceeded, its contribution should be counted
as one of the landslide causal factor and thus resulting into trigger-cause-based thresh-
olds. The top left and right panels of Figure 4.3 and Figure 4.4 indicate the improved
prediction capacity of the trigger-based threshold once combined with a cause-based
threshold. For example Figure 4.3 indicates that the prediction capacity (TPR) of the
event intensity threshold increased by about 44%, 27% and 30% once combined with
API as trigger-cause based thresholds in a bilinear format as I-API30, I-API10 and I-API5

respectively. Figure 4.4 indicates also an improved prediction rate of RD1 trigger-based
threshold by about 15%, 35% and 12% once combined as RD1-API30, RD1-API10 and
RD1-API5 respectively. Therefore, the concept of bilinear thresholds (Mirus et al., 2018a)
or trigger-cause-based thresholds does not only minimize the false alarm rates but can
also be utilised to quantify the impact of each and both landslide triggering and causal
condition to the landslide occurrence. Figure 4.3d and Figure 4.4d show the resulting
rate of true alarms (TPR), false alarms (FPR), failed alarms (FNR) and true negative rate
(TNR) from different trigger-cause based thresholds. This approach should further be
explored to be utilized for API based landslide early warning system development.
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Figure 4.3: Bilinear relation between landslide trigger represented by event intensity I and cause represented by antecedent precipitation indices of different timescale:
a) 30days prior to the triggering event intensity; b) 10 days prior to the triggering event intensity; c) 5 days prior to the triggering event intensity; d) Implication for
warning based on the rate of true warnings (TPR) represented by green triangles on a b and c; rate of false alarms (FPR) represented by red cross on a b and c; rate of
failed alarms (FNR) represented by red dots on a b and c; true negative rate (TNR) or no landslide represented by black cross on a b and c
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Figure 4.4: Bilinear relation between landslide trigger represented by 1day rainfall (RD1) and cause represented by antecedent precipitation indices (API) of different
timescale: a) 30days prior to the triggering rainfall; b) 10 days prior to the triggering rainfall; c) 5 days prior to the triggering rainfall; d) Implication for warning based
on the rate of true warnings (TPR) represented by green triangles on a b and c; rate of false alarms (FPR) represented by red cross on a b and c; rate of failed alarms
(FNR) represented by red dots on a b and c; true negative rate (TNR) or no landslide represented by black cross on a b and c
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Lastly, the landslide inventory used for this research relied largely on the information
from newspapers, government reports, and other media where many landslide events
are likely to be missed. While the reliance on these data sources is likely to result in
a bias towards large and/or impactful landslides that may involve casualties and eco-
nomic damage, this landslide inventory is the most comprehensive currently available
in Rwanda.

4.5. CONCLUSION
This chapter aimed to use landslide and precipitation data in an empirical-statistical
approach to define both trigger and trigger-cause based thresholds for landslides ini-
tiation in Rwanda and to quantify their predictive performance. The findings indicated
that the normalized event E and the cumulative one day rainfall (RD1) that coincide with
the landslide day are the most informative explanatory variables to distinguish landslide
from no landslide conditions. Among the antecedent precipitation indices, API10 i.e 10
days precipitation prior to the landslide triggering conditions was the most informative
to distinguish between landslide and no-landslide conditions based on its AUC. API5

was too short while API30 was too long. This underlines the critical role of hydrology
(infiltration, storage, evaporation/drainage) and particularly the timing of pore pressure
changes in the subsurface profile. It was also generally observed that all used threshold
definition techniques, Bayesian probabilistic approach, maximum true skill statistic and
minimum radial distance, resulted in quite similar thresholds values. The highest land-
slide prediction capability (rate of positive alarms) was obtained using a single rainfall
variable, so a trigger-based threshold. However, that predictive capability simultane-
ously resulted in a high rate of false alarms. Constraining the trigger-based threshold
with a causal variable in a bilinear framework as proposed by Mirus et al. (2018a), im-
proved the overall prediction capacity by reducing the number of false alarms. The find-
ings indicated also that the concept of trigger-cause-based thresholds in bilinear format
could not only be useful to minimize the false alarms but also to explore the impact of
each or combined triggering and causal conditions on landslide occurrence.
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5. INTEGRATION OF OBSERVED AND MODEL-DERIVED GROUNDWATER LEVELS IN
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Abstract

Incorporation of specific regional hydrological characteristics in empirical statistical landslide thresh-
old models has considerable potential to improve the quality of landslide predictions towards reli-
able early warning systems. The objective of this Chapter is to test the value of regional groundwater
level information, as a proxy for water storage fluctuations, to improve regional landslide predic-
tions with empirical models based on the concept of threshold levels. Specifically, we investigated:
i) the use of a data driven time series approach to model the regional groundwater levels based
on short duration monitoring observations; ii) the predictive power of single variable and bilinear
hydro-meteorological threshold models derived from groundwater levels and precipitation. Based
on statistical measures of the model fit (R2 and RMSE), the groundwater level dynamics estimated
by the transfer function noise time series model are broadly consistent with the observed ground-
water levels. The single variable threshold models derived from groundwater levels exhibited the
highest landslide prediction power with 82–93% of true positive alarms despite the quite high rate
of false alarms with about 26–38%. Further combination as bilinear threshold models reduced the
rate of false alarms by about 18–28% at the expense of reduced true alarms by about 9–29% and
thus, being less advantageous than single variable threshold models. In contrast to precipitation
based thresholds, relying on threshold models exclusively defined using hydrological variables such
as groundwater can lead to improved landslide predictions due to their implicit consideration of
long term antecedent conditions until the day of landslide occurrence.
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5.1. INTRODUCTION

In chapter 4, we defined the first empirical landslide precipitation threshold, which is an
important step forward in landslide early warning in Rwanda. The defined precipitation
based landslide thresholds considered the antecedent precipitation index as an indirect
proxy for hydrological conditions. However, the resulting rates of true and false alarms
are not satisfactory and require further improvement for a robust early warning system
development. The exclusive reliance on meteorological data and the lack of considering
the real pre-event hydrological processes and specific characteristics of the study region
that predispose the slope to near failure could be the reasons for the poor performance.

Hydrology, being an important aspect in landslide hazard assessment, is still not suf-
ficiently explored although many landslides are hydrologically caused and meteorologi-
cally triggered. The need for landslide hydro-meteorological based thresholds was high-
lighted and further postulated that both false and missed alarms could be significantly
reduced if the wetness state is incorporated in landslide prediction models. However,
research that incorporates hydrological parameters into landslide prediction models us-
ing in situ data is scarce due to absence of long-term hydrological monitoring of suf-
ficient spatial and temporal coverage in most regions worldwide. Once available, fre-
quently, the recorded data is insufficient to build historical time series that match the
time period of landslide inventories and that could be incorporated into landslide hy-
dro–meteorological threshold models.

Some landslide studies discussed different effects that groundwater system may have
on landslide initiation (Bronnimann, 2011; Cascini et al., 2010; Corominas et al., 2005a;
Duan et al., 2019; Hong and Wan, 2011; Trigo et al., 2005; Zhao et al., 2016). However, the
asset that regional groundwater level information may have in predicting landslide ini-
tiation on a regional scale is still underexplored. It is hypothesized that the more water
stored in the catchment, the higher the probability a certain rain event will trigger land-
slides in a catchment. Therefore, estimates of catchment water storage could be used
as a pre-event hydrological process that predispose a slope to near failure and thus be
among the hydrological landslide predictor variables. However, as this information is
scarce in Rwanda, we presuppose regional groundwater level to be a potential proxy of
the relative regional catchment storage and used as a hydrological landslide predictor
variable that could be useful once incorporated in landslide threshold model definition.
This chapter aims to improve the landslide forecast quality by incorporating the catch-
ment specific groundwater levels as a proxy for regional water storage. More specifically,
we here tested the hypotheses that the incorporation of model derived groundwater
levels in empirical landslide hazard assessment thresholds could improve the landslide
warning capability in Rwanda.

5.2. STUDY AREA
This study was conducted using data from three catchments; Lake Kivu, upper Nyabarongo
and Mukungwa (Nieuwenhuis et al., 2019); located in north western region of Rwanda
(Figure 5.1). The north western region is geomorphologically characterised by rounded,
angular hills and headlands, mountains and volcanoes with elevation up to about 4500m
and steep slope up to 55%.
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Figure 5.1: Location of the study catchments: Lake Kivu, upper Nyabarongo and Mukungwa in Rwanda and
Africa; hydro–geology of the study catchments; spatial and temporal distribution of landslides with light to
dark red dots indicating old to new landslides recorded from 2006–2018 (Uwihirwe et al., 2020) ; groundwater
stations in yellow symbols and meteorological stations in light green symbols

The total area of Lake Kivu catchment is about 7,323 km2, 2,425 km2 of which is lo-
cated in Rwanda. The mean annual rainfall is around 1500 mm/yr while potential evap-
oration is estimated at about 860 mm/yr (Figure 5.2). The Lake Kivu catchment is dom-
inated by basaltic aquifers (volcanic rock) in the north and south west, fractured granite
and gneiss aquifers in central and south east, schists and mica schists in the centre and
south while pegmatite are found in intermediate areas.

The upper Nyabarongo catchment is located entirely within Rwanda with an area of
about 3,348 km2. The mean annual rainfall is around 1200 mm/yr and potential evap-
oration is estimated at around 870 mm/yr (Figure 5.2). Granite and gneiss aquifers are
dominant in southern and to a lesser amount in north west part while quartz rich schists
and mica schists dominate in central parts of the catchment (Figure 5.1).

The Mukungwa catchment covers a total area of 1,949 km2 and is topographically
dominated by the volcanic highlands region that receive abundant rainfall with a long-
term mean annual rainfall of around 1200 mm/yr with an estimated actual evaporation
of about 800 mm/yr (Figure 5.2). The hydro–geology of the catchment (Figure 5.1) is
characterized by volcanic deposits with basalt in the north. Granite and pegmatite base-
ment aquifers are found in the south western areas while quartzite and mica schist are
in the south east and eastern part of the catchment.

Landslides are most dominant in granite and mica schist units while basaltic units
seem to be quite resistant to landslide activities. This can be explained by the weathering
products of volcanic rocks that produce a relatively permeable top layer but tend to form
a brecciated or intruded sills of low permeability layer at shallow depth and thus ham-
pering deep groundwater recharge and thus less prone to groundwater induced land-
slides. Contrarily, the weathering products of granites are generally coarse-grained that
tend to develop and preserve open joint systems that increase permeability and thus fast
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Figure 5.2: Mean catchment annual rainfall and potential evaporation in a) Kivu, b) Upper Nyabarongo and c)
Mukungwa catchments

groundwater response that leads to landslide hazards. The weathering product of mica
schists include clay minerals that tend to fill up the fractures and thus slowing the per-
meability. However, mica schists are prone to landslides due to rapid weathering, easy
splitting along the joints and bedding planes and loss of strength induced by the high
content of mica.

5.3. GROUNDWATER MODELLING: DATA AND METHODOLOGY

5.3.1. METEOROLOGICAL DATA AND SELECTION OF LANDSLIDE REPRESEN-
TATIVE METEOROLOGICAL STATIONS

The rainfall dataset was accessed from Rwanda meteorology agency while potential evap-
oration EP time series were calculated with Thornthwaite method (Thornthwaite, 1948)
using the mean daily temperature and monthly heat index. We used time series of daily
rainfall and potential evaporation from nine meteorological stations located within the
studied catchments for a period of 13 years from 2006 to 2018. The meteorological sta-
tions (see Figure 5.1) spatially distributed in the three studied catchments were selected
based on their relative proximity to the observed locations of the landslides and include
Rubengera, Kanama and Gisenyi meteorological stations in the Kivu catchment; Byi-
mana, Kibangu and Rwaza stations in the upper Nyabarongo catchment; and Ruhen-
geri, Bigogwe and Rwankeri meteorological stations in the Mukungwa catchment as pre-
sented in Figure 5.1.

5.3.2. GROUNDWATER DATA AND SELECTION OF LANDSLIDE REPRESENTA-
TIVE GROUNDWATER STATIONS

The time series of groundwater levels were accessed from the Rwanda water portal (https:
//waterportal.rwb.rw/data/groundwater, last access: 2 June 2021). We selected
three groundwater observation stations (Figure 5.1) with a temporal resolution of one

https://waterportal.rwb.rw/data/ground water
https://waterportal.rwb.rw/data/ground water
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day and a minimum continuous duration of one year. The three groundwater observa-
tion stations, Nyamyumba, Rugabano and Cyuve, located within the Kivu, upper Nyabarongo
and Mukungwa catchments respectively, recorded data from December 2016 till De-
cember 2018. However, the intrinsic limitation of this database is linked to the coarse
spatial resolution of the data recording equipment and the recorded data are insuffi-
cient to build historical time series that match the time period of landslide inventories
(2006–2018). Nevertheless, this database has been previously used for computation of
water balance and catchment storage and proved to be useful in Rwanda (Nieuwenhuis
et al., 2019).

5.3.3. TRANSFER FUNCTION NOISE ( TFN) TIME SERIES MODEL
A transfer function noise (TFN) time series model describes the dynamic relationship
between a single output series and one or more input series. The TFN model was used in
this research to simulate groundwater levels (model output) using both rainfall and po-
tential evaporation as model inputs (Bakker and Schaars, 2019; Collenteur et al., 2019).
With Transfer function noise modelling, the groundwater response to both rainfall and
evaporation is simulated with a scaled Gamma response function. The structure of a
TFN model to simulate groundwater levels is expressed with Equation 5.1.

ht =
S∑

s=1
hs (t )+d + r (t ) (5.1)

Where ht is the groundwater levels (m) at time t, hs (t) is the contribution of stresses s
at time t (m d−1), S is the total number of stresses (-) that contribute to the groundwater
level change here represented by rainfall and evaporation, d is the base elevation of the
model (-), and r(t) are the residuals (m). Each model can have an arbitrary number of
stresses S that contribute to the head. Hydrological stresses may include rainfall, evap-
oration, river levels, and groundwater extractions. The contribution of stress s to the
groundwater level at time t is computed through convolution with Equation 5.2.

hs (t ) =
∫ t

∞
Ss (τ)θs (t −τ)dτ (5.2)

With ss denoting the time series of stress s, and θs expressing the impulse response func-
tion for stress s. The groundwater response is estimated using the scaled Gamma re-
sponse function that indicates the relationship between the variation in the inputs time
series (rainfall and evaporation) and the variation in the groundwater levels as in Equa-
tion 5.3.

θ(t ) = A
t n−1

anΓ(n)
e−t/a (5.3)

With A denoting the scaling factor (-); a and n are shape parameters (-) while Γ expresses
the Gamma function

5.3.4. GROUNDWATER MODELLING APPROACH: PASTAS
We used the Transfer Function Noise TFN time series Model implemented in Pastas,
a new open source Python package for analysis of groundwater time series. The TFN
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modelling explains an observed time series (here the observed groundwater levels) by
one or more other time series (here rainfall and potential evaporation time series). The
TFN model inputs time series, rainfall and potential evaporation, were available for the
entire study period 2006–2018, whereas the observed groundwater level were available
for December 2016 to December 2018. We have therefore used the two years available
groundwater observation time series and these short term data were only used for model
calibration and no validation was carried out due to the data limitations.

By using the TFN modelling approach, we aimed for hindcasting and thus the recon-
struction of past groundwater levels to overlap with the time period of the recorded land-
slide inventory in Rwanda (2006–2018). We used the fully available time series of rainfall
and evaporation as model inputs or model stresses. Each model can have an arbitrary
number of hydrological stresses that contribute to the groundwater level changes. These
hydrological stresses include rainfall, evaporation, river levels, and groundwater extrac-
tions. For this study however, we used rainfall and potential evaporation and assumed
runoff and groundwater pumping to be negligible though not accessed in our study area.
The impulse groundwater response function to the stresses was fitted with the scaled
Gamma distribution function and the calibrated parameters were A, n, a, d as previously
described. The output of the TFN model was then daily groundwater levels ht (m) over
the entire 13 years study period from 2006 to 2018.

Apart from hindcasting, the TFN model spatially extrapolated the groundwater in-
formation accounted by different precipitation and potential evaporation inputs from
the nine spatially distributed meteorological stations, Rubengera, Kanama, Gisenyi, By-
imana, Kibangu, Rwaza, Ruhengeri, Bigogwe and Rwankeri, shown in Figure 5.1. The
extrapolation was undertaken by changing the model inputs and model parameters at
the location of each of the meteorological stations and by implicitly relying on the main
assumption here that other hydro–geomorphological parameters do not exhibit spatial
variability within the individual catchment. This is an assumption made, given the data
scarcity and some intrinsic limitation of the database in the east Africa rift region in gen-
eral (Monsieurs et al., 2018a) and Rwanda in particular. The modelled groundwater lev-
els were standardised and used in the regional hydro–meteorological hazard assessment
thresholds definition. The standardisation was computed with Equation 5.4.

ys = (xi −x)

σ
(5.4)

Where ys is the standardised value of groundwater time series (-); xi is the value of time
series (m) at time step i; x is the average value of time series (m); σ is the standard devi-
ation of time series (m); i is the subsequent time step in a time series.

5.4. REGIONAL LANDSLIDE ASSESSMENT: DATA AND METHOD-
OLOGY

5.4.1. LANDSLIDE INVENTORY
The available landslide inventory for Rwanda contains landslides recorded from 2006 to
2018. It was accessed from the NASA global landslide catalogue (https://data.nasa.
gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4, last access: 26 June

https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
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2019) uploaded by the Landslide Inventory for the central section of the Western branch
of the East African Rift (LIWEAR) project. The catalogue was further extended through
compilation of additional rainfall induced landslides as reported from local newspapers,
blogs, technical reports and field observations. Between 2006 and 2018, the catalogue
counts for 42 accurately dated landslides located within the studied region (Figure 5.1).
However, the detailed characteristics of these landslides such as the accurate size, types,
cause and triggers are frequently not recorded by the landslide hazard reporters.

5.4.2. DEFINITION OF LANDSLIDE HYDROLOGICAL AND METEOROLOGICAL

CONDITIONS
The outputs from the TFN model, groundwater levels, were used to define the land-
slide hydrological conditions in each of the studied catchments. The landslide hydro-
logical conditions consist of standardized groundwater levels modelled on landslide day
ht and prior to the landslide triggering event ht−1 and were here considered as landslide
cause/predisposing conditions. The meteorological conditions used here include event
rainfall volumes E (mm E−1), event rainfall intensity I (mm d−1) as well as event dura-
tion D (d) and were considered as landslide triggers. The event duration D was defined
as individual periods of days with recorded rain interrupted by dry periods of at least
two days. The event rainfall volume E was computed as the accumulated rainfall during
each individual event periods of duration D. The event rainfall intensity was then com-
puted as a ratio of E and D. Both hydrological and meteorological conditions were binary
classified into landslides and no landslide conditions depending on whether they have
resulted into landslide or not.

5.4.3. QUANTIFICATION OF LANDSLIDE PREDICTOR VARIABLES
The landslide predictor variables which include the predisposing conditions ht and ht−1

as well as the triggering conditions E, I and D were tested for their relevance using a re-
ceiver operating characteristic (ROC) curves and the area under the curve (AUC) metrics.
ROC is used as a statistical tool indicating the trade-off between false positive rate (FPR)
and true positive rate (TPR) associated to each threshold level on the curve (Hong et al.,
2017; Postance and Hillier, 2017; Mirus et al., 2018a; Prenner et al., 2018). In landslide
studies, the AUC is an indicator of the capacity of the test variable to correctly distin-
guish landslide from no landslide conditions. It is therefore used as statistical metric
that compares the test variables to random guessing AUC=0.5 and thereby indicating
their significance where the perfect test variable has an AUC equal to unity. The TPR
and FPR corresponding to each threshold level on ROC curves are calculated with Equa-
tion 4.3 and Equation 4.4.

5.4.4. LANDSLIDE THRESHOLD DEFINITION TECHNIQUES
The optimum or the most informative threshold level above which landslide are high
likely to occur have been defined using two statistical techniques i.e. the maximum true
skill statistic (TSS) and minimum radial distance (Rad). The true skill statistics (TSS) is
expressed as a balance between the true positive rate and false positive rate as indicated
in Equation 4.13. The radial distance (Rad) shows the relative distance from the defined
threshold level to the perfect model or optimum point whose true positive rate (TPR) is
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a unit and null FPR and is computed in Equation 4.14.

5.4.5. SINGLE VARIABLE AND BILINEAR THRESHOLD MODELS AND LAND-
SLIDE PREDICTIVE CAPABILITIES

According to Postance and Hillier (2017), the optimum landslide threshold model is the
one that maximizes the true positive alarms (TP) while minimizing failed (FN) and false
alarms (FP). Based on this criteria, the optimum threshold was here selected among the
ones defined either by maximum true skill statistics or minimum radial distance. These
optimum thresholds were firstly plotted in 1D here referred to as single variable thresh-
old model line beyond which landslide are high likely to occur. Furthermore, these opti-
mum thresholds were combined and plotted in 2D here referred to as bilinear threshold
model line beyond which landslide are high likely to occur. The bilinear threshold mod-
els made of hydrological and meteorological predictors were formulated using x,y pairs
such as ht –E, ht –I, ht−1–E and ht−1–I and referred to as hydro–meteorological threshold
models. Furthermore, the thresholds from classical landslide prediction models that ex-
clusively rely on precipitation, such as event–duration E–D and intensity–duration I–D
were also defined in a bilinear framework and used as benchmarks for comparative per-
formance evaluation. The predictive performance of these threshold models was evalu-
ated using a confusion matrix and the resulting rate of positive alarms (TP), false alarms
(FP), missed alarms (FN) and true negatives (TN).

5.5. RESULTS AND DISCUSSION

5.5.1. REGIONAL GROUNDWATER MODELLING
The outputs of the Transfer Function Noise TFN time series model were daily groundwa-
ter levels (m) simulated over 13 years from 2006 to 2018 as presented in Figure 5.3. The
results demonstrate that the TFN time series model can broadly reproduce the main
features of observed groundwater level fluctuations based on the metrics of goodness
of the model fit i.e. R2 and RMSE between observed and simulated groundwater levels.
Overall, the model explains between 60–87% of the variance in the observed groundwa-
ter data from the three studied catchments. The values of RMSE 0.09–1.84m similarly
suggested a reasonable model fit across the catchments. More specifically, while the
TFN model captures groundwater fluctuations rather well in the Kivu and Mukungwa
catchments (RMSE<0.5m), the model is somewhat less robust for the upper Nyabarongo
(RMSE>0.5m). The weaker model fits observed in upper Nyabarongo catchment are
mostly the consequence of the relatively large distance between the groundwater well
and the meteorological stations as also highlighted as potential source for poor TFN
model fits by Bakker and Schaars (2019). They further postulated that TFN time series
models are relatively simple, as they include only a handful number of parameters and
has the higher skill to simulate groundwater levels than more detailed models.

5.5.2. CATCHMENT STANDARDISED GROUNDWATER LEVELS AND LANDSLIDE

ACTIVITIES
The standardised daily groundwater levels and the linked landslide hazards are pre-
sented in Figure 5.4 for the Kivu, upper Nyabarongo and Mukungwa catchments respec-
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Figure 5.3: Groundwater simulation with TFN model: (a-c) TFN model calibrated with groundwater observa-
tions from Nyamyumba groundwater well; rainfall and potential evaporation Ep time series as model inputs
from three meteorological stations (a) Rubengera (b) Kanama (c) Gisenyi located in Kivu catchment; (d-f)
TFN model calibrated with groundwater observations from Rugabano groundwater well; rainfall and poten-
tial evaporation Ep time series as model inputs from three meteorological stations (d) Byimana (e) Kibangu,
(f) Rwaza located in upper Nyabarongo catchment; (g-i)TFN model calibrated with groundwater observations
from Cyuve groundwater well; rainfall and potential evaporation Ep time series as model inputs from three
meteorological stations (g) Ruhengeri h) Bigogwe (i) Rwankeri located in Mukungwa catchment
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tively. The simulated groundwater levels were standardised based on the assumption
that landslides occur when the groundwater levels positively deviate from the long-term
mean up to a critical level for landslide initiation. The comparisons of mean daily rain-
fall and standardised groundwater levels across the three studied catchments, calculated
by averaging of data within each catchment, indicates general similarities in terms of
landslide triggering and predisposing but also reveal systematic differences between the
groundwater responses. For example, Mukungwa catchment is slowly responding and
also quite drier from 2014 to 2018 than the other catchments despite its elevated land-
slide hazard during that period.

The results indicated that landslides are likely to occur at a certain level above the
long-term mean groundwater level and thus justifying the importance of groundwater
and catchment wetness in terms of slope failure predisposition. They also indicate that
landslides occur when the catchment groundwater reaches a certain peak level above
the long-term mean which is a function of the rainfall received in the past depending
on the time memory of each catchment. Even though, the most hazardous landslides
in the studied catchments are shallow seated landslides which are mostly rainfall in-
duced, the conducted field based inventory indicated that the most frequently recorded
landslides in north western Rwanda are deep seated which are high likely linked to the
combined effects of groundwater and other hydro– geological factors. The critical posi-
tive deviation of groundwater levels up to 3m from the mean was noticed to be the range
where most of landslide activities happen in the studied region. However, Van Asch et al.
(1999) highlighted that deep seated landslide at about 5–20m deep are induced by rising
groundwater level with about 4m below the ground surface being the critical thresh-
old for landslide reactivation. Hong and Wan (2011); Duan et al. (2019) forecasted the
groundwater fluctuation and indicated that landslides are likely to occur when ground-
water level increases by about 8m from the datum. Even so, these absolute threshold
values were not statistically approved using appropriate landslide threshold definition
techniques.

5.5.3. LANDSLIDE PREDICTOR VARIABLES AND DISCRIMINATORY POWER

The discriminatory power of each landslide predictor variable was evaluated using a re-
ceiver operating characteristic (ROC) curves and area under the curve metrics as pre-
sented in Figure 5.5. Based on the results, the standardized groundwater levels ht mod-
elled on a landslide day with AUC between 0.76–0.80 and the event rainfall volume E
whose AUC ranges from 0.74–0.93 were identified as the hydrological and meteorolog-
ical variables with the highest discriminatory power to distinguish landslide from no-
landslide conditions and thus, the most dominant control on landslide occurrence in
the studied region.

The standardised groundwater levels ht−1 recorded prior to the landslide triggering
event, with AUC ranging from 0.63–0.74, were not as significant as ht . This is likely a
consequence of the hydro–geological properties of soil such as soil texture, presence
of fissures, porosity and permeability that contribute to aquifer leakage, drainage and
seepage of longer cumulated groundwater levels. Although the AUC metric was used
to identify the variable with the highest skill to distinguish landslide from no-landslide
conditions, it does not indicate the optimum threshold levels above which landslide are



5

62
5. INTEGRATION OF OBSERVED AND MODEL-DERIVED GROUNDWATER LEVELS IN

LANDSLIDE THRESHOLD MODELS IN NORTHWESTERN RWANDA

Figure 5.4: (a) Mean daily catchment rainfall and (b) catchment mean standardised groundwater simulated
with TFN model using meteorological data from Kivu catchment as model inputs (c) mean daily catchment
rainfall and (d) catchment mean standardised groundwater simulated with TFN model using meteorological
data from upper Nyabarongo catchment as model inputs (e) mean daily catchment rainfall and (f) catchment
mean standardised groundwater simulated with TFN model using meteorological data from Mukungwa catch-
ment as model inputs; landslides represented with red dots
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high likely to occur. Therefore the maximum true skill statistics (TSS) and minimum ra-
dial distance (Rad) statistical metrics were used to identify the optimum thresholds rep-
resented by the dots on the ROC curves and the corresponding balance of true positive
(TPR) and false positive rate (FPR) are presented in Figure 5.5 and detailed in Table 5.1.
The maximum TSS and minimum Rad indicated for example that landslides are high
likely to occur when standardised groundwater levels ht positively deviate by about 0.21
to 0.48 from the long-term mean and these threshold levels resulted to about 82–93% of
correct predictions of landslides i.e. true positive rate and about 26–38% of false positive
rate. Similarly, both TSS and Rad indicated 66.8mm as the optimum threshold rainfall
volume E with 64% of true positive rate and 15% of false positive rate in Kivu catchment.
However, the optimum thresholds E between 44.7–63.5 mm were defined by Rad in up-
per Nyabarongo and Mukungwa catchment and correctly predict about 73–92% of land-
slides with 18–24% of false positive rate. These findings indicated that the used statistical
metrics TSS and Rad lead to quite similar results expressing their identical capabilities
in landslide thresholds definition.

5.5.4. COMPARATIVE PREDICTION POWER OF SINGLE VARIABLE AND BILIN-
EAR THRESHOLD MODELS

The defined landslide thresholds for each predictor variables include the hydrological
ht , ht−1 and meteorological E, I, D variables. The landslide predictive capability was
evaluated for each variable in 1D here considered as single variable threshold model
presented in Table 5.1 and by each of the blue line in Figure 5.6- Figure 5.8. The land-
slide predictive capability was also evaluated through combination of variables in 2D as
X–Y pairs here considered as bilinear threshold models summarised in Table 5.2 and by
the intersection of both blue lines in Figure 5.6 - Figure 5.8. A recall from Postance and
Hillier (2017) indicates that the basic strategy for selection of accurate landslide thresh-
old model is to choose the one that offers the greatest level of true positive alarms (TPR)
and that provide the lowest rate of failed (FNR) and false alarms (FPR). Therefore, the
findings indicated that single variable threshold models either hydrological or meteo-
rological have the greatest landslide predictive capability in terms of elevated true pos-
itive rate and low level of failed alarms as compared to the bilinear threshold models.
For example with groundwater level modelled on landslide day ht with threshold values
between 0.2–0.48 above the mean, 82–93% of landslides were correctly predicted (TPR)
with 25–38% of wrongly predicted landslides (FPR).

Similarly, the event rainfall intensity I between 7.5–12.5mmd−1 as single variable
thresholds were able to correctly predict 64–92% of landslides with 25–37% of false alarms.
Contrarily, the resulting bilinear threshold models ht –I were able to correctly predict
64–85% with 8–15% of FPR. The greatest landslide prediction capability of single vari-
ables threshold models in terms of TPR was also noticed in Chapter 4. However, it was
noticed that relying on single variable threshold models that are exclusively defined us-
ing precipitation variables like event rainfall volume E, and event intensity I considered
as landslide triggers could lead to biased results due to the fact that many landslides
occur not only due to the trigger itself but a rather combination of both trigger and pre-
event hydrological conditions.

Contrarily, relying on single variable threshold models exclusively defined using hy-
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Figure 5.5: Receiver operating characteristic (ROC) curves and area under the curve (AUC) for each landslide
predictor variable in the studied catchments: (a) Kivu, (b) upper Nyabarongo and (c) Mukungwa; the optimum
thresholds defined using the maximum true skill statistics (TSS) are presented with square shaped markers
while cycle shaped markers are thresholds defined with the minimum radial distance (Rad); once TSS and Rad
reveals different threshold values the optimum (with maximum TPR and minimum FPR) is kept; once TSS and
Rad reveals similar threshold values only the square shaped marker (TSS) is kept; the corresponding balance
of true and false positive rate are also presented



5.5. RESULTS AND DISCUSSION

5

65

Table 5.1: Single variable landslide thresholds definition with the maximum true skill statistics (TSS) and min-
imum radial distance (Rad)and their predictive power

Variables Threshold TSS TPR FPR FNR TNR TSS Rad Threshold Rad TPR FPR FNR TNR TSS Rad
Kivu catchment

ht
a 0.21 0.93 0.38 0.07 0.62 0.55 0.39 0.21 0.93 0.38 0.07 0.62 0.55 0.39

ht−1
b 0.05 0.93 0.43 0.07 0.58 0.50 0.43 0.05 0.93 0.43 0.07 0.58 0.50 0.43

E (mm)c 66.75 0.64 0.15 0.36 0.85 0.49 0.39 66.75 0.64 0.15 0.36 0.85 0.49 0.39
D (d)d 7.50 0.43 0.17 0.57 0.83 0.26 0.60 3.50 0.64 0.42 0.36 0.58 0.23 0.55
I (mm/d)e 10.84 0.64 0.25 0.36 0.75 0.40 0.44 10.84 0.64 0.25 0.36 0.75 0.40 0.44

Upper Nyabarongo catchment
ht 0.46 0.82 0.26 0.18 0.74 0.56 0.32 0.46 0.82 0.26 0.18 0.74 0.56 0.32
ht−1 0.64 0.64 0.22 0.36 0.78 0.42 0.42 0.64 0.64 0.22 0.36 0.78 0.42 0.42
E (mm) 90.50 0.64 0.09 0.36 0.92 0.55 0.37 44.70 0.73 0.24 0.27 0.76 0.49 0.36
D (d) 12.50 0.46 0.06 0.55 0.95 0.40 0.55 12.50 0.46 0.06 0.55 0.95 0.40 0.55
I (mm/d) 12.48 0.73 0.25 0.27 0.75 0.48 0.37 12.48 0.73 0.25 0.27 0.75 0.48 0.37

Mukungwa catchment
ht 0.48 0.85 0.35 0.15 0.65 0.50 0.38 0.82 0.69 0.20 0.31 0.80 0.49 0.37
ht−1 0.92 0.54 0.17 0.46 0.83 0.37 0.49 0.92 0.54 0.17 0.46 0.83 0.37 0.49
E (mm) 46.75 1.00 0.25 0.00 0.75 0.75 0.25 63.50 0.92 0.18 0.08 0.82 0.75 0.19
D (d) 7.50 0.85 0.22 0.15 0.79 0.63 0.26 7.50 0.85 0.22 0.15 0.79 0.63 0.26
I (mm/d) 6.78 1.00 0.44 0.00 0.56 0.56 0.44 7.55 0.92 0.37 0.08 0.63 0.55 0.38
a Groundwater levels recorded on the day of landslide b Groundwater levels recorded prior to landslide trigger-
ing event c Event rainfall volume d Event duration e Event rainfall intensity

drological variables like groundwater levels ht , could lead to unbiased landslide predic-
tions due to their high consideration of long-term antecedent conditions until the day
of landslide occurrence. The bilinear threshold models lead to a minimized level of false
positive rate (FPR) which is the main focus behind the cause-trigger and bilinear thresh-
olds concepts proposed by Bogaard and Greco (2018); Mirus et al. (2018a) with a rather
reduced rate of true positives (TPR).

5.5.5. COMPARATIVE ANALYSIS OF THE WARNING CAPABILITIES OF LAND-
SLIDE HYDRO–METEOROLOGICAL THRESHOLDS AND PRECIPITATION

BASED THRESHOLDS

The landslide hydro–meteorological threshold models defined as X–Y pairs in a 2D bi-
linear framework and their warning capabilities in Kivu catchment are presented in Fig-
ure 5.6. The combined groundwater level-event rainfall intensity ht –I [ht >0.205, I>10.84mm
d−1] threshold model outperforms other combinations in terms of true positive alarms
with about 64%. Comparing the predictive capabilities of ht –I, a hydro-meteorological
threshold model, to I–D, a precipitation threshold model, significant improvement of
about 28% in terms of the rate of true alarms was achieved. This confirms the high land-
slide prediction and warning capability of hydro-meteorological thresholds over precip-
itation based thresholds. However, there was no significant improvement from E–D to
ht –E and ht−1–E in terms of true alarms. This suggests that the combinations involving
event rainfall volume E have lower landslide warning skill than the ones that consider the
event rainfall intensity I. This may be explained by the fact that rainfall event volume E
is estimated over various time scale D making E an unstandardized variable which could
be normalized by the respective time duration and thus, favouring the event rainfall in-
tensity I. Unexpectedly, there was no significant improvement in terms of reduced false
alarms FPR by the tested landslide hydro-meteorological threshold models as compared
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Table 5.2: Landslide bilinear threshold model and warning capabilities

Cause–Trigger Bilinear threshold models TPR FPR FNR TNR TSS Rad
Kivu catchment

ht –E ht >0.205, E>66.75 0.57 0.07 0.43 0.93 0.50 0.43
ht –I ht >0.205, I>10.84 0.64 0.10 0.36 0.90 0.55 0.37
ht–1–E ht–1>0.052, E>66.75 0.57 0.08 0.43 0.93 0.50 0.44
ht–1–I ht–1>0.052, I>10.84 0.64 0.11 0.36 0.89 0.54 0.37
E–D D>3.5, E>66.75 0.57 0.14 0.43 0.86 0.43 0.45
I–D D>3.5, I>10.84 0.36 0.06 0.64 0.94 0.29 0.65

Nyabarongo catchment
ht –E ht >0.457, E>44.7 0.73 0.08 0.27 0.92 0.64 0.29
ht –I ht >0.457, I >12.48 0.73 0.08 0.27 0.92 0.65 0.28
ht–1–E ht–1>0.636, E>44.7 0.55 0.07 0.45 0.93 0.48 0.46
ht–1–I ht–1>0.635, I>12.48 0.64 0.07 0.36 0.93 0.56 0.37
E–D D>12.5, E>44.7 0.45 0.05 0.55 0.95 0.40 0.55
I–D D>12.5, I>12.48 0.36 0.01 0.64 0.99 0.36 0.64

Mukungwa catchment
ht –E ht >0.483, E>63.5 0.77 0.11 0.23 0.90 0.66 0.25
ht –I ht >0.483, I>7.55 0.85 0.15 0.15 0.85 0.70 0.21
ht–1–E ht–1>0.921, E>63.5 0.46 0.03 0.54 0.97 0.43 0.54
ht–1–I ht–1>0.921, I>7.55 0.54 0.06 0.46 0.94 0.48 0.47
E–D D>7.5, E >63.5 0.85 0.14 0.15 0.86 0.71 0.21
I–D D>7.5, I >7.55 0.77 0.06 0.23 0.94 0.71 0.24
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to the precipitation based threshold models in Kivu catchment.
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Figure 5.6: Landslide warning capabilities of the hydro-meteorological and precipitation threshold models: (a) ht –E; (b) ht –I; (c) ht−1–E; (d) ht –E; (e) E–D; (f) I–D in
Kivu catchment
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The defined landslide hydro–meteorological threshold models in upper Nyabarongo catch-
ments are presented in Figure 5.7. Similar to Kivu catchment, the landslide hydro-meteorological
threshold models ht –E, ht –I, ht−1–E and ht−1–I performs much higher with 55–73% of
correctly predicted landslides (TP) than precipitation threshold models E–D and I–D
with around 36–45% of true alarms. A significant reduction of the rate of failed /missed
alarms (FN) with about 37% from I–D to ht –I and about 28% from E–D to ht –E was also
observed. Unexpectedly, there was no significant improvement in terms of reduced false
alarms by the landslide hydro–meteorological thresholds as compared to the landslide
precipitation thresholds.
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Figure 5.7: Landslide warning capabilities of the hydro–meteorological and precipitation threshold models: (a) ht –E ; b) ht –I ; (c) ht−1–E ; (d) ht –E ; (e) E–D; (f) I–D in
upper Nyabarongo catchment
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The defined landslide hydro–meteorological threshold models in Mukungwa catchment
are shown in Figure 5.8. Although, there was no significant improvement in terms of
false positive alarms (FP) reduction as expected, the best landslide hydro–metrological
thresholds models ht –I outperforms the precipitation based threshold I–D models in
terms of elevated rate of true positive alarms TP with about 85% as compared to 77% and
low rate of failed alarms FN with 15% compared to 23%. The highest prediction level in
terms of true alarms with 85% was observed from both ht –I and E–D hydro–meteorological
and precipitation based threshold models. Contrary to Kivu and upper Nyabarongo
catchments, precipitation based threshold models E–D and I–D performed quite sim-
ilar to ht –I and even better than other tested hydro–meteorological threshold models in
Mukungwa catchments. This could be explained by the catchment specific hydro–geological
characteristics that probably makes the catchment to be a very slow groundwater re-
sponding system and thus, a rather more precipitation induced landslide than ground-
water levels.
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Figure 5.8: Landslide warning capabilities of the hydro–meteorological and precipitation threshold: (a) ht –E; (b) ht –I; (c) ht−1–E; (d) ht –E; (e) E–D; (f) I–D in
Mukungwa catchment
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5.5.6. ADAPTABILITY AND LIMITATION OF THE DEFINED LANDSLIDE THRESH-
OLD MODELS

Within the framework of this Chapter, we defined the landslide hydro–meteorological
thresholds using continuous historical precipitations time series and groundwater level
time series as a proxy for the catchment water storage. We mainly analysed the differ-
ence in landslide thresholds and warning capabilities as a result of the differences in
catchment water storage, estimated from the groundwater responses to precipitation. It
was observed that the catchment with complex or slow groundwater responding system
such as Mukungwa, the warning capability of the groundwater based thresholds have
less performance as compared to the fast and clear groundwater responding systems
like Nyabarongo and Kivu catchments. This is truly owed by the catchment specific hy-
drogeological and geomorphological characteristics.

Nevertheless, the in deep analysis of the hydrogeological and geomorphological dif-
ferences between the three catchments and how they could be among the explanatory
factors of the observed difference in landslide thresholds and the warning capabilities
was not fully conducted. However, with reference to Figure 5.1, Mukungwa catchment
is hydrogeologically characterized by complex aquifer in volcanic rocks and thus being
a complex or slow groundwater responding system. This is probably due to the weath-
ering products of volcanic rocks that produce a relatively permeable top layer but tend
to form a brecciated or intruded sills of low permeability layer at shallow depth and thus
hampering deep groundwater recharge.

Contrarily, Nyabarongo and Kivu catchments are dominated by fractured granites
with overall high transmissivity and recharge and hence fast and clear groundwater re-
sponding systems. The weathering products of granites are generally coarse grained that
tend to develop and preserve open joint systems that increase permeability and thus fast
groundwater response. In Nyabarongo and Kivu catchments therefore, the landslide
warning capability of groundwater based thresholds performed higher than precipita-
tion thresholds as opposed to Mukungwa catchment. This is to say that in regions with
very slow groundwater responding system where rainfall induced shallow landslides pre-
vail, precipitation based thresholds can still practically be useful for landslide prediction
and warning. However, the need for hydrological thresholds is true for both shallow and
deep seated landslides (Cascini et al., 2010; Corominas et al., 2005b; Duan et al., 2019;
Hong and Wan, 2011) and thus, being more powerful than precipitation based thresh-
olds. More studies also confirm the high warning capability of hydro–meteorological
thresholds over precipitation-based thresholds after incorporation of either soil mois-
ture or catchment storage (Ciavolella et al., 2016; Mirus et al., 2018a; Prenner et al., 2018;
Thomas et al., 2019; Wicki et al., 2020).

From the previous chapter, the highest predictive capability of precipitation-based
threshold in a bilinear framework that used the antecedent precipitation API and event
rainfall intensity I as API30–I, was about 68% of true alarms associated with 27% of false
alarms. However, this prediction level was further improved through this research by
considering the catchment specific groundwater levels where the best predictor ht –I was
able to correctly predict 85% of landslides (TP) with 15% of false alarms. Although, the
catchment water storage would have been a better landslide predictor, this type of infor-
mation is scarce. Therefore, the groundwater level was considered as a proxy and used



5

74
5. INTEGRATION OF OBSERVED AND MODEL-DERIVED GROUNDWATER LEVELS IN

LANDSLIDE THRESHOLD MODELS IN NORTHWESTERN RWANDA

as a hydrological landslide predictor variable.

The component of groundwater has been on one hand considered as landslide trig-
gering factor and on the other hand as landslide predisposing factor (Cascini et al., 2010;
Corominas et al., 2005a; Duan et al., 2019; Hong and Wan, 2011). Being a hydrological
parameter, it was subjectively considered as landslide predisposing factor and plotted
on x axis of a 2D plot as a cause in a cause–trigger framework. However, the neutral use
of groundwater levels (neither trigger nor cause) in a single variable threshold model ht

provided excellent prediction results up to 93% of true alarms and only 7% of missed
alarms with a rather high rate of false alarms up to 38%.

The adopted approach for hydro–meteorological threshold model definition aimed
to reduce the rate of false alarms associated with single variable thresholds and follows
the cause–trigger concept (Bogaard and Greco, 2018) in which the groundwater levels
as cause were combined with precipitation variables as trigger in a bilinear framework
(Mirus et al., 2018a). We have tested different combinations of the optimum hydrolog-
ical and meteorological threshold variables such as ht –E, ht –I, ht−1–E, and ht−1–I and
the combination of groundwater levels on the day of landslide and event rainfall inten-
sity ht –I proved to have higher skill for landslide prediction and warning with high rate of
true alarms 64–85% and reduced rate of false alarms 8–15% as compared to other com-
binations.

We remain convinced that the combination of appropriate threshold variables into
cause–trigger framework should consider the timescale of each variable to avoid over-
lapping time scales between hydrological and meteorological variables. However, the
combinations of ht –E, and ht –I may led to overlapping time scale between groundwa-
ter levels and rainfall event. This would be very true for longer time scale triggers and
very fast groundwater responding system with very short time memory which was not
the case in our studied catchments. To account on this constraints, we have also con-
sidered the groundwater level recorded prior to landslide triggering events ht−1–E and
ht−1–I combinations but the result was not as significant as ht –E and ht –I.

The single variable and bilinear threshold models were adopted rather than the power
law models commonly used in landslide precipitation threshold like intensity–duration
and event–duration. These single variable and bilinear threshold models were selected
based on our dataset that displays most of the landslide conditions in the upper right
corner of the plots as shown in Figure 5.6, Figure 5.8, Figure 5.7 and the achieved land-
slide predictive capabilities summarized in Table 5.1 and Table 5.2. Although one is free
to choose any other model that fit the dataset, the single variable and bilinear threshold
models proved to be more efficient for hydro–meteorological threshold model definition
(Mirus et al., 2018a).

Furthermore, the transfer function noise TFN time series model was used for ground-
water modelling because of its simplicity, less data requirement and above all its higher
skill in groundwater simulation (Bakker and Schaars, 2019; Collenteur et al., 2019). How-
ever, like other models, 100% of the observed data cannot fit the model. Therefore, the
modelled groundwater data used to define the hydro–meteorological threshold may be
prone to minor errors. Additionally, the spatial extrapolation of groundwater informa-
tion relied on the main assumption that other hydro–geomorphological parameters do
not exhibit spatial variability within the individual catchment. This is an assumption
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made, given the data scarcity in the east Africa rift region in general (Monsieurs et al.,
2018a) and Rwanda in particular.

Lastly, the landslide inventory used for this study relied largely on the information
from government reports, newspapers, and other media where many landslide events
are likely to be missed. Although, the reliance on these data sources is likely to lead to
a bias towards larger landslide events and those with impact to society, this landslide
inventory is the most comprehensive currently available in the study area.

5.6. CONCLUSION
This chapter aimed to improve the landslide forecast quality by incorporating the catch-
ment specific groundwater levels as a proxy for regional water storage. A parsimonious
transfer function noise (TFN) time series model was used to simulate the groundwater
levels that temporally match with the available landslide inventory. Based on the sta-
tistical measures of goodness of fit, the root mean square error (RMSE<0.5 m) and the
explained variance (R2 > 60%), the TFN time series model demonstrates sufficient skill
to simulate groundwater levels.

The standardized groundwater levels modelled on a landslide day ht with AUC be-
tween 0.76–0.80 and the event rainfall volume E whose AUC ranges from 0.74–0.93 were
identified as the hydrological and meteorological variables with the highest discrimi-
natory power to distinguish landslide from no landslide conditions and thus, the most
dominant control on landslide occurrence in the studied region. The single variable
threshold model derived from groundwater levels ht indicated the highest landslide pre-
diction and/or warning capability with about 85–93% of true positive alarms despite
the resulting rate of false alarms between 26–38%. Similarly, the single variable thresh-
old models derived from precipitation intensity I and volume E reveal also high land-
slide predictive skill in terms of true positive alarms with about 64–100% associated with
15–44% of false alarms.

However, it was noticed that relying on single variable threshold models exclusively
derived from precipitation variables like E and I considered as landslide triggers could
lead to biased results due to the fact that many landslides occur not only due to the trig-
ger itself but a rather combination of both trigger and pre-event hydrological conditions.
Contrarily, relying on single variable threshold models exclusively defined using hydro-
logical variables like groundwater ht , lead to unbiased landslide predictions due to their
high consideration of long-term antecedent conditions until the day of landslide occur-
rence.

Further combination of the optimum groundwater and precipitation thresholds as
bilinear threshold models reduced the rate of false alarms by about 18–28% at the ex-
pense of reduced rate of true positive alarms by about 9–29% and thus being less ad-
vantageous than single variable threshold models. However, the hydro-meteorological
threshold models defined in bilinear framework as ht –I indicated higher landslide pre-
dictive skill in terms of true positive alarms (64–85%) than traditional threshold model
I–D (36–77%) that exclusively rely on precipitation. Furthermore, the integration of catch-
ment specific groundwater levels in landslide hazard assessment in Rwanda improved
the landslide prediction and warning capabilities of the existed precipitation based thresh-
old that used the antecedent precipitation API as a proxy for hydrological condition and
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event intensity I as a meteorological condition. Overall, the incorporation of observed
and model derived groundwater variables in an empirical statistical approach and the
use of regional specific hydrological characteristics improve the landslide prediction ca-
pacity as compared to the exclusive use of global precipitation based threshold models.
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Abstract

A combination of extreme hydro-meteorological conditions such as high soil moisture content and
heavy or prolonged precipitation contribute to landslide hazard initiation in mountainous areas
worldwide. On-site soil moisture monitoring equipment and rain gauges have been widely used
to record these variables but they have a sparse spatial coverage and only point scale data records.
Satellite-based technologies provide estimates of rainfall and soil moisture over larger spatial scales
and now cover multiple decades, sufficient to explore their value for the development of landslide
early warning system in data scarce regions. In this Chapter, we used statistical metrics to compare
gauge-based to satellite-based precipitation products and assess their performance in landslide haz-
ard assessment and warning in Rwanda. Similarly, the value of high-resolution satellite and hydro-
logical model derived soil moisture was compared to in-situ soil moisture observations at Rwanda
weather station sites. Based on statistical indicators, the NASA GPM-based IMERG rainfall product
showed the highest skill to reproduce the main spatiotemporal precipitation patterns at the stud-
ies sites in Rwanda. Similarly, the satellite- and model- derived soil moisture time series broadly
reproduce the most important trends of in-situ soil moisture observations. We evaluated two cat-
egories of landslide meteorological triggering conditions from IMERG satellite precipitation. First,
the maximum rainfall amount during a multiple day rainfall event. Second, the cumulative rain-
fall over the past few day(s). For each category, the antecedent soil moisture recorded at three levels
of soil depth, top 5cm by satellite-based technologies as well as top 50cm and 2m through modelling
approaches, was included in the statistical models to assess its potential for landslide hazard assess-
ment and warning capabilities. The results reveal the cumulative 3 day rainfall RD3 as the most
effective landslide trigger. This was indicated not only by its highest discriminatory power to distin-
guish landslide from no landslide conditions with an area under the curve AUC=0.72 but also the
resulting true positive alarms TPR =80%. The modelled antecedent soil moisture in the root zone
Ser oot (t−3) i.e. top 50cm was the most informative hydrological variable for landslide hazard as-
sessment with an AUC of 0.74 and TPR of 84%. The hydro-meteorological threshold models that
incorporate the Ser oot (t−3) and RD3 following the cause-trigger concept in a bilinear framework re-
veal promising results with improved landslide warning capabilities in terms of reduced rate of false
alarms by about 20% at the expense of a minor reduction of true alarms by about 8%.
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6.1. INTRODUCTION
In Chapter 4, a statistical approach was used to define gauge-based precipitation thresh-
olds along with estimates of antecedent precipitation indices. In Chapter 5, we incorpo-
rated regional groundwater level measurements extended with a transfer function noise
model to define the landslide hydro-meteorological thresholds for regional landslide
hazard assessment. So far, both chapters relied exclusively on in-situ observed precip-
itation and hydrological data constrained by the sparsely distributed recording equip-
ment with point scale resolution and gaps in the data record. There is a concern about
the omission and/or overgeneralisation of information on the pre-wetting hydrological
conditions at the locations of the landslide due to the sparsely distributed hydrological
recording equipment. These pre-wetting conditions regulate the disposition of a slope
to near failure (Bogaard and Greco, 2018; Sidle et al., 2019). Including this information
in a LEWS may thus be a promising opportunity to decrease the rate of both false and
missed alarms (Bogaard and Greco, 2018; Peres et al., 2017).

Similar to precipitation and other hydrological variables, soil moisture exhibits high
spatial variability particularly in tropical areas (Dewitte et al., 2022; Kirschbaum et al.,
2012; Sekaranom et al., 2020). This spatial variability is hardly covered by on-site moni-
toring equipment due to the sparse observation networks, themselves providing point-
scale observations only. Alternative ways of incorporating such hydrological state in-
formation into landslide hydro-meteorological thresholds have been attempted and in-
clude the use of soil moisture estimates from satellite products (Marino et al., 2020;
Thomas et al., 2019; Zhuo et al., 2019) as well as from distributed hydrological models
(Mostbauer et al., 2018; Prenner et al., 2018, 2019; Wang et al., 2019; Zhao et al., 2020).

In this Chapter, we aimed to explore the usefulness of adding soil moisture from
satellite-products and from a distributed hydrological model to satellite-based precip-
itation for the estimation of landslide hazard assessment thresholds in Rwanda. We
specifically i) investigated the suitability of various satellite precipitation products as
substitute for rainfall data from a sparsely distributed gauge network in Rwanda, ii) eval-
uated the added value of satellite and model derived soil moisture information recorded
at various soil depth, and iii) assessed the potential of incorporating such information in
empirical landslide initiation threshold models and the warning capabilities in Rwanda.

6.2. METHODS AND DATA

6.2.1. LANDSLIDE INVENTORY

The inventory for this study, contains landslides recorded from 2007 to 2019. It was ac-
cessed from previous chapters and was further extended and updated through compila-
tion of additional rainfall-induced landslides as reported from local newspapers, blogs
and government technical reports. This landslide inventory was compiled with respect
to the methodology adopted by Kirschbaum et al. (2015); Monsieurs et al. (2018c). Be-
tween 2007 and 2019, the inventory includes 55 accurately dated landslides, 32 of which
are located in the modelled catchments (Kivu, Nyabarongo upper and Mukungwa) shown
in Figure 6.3. However, it is important to note that this inventory is likely to miss the
non-hazardous landslides which are less reported upon than hazardous landslides that
led to fatalities/injuries and considerable damages. The inventory provides the location
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Figure 6.1: Spatial and temporal distribution of hazardous landslides with light to dark red dots indicating old
to new landslides recorded from 2007–2019, representative rain gauges and rainfall distributions indicated by
isohyets (sky blue lines), precipitation footprint of 5km buffer around each landslide

of each recorded landslide but with a varying spatial accuracy of 5 to 25 km depending
on the smallest administrative unit recorded by the landslide event reporters. There-
fore, a buffer zone of 5km, equivalent to the frequently recorded accuracy, was used
around each landslide (Figure 6.2) to support the choice of the landslide representa-
tive rain gauge. The same areal buffer was used as a footprint to avail the areal satellite
precipitation and soil moisture as detailed in Sections 6.2.2 and 6.2.3.

6.2.2. PRECIPITATION PRODUCTS AND PERFORMANCE EVALUATION

GAUGE BASED PRECIPITATION AND SELECTION OF LANDSLIDE REPRESENTATIVE DATA

We accessed daily precipitation data from 19 rain gauges operated by the Rwanda Me-
teorology Agency. These rain gauges were selected based on their location within the
defined buffer of 5km around each landslide location (Figure 6.1). Once two or more
rain gauges fall within the same buffer zone, the gauges are weighted using Equation 4.1
from Melillo et al. (2018) to select the most representative rain gauge. A similar proce-
dure was used to select the representative rain gauge for landslides located far (>5km)
from any rain gauge. The selected gauge-based precipitation were used as benchmarks
to assess the suitability of satellite precipitation products.
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Table 6.1: Pre-selected precipitation products and short description

Satellite products
Resolution

Period Data source description
References

Spatial Temporal
TRMM 3B42 v7 0.25° Daily 1998-2019 Passive microwave (PMW) from a vari-

ety of low Earth orbit satellites, infrared
(IR) data and precipitation gauge sup-
plied by the Global Precipitation Clima-
tology Centre (GPCC)

(Huffman et al.,
2010)

CHIRPS 0.05° Daily 1981-present Geostationary thermal infrared (IR); mi-
crowave satellite estimates and the in-
situ precipitation observations

(Funk et al., 2015)

PERSIANN CDR 0.25° Daily 1983-present GridSat-B1 infrared data and bias-
adjusted using the Global Precipitation
Climatology Project (GPCP) monthly
product and accumulated to the daily
scale

(Ashouri et al., 2015)

GLDAS 2.1 0.25° 3 hourly 2000-present Geostationary satellite infrared (IR)
cloud-top temperature measurements
and
microwave observation techniques

(Rodell et al., 2004)

CFSv2 0.2° 6 hourly 1979-present Satellite observations in the infrared and
microwave channels and gauge observa-
tions

(Saha et al., 2014)

IMERG_GPM 0.1° 30 min 2014-present Passive Microwave from various low
Earth orbit satellites,
Infrared from geosynchronous Earth or-
bit satellites and
gauges precipitation (successor of
TRMM)

(Huffman et al.,
2015)

ERA5 0.25° Hourly 1979-present This is a non-satellite but re-analysis
product.
precipitation is generated employing a
convection schemealong with the large-
scale cloud scheme that have been up-
graded with
an improved representation of mixed-
phase clouds and
prognostic variables for precipitating rain
and snow

(Hersbach et al.,
2020)

SATELLITE PRECIPITATION PRODUCTS AND SELECTION OF THE BEST PERFORMING PROD-
UCT

With the gauge-based precipitation data as reference, we assessed the performance of
seven satellite precipitation products summarized in Table 6.1. These satellite precip-
itation products were preliminary selected for analysis based on the criteria that their
dataset i) at least partially overlap with the landslide inventory period (2007-2019), ii)
has at least daily temporal resolution, and iii) is available on Google Earth Engine (GEE).

Among the pre-selected satellite products, we have chosen the most suitable product for
landslide hazard assessment in Rwanda based on the relative comparison with gauge-
based precipitation. This was achieved using a number of statistical approaches that
include: i) the use of statistical metrics of goodness of fit, ii) rainfall frequency indicators,
and iii) intensity comparisons. The statistical metrics of goodness of fit include the root
mean square error RMSE, Pearson correlation CC, and the long-term relative bias RB
computed with Equation 6.1, Equation 6.2, and Equation 6.3.

RMSE =
√∑n

i=1(Yi −Xi )2

n
(6.1)
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CC =
∑n

i=1(Xi −Xmean)(Yi −Ymean)√∑n
i=1(Xi −Xmean)2

√
(Yi −Ymean)2

(6.2)

RB = Ymean −Xmean

Ymean +Xmean
(6.3)

Where Yi is the rain gauge observation at date i, Xi is the satellite estimate at the same
date i, n is the total number of data pairs for each precipitation product considered,
Ymean and Xmean are the mean rainfall from rain gauge and satellite products respec-
tively. The rainfall frequency indicators specify the frequency of rainy days based on
the predefined threshold indices (Joshi et al., 2014; Tank et al., 2009). We used five rain-
fall threshold indices that reflect the number of rainy days with >X mm of rain (RDx ).
The predefined indices are RD0, RD10, RD20, RD30, and RD50 indicating the number of
rainy days with >0mm as rainy days, >10mm as heavy rainy days, >20mm as very heavy
rainy days, >30mm as even heavier rainy days, and >50mm as extremely heavy rainy
days respectively. With intensity comparison, we compared the cumulative 30day rain-
fall from the satellite precipitation products to the cumulative 30day precipitation from
rain gauges using scatter plots.

6.2.3. SOIL MOISTURE PRODUCTS AND DATA ACQUISITION

IN-SITU SOIL MOISTURE DATA FROM AUTOMATIC WEATHER STATIONS

In-situ soil moisture data, collected from the automatic weather stations (AWSs) equipped
with soil moisture sensors, were accessed from the Rwanda Meteorological Agency for
six AWSs as shown in Figure 6.2. The AWSs recorded the soil moisture at 20cm depth
with a temporal resolution of 5-10 minutes from July 2018 to December 2019. Because
the analysis focuses on a daily time-scale, we computed and used the daily average soil
moisture time series recorded from July 2018 to December 2019. The in-situ AWSs soil
moisture data were used as a benchmark to comparatively get an insight on the quality
of other sources of soil moisture products that include satellite and model derived soil
moisture estimates described in following Sections.

SATELLITE SOIL MOISTURE AND VARIABLE OF INTEREST

We used a satellite-derived near surface soil moisture product provided by Planet, for-
merly VanderSat (VdS) (https://vandersat.com/data/soil-moisture/, last access:
29 March 2022). The product relies on the Land Parameter Retrieval Model (LPRM) (Owe
et al., 2008, 2001; De Jeu et al., 2014) to estimate the near surface soil moisture by com-
bining raw data from the Advanced Microwave Scanning Radiometer 2 (AMSR-2), and
Soil Moisture Active Passive (SMAP) (Bouaziz et al., 2020). The satellite product estimates
volumetric soil water content or soil moisture (m3m−3) of the upper 5cm of soil down-
scaled from a spatial resolution of 25×25km to 100m×100m. From VdS, we accessed daily
soil water content estimates from the top 5cm of soil (θtop ) for the 2007-2019 period for
each of the defined regions of interest (ROIs) equivalent to the 5km buffers shown in
Figure 6.2.

https://vandersat.com/data/soil-moisture/


6.2. METHODS AND DATA

6

83

#0

#0

#0

#0 #0

#0

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Macuba

Rubona

Byimana

KibisaboGisenyi Airport

Ruhengeri Airport

31°0'0"E

31°0'0"E

30°30'0"E

30°30'0"E

30°0'0"E

30°0'0"E

29°30'0"E

29°30'0"E

29°0'0"E

29°0'0"E

1°30'0"S 1°30'0"S

2°0'0"S 2°0'0"S

2°30'0"S 2°30'0"S

±

0 10 20 30 405
Kilometers

Legend
! Hazardous_landslides
#0 AWS compared with VdS

VdS ROIs
Geomorphology

Alluvial Plain
Angular hills
Angular hills and headlans
Lake
Large plateau
Old peneplain
Recent peneplain
Rounded hills
Rounded hills and headlans
Small plateau
Volcanic plain
Volcano top and slope

.

Figure 6.2: Geomorphology of Rwanda, landslide representative AWSs (Automated weather stations) with soil
moisture sensors; landslides in red dots and 5km buffer zones indicating the Research Area of Interest (ROIs)
for areal soil moisture acquisition

HYDROLOGICAL MODEL DERIVED SOIL MOISTURE AND VARIABLES OF INTEREST

We also used the soil moisture derived from the Wflow-sbm, a distributed hydrological
model that uses the conceptual bucket model approach to estimate soil water content
(Imhoff et al., 2020). With Wflow-sbm, the soil is considered as a bucket with a depth
(Z) divided into 2 zones: the unsaturated store U and the saturated store S. The interface
between U and S is a pseudo water table located at depth Zw . The values of unsaturated
storage U and saturated storage S are computed as in Equation 6.4 and Equation 6.5.

U = (θs −θr )Zw −Ud (6.4)

S = (θs −θr )Z −ZW (6.5)

Where θs , θr are saturated and residual water content respectively and Ud is the soil
water deficit

The unsaturated store U was the variable of interest and was subdivided into 2 vari-
ables: the water content in the root zone θr oot [-] representing the unsaturated soil water
storage of the top 50cm and the part of the soil water capacity occupied θuz [-] represent-
ing the unsaturated soil water storage of the upper 2 m. For this chapter, the model area
consisted of three catchments (Kivu, Upper Nyabarongo and Mukungwa) as highlighted
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Figure 6.3: Wflow model catchments (Kivu, upper Nyabarongo and Mukungwa) and hydrogeology; landslides
in red dots and 5km buffers indicating the Research Area of Interest (ROIs) for areal soil moisture acquisition
from the Wflow model, Automated weather stations (AWSs) with soil moisture sensors for comparative perfor-
mance evaluation of the Wflow modelled soil moisture

in Figure 6.3. We obtained time series of θr oot [-] and θuz [-] from 2007-2019 overlapping
with the landslide inventory period from a wflow-sbm simulation based on ERA5 re-
analysis meteorological data. To increase the comparability with the satellite based soil
moisture (VdS), the same ROIs represented by the buffers of 5km around each landslide
location were used to interpolate the unsaturated water storage time series for each ROI
located in the model catchment. Similarly, only the AWSs located in the model catch-
ment (Figure 6.3) were used for the comparative performance evaluation of the model
derived soil moisture products.

6.2.4. LANDSLIDE HAZARD ASSESSMENT AND THRESHOLDS DEFINITION

LANDSLIDE METEOROLOGICAL AND HYDROLOGICAL CONDITIONS AND TEST VARIABLES

The daily rainfall data from the best performing satellite product were used to define the
landslide meteorological triggering conditions. We used two categories of landslide trig-
gering conditions. The first category defined a landslide trigger as the maximum prob-
able rainfall event (MPRE) during which or slightly after its end, one or more landslides
occurred. The MPREs were defined as individual periods of rainy days interrupted by
dry periods of at least two days. Given the constraint of overestimation of the number of
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rainy days with 0-10mm by satellites (Pavez, 2021), a rainy day was objectively referred
to as the day with 10 mm/d while a dry day was referred to as the day with <10 mm/d.
This threshold was objectively selected using the rainfall frequency indicator metric. The
landslide predictor variables in this category were therefore the rainfall event volume (E),
event duration (D) and event intensity (E/D). The rainfall event volume E (mm) was com-
puted as the cumulative rainfall during each MPRE of duration D (days). The duration
D equivalent to MPRE is the individual periods of days with recorded rain interrupted
by inter event time (IET) of at least two dry days. The event intensity E/D is the ratio of
event rainfall volume E and event duration D.

The second category defined a landslide trigger as the recent cumulative rainfall RD x
at the end of which one or more landslides occurred. This category considers the total
cumulative rainfall over the last three days (RD3), two days (RD2), and one day (RD1) at
the end of which, one or more landslides occurred. While MPREs time series are in-
terrupted by the IETs, the RD3, RD2 and RD1 for each day during the 2007-2019 study
period were computed regardless of a rainy or dry day and thus resulting into longer
time series and more data points compared to the MPREs time series. The time series
of the defined meteorological triggering conditions from each category and for all pre-
cipitation foot prints were compiled in a single dataset for further statistical analysis. To
provide a normalized comparison of the soil wetness, we transformed the satellite- and
model-derived water content θ to effective soil moisture Se with Equation 6.6 to define
the landslide predisposing hydrological conditions.

Se = θ−θmi n

θmax −θmi n
(6.6)

Where Se stands for the effective soil moisture [-], θmax and θmi n are the maximum and
minimum values of the recorded or modelled soil water content θ. The normalization of
soil water content θ was made for easy comparison of the observed, model-derived and
satellite-based soil moisture products. However, for all compared soil moisture prod-
ucts, theθmax and θmi n were 1 and 0 respectively which lead to almost similar values of
Se and θ

The tested hydrological conditions include therefore, the near surface soil moisture
Setop , representing the soil moisture of the upper 5cm of soil, provided by the satellite
techniques (VdS), the Ser oot representing the root zone soil moisture of the upper 50cm,
acquired through modelling approach (Wflow), and Seuz representing the soil moisture
estimates from the upper 2m of soil, obtained through modelling approach (Wflow). To
assess the contribution of the pre-wetting state of the soil prior to the landslide triggering
conditions, we have considered the antecedent soil moisture i.e. recorded or modelled
prior to the start of the triggering meteorological conditions. The antecedent soil mois-
ture referred to the time interval before the start of each of the defined categories of the
meteorological triggering conditions. We have therefore used the Setop(t−x), Ser oot (t−x),
Seuz(t−x) with t (date) and x (days) expressing the end time and the duration of the trig-
gering conditions respectively. However, due to the transient duration of the MPREs, x
was hypothetically represented by a value of 1 standing for one entire MPRE while values
of 1, 2, 3 represent the duration (days) of the triggering RDx conditions. A binary clas-
sification of the defined hydrological and meteorological conditions was undertaken to
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classify the landslide and no-landslide conditions. The meteorological or hydrological
conditions are referred to as landslide conditions i.e. positive class, when at least one
landslide occurs during its course or slightly after its end while they are referred to as
no-landslide conditions i.e. negative class when no landslide occurred during its course
or slightly after its end.

DISCRIMINATORY POWER OF THE LANDSLIDE TEST VARIABLES AND OPTIMUM THRESHOLDS

FOR LANDSLIDE INITIATION

The landslide test variables which include the predisposing hydrological conditions Setop(t−1),
Setop(t−2), Setop(t−3), Ser oot (t−1), Ser oot (t−2), Ser oot (t−3), and Seuz(t−1), Seuz(t−2), and Seuz(t−3)

as well as the triggering meteorological conditions E, D, E/D , RD1,RD2, and RD3 were
tested for their relevance on landslide occurrence. We used a receiver operating charac-
teristic (ROC) and the area under the curve (AUC) metrics to evaluate the discriminatory
power of each of the landslide test variables. The ROC curve is defined as a graphical
plot indicating the performance of the test variable at all threshold levels by providing
the trade-off between the true positive rate (TPR) and false positive rate (FPR) at each
level. The AUC is a statistical metric that indicate the discriminatory power of the test
variable i.e. the capacity of the test variable to correctly distinguish positive from nega-
tive classes i.e. landslide from no landslide conditions. It compares also the test variable
to a random guess (AUC=0.5) and thereby indicates the statistical significance where the
perfect test variable would have an AUC equal to unity. The rate of correctly (TPR, true
positive rate) and incorrectly predicted landslides (FPR, false positive rate) correspond-
ing to each cut off on the ROC curves are computed using Equation 6.7 and Equation 6.8
respectively.

T PR = T P

T P +F N
(6.7)

F PR = F P

F P +T N
(6.8)

The rate of unpredicted landslides (FNR, false negative rate) and the rate of correct pre-
diction of no-landslides (TNR, true negative rates) are computed using Equation 6.9 and
Equation 6.10.

F N R = F N

F N +T P
(6.9)

T N R = T N

T N +F P
(6.10)

Where TP are true positives or true alarms i.e. outcomes with correctly predicted land-
slides, FN are false negatives or missed alarms i.e. the number of landslides that occurred
in reality but were not predicted, FP are false positives or false alarms i.e. predictions of
landslide occurrence while in reality there was no landslide reported, and TN are true
negatives i.e. correct predictions of no-landslide occurrence.

Since the ROC curve only indicates all possible thresholds and their relative bal-
ance between TPR and FPR, one is free to choose the optimum threshold depending on
whether to maximize the TPR or minimize the FPR. However, according to Postance and
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Hillier (2017), the optimum threshold is the one that maximizes the TPR while minimiz-
ing the FPR. Therefore, that optimum threshold level above which landslide are highly
likely to occur have been defined using two statistical metrics i.e. the maximum true skill
statistic (TSS) and minimum radial distance (Rad). The TSS is expressed as a balance be-
tween the TPR and FPR as indicated in Equation 6.11.

T SS = T PR −F PR (6.11)

Where the maximum value of TSS indicates the optimum threshold that maximizes
the TPR while minimizing the FPR. For a perfect threshold, the TSS reaches a unity in-
dicating a zero false positive rate (FPR). The radial distance (Rad) shows the relative dis-
tance from the defined threshold level on the curve to the perfect model or point whose
TPR is a unit and zero FPR and is computed Equation 6.12.

Rad =
√

F PR2 + (T PR −1)2 (6.12)

LANDSLIDE HYDRO-METEOROLOGICAL THRESHOLDS AND WARNING CAPABILITIES

The optimum thresholds defined based on the maximum TSS and or minimum Rad were
plotted in 1D threshold space here referred to as single variable threshold line beyond
which the probability of landslides is high. We also followed the cause-trigger concept
(Bogaard and Greco, 2018) that reflect the hydro-meteorological thresholds and hypo-
thetically plotted the optimum thresholds of the landslide predisposing hydrological
variables i.e the antecedent soil moisture on the x-axis and the meteorological triggering
variables on the y-axis of a two dimensional 2D space here referred to as bilinear thresh-
olds. The bilinear threshold models made of hydrological and meteorological variables
are plotted in x, y pairs i.e antecedent soil moisture versus E/D or RD X . Furthermore,
the bilinear threshold from a traditional landslide prediction model event–duration E–D,
that exclusively rely on precipitation, has been also defined to serve as a benchmark for
comparative performance evaluation.

6.3. RESULTS AND DISCUSSION

6.3.1. PERFORMANCE OF SATELLITE PRECIPITATION PRODUCTS
The suitability of satellite precipitation products in the study region was assessed using
three statistical indicators as summarized in Table 6.2, Table 6.3 and illustrated in Fig-
ure 6.4. From the statistical measures of fits (RMSE, CC, RB), it is generally observed
that IMERG is consistently more suitable while ERA-5 was found to be the least suitable
product as compared to other satellite precipitation products. The evaluation based on
frequency indictors is summarised in Table 6.3. These indicators give an overview on
whether a given satellite product would overestimate or underestimate the observed
gauge precipitation based on the predefined threshold indices. IMERG-GPM displays
the highest skill to estimate all ranges of rainfall from heavy to extremely heavy rainy days
as recorded by the on-site gauges. CHIRPS and TRMM 3B42 v7 provide good estimates of
precipitation with quite similar number of rainy days (RD0=1256 days) to gauge-based
rainfall (RD0=1259days). However, these satellites drastically underestimate the num-
ber of heavy to extreme heavy rainfall (RD20, RD30 and RD50). For example, TRMM and
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Table 6.2: Performance of Satellite precipitation products based on statistical metrics

Metrics TRMM 3B42 v7 CHIRPS PERSIANN CDR GLDAS 2.1 CFSv2 IMERG ERA 5
RMSE (mm) 8.17 8.53 7.42 8.55 10.58 8.18 12.60
CC (-) 0.31 0.27 0.25 0.24 0.17 0.35 0.22
RB (-) -0.08 -0.01 -0.15 0.03 0.11 0.02 0.29

Table 6.3: Performance of Satellite precipitation products based on rainfall frequency indicators

Indices Description Gauge TRMM 3B42 v7 CHIRPS PERSIANN CDR GLDAS 2.1 CFSv2 IMERG ERA 5
RD0 Rainy days >0mm 1259 1691 1256 2732 3086 2835 2842 3520
RD10 Heavy rainy days >10mm 397 307 424 138 377 617 383 879
RD20 Very Heavy rainy days >20mm 132 87 101 9 79 199 126 250
RD30 Even heavier rainfall days >30mm 49 29 25 0 22 84 42 78
RD50 Extremely heavy rainfall >50mm 9 4 3 0 2 22 6 21

CHIRPS estimated RD20=87 and 101days respectively out of 132 days estimated by rain
gauge (Table 6.3).

The suitability of satellite products was also assessed using intensity comparison in-
dicated by the density of the scatter points around 1:1 line as shown in Figure 6.4. The
scatter plots compare 30day cumulative rainfall from satellite precipitation products ver-
sus rain gauges. The scatter plots reveal that GLDAS, CFSv2 and ERA-5 tend to overesti-
mate rainfall while underestimations are noticed from PERSIANN CDR as compared to
the in-situ gauge rainfall. Based on the closeness of scatter points to the 1:1 line, CHIRPS
and IMERG exhibit a higher resemblance to gauge data (Pearson correlation R=0.67 and
0.60 respectively) than other satellite products and could thus be used as alternative to
gauge-based precipitation.

Overall, IMERG shows rainfall pattern that are most consistent with available gauge
observations in Rwanda despite the over estimation of the number of rainy days with
less than 10mm (RD0). According to Kimani et al. (2017), the overestimation of rainfall
in areas with elevation >2500m and underestimation in areas with elevation < 2500m was
observed before and is attributed to satellite inherent challenges to retrieve orographic
rainfall. To overcome this constraint, 10mm/d has been considered as a threshold to de-
fine a satellite-based rainy day and thus being relevant for landslide hazard assessment
in Rwandan climate conditions. Other researchers in the regions also found CHIRPS and
TRMM to be comparable to gauge based precipitation in east Africa (Kimani et al., 2017;
Monsieurs et al., 2018c). Monsieurs et al. (2018c) found the areal-averaged TMPA rainfall
estimates, the predecessor of IMERG, to be more suitable for assessing landslide hazard
threshold than the sparsely distributed gauge data with limited representativeness in the
context of high rainfall variability of the east African rift.

6.3.2. MEAN SOIL MOISTURE RESPONSE TO RAINFALL AND LANDSLIDE EVENTS
Figure 6.6 indicates the temporal dynamics of the satellite estimates Setop and the model
derived soil moisture time series Ser oot and Seuz compared to in-situ soil moisture ob-
servations from the automatic weather station AWS. Regardless of the difference in mea-
suring depth (5cm, 50cm 2m), the time response to precipitation and overestimation of
soil moisture, the satellite Setop and model derived soil moisture time series Ser oot and
Seuz broadly reproduce the most important temporal variation as recorded by in-situ
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Figure 6.4: Intensity comparison between satellite and gauge based precipitation based on the cumulative
30day rainfall

soil moisture sensors. This indicates their usefulness for landslide hazards assessment
as an alternative to the sparse in-situ AWSs.

The spatial averaging of soil moisture across all research areas of interest (ROIs) was
undertaken to have an insight on the critical ranges of soil moisture that induce land-
slides in Rwandan climate conditions. The spatially averaged Setop , Ser oot and Seuz soil
moisture dynamics and the linked landslide occurence are presented in Figure 6.6. The
average Setop , Ser oot and Seuz of all ROIs, indicate general similarities in terms of land-
slide predisposing but also reveal systematic differences between response time influ-
enced by the soil moisture recording depth. For example, it is obvious that the Setop

(5cm) responds faster than Ser oot (50cm) and Seuz (2m). It is clear that the majority
of landslides occurs when the soil moisture levels positively deviate from the long-term
mean up to a critical level (about 0.1) for landslide initiation. It is also evident that the
critical level for landslide occurrence is more or less fixed when other geological and
geomorphological condition are kept constant and it is reached more or less easily de-
pending on the prior rainfall expressed in terms of antecedent soil moisture and the time
lag between the landslide triggering rainfall and hydrological response.

6.3.3. SINGLE VARIABLE LANDSLIDE METEOROLOGICAL AND HYDROLOGI-
CAL THRESHOLDS AND PREDICTION CAPABILITIES

Figure 6.7 and Table 6.4 show the derived landslide meteorological and hydrological
thresholds and their predictive capabilities in terms of true positive rate TPR and false
positive rate FPR. The discriminatory power of each of the tested variables was evaluated
with a receiver operating characteristic (ROC) curve and the area under the curve (AUC)
statistical metrics. Among the tested landslide triggering meteorological variables E, D,
E/D, RD1, RD2, and RD3, the cumulative 3day rainfall RD3 and event rainfall volume E
showed the highest discriminatory power with AUC of about 0.72 and hence the highest
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Figure 6.5: Satellite and model derived information and landslide activities a) GPM based IMERG precipitation
[mm] spatially averaged over all landslide precipitation foot prints b) satellite derived soil moisture Setop [-]
spatially averaged over all landslide ROIs and in-situ soil moisture AWS [-] on secondary y-axis; The dashed
horizontal lines represent the long term mean soil moisture and the red triangles stand for the landslide events
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Figure 6.6: Satellite and model derived information and landslide activities c) GPM based IMERG precipitation
[mm] spatially averaged over the landslide precipitation foot prints located in the modelled catchments, d)
modelled soil moisture at the root zone top 50cm Ser oot [-], modelled soil moisture top 2m Seuz [-]and in-
situ soil moisture AWS [-] on secondary y-axis. The dashed horizontal lines represent the long term mean soil
moisture and the red triangles stand for the landslide events
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impact on landslide initiation. However, the event rainfall intensity, i.e. E normalised
over the event duration D as E/D indicated low capability (AUC=0.53) to distinguish
landslides from no landslides. This stresses the importance of using the recent cumu-
lative rainfall with a fixed duration and thus highlighting the highest impact of RD3 on
landslide initiation process and its relevance on landslide hazard assessment and pre-
diction compared to E that need to be normalised.

Contrarily to the gauge-based cumulative rainfall thresholds (Chapter 4), the satellite-
based cumulative rainfall on the day of landslide RD1 was not impactful to landslide
initiation (AUC=0.35-0.38). This may not only be due to the inaccuracies between the
landslide occurrence and the reporting time but likely the landslides induced by the hy-
drological responses to rainfall rather than the rainfall itself. Additionally, the satellite
revisiting time and or period may introduce inaccuracies in timing. Figure 6.7c and d
indicate that the wetness state of soil prior to the cumulative rainfall RDx have the most
significant impact on landslide occurrence as indicated by their AUC=0.72-0.76. Con-
trarily, Figure 6.7a and b show that the wetness state of the soil prior to the landslide trig-
gering event E has no significant impact on landslide occurrence (AUC=0.66-0.67). This
is to say that the antecedent soil moisture conditions prior to the longer triggering rain-
fall event E are not relevant for landslide initiation in the study area conditions. Among
other factors, the duration of the triggering condition plays a major role in determin-
ing the relevance of the antecedent soil moisture on landslide occurrence. The shorter
the duration of the triggering conditions, the higher the relevance of the antecedent soil
moisture on landslides initiation. Highly permeable soils are less sensitive to antecedent
soil moisture conditions because of the high gravity driven drainage and or deep per-
colation. With a tropical climate, evaporation process may also rapidly take away the
antecedent soil moisture content of the top soil due to the longer timescale of the mini-
mum inter-event time IET and the landslide triggering event E.

The thresholds definition metrics, TSS and Rad, resulted in quite comparable land-
slide thresholds as summarised in Table 6.4. It was noticed that the defined satellite
precipitation thresholds are similar to the ones defined using gauge-based precipita-
tion. For example, the optimum landslide threshold event rainfall volume E defined
from satellite precipitation varied between 44.9mm and 60.7mm (Table 6.4) while gauge-
based threshold E varied from 46mm to 67mm. Similarly but with a quite minor differ-
ence, the defined satellite-based E/D thresholds 16-17.5mmd−1 seemed quite similar
to gauge-based thresholds 7-13mmd−1. Nevertheless, the single variable threshold E/D
being the most informative, showed quite low prediction capability in terms of TPR (56-
60%) with elevated rate of false positive FPR (43-54%) i.e. incorrect predictions of land-
slide and thus being less effective for a robust early warning system development.

Contrarily, the single variable thresholds defined from the cumulative 3day rainfall
RD3 outperforms other tested triggering conditions with highest prediction capability
in terms of true positive rate TPR=79-81%. The same holds for the soil moisture in the
root zone (50cm deep) Ser oot that consistently showed the highest performance. Nev-
ertheless, despite the high true positive rate from these single variables thresholds, the
resulting elevated rate of false positives FPR (36-42%) still constrain their use for the de-
velopment of a robust landslide early warning system. It has to be noted that the thresh-
old defined from the antecedent soil moisture specifies the critical levels below which
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Table 6.4: Event based-variable thresholds and prediction capabilitiesabcde f

Variables Maximum True skill statistics (TSS) Minimum radial distance (Rad)
Threshold TPR FPR TSS Rad Threshold TPR FPR TSS Rad

Event E (mm)a 53.1 0.54 0.21 0.33 0.51 44.9 0.60 0.27 0.33 0.49
Duration D (d)b 2.5 0.56 0.27 0.29 0.52 1.5 0.72 0.43 0.29 0.51
Event/Duration E/D(mmd−1)c 16.1 0.64 0.54 0.10 0.65 17.3 0.56 0.47 0.09 0.65
Setop(t−1) 0.56 0.72 0.44 0.28 0.52 0.57 0.68 0.41 0.27 0.52
Event E (mm)d 60.7 0.53 0.17 0.36 0.50 60.7 0.53 0.17 0.36 0.50
Duration D (d)e 2.5 0.59 0.28 0.32 0.49 2.5 0.59 0.28 0.32 0.49
Event/Duration E/D (mmd−1) f 16.1 0.69 0.54 0.15 0.62 17.5 0.59 0.46 0.14 0.61
Ser oot (t−1) 0.56 0.72 0.44 0.28 0.52 0.56 0.72 0.44 0.28 0.52
Seuz(t−1) 0.91 0.53 0.22 0.31 0.52 0.87 0.63 0.34 0.28 0.51
abc Event rainfall volume, duration and intensity defined from all landslide representative precipitation foot
prints, de f Event rainfall volume, duration and intensity defined using precipitation foot prints located in the
modelled catchments (Kivu, Nyabarongo upper and Mukungwa)

Table 6.5: Short-scaled cumulative rainfall based-variable thresholds and prediction capabilities abcde f

Variables Maximum True skill statistics (TSS) Minimum radial distance (Rad)
Threshold TPR FPR FNR TNR TSS Rad Threshold TPR FPR TSS Rad

RD1 (mmd−1)a 10.90 0.35 0.16 0.65 0.84 0.19 0.67 10.90 0.35 0.16 0.19 0.67
RD2 (mmd−2)b 14.70 0.50 0.20 0.50 0.80 0.30 0.54 10.90 0.54 0.27 0.27 0.53
RD3 (mm)c 15.05 0.79 0.40 0.21 0.60 0.39 0.45 15.05 0.79 0.40 0.39 0.45
Setop(t−1) 0.53 0.85 0.43 0.15 0.57 0.41 0.46 0.56 0.77 0.37 0.40 0.44
Setop(t−2) 0.57 0.75 0.35 0.25 0.65 0.40 0.43 0.57 0.75 0.35 0.40 0.43
Setop(t−3) 0.56 0.75 0.38 0.25 0.62 0.37 0.50 0.56 0.75 0.38 0.37 0.50
RD1 (mmd−1)d 10.90 0.38 0.16 0.62 0.84 0.21 0.64 10.90 0.38 0.16 0.21 0.64
RD2 (mmd−2)e 14.70 0.59 0.21 0.41 0.79 0.38 0.45 10.90 0.67 0.28 0.38 0.44
RD3 (mm) f 15.05 0.81 0.42 0.19 0.58 0.40 0.46 35.70 0.63 0.25 0.38 0.45
Ser oot (t−1) 0.75 0.81 0.38 0.19 0.62 0.43 0.43 0.75 0.81 0.38 0.43 0.43
Ser oot (t−2) 0.76 0.84 0.36 0.16 0.64 0.49 0.39 0.76 0.84 0.36 0.49 0.39
Ser oot (t−3) 0.72 0.84 0.41 0.16 0.59 0.43 0.44 0.79 0.72 0.30 0.42 0.41
Seuz(t−1) 0.90 0.66 0.23 0.34 0.77 0.43 0.41 0.90 0.66 0.23 0.43 0.41
Seuz(t−2) 0.89 0.63 0.25 0.37 0.75 0.38 0.45 0.89 0.63 0.25 0.38 0.45
Seuz(t−3) 0.92 0.56 0.18 0.44 0.82 0.38 0.47 0.89 0.63 0.24 0.38 0.45
abc Cumulative 1, 2, and 3day rainfall defined from all landslides representative precipitation foot prints, de f

Cumulative 1, 2, and 3day rainfall volume defined using precipitation foot prints located in the model catch-
ments (Kivu, Nyabarongo upper and Mukungwa)

the impact of pre-wetting state of the soil is considered unimportant for landslide oc-
currence. On the contrary, once these thresholds are exceeded, the pre-wetting state of
the soil has significant impact on landslide occurrence and has to be considered while
defining the landslide hydro-meteorological threshold models.

6.3.4. LANDSLIDE HYDRO-METEOROLOGICAL THRESHOLDS AND IMPLICA-
TION FOR WARNING

With respect to the high rate of false positives resulting from the single variable thresh-
olds, we have tested whether the incorporation of antecedent soil moisture information
to the triggering rainfall conditions improves the landslide prediction capability. The op-
timum single variable hydrological and meteorological thresholds have been therefore
combined into hydro-meteorological thresholds following the cause-trigger concept in
a bilinear framework as shown in Figure 6.8 and Figure 6.9. Figure 6.8 illustrates the first
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Figure 6.7: Receiver operating characteristics ROC curves, area under the curves AUC and optimum landslide
thresholds defined by the true skill statistic TSS (square shaped marker) and radial distance Rad (cycle shaped
marker) using: a) Event rainfall and satellite (VdS) based-top 5cm soil moisture Setop from all ROIs b) Event
rainfall and modelled root zone soil moisture of the top 50cm Ser oot and top 2m soil moisture Seuz from ROIs
located in the Wflow model catchment c)Cumulative 1, 2 and 3day rainfall(RD) and satellite (VdS) based-top
5cm soil moisture Setop from all ROIs and d) cumulative 1, 2 and 3day rainfall(RD) and modelled root zone
soil moisture of the top 50cm Ser oot and top 2m soil moisture Seuz from ROIs located in the Wflow model
catchment
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category of landslide hydro-meteorological thresholds defined based on the maximum
possible rainfall event E combined with different variables of antecedent soil moisture.
The derived thresholds resulted into quite elevated rate of false alarms FPR once used as
single variable thresholds (single lines). In contrast to the classical precipitation thresh-
olds, the combination of hydro-meteorological thresholds in a bilinear framework pro-
vide an improvement in terms of reduced rate of false alarms by about 30% [Setop(t1)-
E/D], 13% [Ser oot (t1)-E/D], and 35% [Seuz(t1)-E/D] respectively as compared to the ones
obtained from the exclusive use of single variable precipitation based E/D thresholds.

The intention of adopting the bilinear hydro-meteorological threshold in spite of
precipitation thresholds is to minimize the rate of incorrect prediction of landslides FPR
while improving or at least keeping unchanged the rate of true alarms TPR. This was
only achieved by using the bilinear hydro-meteorological thresholds defined using an-
tecedent soil moisture at the root zone [Ser oot (t1)-E/D] that performs better (TPR=66%)
than the traditional precipitation threshold E-D (TPR=50%). However, this category still
suffers from the low landslide warning capability (max TPR=66%) and is thus not sat-
isfactory for a robust early warning system development. The lower performance was
attributed to the timescale of the triggering events. Apparently, the effect of the an-
tecedent soil moisture lasts for a limited period of time and subsequently decays towards
zero and below. The inter-event time IET and the timescale of the rainfall events E are
not constant and vary in duration. They be too long and thus implying the decay of the
antecedent soil moisture and thus negligible contribution to landslide initiation. Conse-
quently, the incorporation of the wetness state of the soil prior to the landslide triggering
events E did not lead to a significant improvement of the landslide prediction in Rwanda
conditions.

We therefore explored other landslide hydro-meteorological thresholds that use the
triggering meteorological conditions with short and constant timescale as shown in Fig-
ure 6.9. These consider the cumulative one, two and three day rainfall RD1, RD2, and
RD3 while extending the timescale of the predisposing conditions up to one, two or three
days prior to the landslide triggering conditions. Figure 6.9 portrays the optimum bi-
linear hydro-meteorological threshold models defined from this second category. The
3-day cumulative rainfall RD3 was the most impactful trigger of landslide with an opti-
mum threshold of 15.05mm/3days as defined by both TSS Rad and resulted into 79-81%
of TPR much higher than predicted by the first category. Similarly, the antecedent soil
moisture threshold Ser oot (t3) was able to predict 84% of landslides. However, this true
prediction i.e true alarms is also associated with high rate of false alarms (40-42%). The
combination into hydro-meteorological thresholds [Ser oot (t3) - RD3] decreased the rate
of false alarms up to 22% with about 72% of true alarms (Figure 6.9b) and thus being
more satisfactory than other hydro-meteorological threshold models and much better
than the traditional E-D model (TPR=50%) that exclusively relies on precipitation.
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Figure 6.8: Landslide hydro-meteorological thresholds and prediction capabilities: a) Event intensity-Antecedent 5cm top soil moisture thresholds [Setop(t−1) >0.56;

E/D>16.1mmd−1] b) Event-duration E-D thresholds [D>2.5 days; E>44.9mm] defined using precipitation foot prints from all landslide locations; c) Event intensity-
Antecedent 50cm top soil moisture threshold [Ser oot (t−1)>0.56- E/D>16.1mm]; e) Event intensity-Antecedent 2m top soil moisture threshold [Ser oot (t−1) >0.84;
E/D>16.1mmd−1]; e) Event-duration E-D thresholds [E>60.7mm; D>2.5 days] defined using precipitation foot prints and landslides located in Wflow modelled catch-
ments;f) Bilinear threshold values and prediction capabilities
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Figure 6.9: Landslide hydro-meteorological thresholds and prediction capabilities: a) Cumulative 3day rainfall RD3 and antecedent 5cm top soil moisture thresholds
Setop(t−1) [Setop(t−3) >0.73; RD3>15.1mmd−3] defined using precipitation foot prints from all landslide locations; b) Cumulative 3day rainfall RD3 and antecedent

soil moisture of the root zone Ser oot (t−3) [Ser oot (t−3) >0.73;RD3>15.1mmd−3] c) Cumulative 3day rainfall RD3 and antecedent soil moisture of the top 2m Seuz(t−3)
[Seuz(t−3) >0.89;RD3>15.1mmd−3] defined from the Wflow model catchment d) Bilinear thydro-meteorological hreshold values and prediction capabilities
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6.3.5. PROSPECTIVE OF THE SATELLITE-BASED HYDRO-METEOROLOGICAL

THRESHOLDS, ADVANCES AND LIMITATIONS

This chapter reveals the high capability of the NASA GPM-based IMERG product to re-
produce rainfall patterns which are consistent with the gauge-based precipitation and
thus more suitable for landslide initiation thresholds than sparsely distributed rain gauges
in Rwanda. However, it also points out that IMERG satellite-based product overestimates
the number of rainy days whose daily rainfall is between 0-10mm and thus the mean an-
nual totals. This may not only lead to differences between satellite- and gauge-based
landslide thresholds defined under same locations but also to the statistical bias espe-
cially when probabilistic methods are used for landslide threshold definition. To address
this constraint and be able to exploit the usefulness of IMERG precipitation in landslide
hazards assessment thresholds, we objectively used 10mm as a threshold to define a
rainy day for IMERG precipitation data. This threshold was defined based on the fre-
quency indicator metric adopted as one of the techniques of bias evaluation between
ground and satellite-based rainfall. For gauge based rainfall, 2 mm is generally consid-
ered as a threshold to define a rainy day and have been defined based on the mean daily
potential evaporation (Marino et al., 2020; Peres et al., 2017).

Although the threshold definition of a rainy day (10mm) may have led to the omis-
sion of some rainfall information and thus shortening the event duration D, this ap-
proach improved the similarities between the satellite and gauge-based landslide hazard
assessment thresholds. However, the defined satellite-based event/duration E/D thresh-
olds 16-17.5mmd−1 were quite higher than previously defined gauge based-thresholds
7-13mmd−1. Contrarily the defined thresholds from the recent cumulative 2 and 3day
rainfall were much smaller than defined from gauge based data (Chapter 4 and 5). These
differences are probably due to the predefined threshold (10mm) that could omits some
rainy days. This also led to shortened event duration D and hence slightly higher E/D.
Nevertheless, the landslide triggering conditions defined based on the E/D reveals poor
discriminatory power to distinguish landslide from no landslides (AUC 0.53) and thus
not impactful on landslide initiation. The linked landslide thresholds also underper-
form in terms of landslide prediction capabilities measured by the resulting low rate of
true positives TPR 56-69%. Similarly, the landslide hydro-meteorological thresholds that
included the rainfall event E/D as a trigger resulted into poor landslide warning perfor-
mance TPR max of about 66%.

The poor performance of the rainfall event-based thresholds concept is due to un-
certainties from multiple sources. We hypothetically used the rainfall events as landslide
triggering conditions, defined as individual periods of continuous rain interrupted by at
least two dry day periods referred to as minimum inter-event time (IET). Nevertheless,
this definition needs further exploration to be standardised to avoid uncertainties. Ac-
cording to Adams et al. (1987); Hong et al. (2017), the IET is defined as the minimum
period of time that separates two consecutive rainfall events and is considered as the
period for which the effects of the antecedent soil moisture or precipitation index may
last. This is to say that the antecedent soil moisture and or antecedent precipitation in-
dex have no significant effect on landslide initiations once the rainfall events and IETs
are well defined. However, the IET, the period during which the effect of antecedent soil
moisture becomes null, depends on a number of site-specific factors (soil properties,
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land use/ land cover, potential evaporation etc.) and is thus difficult to be standardized.
Another drawback associated with the use of rainfall event concept may be linked to the
transient timescales of the triggering events that bring about difficulties to fix the appro-
priate time to give an alert or an early landslide warning to the threatened community.
Beholding the constraints associated with IET, rainy day and rainfall events definition,
we explored the shorter scaled triggering rainfall conditions that include the cumulated
rainfall with constant duration 1, 2, 3days (RD1, RD2, RD3). The cumulative 3 days rainfall
RD3 showed the highest impact on landslide initiation with AUC = 0.72 and true positive
alarms TPR 79-81%.

Although the meteorological trigger-based thresholds RD3, have resulted into high
rate of true alarms, they lack the concrete physical significance and are also challeng-
ing for a robust landslide early warning system due to the linked high level of erroneous
alarms i.e false positives FPR 40-42%. To account for the pre-wetting state of the soil,
the antecedent soil moisture conditions have been considered. These antecedent soil
moisture conditions from the top 5cm, 50cm and 2m, Setop , Ser oot , Seuz respectively
showed significant impact on landslide predisposal AUC=0.71-0.76. Moreover, with ex-
ception to the Seuz , the hydrological landslide thresholds 0.56 [Setop ], 0.73 [Ser oot ] de-
fined from these soil moisture conditions revealed high landslide warning capability
with true alarms TPR = 75-85%. These hydrological thresholds indicate the critical pre-
wetting state above which any additional amount of rainfall > 11-15mm is highly likely
to trigger landslides. We therefore combined both landslide hydrological predisposing
and meteorological triggering conditions following the cause-trigger concept into bilin-
ear hydro-meteorological thresholds framework. This approach improved the landslide
prediction capabilities in terms of reduced rate of false alarms (FPR=22%) and increased
true alarms (TPR=72%) as compared to the approaches that consider the maximum
probable rainfall event (max TPR=66% and FPR=41%). In other words, once combined
with the pre-wetting hydrological conditions, the cumulative few days rainfall have sig-
nificant impact on landslide initiation and warning as compared to the longer and no
constant triggering conditions. Furthermore, the incorporation of the antecedent wet-
ness state of the terrain not only improved the landslide warning capabilities but also
provide accurate insights into landslide alert time as compared to the use of transient
time scale associated with the rainfall event concept.

Among the tested pre-wetting conditions, the incorporation of the antecedent soil
moisture modelled at the root zone Ser oot was the most impactful for landslide initiation
and thus the most useful in landslide hazard assessment thresholds in Rwanda. The finer
spatial resolution of the hydrological model derived soil moisture together with the con-
sideration of the specific climate and hydrogeological characteristics of the model catch-
ments could be a possible explanation of the positive impact of soil moisture assimilated
at the root zone. This could also be explained by the less exposure of the root zone to the
solar heat and evaporation processes as compared to the near surface Setop . The proba-
ble less prone to the gravity driven drainage and deep percolation due to the soil texture,
vegetation and organic matter at the root zone could also be an explanation. Moreover,
the soil depth involved in shallow (0.5-2m) and deep landslides(>2m) (Greco et al., 2018)
is much thicker than Setop (5cm) currently measured by the satellite based soil mois-
ture technologies and this is more captured by the hydrological modelling approaches
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(Wflow). An overestimation of soil moisture by satellite (VdS) and the distributed hy-
drological model (Wflow) was also noted and attributed to the similar overestimation of
satellite-based precipitation, an important element in soil moisture estimation. There-
fore, more reliable algorithms that addresses the reliance between the satellite and in-
situ based information could thus improve the performance and enhance data accuracy
needed for landslide hazard assessment.

The adopted bilinear threshold framework, indicating the distribution of data points
in a 2D space, reflects the relationship between the landslide causal and triggering con-
ditions. We objectively used the bilinear thresholds framework because the majority
of positive classes were clustered in upper right corner of the 2D threshold space. Al-
though, this format proved to be suitable for landslide hydro-meteorological thresholds
definition (Mirus et al., 2018a; Thomas et al., 2019), other formats could also be useful
depending on the distribution of the positive classes in the 2D space. The adopted bi-
linear framework is in line with the goal of the hydro-meteorological cause-trigger based
thresholds concept that prioritize the minimization of false alarms while at least keeping
unchanged the rate of true alarms. Additionally, in some cases, single variable thresh-
olds lead to high prediction capabilities in terms of elevated rate of true alarms and with
quite low rate of false alarms and could be adopted especially for hydrologically based
thresholds that consider the long-term wetting process of the soil until the landslide
day. Despite the good performance of soil moisture in landslide hydro-meteorological
threshold, the incorporation of pre-wetting state of soil in landslide hazard assessment
thresholds using groundwater levels, h(t−1)-E/D (TPR=54-64% and FPR=6-11%) (Chap-
ter 5) with low rate of false alarms, performed higher than using root zone soil moisture
Seroot(t-1)-E/D (TPR=66% and FPR=44%) due to the elevated rate of false alarms.

Ideally, one would have a landslide inventory of about 200 landslides events in order
to have a precise estimation of threshold parameters (Peres and Cancelliere, 2021). How-
ever, the landslide inventory used for this study counts for only 32 hazardous landslides.
Although, the reliance on this limited sample size is likely to lead to a bias towards the
larger landslide events and those with impact to society, this landslide inventory is the
most comprehensive currently available in the study area.

6.4. CONCLUSION
This Chapter aimed to evaluate the potential of satellite-based measurements of precip-
itation and soil moisture as well as hydrological model derived information for landslide
initiation thresholds in Rwanda. The GPM-based IMERG rainfall product was found a
good spatially distributed source of rainfall data for landslide hazard assessment espe-
cially in data scarce areas like Rwanda. The satellite and model derived soil moisture
time series broadly reproduce the most important trends of the in-situ soil moisture.
Regardless of different depths of data records and slightly overestimation of soil mois-
ture by satellite and model derived techniques, it was concluded that they follow the
in-situ observed temporal variation and are thus potentially useful for landslide haz-
ard assessment. The purpose of incorporating the antecedent soil moisture in landslide
hazard assessment was to account for the physical effect of the pre-wetness state of soil,
responsible for the predisposal of the slopes to near-failure, prior to the landslide trigger-
ing conditions. Two categories of landslide triggering conditions have been considered
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to assess the potential value of including the antecedent soil moisture information. The
category that considers the cumulative 3day rainfall was the most impactful and thus
more useful for landslide hazard assessment rather than the rainfall event-based trigger.
Although the area under the curve AUC=0.71-0.76 statistical metric indicated the signifi-
cant impact of all tested antecedent soil moisture variables prior to the triggering condi-
tions, the antecedent soil moisture modelled from the root zone Ser oot performed best.
The classical thresholds E-D relying exclusively on rainfall (trigger) performed lower with
high rate of missed alarms (50%) and thus less important for a robust early warning sys-
tem development. Contrary, the hydro-meteorological thresholds that incorporate the
antecedent soil moisture Ser oot and the recent 3day cumulative rainfall RD3 [Ser oot (t3)-
RD3] outperforms other threshold models with high rate of true alarms (72%) and low
rate of false alarms (20%) and thus can be very useful for landslide early warning system
development in Rwanda.
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7.1. SYNTHESIS OF RESEARCH FINDINGS
The overarching objective of this thesis was to define the hydro-meteorological thresh-
olds for landslide initiation in Rwanda following the landslide cause-trigger concept in
a bilinear framework, as a first step towards the development of landslide early warn-
ing system in Rwanda. The specific objectives were to i) understand the key hydro-
geological and meteorological processes and the relation thereof for the typical hill-
slopes prone to landslide in Rwanda; ii) identify precipitation-related variables with the
highest landslide explanatory power and warning capability in Rwanda; iii) evaluate
the asset that regional groundwater level information may have on landslide initiation
thresholds; and iv) assess the potential of satellite and model derived precipitation and
soil moisture information for landslide initiation thresholds in Rwanda.

7.1.1. HYDRO-GEOLOGICAL AND METEOROLOGICAL PROCESSES OF THE TYP-
ICAL HILLSLOPES PRONE TO LANDSLIDE IN RWANDA

The key hydro-geological and meteorological processes of the typical landslide prone
hillslopes were assessed in Chapter 3. From a geotechnical point of view the Karago
hillslope indicated instability conditions. This informs about the expected retrogressive
and enlargement processes with high risks on the surrounding infrastructures and com-
munity. The Rwaza hillslope shows marginally stable conditions with signs of advancing
process with high risks for the downslope local community. The regression analysis indi-
cated the role of rainfall on surface displacement with long lasting low intensity rainfall
being more critical than short and high intensity rainfall. A strong correlation between
groundwater levels and surface displacement was noticed and thus stressing its consid-
eration in landslide initiation threshold definition and early warning system develop-
ment.

7.1.2. PRECIPITATION-RELATED VARIABLES WITH THE HIGHEST EXPLANA-
TORY POWER AND WARNING CAPABILITY FOR LANDSLIDE HAZARD IN

RWANDA

In chapter 4 we used the landslide and precipitation data in an empirical-statistical ap-
proach to define both trigger and trigger-cause based thresholds for landslides initia-
tion and to quantify their predictive performance. The findings indicated the rainfall
event volume and the cumulative one day rainfall that coincide with the landslide day
as the most informative explanatory variables with the high ability to initiate landslides
(trigger). The antecedent precipitation index, 10 days prior to the landslide triggering
conditions, showed significant impact on predisposing the slope to near failure (cause).
The highest landslide prediction capability (rate of positive alarms) was achieved using
a single rainfall variable, so a trigger-based threshold. However, that predictive capabil-
ity simultaneously resulted in a high rate of false alarms. Constraining the trigger-based
threshold with a causal variable in a bilinear framework, improved the overall prediction
capacity by reducing the number of false alarms. The findings indicated also that the
concept of trigger-cause-based thresholds in bilinear format is not only useful to mini-
mize the rate of false alarms but also to explore the impact of each or combined trigger-
ing and causal conditions on landslide occurrence. Despite that however, the resulting
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rate of true and false alarms was not sufficient enough to support the development of a
robust LEWS and thus requiring further improvement.

7.1.3. ASSET OF REGIONAL GROUNDWATER LEVEL INFORMATION ON LAND-
SLIDE HAZARD ASSESSMENT THRESHOLDS

In chapter 5 we improved the landslide forecast quality by incorporating the catchment
specific groundwater levels as a proxy for catchment water storage. The standardized
groundwater levels modelled on a landslide day and the event rainfall volume E were
identified as the hydrological and meteorological variables with the most dominant con-
trol on landslide occurrence. The single variable threshold model-derived from ground-
water levels indicated the highest landslide prediction and/or warning capability in terms
of true positive alarms despite the resulting rate of false alarms. Similarly, the single
variable threshold models derived from precipitation intensity and event rainfall vol-
ume reveal also high landslide predictive skill in terms of true positive alarms associ-
ated with quite high rate of false alarms. However, it was noticed that relying on single
variable threshold models exclusively derived from precipitation variables considered as
landslide triggers could lead to biased results due to the fact that many landslides occur
not only due to the trigger itself but a rather combination of both trigger and pre-event
hydrological conditions. Contrarily, relying on single variable threshold models exclu-
sively defined using groundwater, lead to unbiased landslide predictions due to their
high consideration of long-term antecedent wetness conditions until the day of land-
slide occurrence. Furthermore, the catchment specific hydro-meteorological threshold
models made of groundwater levels and rainfall indicated the best landslide predictive
skill in terms of true positive alarms than the classical precipitation thresholds defined
at country scale.

7.1.4. POTENTIAL OF SATELLITE AND MODEL DERIVED PRECIPITATION AND

SOIL MOISTURE FOR LANDSLIDE INITIATION THRESHOLDS IN RWANDA
To overcome the constraint linked to the coarse spatial resolution of the in-situ gauge
and hydrological recording equipment, chapter 6 evaluated the potential of satellite-
based measurements of precipitation and soil moisture as well as the hydrological model
derived information as alternatives for estimation of landslide initiation thresholds in
Rwanda. Based on statistical indicators, the satellite precipitation analysis reveals the
NASA GPM-based IMERG to have the highest skill to reproduce the main spatio-temporal
precipitation patterns much similar to the recorded gauge-based rainfall and thus a good
alternate source of rainfall data for landslide hazard assessment in data scarce areas. The
satellite and model derived soil moisture time series broadly reproduce the most im-
portant trends of the in-situ soil moisture and was concluded that they potentially are
useful for landslide hazard assessment. The incorporation of the satellite and model de-
rived antecedent soil moisture in landslide hazard assessment accounted for the physi-
cal effect of the pre-wetness state of soil, responsible for the predisposal of the slopes to
near-failure. Despite the significant impact of all tested antecedent soil moisture vari-
ables prior to the triggering conditions, their thresholds specified the antecedent soil
moisture modelled at the root zone to be the most useful on landslide initiation and
warning. Similarly, the hydro-meteorological thresholds that incorporate the same an-
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tecedent soil moisture and the recent 3 day cumulative rainfall over performed other
thresholds models with high rate of true alarms and low rate of false alarms and thus
very useful for landslide initiation and early warning system development in Rwanda.

7.2. COMPARATIVE PERFORMANCE OF THE DEFINED HYDRO-
METEOROLOGICAL THRESHOLDS

For a proper comparison of the landslide warning capabilities, the defined landslide
hydro-meteorological thresholds have been categorized based on their spatial coverage
from national, regional and catchment scales.

7.2.1. LANDSLIDE HYDRO-METEOROLOGICAL THRESHOLDS AT COUNTRY SCALE

At country scale two categories of landslide hydro-meteorological thresholds have been
defined. The first category used in-situ meteorological variables as landslide trigger and
antecedent precipitation index as a proxy for the pre-wetting state of soil prior to the
landslide triggering conditions. In this category the best performing hydro-meteorological
thresholds combined the event intensity and antecedent precipitation index 30 day prior
to the landslide triggering conditions with 68% of true alarms and 27% of false alarms.
The second category used satellite precipitation as an alternative to the in-situ rainfall
and replaced the antecedent precipitation by the satellite based top 5 cm soil moisture.
The highest warning performance was noted from the hydro-meteorological thresholds
that combine the recent cumulative 3 day rainfall and the top soil moisture recorded
3 day prior to the landslide triggering condition with 62% true alarms and 19% false
alarms. Despite the low prediction capability from both categories, it was concluded
that in-situ rainfall and antecedent precipitation are very useful in landslide hazard as-
sessment threshold at country scale. However, due the frequent coarse resolution of the
in-situ gauges, satellite-based precipitation and soil moisture are potential alternatives
in data scarce areas like Rwanda.

7.2.2. LANDSLIDE HYDRO-METEOROLOGICAL THRESHOLDS AT REGIONAL SCALE

The landslide hydro-meteorological thresholds defined from satellite base-rainfall and
soil moisture from the distributed hydrological model were defined for the north-western
region of Rwanda that covers three catchments: Lake Kivu, upper Nyabarongo and Mukungwa.
Among the defined thresholds at regional scale, the hydro-meteorological thresholds
that combine the short scaled 3 day cumulative rainfall as a trigger and soil moisture
modeled at the root zone (50 cm deep) as a pre-wetting state performed higher than
other threshold models with 72% of true alarms TPR and 19% of false alarms. The inclu-
sion of soil moisture as a hydrological processes improved the landslide warning capabil-
ity as compared to the exclusive reliance on precipitation threshold that only predicted
50% of landslides. Furthermore the down scaling of landslide thresholds towards the
highly susceptible regions improves the prediction capability in terms of reduced rate of
false alarms and increased rate of true alarms.
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7.2.3. LANDSLIDE HYDRO-METEOROLOGICAL THRESHOLDS AT CATCHMENT

SCALE

The landslide hydro-meteorological thresholds from in-situ rainfall and catchment spe-
cific groundwater levels, as a proxy for catchment storage, were defined at each of the
studied catchments: Kivu, upper Nyabarongo and Mukungwa. Among the defined thresh-
olds the hydro-meteorological threshold from groundwater levels recorded on a day of
landslide and rainfall event intensity performed higher with 65%, 73% and 85% of true
alarms with low rate of false alarms 10%, 8% and 15% in the Kivu, upper Nyabarongo
and Mukungwa catchments respectively. These prediction capabilities are much higher
than predicted once relied exclusively on rainfall using the classical Intensity-Duration
thresholds with 36%, 36%, and 77% TPR in the Kivu, upper Nyabarongo and Mukungwa
catchments respectively. Overall the landslide hydro-meteorological thresholds that con-
sider the catchment specific rainfall and groundwater as a proxy for catchment storage,
were the most important landslide predictors with up to 85% of true alarms and 15%
of false alarms and thus potentially useful for a robust landslide early warning system
development in Rwanda.

7.3. CAPABILITIES AND LIMITATIONS OF THE DEFINED BILIN-
EAR HYDRO-METEOROLOGICAL THRESHOLDS AND PERSPEC-
TIVE FOR FUTURE RESEARCH

Within the framework of this thesis, the landslide empirical hydro–meteorological thresh-
olds were defined using continuous historical precipitation, groundwater level and soil
moisture time series. These time series were derived from in-situ measurements, satel-
lite and hydrological model sources. It was observed that in regions with slow hydro-
logical responding system where rainfall induced shallow landslides prevail, precipita-
tion based thresholds can still practically be useful for landslide prediction and warning.
However, the landslide hydro-meteorological thresholds perform best for both shallow
and deep seated landslides (Cascini et al., 2010; Corominas et al., 2005a; Duan et al.,
2019; Hong and Wan, 2011) and thus, being more powerful than precipitation based
thresholds. More studies also confirm the high warning capability of hydro–meteorological
thresholds over precipitation-based thresholds after incorporation of either soil mois-
ture or catchment storage (Ciavolella et al., 2016; Mirus et al., 2018b; Prenner et al., 2018;
Thomas et al., 2019; Wicki et al., 2020).

One of the constraints of the hydro-meteorological thresholds is indeed that one has
to explore a wide range of combinations of landslide explanatory/predictor variables
which may be different based on landslide pre-disposing and triggering factors. In this
research, a wide range of combinations of landslide explanatory variables that include
rainfall, groundwater and soil moisture from in-situ, hydrological model and satellite
sources were explored. However, other potential landslide explanatory variables and or
predictors can also be explored.

The defined hydro-meteorological threshold models are based on empirical statisti-
cal approach with little to no consideration of the physical, and geomorphological char-
acteristic of the terrain and hence classified as black or grey box models. Further inte-
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gration of the landslide susceptibility indices defined based on the physical and geomor-
phological characteristics of the terrain to the defined hydro-meteorological thresholds
would enhance their spatial transferability and usability.

Another constraint of the hydro-meteorological threshold definition is linked to the
lack of a standardised statistical functional relationship between hydrological and mete-
orological conditions potentially linked to landslide initiation. In this thesis the bilinear
relationship between hydrological and meteorological variables has been adopted based
on the fact that the majority of positive cases (landslide conditions) were clustered in the
upper right corner of the 2D plane and proved to be efficient. However, one is free to try
out other statistical relationship depending on the data points distribution.

Additionally, the conceptual framework of the landslide cause-trigger was to develop
a hydro-meteorological threshold that combine the antecedent causal/hydrological con-
ditions and the actual trigger/meteorological conditions potentially linked to landslides
initiation. However, there is no clear line indicating the time lag between the hydrolog-
ical and the triggering rainfall and therefore, constraining the choice of the proper time
scale for both landslide causal hydrological and triggering meteorological conditions.
This may lead to the violation of the no-collinearity assumption, redundant informa-
tion and thus suffering from the conceptual limitations related to landslide predictors
independence. To overcome this constraint, the triggering rainfall conditions with fixed
time scales i.e. cumulated few days rainfall were preferred in spite of the classical event
rainfall.

According to Peres and Cancelliere (2021), it is ideal to have a landslide inventory of
about 200 landslides events in order to have a precise estimation of threshold parame-
ters. However, the landslide inventory used for this study counts less number than re-
quired due to the fact that frequently only hazardous landslides are reported in Rwanda.
Although, the reliance on this inventory may likely lead to a bias towards the larger land-
slide events and those with impact to society, this landslide inventory was the most com-
prehensive available in Rwanda.

Overall, despite the minor constraints, the defined landslide hydro-meteorological
thresholds are potentially useful towards the development of the landslide early warning
system in Rwanda.



REFERENCES

Adams, B.B.J., Asce, M., Fraser, H.G., Hanafy, M.S., 1987. Meteorological d a t a analysis
for drainage system d e s i g n 112, 827–848.

Aleotti, P., 2004. A warning system for rainfall-induced shallow failures. Engineering
Geology 73, 247–265. doi:10.1016/j.enggeo.2004.01.007.

Anderson, M.G., Lloyd, D.M., 1991. Using a combined slope hydrology- stability model
to develop cut slope design charts. ICE Proceedings 91, 705–718. doi:10.1680/iicep.
1991.17486.

Ashouri, H., Hsu, K.L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., Cecil, L.D., Nelson,
B.R., Prat, O.P., 2015. Persiann-cdr: Daily precipitation climate data record from mul-
tisatellite observations for hydrological and climate studies. Bulletin of the American
Meteorological Society 96, 69–83.

Bakker, M., Schaars, F., 2019. Solving Groundwater Flow Problems with Time Series Anal-
ysis : You May Not Even Need an other Model 57, 826–833. doi:10.1111/gwat.12927.

Berti, M., Martina, M.L., Franceschini, S., Pignone, S., Simoni, A., Pizziolo, M., 2012.
Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach.
Journal of Geophysical Research: Earth Surface 117, n/a–n/a. URL: http://doi.
wiley.com/10.1029/2012JF002367, doi:10.1029/2012JF002367.

Bizimana, H., Sönmez, O., 2015. Landslide Occurrences in The Hilly Areas of Rwanda ,
Their Causes and Protection Measures 1, 1–7.

Bogaard, T., Greco, R., 2018. Invited perspectives: Hydrological perspectives on pre-
cipitation intensity-duration thresholds for landslide initiation: proposing hydro-
meteorological thresholds. Natural Hazards and Earth System Sciences 18, 31–39.
URL: https://www.nat-hazards-earth-syst-sci.net/18/31/2018/, doi:10.
5194/nhess-18-31-2018.

Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., Chersich, S., 2015. Hydrolog-
ical factors affecting rainfall-induced shallow landslides: From the field monitoring to
a simplified slope stability analysis. Engineering Geology 193, 19–37. doi:10.1016/j.
enggeo.2015.04.006.

Bouaziz, L.J., Steele-Dunne, S.C., Schellekens, J., Weerts, A.H., Stam, J., Sprokkereef, E.,
Winsemius, H.H., Savenije, H.H., Hrachowitz, M., 2020. Improved understanding of
the link between catchment-scale vegetation accessible storage and satellite-derived
soil water index. Water Resources Research 56, e2019WR026365.

109

http://dx.doi.org/10.1016/j.enggeo.2004.01.007
http://dx.doi.org/10.1680/iicep.1991.17486
http://dx.doi.org/10.1680/iicep.1991.17486
http://dx.doi.org/10.1111/gwat.12927
http://doi.wiley.com/10.1029/2012JF002367
http://doi.wiley.com/10.1029/2012JF002367
http://dx.doi.org/10.1029/2012JF002367
https://www.nat-hazards-earth-syst-sci.net/18/31/2018/
http://dx.doi.org/10.5194/nhess-18-31-2018
http://dx.doi.org/10.5194/nhess-18-31-2018
http://dx.doi.org/10.1016/j.enggeo.2015.04.006
http://dx.doi.org/10.1016/j.enggeo.2015.04.006


110 REFERENCES

Broeckx, J., Vanmaercke, M., Duchateau, R., Poesen, J., 2018. A data-based landslide
susceptibility map of africa. Earth-Science Reviews 185, 102–121.

Bronnimann, C.S., 2011. Effect of Groundwater on Landslide Triggering. Ph.D. thesis.
École Polytechnique Federale de Lausanne. URL: https://core.ac.uk/download/
pdf/147975151.pdf.

Brunetti, M.T., Melillo, M., Peruccacci, S., Ciabatta, L., Brocca, L., 2018. How far are we
from the use of satellite rainfall products in landslide forecasting? Remote Sensing of
Environment 210, 65–75. URL: https://doi.org/10.1016/j.rse.2018.03.016,
doi:10.1016/j.rse.2018.03.016.

Brunetti, M.T.P., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., Guzzetti, F., 2010. Rainfall
thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth
System Sciences 10, 447–458.

Caine, N., 1980. The Rainfall Intensity : Duration Control of Shallow Landslides and De-
bris Flows. JSTOR 62, 23–27. URL: https://www.jstor.org/stable/pdf/520449.
pdf?refreqid=excelsior%3Aa194dd220014eb4f33bd3ea4ff9483cd.

Calvello, M., Devoli, G., Freeborough, K., Gariano, S., Guzzetti, F., Kirschbaum, D.,
Nakaya, H., Robbins, J., Stähli, M., 2020. Landaware: a new international network
on landslide early warning systems.

Casagrande, A., 1948. Classification and identification of soils. Transactions of the Amer-
ican Society of Civil Engineers 113, 901–930.

Cascini, L., Calvello, M., Grimaldi, G.M., 2010. Groundwater Modeling for the Analysis
of Active Slow-Moving Landslides. Journal of Geotechnical and Geoenvironmental
Engineering 136, 1220–1230. doi:10.1061/(asce)gt.1943-5606.0000323.

Ciavolella, M., Bogaard, T., Gargano, R., Greco, R., 2016. Is there Predictive Power in Hy-
drological Catchment Information for Regional Landslide Hazard Assessment? Proce-
dia Earth and Planetary Science 16, 195–203. URL: http://linkinghub.elsevier.
com/retrieve/pii/S1878522016300212, doi:10.1016/j.proeps.2016.10.021.

Collenteur, R.A., Bakker, M., Caljé, R., Klop, S.A., Schaars, F., 2019. Pastas: Open Source
Software for the Analysis of Groundwater Time Series. Groundwater 57, 877–885.
doi:10.1111/gwat.12925.

Corominas, J., Moya, J., Ledesma, A., Lloret, A., Gili, J.A., 2005a. Prediction of ground dis-
placements and velocities from groundwater level changes at the Vallcebre landslide
(Eastern Pyrenees, Spain). Landslides 2, 83–96. doi:10.1007/s10346-005-0049-1.

Corominas, J., Moya, J., Ledesma, A., Lloret, A., Gili, J.A., 2005b. Prediction of ground dis-
placements and velocities from groundwater level changes at the Vallcebre landslide
(Eastern Pyrenees, Spain). Landslides 2, 83–96. doi:10.1007/s10346-005-0049-1.

Craig, R., 1997. Soil mechanics. 6 ed., Taylor & Francis e-Library, London and New York.

https://core.ac.uk/download/pdf/147975151.pdf
https://core.ac.uk/download/pdf/147975151.pdf
https://doi.org/10.1016/j.rse.2018.03.016
http://dx.doi.org/10.1016/j.rse.2018.03.016
https://www.jstor.org/stable/pdf/520449.pdf?refreqid=excelsior%3Aa194dd220014eb4f33bd3ea4ff9483cd
https://www.jstor.org/stable/pdf/520449.pdf?refreqid=excelsior%3Aa194dd220014eb4f33bd3ea4ff9483cd
http://dx.doi.org/10.1061/(asce)gt.1943-5606.0000323
http://linkinghub.elsevier.com/retrieve/pii/S1878522016300212
http://linkinghub.elsevier.com/retrieve/pii/S1878522016300212
http://dx.doi.org/10.1016/j.proeps.2016.10.021
http://dx.doi.org/10.1111/gwat.12925
http://dx.doi.org/10.1007/s10346-005-0049-1
http://dx.doi.org/10.1007/s10346-005-0049-1


REFERENCES 111

Crozier, M.J., 1999. Prediction of rainfall-triggered landslides : a test of the antecedent
water status model. Earth Surf. Process. Landforms 833, 825–833.

Cruden, D., Varnes, D., 1996. Landslide Types and Processes. Technical
Report 247. Special RepTransportation Research Board, National Academy
of Sciences. URL: https://www.researchgate.net/publication/
269710355{_}CrudenDM{_}Varnes{_}DJ{_}1996{_}Landslide{_}Types{_}and{_}Processes{_}Special{_}Report{_}Transportation{_}Research{_}Board{_}National{_}Academy{_}of{_}Sciences{_}24736-75.

De Jeu, R.A., Holmes, T.R., Parinussa, R.M., Owe, M., 2014. A spatially coherent global soil
moisture product with improved temporal resolution. Journal of Hydrology 516, 284–
296. URL: http://dx.doi.org/10.1016/j.jhydrol.2014.02.015, doi:10.1016/
j.jhydrol.2014.02.015.

Depicker, A., Govers, G., Jacobs, L., Campforts, B., Uwihirwe, J., Dewitte,
O., 2021a. Interactions between deforestation , landscape rejuvenation ,
and shallow landslides in the North Tanganyika – Kivu rift region , Africa
, 445–462URL: https://esurf.copernicus.org/articles/9/445/2021/,
doi:doi.org/10.5194/esurf-9-445-2021.

Depicker, A., Govers, G., Jacobs, L., Vanmaercke, M., Uwihirwe, J., Campforts, B., Kub-
wimana, D., Mateso, J.c.M., Bibentyo, T.M., Namihana, L., Smets, B., Dewitte, O.,
2021b. Landslide mobilization rates in a changing tropical environment : the North
Tanganyika-Kivu Rift region , Africa.

Depicker, A., Jacobs, L., Delvaux, D., Havenith, H.B., Maki Mateso, J.C., Govers,
G., Dewitte, O., 2020. The added value of a regional landslide susceptibility as-
sessment: The western branch of the East African Rift. Geomorphology 353,
106886. URL: https://doi.org/10.1016/j.geomorph.2019.106886, doi:10.
1016/j.geomorph.2019.106886.

Depicker, A., Jacobs, L., Mboga, N., Smets, B., Van Rompaey, A., Lennert, M., Wolff, E.,
Kervyn, F., Michellier, C., Dewitte, O., Govers, G., 2021c. Historical dynamics of land-
slide risk from population and forest-cover changes in the Kivu Rift. Nature Sustain-
ability 4, 965–974. doi:10.1038/s41893-021-00757-9.

Dewitte, O., Depicker, A., Moeyersons, J., Dille, A., 2022. 5.21 - mass movements
in tropical climates, in: Shroder, J.J.F. (Ed.), Treatise on Geomorphology (Second
Edition). second edition ed.. Academic Press, Oxford, pp. 338–349. URL: https:
//www.sciencedirect.com/science/article/pii/B9780128182345001188,
doi:https://doi.org/10.1016/B978-0-12-818234-5.00118-8.

Dewitte, O., Dille, A., Depicker, A., Kubwimana, D., Maki Mateso, J.C., Mugaruka Biben-
tyo, T., Uwihirwe, J., Monsieurs, E., 2021. Constraining landslide timing in a data-
scarce context: from recent to very old processes in the tropical environment of the
north tanganyika-kivu rift region. Landslides 18, 161–177. doi:https://doi.org/
DOI10.1007/s10346-020-01452-0.

Duan, G., Chen, D., Niu, R., 2019. Forecasting groundwater level for soil landslide based
on a dynamic model and landslide evolution pattern. Water (Switzerland) 11. doi:10.
3390/w11102163.

https://www.researchgate.net/publication/269710355{_}CrudenDM{_}Varnes{_}DJ{_}1996{_}Landslide{_}Types{_}and{_}Processes{_}Special{_}Report{_}Transportation{_}Research{_}Board{_}National{_}Academy{_}of{_}Sciences{_}24736-75
https://www.researchgate.net/publication/269710355{_}CrudenDM{_}Varnes{_}DJ{_}1996{_}Landslide{_}Types{_}and{_}Processes{_}Special{_}Report{_}Transportation{_}Research{_}Board{_}National{_}Academy{_}of{_}Sciences{_}24736-75
http://dx.doi.org/10.1016/j.jhydrol.2014.02.015
http://dx.doi.org/10.1016/j.jhydrol.2014.02.015
http://dx.doi.org/10.1016/j.jhydrol.2014.02.015
https://esurf.copernicus.org/articles/9/445/2021/
http://dx.doi.org/doi.org/10.5194/esurf-9-445-2021
https://doi.org/10.1016/j.geomorph.2019.106886
http://dx.doi.org/10.1016/j.geomorph.2019.106886
http://dx.doi.org/10.1016/j.geomorph.2019.106886
http://dx.doi.org/10.1038/s41893-021-00757-9
https://www.sciencedirect.com/science/article/pii/B9780128182345001188
https://www.sciencedirect.com/science/article/pii/B9780128182345001188
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-818234-5.00118-8
http://dx.doi.org/https://doi.org/DOI 10.1007/s10346-020-01452-0
http://dx.doi.org/https://doi.org/DOI 10.1007/s10346-020-01452-0
http://dx.doi.org/10.3390/w11102163
http://dx.doi.org/10.3390/w11102163


112 REFERENCES

Froude, M.J., Petley, D.N., 2018. Global fatal landslide occurrence from
2004 to 2016. Natural Hazards and Earth System Sciences 18, 2161–2181.
URL: https://www.nat-hazards-earth-syst-sci.net/18/2161/2018/,
doi:10.5194/nhess-18-2161-2018.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Row-
land, J., Harrison, L., Hoell, A., et al., 2015. The climate hazards infrared precipitation
with stations—a new environmental record for monitoring extremes. Scientific data 2,
1–21.

Gariano, S.L., Guzzetti, F., 2016. Landslides in a changing climate. Earth-Science Re-
views 162, 227–252. URL: https://www.sciencedirect.com/science/article/
pii/S0012825216302458, doi:10.1016/J.EARSCIREV.2016.08.011.

Glade, T., 2000. Modelling landslide-trigering rainfalls in different regions of New
Zealand - the soil water status model. Geomorphology 122, 63–84.

Glerum, A., Brune, S., Stamps, D.S., Strecker, M.R., 2020. Victoria continental mi-
croplate dynamics controlled by the lithospheric strength distribution of the East
African Rift. Nature Communications 11, 1–15. URL: http://dx.doi.org/10.1038/
s41467-020-16176-x, doi:10.1038/s41467-020-16176-x.

Greco, R., Marino, P., Santonastaso, G.F., Damiano, E., 2018. Interaction between perched
epikarst aquifer and unsaturated soil cover in the initiation of shallow landslides in
pyroclastic soils. Water 10, 948.

Greenwood, J.R., Norris, J.E., Wint, J., 2004. ASSESSING THE CONTRIBUTION OF VEG-
ETATION TO SLOPE STABILITY. Geotechnical Engineering , 1–34.

Guzzetti, F., Gariano, S.L., Peruccacci, S., Brunetti, M.T., Marchesini, I., Rossi, M.,
Melillo, M., 2020. Geographical landslide early warning systems. Earth-Science Re-
views 200, 102973. URL: https://doi.org/10.1016/j.earscirev.2019.102973,
doi:10.1016/j.earscirev.2019.102973.

Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C.P., 2007. Rainfall thresholds for the ini-
tiation of landslides in central and southern Europe. Meteorology and Atmospheric
Physics 98, 239–267. doi:10.1007/s00703-007-0262-7.

Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C.P., 2008. The rainfall intensity-duration
control of shallow landslides and debris flows: An update. Landslides 5, 3–17. doi:10.
1007/s10346-007-0112-1.

Haque, U., Blum, P., da Silva, P.F., Andersen, P., Pilz, J., Chalov, S.R., Malet, J.P., Auflič, M.J.,
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