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A B S T R A C T   

We present a generic methodology for developing a Health Indicator out of strain-based Structural Health 
Monitoring data suitable for implementation in prognostic tasks. For this purpose, an in-house test campaign is 
launched. Single-stringered composite panels are subjected to compression-compression fatigue with the strains 
being monitored with Fiber Bragg Grating sensors located along the stringers’ feet. Three different fatigue 
scenarios with increased complexity are investigated i.e. constant amplitude fatigue, variable amplitude fatigue 
and finally random amplitude (spectrum) fatigue. In this paper, we propose a fusion scheme based on Genetic 
Algorithms, with the resulted fused Health Indicator achieving high monotonicity and prognosability, both 
crucial attributes for an enhanced performance of prognostic algorithms. Finally, a popular machine learning 
algorithm, i.e. Gaussian Process Regression, is employed in order to predict the Remaining Useful Life of the 
panels in the test set. It is evidenced that the newly proposed fused Health Indicator predicts the Remaining 
Useful Life far more accurately as several popular performance metrics indicate. The methodology retains a data 
agnostic character able to be applied in Structural Health Monitoring data from different sensing technologies.   

1. Introduction 

With composite structures having increased use in the aerospace 
industry [1], it is important to find effective and efficient ways to 
monitor their degradation. The main challenge with these materials is 
their inhomogeneous nature which makes their degradation behavior 
and failure mechanisms difficult to interpret, understand and model. 
During their service lifetime these structures are being subjected to a 
variety of different loading and environmental conditions, as well as 
unexpected events, such as tool drops or bird strikes, which can signif-
icantly reduce their load bearing capability. Barely visible impact 
damage (BVID) poses a grave risk for these structures, since such im-
pacts usually remain undetected during routine inspections, whilst 
having a significant effect on the integrity of the structure. Hence, 
advanced monitoring technologies need to be implemented to monitor 
their degradation behavior. 

Structural Health Monitoring (SHM) technologies have recently 
captured the interest of many researchers for allowing real time 

monitoring of entire structures or localized areas [2,3], in order to 
detect, locate and quantify the degradation of the structure [4,5,6]. The 
ultimate level of SHM is the prediction of the Remaining Useful Life 
(RUL) a topic rather still in its infancy. The utilization of SHM data for 
prognostics is considered one of the most demanding tasks to achieve 
[7,8]. Of central importance is RUL which is at the epicenter of every 
prognostic task [9]. RUL prognosis is often associated with diagnostics 
and accurate predictions are affected by the knowledge of the degra-
dation state, as measured from the SHM systems [10]. 

Over the years, several prognostic methodologies for RUL estimation 
have been presented which can be roughly classified into two major 
categories [11,12]. First, there are model-based prognostics, where a 
mathematical model describing the physics of the part or structure is 
required which is used to predict the degradation up to a certain point, i. 
e. the End-of-Life threshold. Secondly, there are data-driven prognostic 
methodologies that rely on statistical models or Machine Learning (ML) 
algorithms and are dependent on the existence of historical run-to- 
failure data. A common data-driven prognostic framework consists of 
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four steps: 1. Data acquisition, 2. Health indicator construction, 3. 
Modeling the degradation process, and finally 4. RUL estimation [12]. 
The SHM measurements obtained during service are used to feed the ML 
algorithms or statistical models which have been trained on historical 
data, to provide estimations of the RUL. A number of model-based 
studies for RUL estimation using stiffness and energy-based models 
have been proposed [13–17], however data-driven methods are more 
suitable for complex composite structures, since model-based methods 
rely on several assumptions to efficiently model a composite material’s 
degradation and their implementation is impossible in most real life 
applications [18]. Stochastic processes such as Markov models and non- 
linear regression algorithms are common data-driven algorithms that 
usually are employed for prognostics in composites. For instance, Elef-
theroglou et al. [8] proposed a nonhomogeneous hidden semi Markov 
model (NHHSMM) for RUL estimation of open-hole composite coupons 
subjected to constant amplitude tension–tension fatigue. Acoustic 
emission (AE) data were used to train the NHHSMM for RUL prognosis of 
the coupons. The damage states of the model were estimated via a cross- 
validation and maximum likelihood estimation scheme. The RUL was 
predicted with great accuracy demonstrating the potential of the 
framework for integration in different SHM datasets. In [19] a fusion of 
AE and DIC strain data was proposed to improve the prognostic capa-
bilities of the NHHSMM. It was observed that even though the fused data 
had a more monotonic behavior, it did not always provide more accurate 
RUL estimations. Cristiani et al. [3] used strain sensors, specifically 
FBGs, to monitor delamination growth of double cantilever beam 
specimens during fatigue. A Particle Filter algorithm is used to estimate 
the degradation state and delamination extent and ultimately estimate 
the RUL. Liu et al. [20] also utilized AE data as well as data from lamb 
waves to predict RUL in composite beams. A Gaussian process model 
was trained using a normalized damage index to perform non-linear 
regression for RUL prediction. Comparing the two RUL estimations, 
the AE-based estimations displayed slightly better estimation results. 
The same group [21] displayed the prognostic capabilities of a Gaussian 
process for nonlinear regression on the estimation of the RUL of com-
posite coupons subjected to uniaxial and biaxial constant amplitude 
fatigue. Real-time sensor data from strain gauges were collected and 
used to predict the RUL of the composites. 

Health indicators (HIs) are damage-sensitive features extracted from 
raw SHM data. They are a crucial element of data-driven structural di-
agnostics and prognostics. The quality of the HIs affects substantially the 
performance and accuracy of prognostic algorithms [22]. There are 
three main qualities that a candidate HI for prognostic purposes must 
possess, i.e. monotonicity, prognosability and trendability [23,24], 
which are closely linked with the accuracy of the predictions. In liter-
ature, HIs are classified into two categories [25,26] i.e. HIs which are a 
result of simple calculations between physical measurements like strain 
or temperature, namely physical HIs (pHIs), and HIs which are extracted 
via complex data manipulation and usually lack direct physical mean-
ing, namely virtual HIs (vHIs). Exemplary, signal Root Mean Square 
(RMS) [27,28] has been used as a pHI in bearings’ RUL prediction. On 
composite materials and structures, pHIs have been developed out of 
strain data extracted from both finite element models (FEM) as well as 
experimental data in [29,30]. The HIs were able to capture disbond 
growth in stiffened panels during quasi-static loadings. VHIs are devel-
oped to obtain desirable properties for their monitoring applications. 
Principal Component Analysis (PCA) has been used as a methodology to 
create vHIs. Loukopoulos et al. [31] and Loutas et al. [22] used PCA, 
more specifically Q index and T2, as HIs to monitor the degradation of 
reciprocating compressors. Multiple ML models were then used to pre-
dict the RUL of the compressors using these two HIs. Shahid et al. [32] 
proposed a HI based on a dimensionality reduction technique and then 
utilized a radial basis function to normalize the HI to [0,1]. The HI’s 
performance was demonstrated on data from aircraft engines. Gal-
anopoulos et al. [33] proposed both pHIs and vHIs from strain and 
acoustic emission data recorded during compression fatigue of single 

stiffened composite panels. The HIs displayed highly monotonic be-
haviors with the evolution of damage, though the prognosability was 
rather low. Yang et al. [34], proposed a mapping of the health status to a 
linear HI using Neural Networks (NN) for the prediction of RUL in 
electrical motors. Dynamic smoothing was applied to the HI to improve 
the monotonicity, consistency and gradualness. Though the RUL pre-
diction results were good, the assumption of linear degradation over-
simplifies the problem and cannot capture the stochasticity that usually 
presents in more complex applications. To address this shortcoming, 
Song et al. [35] proposed a kernel-based data fusion model, which re-
laxes the linear assumption, i.e. the raw data are mapped to the feature 
space using a non-linear kernel function, and this can better model the 
intricate relationships between the sensor data and the degradation 
process. In [36], a HI is proposed to indicate the health state of batteries. 
To enhance the HI, a Box-Cox transformation is applied to improve the 
correlation to the actual health state. In [37] a composite HI is proposed 
based on feature level fusion using an optimization scheme that aims to 
maximize three attributes, i.e. monotonicity, trendability and robust-
ness. A linear combination of these three features is proposed as the 
fitness function of a Self-Adaptive Differential Evolution algorithm 
which is used to calculate the weights of each feature during the fusion 
process. The effectiveness of this HI is demonstrated in two different 
datasets i.e., bearings and batteries datasets. A different approach for HI 
construction was followed in [38]. The HI formulation, expressed in 
flight hours, is based on the effect (either positive or negative) of the 
chosen degradation features on the health state of the system. The effect 
is determined based on irregularities found in the sensor data, when 
compared to the reference measurements. Nguyen and Medjaher [39], 
proposed a HI based on a two-stage Genetic Programming methodology. 
In the first stage, automated feature extraction is performed based on 
multiple evaluation criteria, such as monotonicity and trendability. In 
the second stage, the extracted features in stage one are fused together to 
create an enhanced HI. The applicability of the methodology is pre-
sented in two distinct datasets, bearing signals and aircraft engine 
signals. 

While there have been several methodologies proposing prognostic 
HIs from condition monitoring of machinery or systems, few works have 
focused on SHM data from composite material or structural components 
towards the development of useful prognostic HIs out of them. Even 
fewer have worked with geometries beyond simple rectangular coupons. 
In this paper, we attempt to fill this gap and valorize complex SHM data 
from fatigue tests in generic structural elements i.e. single-stringered 
panels towards creating HIs suitable for prognostics. More specifically, 
we propose a feature-level fusion of physical and virtual strain-based HIs 
using Genetic Algorithms to create a new HI for RUL prediction of 
composite panels. The goal of the fusion is to develop a HI with high 
monotonicity and prognosability, since these two metrics are considered 
important for accurate RUL estimations. SHM data acquired after three 
different experimental campaigns are utilized to this direction. The 
training process of the Genetic Algorithm and the prognostic model is 
implemented using a subset of the tested panels, while the remaining 
panels are used to validate the methodologies and demonstrate the ca-
pabilities of the proposed methodology. Our expectation that such a HI 
would be able to provide more accurate prognostics is evidenced and 
discussed. The concept of the present paper is schematically depicted in 
Fig. 1. 

The remainder of the paper is organized as follows. Section 2 pro-
vides insights into the experimental campaigns and the test specimens, 
Section 3 discusses the methodologies for the HI fusion and prognostic 
algorithm, while Section 4 displays the fused Health Indicator and the 
RUL predictions. Finally, the paper is concluded in Section 5. 

2. Experimental campaign 

CFRP panels were manufactured out of IM7/8552 unidirectional 
prepreg material. A single T-shaped stiffener was used to reinforce the 
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panel. Skin and stringer are co-cured. The respected layups for the skin 
and stiffener are [45/− 45/0/45/90/− 45/0]S and [45/− 45/0/45/ 
− 45]S. After the manufacturing, resin cast tabs are added to the free 
edges of the panels to ensure a proper and uniform compressive load 
introduction. 

First, static tests were conducted on pristine panels to evaluate the 
ultimate compressive strength and guide our decision towards selecting 
the fatigue loads. The average compressive strength was calculated at 
around 100 kN [40]. Before being subjected to fatigue, an initial damage 
was introduced to the panels at various locations along the stiffeners’ 
feet; either via a manufacturing defect in the form of an artificial dis-
bond using a Teflon insert or as low-velocity impact damage. More in-
formation regarding the damage sizes as well as the panels’ ultimate 
fatigue life until collapse is presented in detail in Tables 1-4. 

Several sensors were mounted on the panels to monitor their fatigue 
behavior, e.g. lamb wave PZTs, AE sensors, and FBG strain sensors. The 
panels’ dimensions and sensor locations can be seen in Fig. 2. In the 
present work, we only focus on strain data collected from the FBGs. The 
FBG sensors are enclosed in a SMARTapeTM [41] that eases handling, a 
courtesy of Smartec S.A. (Switzerland). Two SMARTapes, one at each 
stiffener foot, are bonded in each panel using a copolyamide-based ad-
hesive. Each SMARTape contains 5 FBG sensors with a sensor spacing of 

20 mm. The measurement area was focused on the middle section of the 
panels for a length of approximately 140 mm since the damage scenarios 
concern this area. 

Strain measurements are an efficient way of monitoring degradation 

Fig. 1. Schematic representation of the proposed framework.  

Table 1 
Constant amplitude test campaign specimen information.  

Specimen 
# 

Impact Energy/Disbond 
Size 

Load (kN) # of Cycles to 
failure   

Min. Max.  

CA-1 10 J − 6.5 − 65 280,098 
CA-2 10 J − 6.5 − 65 144,969 
CA-3 10 J − 6.5 − 65 133,281 
CA-4 30x20 mm2 − 5.0 − 50 438,000   

− 6.0 − 60*  

*load increased after 100 k cycles. 

Table 2 
Variable amplitude test campaign specimen information.  

Specimen 
# 

Impact energy/ disbond 
size 

Load (kN) # of cycles to 
failure 

Min. Max. 

VA-1 7.4 J − 4.0 
− 4.5 
− 5.0 
− 5.5 
− 6.0 

− 40 
− 45 
− 50 
− 55 
− 60  

10,000 
80,000 
30,000 
70,000 
12,300 
202,300 

VA-2 10 J − 4.0 
− 4.5 
− 5.0 
− 5.5 

− 40 
− 45 
− 50 
− 55 

10,000 
80,000 
90,000 
63,000 
243,000 

VA-3 10 J − 4.0 
− 4.5 
− 5.0 

− 40 
− 45 
− 50 

10,000 
177,000 
30,000 
217,000 

VA-4 25x20 mm2 − 3.5 
− 3.9 
− 4.5 
− 5.0 
− 5.5 
− 6.0 

− 35 
− 39 
− 45 
− 50 
− 55 
− 60 

10,000 
10,000 
10,000 
170,000 
85,000 
60,000 
345,000 

VA-5 7.37 J − 4.0 
− 4.5 
− 5.0 
− 5.5 
− 6.0 

− 40 
− 45 
− 50 
− 55 
− 60 

20,000 
75,000 
25,000 
62,000 
60,000 
242,000  
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for two reasons. First, strain is affected by a global stiffness reduction 
which can provide an indication of degradation over time, and secondly, 
strain is sensitive to damage, and especially in the vicinity of the 
damaged area, the strain field is significantly affected [42,43,44,45]. 
Since FBGs are an optical sensing methodology, the conversion from 
wavelength to strain is made using eq. (1), where Δλ is the change from 
the central wavelength and fg = 1.2 is the gauge factor. 

ε =
Δλ
λo

fg (1)  

2.1. Fatigue experiments 

Three different experimental campaigns in fatigue were conducted 
[46]. The panels were subjected to constant, variable and finally random 
amplitude (spectrum) fatigue; a more realistic loading scenario. The 
fatigue loads ranged from 45 % to 85 % of the ultimate compression 
strength. The frequency of the loading was 2 Hz and the load ratio, for 
the constant and variable amplitude fatigue, was kept to 10. 

2.1.1. Constant amplitude fatigue 
The constant amplitude fatigue test campaign was performed in the 

Aerospace Structures and Materials Laboratory of Delft University of 
Technology, on an MTS hydraulic machine with a load capacity of 500 
kN. Every 500 cycles, the fatigue test was interrupted and quasi-static 
loadings were conducted from the minimum to the maximum load, 
during which the FBG strains were measured. The FBG sensors recorded 
the entire quasi-static using a Micron Optics sm130 2-channel dynamic 
interrogator with an acquisition rate of 5 Hz. Table 1 summarizes the 
tests performed and the cycles to failure. 

2.1.2. Variable amplitude fatigue 
The second test campaign was conducted in the Applied Mechanics 

Laboratory of the University of Patras, on an Instron 8802 hydraulic 
machine with a load capacity of 250 kN. The load was increased after 
applying blocks of constant loading and observing the damage evolution 
using the C-scan images from a phased array camera approximately 
every 10 k cycles. Every 500 cycles quasi-static loadings were conducted 
from the minimum to maximum fatigue load, when FBG measurements 
were recorded. The acquisition hardware and sampling rate for strain 
measurements are the same as in the constant amplitude fatigue 
campaign. Table 2 summarizes the tests performed and the cycles to 
failure. 

2.1.3. Spectrum fatigue 
The final test campaign was also conducted in the Applied Mechanics 

Laboratory of the University of Patras. A modified version of the TWIST 
algorithm [47] was used to create the loading sequence. The loads and 
cycles they were applied for are shown in Table 3. The FBG measure-
ments were recorded at 20-sec intervals happening every 7 min, 
capturing the strains during fatigue, with an acquisition rate of 10 Hz. 
Phased array C-scan images were also taken approximately every 10 k- 
20 k cycles to inspect damage evolution, and the load sequence was 
altered if no damage growth was observed. The sequence was changed 
by introducing harsher conditions by either adding cycles at higher 
loads or increasing the amount of cycles the higher loads are applied. 
Table 4 summarizes the tests performed and the cycles to failure. 

3. Methodologies 

A variety of different experiments were performed, with different 
initial damage, different loading sequences and damage accumulation 
evidence. Hence, a common ground must be established regarding the 
raw strain data processing to further convert them in a form that better 
reflects the damage evolution phenomenon of the CFRP panels. For the 
constant and variable campaigns due to the different loading conditions, 
the following pre-processing method was implemented which is 
described in detail in [33] and is briefly mentioned here. From each 
quasi-static loading, n random strain points were sampled using a uni-
form distribution and the average of these points was considered as the 
strain at that time instance. For the spectrum campaign, a total of 30 
random strain measurements were selected over the 20 sec measure-
ment window, and their average strain value was used as the strain at 
that time instance. For the constant and variable amplitude fatigue 

Table 3 
Spectrum fatigue load and cycles (modified TWIST algorithm).  

Cycles Min load (kN) Max load (kN) Ratio 

1  − 8.0  − 78.0  9.75 
2  − 5.0  − 75.0  15.00 
5  − 9.0  − 69.0  7.67 
18  − 4.5  − 64.5  14.33 
52  − 4.7  − 59.7  12.70 
152  − 4.8  − 55.2  11.50 
800  − 9.6  − 50.4  5.25 
4170  − 14.1  − 45.9  3.25  

Table 4 
Spectrum test campaign specimen information.  

Coupon Impact energy/ disbond size Max load interval (kN) # of cycles to failure 

SP-1 10 J − 50.4 to − 75.0 
− 50.4 to − 78.0 

1,000,000 
580,000 
1,580,000 

SP-2 10 J − 50.4 to − 69.0 
− 50.4 to − 78.0 

291,000 
238,000 
529,000 

SP-3 10 J − 50.4 to − 78.0 (pristine) 
− 50.4 to − 78.0 (impact ) 
− 55.2 to − 78.0 
− 55.2 to − 82.0 

60,000 
240,000 
300,000 
600,000 
1,300,000 

SP-5 10 J − 45.9 to − 64.5 
− 45.9 to − 69.0 
− 45.9 to − 75.0 
− 50.5 to − 75.0 
− 50.4 to − 78.0 

247,000 
92,000 
10,000 
73,000 
30,000 
452,000 

SP-7 25x20 mm2 − 55.2 to − 78.0 
− 45.9 to − 59.7 

460* 
1,160,000 
1,160,460 

*disbond doubled in size. 
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campaigns, the time instance corresponds to the cycles at the beginning 
of the quasi-static, while for the random amplitude, the time instance 
corresponds to the cycle at the beginning of the measurement. After 
modifying the raw strain data into a common form, advanced processing 
methodologies are applied to create HIs capable of reflecting the 
degradation during fatigue. 

3.1. Genetic algorithm fusion 

In our previous work in [33], some HIs developed out of raw strain 
data showed potentiality as prognostic features. They are repeated in eq. 
2–8 for the sake of completeness. Physical indicators HI3 and HI4 are an 
advancement of HI1 and HI2 respectively, where HI1 measures the strain 
deviation from the reference state and HI2 shows the effect of each 
sensor’s measured strain at the mean strain at the sensor’s foot. Virtual 
indicators such as vHI1, vHI2 and T2 do not have an immediate corre-
lation to physical measures, though they have demonstrated good 
prognostic potential in [31,32]. 

HIi
1(t) =

⃒
⃒
⃒εi

ref − εi(t)
⃒
⃒
⃒

|εi
ref |

(2)  

HIi
2(t) =

εi(t)
∑n

1
εi(t)

n

−
εi(t = 0)
∑n

1
εi(t=0)
n

, t > 0 (3)  

HI3(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(MiHIi
1(t))

2
√

(4)  

HI4(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (

MiHIi
2(t)

)2
√

(5)  

vHI1(t) = exp

(

−
(dL(t) − dLmin )

2

σL

)

,

Where, 

σL = −
(dLmax − dLmin)

2

2
[

1
log10ε +

1
log10(ε + δ)

] (6)  

vHI2(t) =
∑N

1
(xi(t) − xri (t))

2 (7)  

T2(t) =
∑N

1

τ2
i (t)
λi

(8) 

With i = 1,…,N the ith FBG sensor is noted, εref is the strain at 
reference state, ε(t) is the strain at time t and Mi the monotonicity (see 
eq. (10)) of each HI curve. dL, dLmin and dLmax are the Euclidean distances 
of the transformed data from the initial point (at t = 0), while ε and δ are 
length and scale parameters and are set to 0.1. xi(t) and xri (t) are the 
original and reconstructed data, extracted from PCA at time t and λi and 
τi, are the variance and score of the ith principal component. For more 
information regarding the HIs the interested reader is referred to 
[31–34]. 

For an HI to possess prognostic potentiality, three attributes i.e. 
monotonicity, prognosability, and trendability need to be as high as 
possible [19,23,24]. Monotonicity results from the fact that the damage 
is continuously growing and cannot return to a previous damage state, 
unless a maintenance action is performed, hence the HI should as well 
constantly increase, or decrease. Trendability, indicates how similar is 
the underlying trend of a HI for a population of similar structures. Last 
but not least, prognosability, measures the scatter of the failure values of 

Fig. 2. a) Panel dimensions and sensor locations and b) photo of the panel inside the hydraulic machine.  
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the HI for a population of similar structures. In our work we focus mainly 
on monotonicity and prognosability. Trendability is not considered as 
important in this work since modern algorithms can adequately model 
any kind of underlying degradation trends. 

For the calculation of the aforementioned attributes, we considered 
the definitions proposed in [48]. Their values range from [0,1], where 1 
indicates the perfect and 0 is the less satisfactory level of a specific 
attribute. 

The average monotonicity for a population of N similar structures is 
defined as: 

Monotonicity =
1
N

∑N

i=1
Mi (9)  

where Mi is the monotonicity of a HI for a single structure, expressed by: 

Mi =
n+

i

ni − 1
−

n−
i

ni − 1
, i = 1,⋯,N (10)  

where n+
i and n−

i the number of positive and negative first derivatives of 
the HI curve and ni the total number of observations of this HI. Usually, 
prognostic features are noisy and proper smoothing is required before 
calculating the monotonicity, but in our case, there was no such need. 

Prognosability, is defined as the standard deviation of the HI failure 
values of the available lifetimes, divided by the average variation be-
tween the values of the HI at the start and end of the lifetime (failure 
value). To ensure the scale is between [0, 1] the metric is exponentially 
weighted. 

Prognosability = exp

(

−
std
(
HIfail

)

mean
( ⃒
⃒HIstart − HIfail

⃒
⃒
)

)

(11)  

where HIstart and HIfail are the HI values at the beginning and end of the 
specimens’ lifetimes. 

Fig. 3 shows the prognosability and average monotonicity of the five 
HIs of eq. 4–8. We can observe that most HIs possess high monotonicity, 
however prognosability is rather low. To remedy this shortcoming, we 
propose an optimization scheme in order to fuse the available HIs into a 
superior HIGA with maximum monotonicity and prognosability. НІGA 
will be presented in detail in section 4.1 and is only shown here for 
comparison purposes. 

Genetic algorithms (GAs) were selected over other optimization 
methods since they have been previously used successfully for prog-
nostics feature extraction in condition monitoring of machinery and 

systems [48–51]. GAs provide great flexibility in discovering new 
mathematical equations, can easily account for multiple evaluation 
criteria and are able to accomplish accurate results without the need for 
understanding the underlying physics of the structure under investiga-
tion [39]. The underlying process is also easily understood providing 
great oversight of the overall optimization procedure. GPLAB [52] for 
MATLAB was preferred over other toolboxes due to its capabilities and 
ease of adding and implementing new functions. 

A schematic representation of the fusion process can be seen in Fig. 4. 
The panels are split into training and testing sets. The training set is used 
to learn the GA parameters and extract the fusion function. For the 
training of the GA, three arbitrary panels from each campaign (3xCA, 
3xVA and 3xSP) were selected, while the rest were left out for testing. 
Also, for the case of vHI1, prior knowledge of minimum and maximum 
values is required. To this end, vHI1 for the test set is calculated as fol-
lows: first vHI1 for the training specimens is calculated and the 
normalization parameters are saved. Then a k-nearest-neighbors scheme 
is implemented, which is searching for similarities between the initial 
values of the test panels and the training database. Arbitrarily, the 
averaged 3-Nearest Neighbors normalization values were used for the 
calculation of vHI1 for the test set. Then the GA module is introduced. 
After initializing the parameters and creating the initial population, the 
genetic operations are performed to create the subsequent generations. 
The algorithm finishes when either the max generations are reached, or 
a perfect fitness result is achieved. Finally, the best output function of 
the GA is used to create a fused HI. 

A variety of different parameter combinations were investigated 
during the GA fusion process. The three main parameters investigated 
were sampling, expected, and elitism. Sampling refers to which popu-
lation of individuals are selected to have children. Expected refers to the 
expected number of children that each individual creates. Finally, 
elitism refers to the chances of survival of each individual and children 
to the next generation. The allowed operations between the inputs are 
addition, subtraction, multiplication, division, squared power, square 
root and logarithm. The population of each generation was set to 150 
and the maximum generations (iterations) were 300. The population 
size was chosen with regard to the computational time, while at the 
same time not compromising possible fusion scenarios, while the itera-
tion limit was chosen based on the convergence of the fitness function (it 
was observed that when reaching 300 iterations the fitness values had 
stabilized). The maximum tree depth was limited to 15 so that the ob-
tained functions are not extremely large. The computational time of 
each run (each parameter combination) is approximately 7 min in 
MATLAB 2021, running on an Intel quad-core i5-4690k with 16 GB ram. 
The final selection was mainly guided by the size and the simplicity of 
the fusion function (number of terms in each operation, total number of 
terms), since many different fusion schemes managed to provide HIs 
with high fitness values. 

We use the fitness function described in eq. (12) as an objective 
function to be maximized utilizing the GA optimization technique. 

Fitness = a*Monotonicity+ b*Prognosability (12) 

It was decided to give both properties equal weighting i.e., a = b = 1 
since both are considered equally important. 

3.2. Prognostics – Gaussian process regression 

Gaussian processes (GPs) have been widely employed for RUL 
prognosis of a variety of systems [53–55] and structures [20,21] in a 
non-linear regression approach. Non-linear regression for RUL estima-
tion has been utilized also in [5] via Bayesian Neural Networks. A GP is a 
finite collection of random variables indexed by time or space with a 
joint Gaussian distribution and is a function of f(x) at x = [x1, x2, …, 
xn]T, where x the collection of random variables. A GP is completely 
specified [56] by its mean function: Fig. 3. Monotonicity and Prognosability of existing and proposed HI.  
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m(x) = E[f (x)] (13) 

And its covariance function: 

k(x, x′

) = E[(f (x) − m(x))(f (x
′

) − m(x
′

))] (14) 

Based on the aforementioned equations, i.e. eq.13 and eq.14, the GP 
can be written as: 

f (x) GP(m(x), k(x, x′

)) (15) 

Depending on the data, different covariance functions can be applied 
in order to best characterize the relationship between x and x′. To 
investigate the effects of the mean and covariance functions, one of the 
test panels was used for tuning these two parameters, w.r.t. reducing the 
error between predicted and actual RUL. Different combinations of 
mean and covariance functions were tested, and a linear mean function 
and a Matern 5/2 covariance function were eventually used. 

m(x) = c1x+ c0 (16)  

k(r) = σ2
f

(

1+
̅̅̅
5

√
r2

σ2
l

+
5r2

3σ2
l

)

exp
(

−

̅̅̅
5

√
r

σl

)

(17)  

where σf and σ l are the standard deviation and scale length respec-
tively, and r is the Euclidean distance between x and x′. 

Let us assume a degradation history H =
[
xi, yi

]N
i=1, where xi is the 

input variable and yi = f(xi)+εi is the noisy target variable, with εi is an 
independent and identically distributed (i.i.d) variable with 0 mean and 
σ2

n (εi ~ i.i.d N(0, σ2
n)). The joint distribution of the observed target 

values y =
[
yi
]N

i=1 and unobserved target values f* at new input locations 
X* can be denoted as: 

Fig. 4. Flowchart of the proposed fusion methodology.  

Fig. 5. Schematic representation of the GP training and testing process.  
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[
y
f *

]

N

⎛

⎝0,

⎡

⎣
K(X,X) + σ2

nI K(X,X*)

K(X*,X) K(X*,X*)

⎤

⎦

⎞

⎠ (18)  

where I the identity matrix. The predictive (posterior) distribution for 
GP regression (GPR), given the new inputs X* and the historic data X and 
targets y is defined by: 

p(f *|X, y,X*) N(f *, cov(f *) ) (19)  

f *
= E[f *|X, y,X*] = K(X*,X)

[
K(X,X) + σ2

nI
]− 1y (20)  

cov(f *) = K(X*,X*) − K(X*,X)
[
K(X,X) + σ2

nI
]− 1K(X,X*) (21) 

The prognostic framework is schematically depicted in Fig. 5. The 
model parameters θ = {σf , σl, σn, c1, c0} can be estimated by maximizing 
the marginal likelihood logp(y|X, θ) = − 1

2y
TK− 1

y y − 1
2 log

⃒
⃒Ky
⃒
⃒ − n

2 log2π, 
where Ky = Kf +σ2

nI is the covariance matrix of the noisy target y and Kf 

the covariance matrix of f . To maximize the marginal likelihood, we use 
the partial derivative with respect to parameters θ: 

argmax
θ

∂
∂θj

logp(y|X, θ) =
1
2
yT K − 1∂K

∂θj
K − 1y −

1
2

tr(K − 1∂K
∂θj

) (22) 

After estimating the model parameters, the new data (HIs) are used 
as inputs to the trained GP model to predict the RUL. 

4. Results and discussion 

4.1. Genetic algorithm-based health indicator 

The methodology described in Section 3.1 is used to create a hyper 
HI based on simpler HI inputs. The selected fusion equation that resulted 
after the optimization process; can be seen in eq. (23) and the fused HI 
from this point on will be noted as HIGA. 

HIGA = vHI1

(

HI4 −
vHI2 + 0.5HI3

vHI2

)

+ 1 (23) 

The monotonicity and prognosability of HIGA for the training set are 
0.89 and 0.95 respectively, both higher than those reported for the input 
HIs in Fig. 3. For the entire dataset (including the test data) the 
respective values are 0.84 and 0.91. HIGA is presented in Fig. 6. HIGA 

shows a highly monotonic and prognosable behavior not only for the 
training set (9 specimens) which was expected but also for the test set (5 
specimens, dashed lines). As a result, the proposed GA fusion scheme can 
be characterized as successful. This is also evident from the improved 
fitness function values, where HIGA has superior values compared to the 
previously developed HIs. Only vHI1′s fitness is comparable to HIGA, and 
it rationalizes its participation in the fused HI of eq. (23). HIGA is 
depicted in Fig. 6. The behaviors of the four HI inputs are presented in 
Figs. A1 and A2 of the Appendix. 

To evaluate the repeatability of the proposed methodology, the 
process was run multiple times with the exact same parameters. After 50 
runs, some similar results were acquired, regarding inputs and fusion 
operators, yet the exact same function was not obtained. This result does 
not come as a surprise. Due to the nature of the optimization problem, 
there are multiple local optimums, which are achieved via different 
combination of the inputs. In Fig. 7 the average monotonicity, prog-
nosability and overall fitness over the 50 runs is depicted. We can 
observe that the results show high values of monotonicity and prog-
nosability with little scatter, hence the good feature level fusion can be 
replicated. This is also demonstrated by the low scatter of the overall 
fitness values. 

Fig. 6. a) HIGA versus fatigue life. Panels used for training are depicted with solid lines, while those used for validation and testing are depicted with dashed lines. b) 
Fitness values of the various HIs including test set. 

Fig. 7. Average monotonicity, prognosability and fitness with variance over 50 
Genetic algorithm runs. 
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4.2. Remaining useful life estimation 

To justify the necessity of the proposed fused HIGA and demonstrate 
its superiority in predicting the RUL of the test panels, we utilize it for 
RUL prognostics using GP regression. RUL prognostics are also obtained 
with the HIs of eq. 4–8 for comparison purposes. Fig. 8 summarizes the 
results. Four out of five test panels are shown, omitting the specimen 
used for the GP parameter tuning. It is evident that HIGA approximates 
the true RUL much more closely than the rest HIs. vHI2 and T2 pre-
dictions are not able to capture the true RUL. vHI2 shows predictions 
close to zero from the beginning while the predicted RUL increases near 
EoL, which is attributed to the very poor prognosability of this particular 
HI, while the lack of monotonicity of T2 (see Fig. A2) is also reflected in 
the poor RUL estimations. HI3′s performance is also not notable, since 
for CA-03 and VA-05 the RUL predictions are not converging to the true 
RUL, while for the two spectrum panels the estimations are extremely 
poor. 

For the rest of the HIs, the RUL estimations are discussed more in 
depth. More specifically, for panels CA-03 and VA-05 HIGA and vHI1, 
display good RUL estimations, especially after 50 % of the lifetime, when 
they start to converge to the true RUL. Near the EoL both RUL estima-
tions approach the actual RUL, with HIGA showing slightly better esti-
mations. While HI4 shows relatively accurate RUL estimation for CA-03, 
for VA-05 the RUL shows an increasing trend, which is due to the sudden 
decrease in HI4‘s values at that time for this specimen (see Fig. A1). HIGA 
displays once again better RUL estimations converging to the true RUL 
close to the EoL, something that no other HI manages. For SP-05, HIGA 
and vHI1 show similar RUL estimations, both underestimating the true 

RUL, but HIGA converges to the true RUL, before both HIGA and vHI1 
suddenly drop to zero. For HI3, the estimations display an increase near 
the EoL which is attributed to the drop in the HI’s values. HI4 even 
though at first has a shifting behavior between overestimating and 
underestimating the RUL near the EoL it manages to slightly converge to 
the true RUL. Finally, for panel SP-07 all HIs underestimate the RUL, and 
most of them manage to converge to the true RUL near the EoL, though 
HIGA and vHI1 show a more steady convergence. 

It can be clearly seen that HIGA is able to always converge to the true 
RUL near the EoL, unlike the rest of the HIs, demonstrating the effect of 
the high prognosability. The only other HI with similar prediction re-
sults is vHI1, which is a core part of HIGA, though HIGA shows slightly 
better performance. Regarding the prognostic behavior of some HIs we 
note that GP is a regression algorithm which is mapping the HI value to a 
RUL value based on training data. Hence in cases like HI4 for VA-05 
where the HI values decrease, the regression model is mapping this 
decrease to a higher RUL. 

Looking closely at Fig. 8, it is evident that HIGA outperforms the rest 
of the HIs since it better follows the true RUL and particularly near the 
end-of-life. This by itself justifies the need for a methodology as the one 
discussed throughout the paper. To further assess the quality of the 
mean predictions and quantify the performance, several prognostic 
performance metrics, i.e. Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), Root Mean Square Error (RMSE), and Cu-
mulative relative accuracy (CRA) (Eq. 24–27), are employed [57,58]. 

MAE =
1
N
∑N

i=1

⃒
⃒RUL*

i − RULi
⃒
⃒ (24) 

Fig. 8. RUL predictions for the test panels for the different HIs.  
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Fig. 9. Average prognostic performance metrics.  

Fig. A1. HIs vs fatigue cycles for the different panels. Solid lines represent panels used for training, while dashed those used for testing. a) HI3, b) HI4, c) vHI1, 
d) vHI2. 
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MAPE =
1
N

∑N

i− 1

|RUL*
i − RULi|

RULi
× 100 (25)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
RUL*

i − RULi
)2

√
√
√
√ (26)  

CRA =

∑N
i=1RAi

N
,whereRAi = 1 − |

RUL*
i − RULi

RULi
| (27)  

where RULi and RUL*
i are the true and predicted RUL at time i. 

Fig. 9 summarizes the aforementioned metrics scores averaged 
across all the specimens of the test set. Evidently, HIGA is outperforming 
the other HIs in all metrics. This result validates what was already 
visually observed in Fig. 8, verifying that HIGA is an enhanced version of 
the previously proposed HIs and a more suitable HI for prognostic 
purposes. 

5. Conclusions 

In this paper, a novel strain-based Health Indicator is proposed for 
SHM data-driven RUL prognostics of composite structures. CFRP single- 
stiffened panels were subjected to a variety of compression-compression 
fatigue scenarios and FBG sensors were used to measure strain along the 
stiffeners’ feet. Three different loading scenarios of increasing 
complexity were implemented, i.e., constant amplitude fatigue, variable 
amplitude fatigue, and random (spectrum) amplitude fatigue. A new 
health indicator is derived after a fusion of simpler HIs developed in 
previous work [33]. For the fusion procedure, genetic algorithms are 
employed in order to maximize the value of a fitness function 
comprising, with equal weight, of the average monotonicity and prog-
nosability of the training dataset. Out of the 14 tested panels 9 were 
randomly chosen and were used to train the genetic algorithm and 
derive the fusion function while the rest were used to validate the result. 
The fused HIGA displays superior monotonicity and prognosability 
compared to its constituent HIs. 

All HIs are then utilized to estimate the RUL of the panels. Gaussian 
Process Regression is employed for the RUL prediction task. It is shown 
that the proposed HIGA significantly outperforms its constituent HIs 
regarding RUL estimation and this is validated by employing some 
common prognostic performance metrics. The main advantage of the 
proposed methodology is that it is material agnostic and can thus be 
employed in any application where SHM data from a degrading struc-
ture are available. 

Though the methodology has provided promising results in lab scale 
tests, its applicability in industrial environments still needs further 
consideration and validation. An industrial environment such as a real 
aircraft structure, is very challenging due to the complexity of loading 
and additional parameters such as environmental loads or unforeseen 
events (bird strikes). To deploy such methodologies in such environ-
ments we have to extend the methodology to take into account the effect 
of temperature/moisture fluctuations on the acquired strain data. 
Moreover, we have to convince the stakeholders (OEMs etc) that the 
sensing technologies are reliable and durable. The main drawback of this 
purely data-driven methodology is the dependence on the data quality. 
If the sensor readings are not representative of the degradation due to 
sensor failure or any other reason, then the proposed methodology 
might be prone to erroneous estimates, and this increases uncertainty, 
especially in real industrial situations. 
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Appendix. Health indicators 

In this appendix the HIs of eq. (4)-(7) that participate in HIGA are presented (Fig. A1), since new panels have been added to the study. vHI1 is 
presented after using the methodology described in section 3.1. 

T2 has not been discussed in [33] hence a brief overview is shown here. The procedure is similar to the one for calculating vHI2.  

- The mean and standard deviation of a set of Reference data XH (initial values of each experiment) are used to scale the data X  
- Principal Component Analysis (PCA) model is created using XH, with P the eigenvalue vector used for the transformation TH = XHP.  
- The eigenvalues corresponding to 95 % explained variance (Pr) are retained and used to transform the entire dataset X into T = XPR  
- Then: 

T2 =
∑k

i=1

τ2
ι

λι
= TΛ− 1TT 

Τ2 is a measure of variability in the k first Principal Components. The behavior of T2 can be seen in Fig. A2. 
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[44] Yue N, Broer A, Briand W, Rébillat M, Loutas T, Zarouchas D. Assessing stiffness 
degradation of stiffened composite panels in post-buckling compression- 
compression fatigue using guided waves. Compos Struct 2022;293:115751. 

[45] Milanoski D, Galanopoulos G, Zarouchas D, Loutas T. Damage diagnostics on post- 
buckled stiffened panels utilizing the digital-twin concept. Lect Notes Civ Eng 
2023;vol. 253 LNCE:213–22. https://doi.org/10.1007/978-3-031-07254-3_21/ 
FIGURES/6. 

[46] Zarouchas D, Broer A, Galanopoulos G, Briand W, Benedictus R, Loutas T. 
Compression Compression fatigue tests on single stiffener aerospace structures. 
DataverseNL, doi: doi:10.34894/QNURER. 

[47] De Jong JB, Schütz D, Lowak H, Schijve J. A standardized load sequence for flight 
simulation tests on transport aircraft wing structures. NLR-TR 73029 U, LBF 
Bericht FB-106, 1973. 

[48] Coble J, Hines JW. Identifying optimal prognostic parameters from data: a genetic 
algorithms approach. In: Annual Conference of the PHM Society, 2009, vol. 1, no. 
1. 

[49] Firpi H, Vachtsevanos G. Genetically programmed-based artificial features 
extraction applied to fault detection. Eng Appl Artif Intell Jun. 2008;21(4):558–68. 
https://doi.org/10.1016/j.engappai.2007.06.004. 

[50] Liao L. Discovering prognostic features using genetic programming in remaining 
useful life prediction. IEEE Trans Ind Electron 2014;61(5):2464–72. https://doi. 
org/10.1109/TIE.2013.2270212. 

[51] Galanopoulos G, Eleftheroglou N, Milanoski, Broer A, Zarouchas D, Loutas T. An 
SHM data-driven methodology for the remaining useful life prognosis of 
aeronautical subcomponents, pp. 244–253, 2023, doi: 10.1007/978-3-031-07254- 
3_24. 

[52] Silva S, Almeida J. GPLAB-a genetic programming toolbox for MATLAB. In: 
Proceedings of the Nordic MATLAB conference, 2003, pp. 273–278. 

[53] Liu D, Pang J, Zhou J, Peng Y, Pecht M. Prognostics for state of health estimation of 
lithium-ion batteries based on combination Gaussian process functional regression. 
Microelectron Reliab Jun. 2013;53(6):832–9. https://doi.org/10.1016/J. 
MICROREL.2013.03.010. 

[54] Li M, Sadoughi M, Shen S, Hu C. Remaining useful life prediction of lithium-ion 
batteries using multi-model Gaussian process. 2019 IEEE Int Conf Progn Heal 
Manag ICPHM Jun. 2019;2019. https://doi.org/10.1109/ICPHM.2019.8819384. 

[55] Benker M, Bliznyuk A, Zaeh MF. A Gaussian process based method for data- 
efficient remaining useful life estimation. IEEE Access 2021;9:137470–82. https:// 
doi.org/10.1109/ACCESS.2021.3116813. 

[56] Williams CK, Rasmussen CE. Gaussian processes for machine learning, vol. 2, no. 3. 
Cambridge, MA: MIT press; 2006. 

[57] Saxena A, et al. Metrics for evaluating performance of prognostic techniques. In: 
2008 international conference on prognostics and health management, 2008, pp. 
1–17. 

[58] Saxena A, Celaya J, Saha B, Saha S, Goebel K. Metrics for offline evaluation of 
prognostic performance. Int J Progn Heal Manag 2010;1(1):4–23. 

G. Galanopoulos et al.                                                                                                                                                                                                                         

http://refhub.elsevier.com/S0263-8223(22)01311-3/h0220
http://refhub.elsevier.com/S0263-8223(22)01311-3/h0220
http://refhub.elsevier.com/S0263-8223(22)01311-3/h0220
https://doi.org/10.1007/978-3-031-07254-3_21/FIGURES/6
https://doi.org/10.1007/978-3-031-07254-3_21/FIGURES/6
https://doi.org/10.1016/j.engappai.2007.06.004
https://doi.org/10.1109/TIE.2013.2270212
https://doi.org/10.1109/TIE.2013.2270212
https://doi.org/10.1016/J.MICROREL.2013.03.010
https://doi.org/10.1016/J.MICROREL.2013.03.010
https://doi.org/10.1109/ICPHM.2019.8819384
https://doi.org/10.1109/ACCESS.2021.3116813
https://doi.org/10.1109/ACCESS.2021.3116813
http://refhub.elsevier.com/S0263-8223(22)01311-3/h0280
http://refhub.elsevier.com/S0263-8223(22)01311-3/h0280
http://refhub.elsevier.com/S0263-8223(22)01311-3/h0290
http://refhub.elsevier.com/S0263-8223(22)01311-3/h0290

	A novel strain-based health indicator for the remaining useful life estimation of degrading composite structures
	1 Introduction
	2 Experimental campaign
	2.1 Fatigue experiments
	2.1.1 Constant amplitude fatigue
	2.1.2 Variable amplitude fatigue
	2.1.3 Spectrum fatigue


	3 Methodologies
	3.1 Genetic algorithm fusion
	3.2 Prognostics – Gaussian process regression

	4 Results and discussion
	4.1 Genetic algorithm-based health indicator
	4.2 Remaining useful life estimation

	5 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix Health indicators
	References


