

Delft University of Technology

PRIDE
A Privacy-Preserving Decentralised Key Management System
Kester, David; Li, Tianyu; Erkin, Zekeriya

DOI
10.1109/WIFS55849.2022.9975379
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Workshop on Information Forensics and Security (WIFS)

Citation (APA)
Kester, D., Li, T., & Erkin, Z. (2022). PRIDE: A Privacy-Preserving Decentralised Key Management System.
In Proceedings of the 2022 IEEE International Workshop on Information Forensics and Security (WIFS) (pp.
1-6). IEEE. https://doi.org/10.1109/WIFS55849.2022.9975379

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/WIFS55849.2022.9975379
https://doi.org/10.1109/WIFS55849.2022.9975379

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

PRIDE: A Privacy-Preserving Decentralised Key
Management System

David Kester
Cyber Security Group

Delft University of Technology
Delft, The Netherlands

d.m.kester@student.tudelft.nl

Tianyu Li
Cyber Security Group

Delft University of Technology
Delft, The Netherlands

tianyu.li@tudelft.nl

Zekeriya Erkin
Cyber Security Group

Delft University of Technology
Delft, The Netherlands

z.erkin@tudelft.nl

Abstract—There is an increase in interest and necessity for
an interoperable and efficient railway network across Europe,
creating a key distribution problem between train and trackside
entities’ key management centres (KMC). Train and trackside
entities establish a secure session using symmetric keys (KMAC)
loaded beforehand by their respective KMC using procedures
that are not scalable and prone to operational mistakes. A
single system would simplify the KMAC distribution between
KMCs; nevertheless, it is difficult to place the responsibility for
such a system for the whole European area within one central
organization. A single system could also expose relationships
between KMCs, revealing information, such as plans to use an
alternative route or serve a new region, jeopardizing competitive
advantage. This paper proposes a scalable and decentralised key
management system that allows KMC to share cryptographic
keys using transactions while keeping relationships anonymous.
Using non-interactive proofs of knowledge and assigning each
entity a private and public key, private key owners can issue
valid transactions while all system actors can validate them. Our
performance analysis shows that the proposed system is scalable
when a proof of concept is implemented with settings close to
the expected railway landscape in 2030.

Index Terms—blockchain, key management, privacy-
preserving, proofs of knowledge, ertms

I. INTRODUCTION

Railway signalling systems are designed to control railway
traffic alongside preventing collisions and unsafe situations.
The European signalling and speed control system, ERTMS,
replaces different national legacy systems to increase the inter-
operability and capacity of the European rail network. Trains
and trackside equipment are assets maintained by different
Key Management Centers (KMC) across Europe and it is
estimated that there are 100 KMCs operational in Europe.
Moreover, it is expected that by 2030, 38 500 trains will use
the European signalling system [1]. ERTMS is based on a
wireless link between train and trackside entities known as
Radio Block Centre (RBC) in charge of a geographic area or
a specific rail line. An RBC provides speed boundaries and
track information, and the train sends periodic status updates,
such as position. Before a train and an RBC can establish a
session, mutual identification and authentication takes place
using a preloaded triple-DES key known as KMAC. This key
needs to be shared beforehand between the respective KMCs
and is unique per train and RBC combination.

KMAC distribution between KMCs is done using an offline
method, where the key is exchanged using storage media such
as compact discs and flash drives [2]. The procedure is known
to be not scalable, prone to operational mistakes and the actual
implementation differs per KMC as the scheme either lacks
definition on key distribution or is simply not suitable for use
in certain cases [3]. An online method, specified in 2015 to
overcome the shortcomings of the offline method, prescribes
TLS-PKI for communication between KMC [4] but is not
used in practice. In personal interviews, KMC administrators
explained that KMAC distribution is a costly and long process,
consisting of thousands of euros per KMAC and taking days
or even weeks, resulting in that KMACs are generated without
an expiration date and are hardly refreshed once installed in
trains and RBCs.

A single and scalable key management system would make
key distribution between KMCs easier and international oper-
ations more efficient. Nevertheless, a study from stakeholders
brought to light that a centralised approach is difficult to
implement because it is difficult to place the responsibility
of a PKI for the entire European railway area within a single
organisation [3]. Furthermore, roughly half of all KMCs have
partially or not implemented cybersecurity measures such
as risk assessments, audits or legacy systems upgrades [5],
therefore it is assumed that KMCs do not trust each other
in terms of security. KMC administrators pointed out that
(freight) railway operators try to load as many KMACs as
possible in their trains to service a larger number of clients
and locations. Being able to look up which RBC and train
pairs share a KMAC could reveal commercial strategies, such
as intentions for a new route. As a result, a key management
system should take privacy into account. Although there
exists previous work regarding ERTMS key management [6],
[7], none of them addresses privacy and the work is either
build around a centralised approach or focused on reducing
management overhead exclusively inside a KMC domain.

A. Our contribution

In this work, we present, to the best of our knowledge,
first privacy-preserving decentralised key management sys-
tem tailored for railway KMCs. The system is built around
a permissioned blockchain and allows KMCs to exchange

20
22

 IE
EE

 In
te

rn
at

io
na

l W
or

ks
ho

p
on

 In
fo

rm
at

io
n

Fo
re

ns
ic

s a
nd

 S
ec

ur
ity

 (W
IF

S)
 |

97
9-

8-
35

03
-0

96
7-

6/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
W

IF
S5

58
49

.2
02

2.
99

75
37

9

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 09:37:19 UTC from IEEE Xplore. Restrictions apply.

symmetric keys for entity pairs in a confidential, integer and
authentic way using transactions. After registration, a KMC
can exchange KMACs with any other registered KMC for
every possible train and RBC combination using n+1 private
keys, where n is the number of assets under its domain.

Privacy is preserved by assigning each possible train and
RBC pair an identifier tag which does not reveal the entities
involved and can only be computed by both asset owners or
managers. Anonymising users in a system opens the door
to misbehaving activities such as denial of services attacks.
To mitigate this risk, we enforce the use of authenticated
but anonymous transactions. The tag is included in every
transaction, and each KMC can verify it is from the set of
possible pairs using non-interactive proofs of knowledge. The
construction allows actors in a permissioned blockchain to
verify the authenticity of each transaction without deducing the
involved KMCs, trains, or RBCs involved. Because existing
procedures require logging activities concerning key genera-
tion, distribution, and revocation, our proposal ensures with
blockchain’s append-only nature that all transaction data is
appropriately recorded even though KMCs do not trust each
other.

The rest of the paper is structured as follows. Section II
summarises relevant concepts used in this work and Section
III reviews related work. Section IV presents PRIDE, our
proposed decentralised key management system, analysed
afterwards in Section V. The performance is evaluated by
implementing a proof-of-concept, the results are presented in
Section VI. The paper ends with concluding remarks.

II. PRELIMINARIES

A. ERTMS Key Distribution overview

The generalised key distribution procedure between two
KMCs is summarised in Figure 1, where a Railway Operator
KMC requests a KMAC for a train under its domain to an
Infrastructure Manager in charge of a specific RBC. Upon
acceptance, the Infrastructure Manager KMC generates a
KMAC for the train-RBC pair and shares it with the Railway
Operator KMC. Both KMC will load the KMAC into their
respective assets, followed by an operation test, where the
train establishes a session with the trackside entity using the
corresponding KMAC for the first time [2].

Infrastructure
Manager KMC

Railway Operator
KMC

Trackside entity Train entity

2
3

44

5

1
KMC Domain KMC Domain

Fig. 1. Key distribution procedure between KMCs: 1) Railway Operator
requests a KMAC for a train and an RBC combination 2) Upon acceptance,
the Infrastructure Manager generates a KMAC 3) The KMAC is shared with
the Railway Operator KMC 4) Both KMC load the KMAC into their assets
5) the train is able to establish a session with the RBC.

B. Blockchain

A blockchain is an append-only tamper-proof ledger that
facilitated the development of decentralised applications, such
as cryptocurrencies [8]. In a permissioned blockchain, users
need to be explicitly admitted to the system. Such a registration
process blocks Sybil attacks and allows the implementation of
finite consensus protocols such as practical Byzantine Fault
Tolerance (pBFT).

C. Elliptic Curve Cryptography

This work is based on Elliptic Curves (EC) where solving
the Discrete Logarithm (DL) is thought to be intractable. A
related problem is the Decision Diffie–Hellman problem.

Definition 1 (Discrete Logarithm Problem (DLP)): Given a
generator G and and point P , it is computationally infeasible
to find an x ∈ Zq , such that P = xG.

Definition 2 (Decision Diffie–Hellman problem (DDH)):
Given a generator G, xG and yG, for x, y ∈ Zq , it is not
possible to distinguish xyG from a random element in Zq .

A Digital Signature Scheme provides authenticity, integrity
and non-repudiation of a message. The Elliptic Curve Digital
Signature Algorithm (ECDSA) consists of a private and public
key pair (x, Y), such that Y = xG and x ∈R Zq .

D. Stealth Addresses

Stealth addresses are used to anonymise both transaction
issuer and reciever [9]. Given a generator G and public keys
A and B, an issuer computes R = rG and P = H(rA)G+B
where r ∈R Zq . The tuple (R,P) is embedded in the
transaction and the receiver, who knows the private view key
a and private spend key b such that A = aG and B = bG,
checks for every incomming transaction if P = H(aR)G+B
holds. If true, the transaction is destinated to him/her and only
he/she can compute the corresponding one-time private key
x = H(rA) + b.

E. Sigma protocols

Zero-Knowledge Proofs (ZKP) are used by a prover to
convince a verifier that he/she knows information satisfying a
given relationship without revealing anything else. Sigma pro-
tocols are used to create ZKPs which are made non-interactive
using the Fiat-Shamir Transformation and a cryptographic
secure hash function H(·). Given a group of prime order q
and generators G and H , Protocol 1 presents a Non-Interactive
ZKP (NIZKP) to prove knowledge of w ∈ Zq satisfying
Y = wG and Z = wH . The result is used to prove the
equality of discrete logarithms and we say (G, Y,H,Z) is a
Diffie-Hellman (DH) tuple if H = xG for x ∈ Zq . Cramer et
al. [7] presented a technique to combine two or more sigma
protocols to create disjoint statements, allowing a prover to
convince a verifier that he/she knows information satisfying t
out of n relationships without revealing which ones. The result
is a witness indistinguishable sigma protocol.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 09:37:19 UTC from IEEE Xplore. Restrictions apply.

Prover (w,G,H) Verifier (G,H)

v ∈R Zq

R = vG R′ = rG+ cY

S = vH
(Y,Z,c,r)−−−−−−→ S′ = rG+ cH

c = H(R ∥ S) c
?
= H(R′ ∥ S′)

r = v − cw mod q

Protocol 1. A non-interactive1 proof of knowledge to prove
equality of a discrete logarithm.

III. RELATED WORK

Thomas et al. [6] addressed ERTMS key management by
presenting an alternative key hierarchy where the advantage is
mainly noticeable by Infrastructure Managers. Franeková et al.
[11] addressed ERTMS key management using a centralised
approach. These works do not consider privacy and are built
arround a centralised approach. Therefore, decentralised key
management systems proposed for applications that resemble
the ERTMS structure, such as Internet-of-Things and vehicle-
to-vehicle communication systems were studied. Even though
these works resemble the ERTMS structure, they do not explic-
itly consider hiding relationships between system actors [12],
[13]. Platforms that facilitate the creation of industry-grade
decentralised applications, like Hyperledger Fabric and Corda,
were also investigated. Fabric offers private channels and pri-
vate data collections for sharing private information between
organizations but at the price of administrative overhead and
redundancy reduction. Corda does not offer standalone privacy
features and a choice needs to be made between privacy and
security [14]. Hyperledger Indy offers a decentralised key
management system based on self-sovereign identities (SSI),
allowing users to manage how they authenticate themselves
[15]. These platforms do not meet our requirements out-of-
the-box, for that reason we look at building a blockchain from
scratch and investigating anonymisation techniques based on
group signatures. A linkable spontaneously anonymous group
(LSAG) signature scheme achieves anonymity, linkability, and
spontaneity [16]. Spontaneity refers to the absence of a group
secret, group manager or group secret sharing setup and the
linkability property exposes two or more signatures made
using the same private key.

IV. PRIDE

This section introduces PRIDE, our privacy-preserving key
management system for the European signalling and speed
control system based on a permissioned blockchain. The
system addresses the distribution of KMAC between KMCs
(step 3 in Figure 1). We assume that Registration Centers (RC)
are established beforehand with the sole role of granting KMC
access to the system. Registered KMC create a peer-to-peer
network and register a set of assets. An asset, either a train
or an RBC, can only belong to the domain of one KMC, its

1The strong Fiat-Shamir Transformation requires c = H(R ∥ S ∥ Y ∥K)
[10] but was omitted in this case due to space constraints

home KMC and KMCs use transactions to distribute KMACs
for a particular train and RBC combination.

We present our design in six steps: 1) Initialization. 2)
Data Encryption using AES block cypher with Galois/Counter
Mode (AES-GCM). 3) Train and RBC pair identifier. 4) Trace-
able relationships. 5) Transaction creation and verification. 6)
Block and blockchain creation and verification.

Step 2 allows KMACs to be transferred in a confidential,
authentic and confidential way, as required by the ERTMS
specifications [2]. Each train and RBC pair is assigned a tag
in step 3, which can only be computed by the owners of the
entities. The tag does not disclose the entities it identifies,
creating an anonymous identifier which is included in each
transaction. Step 4 explains how the tag links all transactions
for a given train and RBC pair together. Finally, step 5 and 6
describes how all elements fit together to create the blockchain.
The relevant notation is summarized in Table I.

TABLE I
NOTATION

Symbol Description
G Elliptic curve base point
Y Set of assets (train and/or RBC) public keys
U Set of train public keys, U ⊂ Y
V Set of RBC public keys, V ⊂ Y
xa Private key for asset a, xa ∈ Zq

Ya Public key for asset a, Ya = xaG, Ya ∈ Y
Kab Tag for asset combination a and b
π Index for asset combination a and b
k Mixin count
u Transaction one-time private key

⌊·⌋, ⌈·⌉ Floor and ceil functions
| · | Set cardinality

A×B Cross product between set A and B

A. Initialization

RCs are established to grand KMC access to the system.
More than one RC can be appointed to avoid centralization;
for example, each Member State could designate a national
RC. Each KMC has a unique identifier and generates a KMC
private and public key pair. The RC signs the KMC public
key creating a certificate as proof of admittance, and once
registered, a KMC creates a domain by registering assets, i.e.,
trains or RBCs, into the system. For each asset in its domain,
the KMC generates a private and public key. Similar to the
previous process, the public key and asset identifier are signed
by the KMC using the KMC private key, creating a certificate.
Registered KMC establishes a peer-to-peer network of nodes
where each node has a list of RC, registered KMC, trains
and RBCs with their corresponding identifier, public key, and
certificate. Each KMC has a n + 1 private keys: one KMC
private key and a set of n private keys, one for each asset in
its domain, where n is the number of assets in the domain. Y
is the set of public keys of all registered trains and RBCs.

B. Hiding Confidential Information

KMACs are encrypted using AES-GCM consisting of four
inputs: the plaintext message, a secret key, an Initialization

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 09:37:19 UTC from IEEE Xplore. Restrictions apply.

Vector (IV) and optional additional authentication data. The
output is a ciphertext that ensures confidentiality, and a
Message Authentication Code (MAC) providing integrity. The
secret key used for encryption and decryption is obtained from
an authenticated Diffie-Hellman key exchange using the KMC
public and private keys. Symmetric encryption allows both
KMCs to retrieve the KMAC from the same transaction.

C. Anonymous Relationships

The KMAC generated and encrypted in step 2 corresponds
to a specific train and RBC combination, identified by a tag.
Let the set of registered trains public keys be U ⊂ Y and the
set of registered RBCs public keys be V ⊂ Y , such that U ∩
V = ∅ and U ∪V = Y . The number of possible combinations
{(Yi, Yj) | Yi ∈ U ∧ Yj ∈ V} is |V × U|. Each train and RBC
combination is uniquely mapped to a tag K using a Diffie-
Hellman key exchange (Equation 1). The tag resulting from
this one-way function is used as an identifier rather than a
secret and is included in each transaction having two important
properties: 1) the tag can only be computed by the private key
owners, and 2) the tag does not reveal the involved public and
private keys.

Kij = xiYj = xjYi = Kji (1)

Apart from being an identifier, a valid tag authenticates a
transaction. A transaction is considered authentic if it can be
proven to be issued by a registered KMC and for a combina-
tion of a registered train and RBC. The tag forms a DH tuple
(G, Yi, Yj ,Kij) for which a NIZKP, as presented in Protocol
1, can be created. The result would convince all system actors
that the tag is computed by a registered KMC using Equation
1 but comes at the cost of revealing the public keys involved,
instantly revealing the relationship between the two KMC. To
prove authenticity while remaining anonymous, Protocol 1 is
extended to prove a tag is related to one out of all |V × U|
possible tags, in other words, one of the DH tuples from the
set {(G, Yi, Yj ,Kij) | Yi ∈ U ∧ Yj ∈ V} satisfy Equation 1.
The tag and proof generation for RBC a and train b is created
using Algorithm 1 and RBC private key xa. Any system actor
can verify the authenticity of the tag by running Algorithm
2. The size of the proof is proportional to |U × V|, which
could become a problem for a large set of assets. A smaller
result is obtained by introducing a mixin count k < |U × V|.
Let S be a set of k elements from a uniform random sample
without replacement from {1, ..., |U × V|} \ {π}, where π is
the index of a particular RBC and train combination (Ya, Yb).
The ordered multisets fed into Algorithm 1 and 2 are then

U ′ = {U⌊i÷|V|⌋ | U⌊i÷|V|⌋ ∈ U ∧ i ∈ S} ∪ {Yb}

and

V ′ = {Vi mod |V| | Vi mod |V| ∈ V ∧ i ∈ S} ∪ {Ya}.

The value of k acts as a measure of ambiguity: a small value
results in a smaller proof, but increases the chance of guessing
the underlying relationship from a single transaction. Setting

Algorithm 1 Generation
G: Elliptic curve base point
function GENERATE(a, b,U ,V)

K = xaYb

v ∈R Zq

R,S, c, r = {}, n = 1, π = 0
for each i : Yi ∈ U do

for each j : Yj ∈ V do
if i = a ∧ j = b then

Rn = vG, Sn = vYb

π = n
else

cn, rn ∈R Zq

Rn = rnG+ cnYi, Sn = rnYj + cnK

n = n+ 1

s = H(G ∥R1 ∥ S1 ∥ ... ∥Rn ∥ Sn ∥K)
cπ = s−

∑
c mod q

rπ = v − xacπ
return c, r,U ,V,K

Algorithm 2 Verification
G: Elliptic curve base point
function VERIFY(c, r,U ,V,K)

R,S = {}, n = 1
for each i : Yi ∈ U do

for each j : Yj ∈ V do
Rn = rnG+ cnYi, Sn = rnYj + cnK
n = n+ 1

s = H(G ∥R1 ∥ S1 ∥ ... ∥Rn ∥ Sn ∥K)

return s
?
=

∑
c mod q

k = 0 results in Protocol 1, instantly exposing the relation-
ships. Algorithm 1 is only executed once when presenting a tag
for the first time in a transaction. Subsequential transactions
with the same tag can be traced back to the first transaction,
as will become clear in the next section.

D. Traceable Relationships

The tag introduced in the previous step allows all system
actors to link transactions for a given combination but without
deducing the train or RBC that the tag identifies. As the
system is used and KMACs need to be updated, a tag will
be associated with more than one KMAC transaction. We
consider only the most recent KMAC transaction for a given
tag to have a valid KMAC, all other KMACs are considered
to be revoked. To facilitate this procedure, while keeping
the issuer and receiver KMC anonymous, we use a stealth
address. Before creating a transaction, the issuer looks up the
KMC public key B of the receiver, generates r, s ∈R Zq and
computes u = H(rB) + s. The resulting stealth address is
the tuple (R,P = uG, S = sG) which is included in the
transaction as the destination. Every KMC checks for every
incoming transaction if P = H(bR)G+S, where b is its public
KMC private key. If it holds, the KMC knows that it has a new

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 09:37:19 UTC from IEEE Xplore. Restrictions apply.

KMAC for an asset in its domain. The transaction private key
u is only known to the issuer KMC, which is used to update
the KMAC from the corresponding transaction by disclosing
u in a new KMAC transaction. KMACs in transactions with
disclosed private keys are considered to be revoked, ensuring
that every asset combination has only one valid KMAC at any
time. Transactions with undisclosed transaction private keys
are known as unspent transactions.

E. Transaction Creation & Validation
A transaction contains the elements of Table II and groups

together the results from step 2, 3 and 4. The result from
Algorithm 1 is computed and attached only once in a transac-
tion presenting a new tag: the original transaction for an asset
combination. Such a situation accounts, for example, for a new
asset in operation, reassignment, or relocation. Even though
two KMCs can compute a tag for the same combination and
create a valid proof, we assume that only the Infrastructure
Manager KMC will issue transactions (see Figure 1). KMAC
transactions corresponding to known tags in the system are
referred to as update transactions and are considered authentic
only if it discloses the private key of the current unspent trans-
action for the corresponding tag. All update transactions can
be traced back to an original transaction. After a transaction is
created, it is broadcasted to the peer-to-peer network and every
node verifies its correctness and validity of it before adding
it to its pool of unconfirmed transactions. Only registered
KMCs can publish valid transactions whose authenticity can
be verified without deducing the involved KMCs, trains, or
RBCs involved.

TABLE II
TRANSACTION STRUCTURE

Item Description
timestamp Date and time of transaction creation
destination Stealth address (see Part IV-D)

tag Train and RBC combination identifier (see Part IV-C)
payload Encrypted KMAC, MAC and IV (see Part IV-B)

proof Result from Algorithm 1 or transaction private key
hash The digest of the transaction from a hash function

F. Block Creation & Validation
The last step is to create the blockchain by grouping

transactions created in step 5 into blocks. A new block is
proposed by a leader node to the network for acceptance. A
block contains a list of transactions, a block number, the hash
of the previous accepted block, issuer identifier and signature
over the block’s digest. Each node will verify the correctness
and validity of the included transactions as explained in step 5.
The block issuer’s signature is verified using the issuer’s public
key and certificate. If a majority of nodes accept the block, it
will be added to the blockchain and the process can start again.
Once the block is added to the blockchain, the transactions are
confirmed and cannot be removed. The blockchain therefore
ensures transaction integrity in a network of nodes that do not
fully trust each other. The first block is known as the genesis
block, agreed upon during the initialization phase.

V. SECURITY ANALYSIS

A. Anonymous relationships

An honest prover using Algorithm 1 will always succeed
in constructing a valid proof satisfying Algorithm 2, since
correctness is trivial for Ri and Si for i ̸= π, and

Rπ = rπG+ cπYa

= (v − xacπ)G+ cπYa

= vG− cπYa + cπYa

= vG,

Sπ = rπYb + cπK

= (v − xacπ)Yb + cπK

= vYb − cπK + cπK

= vYb.

Assume that a cheating prover who does not know one of
the private keys x was able to compute a valid proof. Because
of the second pre-image resistance property of secure hash
functions, we can assume that Rπ and Sπ were fixed before
s was computed. Then, for cπ = s −

∑
i ̸=π ci, rπ is chosen

such that rπG = Rπ − cπYa, solving the DL problem, which
is infeasible. Therefore a cheating prover, without knowing the
private key, will fail to convince the verifier. A verifier cannot
infer which train and RBC pair corresponds to π, therefore
the best it can do is guess the correct assets involved with a
probability of 1/(k + 1).

B. Stealth address

A stealth address creates anonymous and unlinkable trans-
actions. We refer the reader to [9] for the security proofs.
A receiver of a stealth address can give view control to
another party without giving spend control. Our modified
stealth address is no different than the original proposal in
the sense that an issuer sends a transaction to itself and gives
the actual receiver only view control.

VI. PERFORMANCE AND EVALUATION

The complexity analysis is based on 256-bit EC cryptogra-
phy. We have selected EC secp256k1, hash function sha256
and AES-256 using a 96-bit IV.

A. Time Complexity

Transaction generation and verification times are bounded
linearly by the mixin count k. Each value of k introduces 4
EC point multiplications and 2 EC point additions. Algorithm
1 and 2 were implemented in the Rust programming language
and results for the generation algorithm with k ranging from
3 to 300, averaged over 100 iterations and obtained using an
Apple Mac mini (M1, 2020), are plotted in Figure 2. The ver-
ification protocol has two additional EC point multiplications
and two additional EC point additions, regardless of k.

B. Communication Complexity

A proof-of-concept using pBFT was implemented in
Node.js simulating 100 fully connected nodes spread geo-
graphically over 3 Dutch cities (Delft, Rotterdam and Gouda).
The nodes communicate using WebSockets over TLS and
throughput is analysed by selecting a node at random to
propose a new block (assuming that each node has the same set

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 09:37:19 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 300
Mixin count (k)

0

20

40
Ex

ec
ut
io
n
Ti
m
e
(m

s) Execution time for Algorithm 1

Sequential Execution
Parallel Execution

Fig. 2. Sequential and parallel execution times for Algorithm 1. The execution
time increases linearly as a function of the mixin count, as expected.

of unconfirmed transactions). For each node, time is measured
from the moment it receives the block proposal request until it
agrees to add the block to the blockchain. After 10 blocks, on
average, all nodes reached block consensus within 4,2 seconds.

C. Space Complexity

The size of original transactions is determined by the result
of Algorithm 1, which increases linearly as a function of the
mixin count k, and update transactions have a constant size.
The blockchain is made out of blocks, containing transactions
and, in the case of pBFT, also depend on the number of nodes
N in the network. Each confirmed block has ⌈(2N − 1)/2⌉
signatures. Figure 3 depicts the blockchain size maintained by
100 nodes after 7.7 million original transactions for different
numbers of transactions per block and transaction size. A
larger block size equals a smaller blockchain but comes at
the price of a longer average confirmation time.

1024 2 10 18 27 35 43 52 60
512 2 10 18 27 35 43 52 60
128 2 10 19 27 35 43 52 60
16 3 11 20 28 36 45 53 61
8 4 13 21 29 38 46 54 62

0 15 30 45 60 75 90 105
Mixin count (k)

tra
ns

ac
tio

ns
 /

bl
oc

k

Blockchain size after 7.7 million transactions (GB)

Fig. 3. Blockchain size after 7.7 million original transactions as a function of
transactions per block and mixin count in a network mantained by 100 nodes.

VII. DISCUSSION AND CONCLUSION

We have presented PRIDE, a key management system aimed
at railway KMCs across Europe. PRIDE is designed to be
maintained in a decentralised way, where each KMC con-
tributes to the decentralisation of the network, as stakeholders
point out that it is not realistic to have a central body in charge
of key management [3]. A blockchain is selected to store the
transactions as all transaction data is required to be recorded
in an integer way where cybersecurity measures differ per
KMC. Relationships between KMC are hidden by assigning
each train and RBC combination an identifier meaningful only
to their respective KMC, but verifiable by all KMC using a
NIZKP. The construction allows weighing anonymity against
space and time complexity using a mixin count. Results from
our proof-of-concept showed that KMACs can be distributed

between KMCs within seconds, a process that currently takes
days. After a KMAC transaction is confirmed, KMCs can load
the KMAC into their assets as usual (see Figure 1). With a
mixin count of 105, 128 transactions per block and 7.7 original
transactions (the expected number of train and RBC pairs
by 2030), the blockchain requires around 60 GB of storage.
Forward secrecy, block size, and trade-off between anonymity
and complexity are the subject of future work. Nevertheless,
the complexity analysis and implementation results show that
PRIDE is a feasible key management system that fits the
European Union’s railway vision for 2030.

REFERENCES

[1] M. Ruete, “Work plan 2020 of the european
coordinator for ertms,” 2020. [Online]. Available:
https://ec.europa.eu/transport/sites/default/files/work plan ertms 2020.pdf

[2] Off-line Key Management FIS, European Union Agency for Railways,
12 2015, set of specifications 3 (ETCS B3 R2 GSM-R B1).

[3] M. Rogier, “Visie op ertms key management van vervoerders en in-
frabeheerders,” 2021.

[4] On-line Key Management FFFIS, European Union Agency for Railways,
12 2015, set of specifications 3 (ETCS B3 R2 GSM-R B1).

[5] R. N. Dimitra Liveri, Marianthi Theocharidou, “Railway cybersecurity:
Security measures in the railway transport sector,” 2020.
[Online]. Available: https://www.enisa.europa.eu/publications/railway-
cybersecurity/

[6] R. J. Thomas, M. Ordean, T. Chothia, and J. de Ruiter, “Traks: A
universal key management scheme for ertms,” in Proceedings of the 33rd
Annual Computer Security Applications Conference, ser. ACSAC 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
327–338. [Online]. Available: https://doi.org/10.1145/3134600.3134631

[7] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-
edge and simplified design of witness hiding protocols,” in Advances in
Cryptology — CRYPTO ’94, Y. G. Desmedt, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 174–187.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[9] N. van Saberhagen, “Cryptonote v 2.0,” 2013. [Online]. Available:
https://bytecoin.org/old/whitepaper.pdf

[10] D. Bernhard, O. Pereira, and B. Warinschi, “How not to prove yourself:
Pitfalls of the fiat-shamir heuristic and applications to helios,” in
Advances in Cryptology – ASIACRYPT 2012, X. Wang and K. Sako,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 626–
643.

[11] M. Franeková, P. Lüley, K. Rástočný, and J. Ždánsky, “Proposal of on-
line key management system solutions for railway applications based on
asymmetric cryptography,” in Tools of Transport Telematics, J. Mikulski,
Ed. Cham: Springer International Publishing, 2015, pp. 188–197.

[12] S. Hameed, S. A. Shah, Q. S. Saeed, S. Siddiqui, I. Ali, A. Vedeshin,
and D. Draheim, “A scalable key and trust management solution for iot
sensors using sdn and blockchain technology,” IEEE Sensors Journal,
vol. 21, no. 6, pp. 8716–8733, 2021.

[13] S. Naoui, M. E. Elhdhili, and L. A. Saidane, “Security analysis of
existing iot key management protocols,” in 2016 IEEE/ACS 13th Inter-
national Conference of Computer Systems and Applications (AICCSA),
2016, pp. 1–7.

[14] T. Koens, S. King, M. van den Bos, C. van Wijk, and A. Koren,
“Solutions for the corda security and privacy trade-off: Having
your cake and eating it.” ING, 2019. [Online]. Available:
https://mondovisione.com/ assets/files/Corda DoSt v1.6.pdf

[15] A. Preukschat, Self-Sovereign Identity decentralized digital identity and
verifiable credentials. S.l: O’Reilly Media, 2021.

[16] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous
group signature for ad hoc groups,” in Information Security and Privacy,
H. Wang, J. Pieprzyk, and V. Varadharajan, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 325–335.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 09:37:19 UTC from IEEE Xplore. Restrictions apply.

