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Abstract

In this work we use algebraic dual spaces with a domain decomposition method to solve the Darcy equations. We define
he broken Sobolev spaces and their finite dimensional counterparts. A global trace space is defined that connects the solution
etween the broken spaces. Use of algebraic dual spaces results in a sparse, metric-free representation of the incompressibility
onstraint, the pressure gradient term, and on the continuity constraint between the sub domains. To demonstrate this, we solve
wo test cases: (i) a manufactured solution case, and (ii) an industrial benchmark reservoir modelling problem SPE10. The
esults demonstrate that the dual spaces can be used for domain decomposition formulation, and despite having more unknowns,
equires less simulation time compared to the continuous Galerkin formulation, without compromising on the accuracy of the
olution.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Domain decomposition; Algebraic dual spaces; Darcy equations; SPE10; Mimetic spectral element method; Hybrid finite elements

1. Introduction

Since the early days of computational fluid dynamics there has been an immense increment in computational
ower. However, the need to develop fast numerical algorithms has persisted consistently. For that reason, domain
ecomposition (DD) methods have played an important role in reducing the run times for numerical simulations. The
eneral idea for these methods is that the domain of the problem is broken up into a set of many small independent
ub domains. New degrees of freedom are introduced, the Lagrange multipliers, imposing the appropriate continuity
onstraints across these sub domains. It is then possible to solve for the coupled system of Lagrange multiplier
quations only, which is a smaller system compared to the continuous unbroken formulation. The local solution
n the sub domains is obtained independently of each other. The connection between sub domains is ensured by
he Lagrange multipliers that act as local boundary conditions. This process reduces the computational burden
f the problem in the sense that it is less demanding in terms of required memory and computational time,
ithout compromising on the accuracy of the results. Over the last decades, many variants of DD methods have
een developed, for example, hybrid method [1–3], Steklov–Poincaré method [4,5], FETI method [6,7], mortar

method [8]. The differentiating factor between all these methods is the choice of discretization of the Lagrange
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multiplier space, and whether the Lagrange multipliers act as Dirichlet or Neumann boundary conditions. The
hybrid methods are perhaps the earliest implementation of DD methods [9], and were developed for conforming
mesh elements. The Steklov–Poincaré methods take a different approach, where they develop a Dirichlet to Neumann
operator for sub domain boundaries that is used to impose the continuity across mesh elements. FETI methods were
developed to deal with sub domains with non-matching grids on their interface [10], and the mortar methods can
have different discretization methods on different sub domains [11]. In case of matching interface conditions, all
the methods result in the same discretization. A comprehensive discussion of these methods is given in [12,13].
The two main challenges for DD methods are: (i) to find a subset of suitable finite element spaces such that the
system matrices are not singular, i.e. they do not produce spurious kinematic modes [14], especially with respect
to the trace spaces of the Lagrange multipliers; and (ii) how to efficiently solve the global system of Lagrange
multiplier equations which can become large for practical applications and are characterized by high condition
number. The primary objective of this paper addresses the first challenge where we want to show that the algebraic
dual spaces introduced in [15], for 3D hexahedron elements, can be used with a DD formulation for solving Darcy
flow. In this paper, we use the finite element spaces developed for the mimetic spectral element method in [15–18].
While conventional finite element formulations only use nodal degrees of freedom, mimetic methods assign the
degrees of freedom to geometric objects. In this way there will be degrees of freedom associated to nodes, edges,
surfaces, and volumes of the mesh. These degrees of freedom are associated to the whole geometric object and
not just to a particular location in the object. The novel aspect of this paper is glueing together surface degrees
of freedom between neighbouring sub domains using algebraic dual spaces. In this paper, we only use conforming
mesh interfaces, and therefore we use a hybrid based DD formulation.

It is shown that the use of dual spaces results in a sparse, metric-free representation for the divergence constraint
on the velocity, the pressure gradient term, and the continuity constraint across the sub domain, even for high order
spectral element methods. We also see that the continuity constraints are local to the boundary face of the adjoining
sub domain. In this work we use a dual space construction similar to the one in [8], but different in terms of finite
element used to construct the primal spaces.

In this paper we use 3D hexahedron spectral elements of order N = 1, 2, 3 and demonstrate the advantage of
using algebraic dual spaces with the DD formulation, using two test cases. The first test case is a manufactured
solution taken from [19] on an arbitrarily deformed smooth domain. Using this case we first show that the DD
formulation gives the same solution as the continuous formulation, and requires shorter simulation times. It is
observed that the speed-up in simulation time is more in case of large problems. We also show optimal rates of
convergence upon mesh refinement. The second test case is a benchmark reservoir modelling test case SPE10 [20]
that demonstrates the use of this formulation on a practical application. The purpose of this work is threefold: (i)
to demonstrate that the dual spaces can be extended to the framework of DD methods without compromising on
accuracy of the results, (ii) the use of dual spaces is more efficient in a DD formulation in terms of simulation time,
and (iii) to show the applicability of the method for industrial benchmark problems such as the SPE10 case.

This paper is structured as follows: In Section 2 we define the broken Sobolev spaces for the DD formulation.
In Section 3 we define the finite element spaces. In Section 4 we derive the weak formulation of this problem for
the DD method. The discrete formulation for this problem and the solution steps are also described in this section.
In Section 5 we present the results for the two test cases, (i) the manufactured test case from [19], and (ii) the
benchmark test case SPE10 [20]. We draw conclusions and discuss the scope for future work in Section 6.

2. Broken Sobolev spaces

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω . The equations for the Darcy problem in the
omain Ω are given by{

u + K grad p = 0
div u = f with

⎧⎨⎩ u · n = û on ΓN

p = p̂ on ΓD

ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = ∂Ω
, (1)

here u is the velocity vector field, K is the symmetric, positive definite permeability tensor, p is the pressure, f
s the given right hand side term, n is the outward unit normal vector, û is the given velocity boundary condition
mposed on Neumann boundary ΓN and p̂ is the pressure boundary condition imposed on the Dirichlet boundary
D .
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Let L2 (Ω) be the space of square integrable functions and [L2 (Ω)]3 the space of square integrable vector fields
n 3D, and H 1 (Ω), H (div;Ω) be the Hilbert spaces defined as

H 1 (Ω) :=
{

p ∈ L2 (Ω) : grad p ∈ [L2 (Ω)]3
}

H (div;Ω) :=
{
v ∈ [L2 (Ω)]3

: div v ∈ L2 (Ω)
} .

he trace spaces H 1/2 (∂Ω) and H−1/2 (∂Ω) are dual to each other, and defined as

H 1/2 (∂Ω) :=
{
λ : ∃ p ∈ H 1 (Ω) s.t. λ = p|∂Ω

}
H−1/2 (∂Ω) := {µ : ∃ v ∈ H (div;Ω) s.t. v · n|∂Ω = µ}

.

Let Ω be broken into T non-overlapping open sub domains Mi ⊂ Ω with Lipschitz boundary ∂Mi , i = 1 , . . . , T ,
such that

Ω =

⋃
i=1,... ,T

Mi and M i

⋂
M j = ∅ for i ̸= j . (2)

et ΩT be the set of sub domains, and ∂ΩT be the set of boundaries of these sub domains defined as

ΩT = {Mi }i=1,... ,T ∂ΩT = {∂Mi }i=1,... ,T .

e define the broken Sobolev spaces for the set of sub domains ΩT as

L2 (ΩT ) :=

∏
M∈ΩT

L2 (M) ,

H (div;ΩT ) :=

∏
M∈ΩT

H (div ;M) ,

H−1/2 (∂ΩT ) :=

∏
Γ∈∂ΩT

H−1/2 (Γ ) .

The boundary interface between two domains Mi and M j will be denoted by
◦

Γ i j , such that
◦

Γ i j = ∂Mi

⋂
∂M j , for 1 ≤ i < j ≤ T ,

and the set of these interfaces as
◦

Γ =

{
◦

Γ i j

}
1≤i< j≤T

.

The interface between a sub domain Mi and boundary of the domain is denoted by

Γ∂Ω,i =

{
γi = ∂Mi

⋂
∂Ω for 1 ≤ i ≤ T

}
.

and the collection of all such interfaces is given by Γ∂Ω =
{
Γ∂Ω,i

}
1≤i≤T . The combined set of internal,

◦

Γ , and
boundary, Γ∂Ω , interfaces is given by

Γ =
◦

Γ ∪ Γ∂Ω .

We define the interface space as

H 1/2 (
Γ

)
:=

{
λ ; ∃ pi ∈ H 1(Mi ) , p j ∈ H 1(M j )

⏐⏐ pi |∂Mi ∩∂M j
= p j

⏐⏐
∂Mi ∩∂M j

= λ
}
. (3)

3. Finite element spaces

We will use the definition of finite element (FE) in terms of the triplet Ω , V ,N , where Ω is a compact, connected
Lipschitz domain; V is a finite dimensional linear vector space of scalar or vector fields; N is a set of linear
functionals acting on elements of V , also known as local degrees of freedom. Furthermore, there exists a basis Ψ
in V , such that

N k (
Ψ k)

= δ , 1 ≤ i, j ≤ d ,
i j i j V

3
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where dV is the dimension of the linear vector space, and k is the dimension of the geometric object (nodes, line
segments, surfaces or volumes) associated with the FE, on which N k

i is defined. The degrees of freedom are defined
as integrals of the function over the geometric object associated with the FE, for eg. see (9) and (12).

We can represent any p ∈ V as

p(x) =

dV∑
i=1

N k
i (p)Ψ k

i (x) .

o simplify the notation, we will write the basis functions as row vectors and degrees of freedom as column vectors

Ψ k (x) =
(
Ψ k

1 (x) Ψ k
2 (x) . . . Ψ k

dV
(x)

)
and N k(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

N k
1 (p)

N k
2 (p)

...

N k
dV−1(p)

N k
dV

(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, any element p ∈ V can be represented as

p(x) = Ψ k (x)N k (p) . (4)

3.1. The algebraic dual space

Definition 1. We define the dual degrees of freedom and the dual basis functions as [15]: For α ∈ Ṽ

Ñ 3−k (α) := M(k)N k (α) , (5)

Ψ̃ 3−k(x) := Ψ k(x)
(
M(k))−1

, (6)

where M(k) is the mass matrix associated with Ψ k(x) basis, M(k)
=

∫
Ω Ψ k (x)⊺ Ψ k (x) dΩ .

Remark 1. The FE constructed in [15] are associated to the geometric objects of the mesh, i.e. points, line
segments, surfaces, and volumes, with geometric dimensions k = 0, 1, 2, 3 respectively. The dimension of the
geometric object, k, will be denoted as a superscript on the basis functions and degrees of freedom as Ψ k , N k .

In case of dual FE, the geometric dimensions are associated to geometric dual objects, therefore dimension
(3 − k). The basis functions and degrees of freedom are then denoted as Ψ̃ 3−k, Ñ 3−k , respectively.

Corollary 1. The duality pairing is the bilinear form between an element of a function space and an element
of its dual space. Let p, q be functions expanded in terms of primal and dual FE spaces V, Ṽ respectively. Their
duality pairing is then defined as

⟨q, p⟩ :=

∫
Ω

q (x) p (x) dΩ = Ñ 3−k (q)⊺
(∫

Ω

Ψ̃ 3−k (x)⊺ Ψ k (x) dΩ
)
N k (p) = Ñ 3−k (q)⊺ N k (p) , (7)

where the angled brackets denote the duality pairing. In (7), we see that the duality pairing between the elements of
the primal and the dual spaces is equal to the vector dot product between the expansion coefficients of the primal
and the dual space. It does not require calculation of dense mass matrices.

3.2. FE spaces for continuous Galerkin formulation

In this section we describe the construction of FE spaces for spectral element methods developed in [16–18],
and the algebraic dual spaces developed in [15].

Consider the 1D domain Ω̂ = [−1, 1]. Let ξi , for i = 0, . . . , N be the Gauss–Lobatto–Legendre nodes of
polynomial degree N defined on Ω̂ . Let h , for i = 0, . . . , N be the set of Lagrange polynomials through the GLL
i

4
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nodes. We define the edge polynomials ei , for i = 1, . . . , N of polynomial degree N − 1 as

ei := −

i−1∑
j=0

dh j

dξ
. (8)

he basis ei satisfies the Kronecker-delta property in an integral sense, i.e.∫ ξ j

ξ j−1

ei dξ = δi j .

n the following section we will use the tensor product of 1D Lagrange polynomials, hi , and the edge polynomials,
e j to form FE spaces for a 3D hexahedron.

Now, consider the reference domain Ω̂ = [−1, 1]3. Let ξi , η j , ζk , i, j, k = 0, . . . , N , be the GLL nodes in the
ξ, η, ζ - directions. Let sξi , sηj , sζk , i, j, k = 1, . . . , N 2(N + 1) be the surfaces of the GLL mesh with unit normal in
ξ, η, ζ direction, respectively. Let vi , i = 1, . . . , N 3 be the volumes of the GLL mesh.

For an arbitrary domain Ω ⊂ R3 let Φ be the diffeomorphism between the reference domain Ω̂ = [−1, 1]3 and
Ω , such that Ω = Φ

(
Ω̂

)
. For any scalar function p̂ ∈ V

(
Ω̂

)
, p ∈ V (Ω) is given by p (x) = p̂ ◦ Φ−1 (x). In

Cartesian coordinates, we introduce the Jacobian tensor J as

J :=

⎡⎢⎢⎣
∂Φx

∂ξ
∂Φx

∂η
∂Φx

∂ζ

∂Φy

∂ξ
∂Φy

∂η
∂Φy

∂ζ

∂Φz

∂ξ
∂Φz

∂η
∂Φz

∂ζ

⎤⎥⎥⎦ ,

here, Φx ,Φ y,Φz
− are x, y, z components of the map Φ.

.2.1. Finite element space D (Ω) ⊂ H (div;Ω)
For any vector field q ∈ D(Ω̂ ) we introduce the local degrees of freedom as integral over the surfaces of the

LL mesh as⎧⎪⎪⎪⎨⎪⎪⎪⎩
N 2,ξ

i (q) :=
∫

sξi

(
q (ξi , η, ζ ) · eξ

)
dη dζ i = 1, . . . , N 2(N + 1)

N 2,η
j (q) :=

∫
sηj

(
q

(
ξ, η j , ζ

)
· eη

)
dξ dζ j = 1, . . . , N 2(N + 1)

N 2,ζ
k (q) :=

∫
sζk

(
q (ξ, η, ζk) · eζ

)
dξ dη k = 1, . . . , N 2(N + 1)

,

here we use ′2′ in the superscript to denote that degrees of freedom are sampled over surfaces. It can be shown
hat the basis function that satisfy the Kronecker-delta property are given by⎧⎪⎪⎨⎪⎪⎩

Ψ̂
2,ξ
i, j,k (ξ, η, ζ ) := hi (ξ) e j (η) ek (ζ ) eξ i = 0, . . . , N ; j, k = 1, . . . , N

Ψ̂
2,η
i, j,k (ξ, η, ζ ) := ei (ξ) h j (η) ek (ζ ) eη i, k = 1, . . . , N ; j = 0, . . . , N

Ψ̂
2,ζ
i, j,k (ξ, η, ζ ) := ei (ξ) e j (η) hk (ζ ) eζ i, j = 1, . . . , N ; k = 0, . . . , N

.

or ease of notation, we collect the basis functions in the matrix as

Ψ̂ 2 (ξ) :=

⎡⎢⎣ Ψ̂
2,ξ
1 (ξ) . . . Ψ̂

2,ξ
N (N+1)2 (ξ)

Ψ̂
2,η
1 (ξ) . . . Ψ̂

2,η
N (N+1)2 (ξ)

Ψ̂
2,ζ
1 (ξ) . . . Ψ̂

2,ζ
N (N+1)2 (ξ)

⎤⎥⎦
=

⎡⎣ Ψ̂ 2
ξ (ξ) 0 0

0 Ψ̂ 2
η (ξ) 0

0 0 Ψ̂ 2
ζ (ξ)

⎤⎦ .

n case of an arbitrary domain Ω ⊂ R3, the local degrees of freedom are introduced as

N 2(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N 2,ξ

i (q) :=
∫
Φ

(
sξi

) q (x) · eξdS i = 1, . . . , N 2(N + 1)

N 2,η
j (q) :=

∫
Φ

(
sηj

) q (x) · eηdS j = 1, . . . , N 2(N + 1)

N 2,ζ
k (q) :=

∫ (
ζ
) q (x) · eζdS k = 1, . . . , N 2(N + 1)

, (9)
Φ sk

5
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Fig. 1. Sparsity plots for the global mass matrix, for total number of elements, K = 2 × 2 × 2, N = 2: (i) Left: For the continuous Galerkin
formulation, (ii) Right: For the DD formulation..

and the basis functions that satisfy the Kronecker-delta property are given by

Ψ 2 (x) =
J−1

◦ Φ−1 (x)
detJ (x)

Ψ̂ 2
◦ Φ−1 (x) .

For two elements p, q ∈ D (Ω) the L2-inner product is given by

( p, q) =

∫
Ω

p (x) q (x) dΩ = N 2 ( p)⊺
(∫

Ω

Ψ 2 (x)⊺ Ψ 2 (x) dΩ
)
N 2 (q) = N 2 ( p)⊺ M(2)N 2 (q) ,

here M(2) is the mass matrix associated with the D (Ω) basis functions.
In case of a given symmetric positive definite anisotropic tensor K, the weighted inner product is given by(

p,K−1q
)

=

∫
Ω

p (x)K−1(x)q (x) dΩ

= N 2 ( p)⊺
(∫

Ω

Ψ 2 (x)⊺ K−1(x)Ψ 2 (x) dΩ
)
N 2 (q)

= N 2 ( p)⊺ M(2)
K−1N 2 (q) . (10)

In case of multiple elements, the global degrees of freedom and the basis functions are obtained by standard
FE assembly over all the elements. The vector fields in D (Ω) ⊂ H (div;Ω) have a continuous normal component
and discontinuous tangential components between the neighbouring elements. The degrees of freedom are defined
at faces and therefore some elements share the same boundary face. The global matrix is NOT a block diagonal
matrix.

In Fig. 1 on the left plot we show the sparsity plot for the mass matrix using continuous formulation, for the
domain shown in the left plot of Fig. 2, with number of elements = 2 × 2 × 2 and polynomial order N = 2.
This matrix is a global (non block-diagonal) matrix, and evaluating the inverse of this matrix is computationally
expensive.

In the right plot, we show the sparsity structure of global weighted mass matrix of a DD formulation (discussed
in Section 3.3, see (23)) with the same topological discretization. We see that in this case the mass matrix is block
diagonal. The inverse of each of these blocks can be evaluated separately, i.e. independently, of each other, reducing
the computational cost.
6
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Fig. 2. Test domain with total number of elements = 3 × 3 × 3. Left: reference domain, Ω̂ , Right: domain of the test case, Ω .

3.2.2. The dual space D̃ (Ω)
The definition for the dual space D̃ (Ω), for both single and multiple element case, follow Definition 1, i.e. the

global dual degrees of freedom are obtained by pre multiplying the global primal degrees of freedom by the global
mass matrix and the global dual basis functions are obtained by post multiplying the global primal basis by the
inverse of the global mass matrix.

Definition 2. The degrees of freedom and basis functions for p ∈ D̃ (Ω) are given by

Ñ 1( p) := M(2)N 2( p)

Ψ̃ 1 (x) := Ψ 2 (x)
(
M(2))−1

.

he primal degrees of freedom of D (Ω) are sampled in surfaces, i.e. geometric dimension = 2. In 3D, the geometric
dual of surfaces are edges, i.e. geometric dimension = 1. Therefore, following Remark 1 functions of the dual space
D̃ (Ω) are represented with superscript 1 as Ñ 1, Ψ̃ 1.

In practice we do not explicitly construct the dual basis functions, but only make use of the property of the dual
variables given by Corollary 1.

3.2.3. The finite element space S(Ω ) ⊂ L2 (Ω)
For any polynomial f ∈ S(Ω̂ ) we introduce the local degrees of freedom as integrals evaluated over the volumes

formed by the GLL mesh given by

N 3
(i−1)N 2+( j−1)N+k( f ) :=

∫ ξi

ξi−1

∫ η j

η j−1

∫ ζk

ζk−1

f (ξ, η, ζ ) dξ dη dζ for i, j, k = 1, . . . , N , (11)

here we use the superscript ′3′ to denote that the degrees of freedom are sampled over a volume. The basis
unctions that satisfy the Kronecker-delta property are given by

Ψ̂ 3 (ξ, η, ζ ) =
(
Ψ̂ 3

1 (ξ, η, ζ ) Ψ̂ 3
2 (ξ, η, ζ ) . . . Ψ̂

3
N3 (ξ, η, ζ )

)
,

here,

Ψ̂ 3
(i−1)N2+( j−1)N+k (ξ, η, ζ ) := ei (ξ) e j (η) ek (ζ ) i, j, k = 1, . . . , N .

n case of an arbitrary domain Ω ⊂ R3, we introduce the degrees of freedom as integral of the function over the
apped GLL volume given by

N 3
(i−1)N 2+( j−1)N+k( f ) :=

∫
( ) f (x) dΩ for i, j, k = 1, . . . , N , (12)
Φ v(i−1)N2+( j−1)N+k

7
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and the basis functions that satisfy the Kronecker-delta property are given by

Ψ 3 (x) =
1

detJ (x)
Ψ̂ 3

◦ Φ−1 (x) .

For two elements f, g ∈ S (Ω), the L2-inner product is given by

( f, g) =

∫
Ω

f (x) g (x) dΩ = N 3 ( f )⊺
(∫

Ω

Ψ 3 (x)⊺ Ψ 3 (x) dΩ
)
N 3 (g) = N 3 ( f )⊺ M(3)N 3 (g) , (13)

here M(3) is the mass matrix associated with the S (Ω) basis functions.
In case of multiple elements, the global degrees of freedom and the basis functions are obtained by standard FE

ssembly over all the elements.

.2.4. The dual space S̃ (Ω)
For both single and multiple element case, the definition of the dual space S̃ (Ω) follows Definition 1, i.e. the

lobal dual degrees of freedom are obtained by pre multiplying the global primal degrees of freedom by the global
ass matrix and the global dual basis functions are obtained by post multiplying the global primal basis by the

nverse of the global mass matrix.

efinition 3. The local degrees of freedom and the basis functions for f ∈ S̃ (Ω) are given by,

Ñ 0( f ) := M(3)N 3( f ) (14)

Ψ̃ 0 (x) := Ψ 3 (x)
(
M(3))−1

. (15)

ere the degrees of freedom of the primal space S (Ω) are sampled over volumes, i.e. geometric dimension = 3,
nd in 3D geometric dual of volumes is nodes with geometric dimension = 0. Therefore, following Remark 1, the
unctions of the dual space S̃ (Ω) are denoted with a superscript ‘0’.

Once again these operations are not performed, only the properties of dual elements are used. When we need to
ost process the dual variables to present its solution, we can do this on each sub-domain independently.

.2.5. The trace space Db (∂Ω) ⊂ H−1/2 (∂Ω)
Let the restriction of vector fields in D (Ω) to the domain boundary ∂Ω be denoted by Db (∂Ω). Let N2 be the

nclusion matrix that maps boundary degrees of freedom to the global degrees of freedom. It is a sparse matrix
hich only contains the non-zero values −1 and 1. The subscript ′2′ indicates that it maps boundary degrees of

reedom associated to the surfaces with geometric dimension 2, to the global degrees of freedom.
The restriction of q ∈ D (Ω) to the boundary ∂Ω , is given by

(q · n) (x) = Ψ 2(x)N2N⊺
2N

2(q) , for x ∈ ∂Ω . (16)

ee Appendix, Example 1 on how to construct N2. The basis functions Ψ 2
b (x) = Ψ 2(x)N2 form a basis for the

race space Db (∂Ω) and the degrees of freedom B2 (q) = N⊺
2N 2(q) the associated degrees of freedom. The mass

atrix of this trace space is given by

M(2)
b =

∫
∂Ω

Ψ 2
b (x)

⊺
Ψ 2

b (x) dΓ = N⊺
2M

(2)N2 . (17)

.2.6. The dual trace space D̃b (∂Ω) ⊂ H 1/2 (∂Ω)

efinition 4. Using Definition 1, the degrees of freedom and the basis functions for φ̂ ∈ D̃b (∂Ω) are defied as

B̃0
(
φ̂
)

= M(2)
b B2

(
φ̂
)

=

∫
∂Ω

Ψ 2
b (x) φ̂ (x) dΓ

Ψ̃ 0(x) = Ψ 2(x)M(2)−1
.
b b b

8
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3.2.7. The divergence operator, E3,2

The divergence operator on vector functions from the space D (Ω) is defined as: div : D (Ω) ↦→ S (Ω). For any
function u ∈ D (Ω), we have

div u = Ψ 3E3,2N 2 (u) , (18)

here E3,2 is the discrete representation of the divergence operator acting on the degrees of freedom. For the
onstruction of E3,2, see Example 2 in Appendix. The divergence operator changes the degrees of freedom and
he basis functions to that of S (Ω). The divergence operator changes the surface degrees of freedom, geometric
imension = 2, to volume degrees of freedom, geometric dimension = 3, and is therefore denoted with superscript
3, 2). The incidence matrix E3,2 is a sparse, metric free, topological and does not depend on the shape and size of
he domain. For an arbitrarily shaped element the degrees of freedom and the basis functions will transform, but
he incidence matrix remains the same, as long as the topology of the connections between the surfaces and the
olumes remain the same.

.2.8. The weak gradient acting on functions in dual space S̃ (Ω)× D̃b (∂Ω)
The elements of S̃ (Ω) lack regularity across the elements. Therefore, we define the weak gradient operation as

efinition 5. We define weak gradient operation as g̃rad : S̃ (Ω) × D̃b (∂Ω) ↦→ D̃ (Ω), such that, for
(
s, ŝ

)
∈

S (Ω)× D̃b (∂Ω)∫
Ω

g̃rad
(
s, ŝ

)
qdΩ := −

∫
Ω

s (divq) dΩ +

∫
∂Ω

ŝ (q · n) dΓ ∀ q ∈ D (Ω) . (19)

Since the gradient maps into D̃ (Ω), the left hand side is a duality pairing in D̃ (Ω)× D (Ω). The first term on
he right hand side is a duality pairing in S̃ (Ω) × S (Ω), and the boundary integral term is the duality pairing in
D̃b (∂Ω)× Db (∂Ω). Therefore, using Corollary 1, we can write (19) as

N 2 (q)⊺ Ñ 1 (
g̃rad

(
s, ŝ

))
= −N 2 (q)⊺ E3,2⊺Ñ 0 (s)+ N 2 (q)⊺ N2B̃0 (

ŝ
)

∀ N 2 (q) ∈ D (Ω) .

s the above equation needs to hold for all q ∈ D (Ω), we have

Ñ 1 (
g̃rad

(
s, ŝ

))
= −E3,2⊺Ñ 0 (s)+ N2B̃0 (

ŝ
)
, (20)

o the weak gradient can also be represented as a topological operation on the dual degrees of freedom, i.e. without
ass matrices and only with sparse, metric-free operators and their operation on degrees of freedom. The gradient

f a function in dual space is then expressed as,

g̃rad
(
s, ŝ

)
= Ψ̃ 1 (x)

(
−E3,2⊺Ñ 0 (s)+ N2B̃0 (

ŝ
))
.

3.3. Broken finite element spaces

In this section we use finite element spaces introduced in Section 3.2 to define broken FE spaces.

3.3.1. Finite element space D (ΩT ) ⊂ H (div;ΩT )

For the set of domains ΩT we define the finite element space D (ΩT ) ⊂ H (div;ΩT ) as

D (ΩT ) :=

∏
M∈ΩT

D (M) . (21)

For any two functions u, v ∈ D (ΩT ), and symmetric, positive definite permeability tensor K, the weighted L2-inner
product is given by

(u, v)K−1 =

∫
Ω

u⊺K−1v dΩ =

T∑
i=1

∫
Mi

u⊺K−1v dM =

T∑
i=1

N 2
i (u)

⊺M(2)
K−1

i
N 2

i (v) = N 2 (u)⊺M(2)
K−1,hyb

N 2 (v) ,
(22)

9
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where, N 2 (u) and N 2 (v) are the column vectors of assembled expansion coefficients of all the sub domains, and
he mass matrix M(2)

K−1
hyb

is given as

M(2)
K−1,hyb

=

⎡⎢⎢⎢⎢⎣
M(2)

K−1,1

M(2)
K−1,2

. . .

M(2)
K−1,T

⎤⎥⎥⎥⎥⎦ , with, M(2)
K−1,i

=

∫
Mi

Ψ 2
i (x)

⊺K−1 (x)Ψ 2
i (x) dM ,

(23)

here Ψ 2
i (x) are the basis functions associated to the finite element space D (Mi ).

The sparsity plot of the mass matrix is shown in the right plot of Fig. 1. The inverse of this matrix can be
valuated efficiently by evaluating the inverse of the individual blocks.

.3.2. Finite element space S (ΩT ) ⊂ L2 (ΩT )

For the set of domains ΩT we define the finite element space S (ΩT ) ⊂ L2 (ΩT ) = L2 (Ω) as

S (ΩT ) :=

∏
M∈ΩT

S (M) . (24)

or elements p, q ∈ S (ΩT ), the L2- inner product is given by

(p, q) =

∫
Ω

p⊺q dΩ =

T∑
i=1

∫
Mi

p⊺q dM =

T∑
i=1

N 3
i (p)

⊺ M(3)
i N 3

i (q) = N 3 (p)
⊺M(3)

hybN
3 (q) , (25)

here N 3 (p), N 3 (q) are the column vectors of assembled expansion coefficients of all the sub domains, and the
ass matrix M(3)

hyb is the block diagonal mass matrix given by

M(3)
hyb =

⎡⎢⎢⎢⎣
M(3)

1
M(3)

2
. . .

M(3)
T

⎤⎥⎥⎥⎦ , with, M(3)
i =

∫
Mi

Ψ 3
i (x)

⊺
Ψ 3

i (x) dM , (26)

here Ψ 3
i (x) are the basis associated with the finite element space S (Mi ).

.3.3. Finite dimensional space Db (∂ΩT ) ⊂ H−1/2 (∂ΩT )

For the set of boundaries ∂ΩT we define the trace space Db (∂ΩT ) ⊂ H−1/2 (∂ΩT ) as

Db (∂ΩT ) :=

∏
M∈ΩT

Db (∂M) . (27)

.3.4. Finite dimensional space S̃ (ΩT ) ⊂ L2 (ΩT )

The algebraic dual space of S (ΩT ) is denoted by S̃ (ΩT ) and defined as

S̃ (ΩT ) :=

∏
M∈ΩT

S̃ (M) . (28)

et p, q ∈ S (ΩT )× S̃ (ΩT ), then the duality pairing between the functions is given by

⟨q, p⟩ =

T∑
i=1

∫
Mi

q⊺ p dM =

T∑
i=1

Ñ 0
i (q)

⊺N 3
i (p) = Ñ 0 (q)

⊺N 3 (p) , (29)

˜0 3
here, N (q) ,N (p) are the column vectors of assembled expansion coefficients.

10
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3.3.5. Finite dimensional space D̃b
(
Γ

)
⊂ H 1/2

(
Γ

)
Let Db (γ ) be the space of restriction of basis of D (ΩT ) to γ , for γ ∈ Γ , and D̃b (γ ), be its algebraic dual

space.
Then the finite element space D̃b

(
Γ

)
⊂ H 1/2

(
Γ

)
is defined as

D̃b
(
Γ

)
=

∏
γ∈Γ

D̃b (γ ) . (30)

et u ∈ D (ΩT ) be a vector field, and u · n ∈ Db (∂ΩT ) its restriction on the sub domain boundaries. For functions
(λ, u · n) ∈ D̃b

(
Γ

)
× Db (∂ΩT ), the duality pairing is given by

⟨λ, u · n⟩ =

T∑
i=1

∫
∂Mi

λ⊺ (u · n) dΓ =

T∑
i=1

B̃0
i (λ)

⊺ N2
⊺
i N

2
i (u) = B̃0 (λ)⊺ N2

⊺N 2 (u) , (31)

here B̃0 (λ), N 2 (u) are the column vector of assembled expansion coefficients over all sub domains and N⊺
2 is

the assembly of the inclusion matrix over all the interface and sub domain boundaries. Note that N2 is not block
diagonal.

In this paper, we have used the same topological sub domain discretization, and therefore N2i is the same for
all the sub domains and has to be constructed only once, even if the sub domains are arbitrarily deformed.

3.3.6. The divergence operator for broken finite element spaces
Let q, u ∈ S̃ (ΩT ) × D (ΩT ) be the elements of the broken finite dimensional spaces. Then the divergence

operation on the vector field u is defined as, div : D (ΩT ) −→ S (ΩT ), such that

⟨q , div u⟩ :=

T∑
i=1

∫
Mi

q div u dM =

T∑
i=1

Ñ 0
i (q)

⊺E3,2
i N 2

i (u) = Ñ 0 (q)
⊺E3,2

hybN
2 (u) ∀q ∈ S̃ (ΩT ) , (32)

here, Ñ 0 (q) ,N 2 (u) are the column vectors of the assembled expansion coefficients, and E3,2
hyb is the assembled

ivergence operator. If E3,2
i is the discrete representation of divergence operator on the domain Mi , then we have

E3,2
hyb =

⎡⎢⎢⎢⎣
E3,2

1
E3,2

2
. . .

E3,2
T

⎤⎥⎥⎥⎦ . (33)

f the topology of sub domain discretizations is also the same, see Example 2, then we have that E3,2
1 = E3,2

2 =

. . = E3,2
T . In this paper we have only used the case with the same topology for all the sub domains, therefore

E3,2
hyb =

⎡⎢⎢⎢⎣
E3,2

o
E3,2

o
. . .

E3,2
o

⎤⎥⎥⎥⎦ , (34)

here E3,2
o is the topological divergence operator for any of the sub domains.

Here note that E3,2
o is constructed only once and used for all the sub domains, even if the sub domains are

ifferently deformed.

.3.7. The gradient of functions in S̃ (ΩT )× D̃b
(
Γ

)
Let a scalar field, p, and its boundary values, p̂ be expressed in terms of dual spaces. The gradient operation is

hen defined as: For functions (p , p̂) ∈ S̃ (ΩT )× D̃b
(
Γ

)
, g̃rad : S̃ (ΩT )× D̃b

(
Γ

)
→ D̃ (ΩT ), such that∫

g̃rad
(

p , p̂
)

u dΩ :=

T∑ ∫
g̃rad

(
p , p̂

)
u dM
Ω i=1 Mi

11
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=

T∑
i=1

(
−

∫
Mi

p (div u)+

∫
∂Mi

p̂ (u · n) dΓ
)

∀u ∈ D (ΩT ) . (35)

In (32) the divergence operator is block diagonal, as can be seen in (33). However, the gradient operator in (35)
is not block diagonal because p̂ ∈ D̃b

(
Γ

)
has global support and couples the gradients on all the sub domains

ogether.
For the pair of

(
p , p̂

)
∈ S̃ (ΩT )× D̃b

(
Γ

)
the weak H 1-norm is defined as

∥p∥
2
H1(Ω)

:= ∥p∥
2
L2(Ω)

+ ∥g̃rad
(

p, p̂
)
∥

2
L2(Ω)

=

T∑
i=1

{
∥p∥

2
L2(Mi )

+ ∥g̃rad
(

p, p̂
)
∥

2
L2(Mi )

}
. (36)

. The Darcy equations

In this section we will use the broken FE spaces defined in Section 3.3 to derive the algebraic formulation for
he DD formulation of the Darcy problem.

Before proceeding further we will first use the FE spaces defined in Section 3.2 to derive the continuous Galerkin
ormulation of Darcy problem, for comparison.

.1. Continuous formulation

The Lagrange functional for the continuous formulation of Darcy equations is given by: For given f ∈ L2 (Ω),
p̂ ∈ H 1/2 (ΓD), û ∈ H−1/2 (ΓN ), and the unknowns u ∈ H (div;Ω), p ∈ L2 (Ω)

L
(
u, p; f, p̂, û

)
=

∫
Ω

1
2

u⊺K−1u dΩ −

∫
Ω

p (div u − f ) dΩ +

∫
ΓD

p̂ (u · n) dΓ , (37)

here on the right hand side, the first term is the kinetic energy term, the second term is the constraint on divergence
f velocity, and the last term weakly imposes the Dirichlet boundary conditions. The Neumann boundary conditions
re implemented strongly in the trial space.

The discrete variational formulation for the above functional is given by [15, §5.2]: For given f ∈ L2 (Ω),
p̂ ∈ H 1/2 (ΓD), find u ∈ D (Ω), p ∈ S̃ (Ω), such that{ (

v,K−1u
)

− ⟨div v, p⟩ = −
⟨
v · n, p̂

⟩
∀v ∈ D (Ω)

− ⟨q, div u⟩ = − (q, f ) ∀q ∈ S̃ (Ω)
. (38)

Using algebraic dual spaces (defined in Section 3.2) the discrete formulation is given by[
M(2)

K−1 −E3,2⊺

−E3,2 0

] [
N 2 (u)
Ñ 0 (p)

]
=

[
−N2B̃0

(
p̂
)

−N 3 ( f )

]
, (39)

where the inner products and duality pairing are evaluated using FE spaces for continuous Galerkin formulation as
described in Section 3.2. The mass matrix M(2)

K−1 is from (10) and the incidence matrix E3,2 is from (18).
The system (39) is solved by Uzawa algorithm, where we first solve for the unknowns Ñ 0 (p) and then for the

unknowns N 2 (u) as(
E3,2M(2)

K−1

−1
E3,2⊺

)
Ñ 0 (p) =

(
N 3 ( f )+ E3,2M(2)

K−1

−1
N2B̃0 (

p̂
))
, (40)

M(2)
K−1N 2 (u) =

(
E3,2⊺Ñ 0 (p)− N2B̃0 (

p̂
))
. (41)

The left hand side matrices in the above equations are symmetric, positive definite and are therefore solved using
Cholesky algorithm. Further details of computational implementation are given in Section 4.1.1.

In this formulation, no domain decomposition is applied and we will refer to this formulation from now on as
the continuous formulation.

4.1.1. Computational implementation
The equations, (40) and (41), are solve by the Uzawa algorithm, i.e. first for degrees of freedom Ñ 0 (p), and then

for degrees of freedom N 2 u , using the Cholesky algorithm. The first step is to construct all the global matrices
( )

12
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Algorithm 1: Algorithm for solving the continuous formulation (39)

for all elements do
construct M(2)

K−1,i
end
construct E3,2

i

construct global M(2)
K−1 from assembly of M(2)

K−1,i

onstruct global E3,2 from assembly of E3,2
i

valuate and save decomposition of global M(2)
K−1

olve M(2)
K−1

−1
E3,2⊺ using MATLAB Cholesky solver

valuate E3,2
(
M(2)

K−1

−1
E3,2⊺

)
valuate and save decomposition of

(
E3,2M(2)

K−1

−1
E3,2⊺

)
olve (40) using MATLAB Cholesky solver
olve (41) using MATLAB Cholesky solver

on the left hand side and the right hand side of (39). In the next step, we evaluate the Cholesky decomposition of
the global matrix M(2)

K−1 using MATLAB decomposition function [21]. It creates a reusable matrix decomposition,

that is used again to solve (41). Then we solve M(2)
K−1

−1
E3,2⊺ from using the saved decomposition. Next, we

valuate E3,2
(
M(2)

K−1

−1
E3,2⊺

)
by matrix multiplication of the global incidence matrix E3,2 with the result of the

ast step. Lastly, we evaluate the Cholesky decomposition of the matrix
(
E3,2M(2)

K−1

−1
E3,2⊺

)
using the MATLAB

ecomposition function. We use this decomposed matrix to solve (40), for unknowns Ñ 0 (p). Lastly, we use the
ecomposed matrix of M(2)

K−1 and the value of Ñ 0 (p) evaluated in the previous step to solve (41).

.2. The DD formulation

For the DD formulation of (1) we break the domain Ω into T sub domains, see (2), and we use the Lagrange
ultipliers λ to enforce the required continuity across the sub domains. The weak formulation for (1) is then

btained using the Lagrange functional given by: For given f ∈ L2 (Ω), p̂ ∈ H 1/2 (ΓD), û ∈ H−1/2 (ΓN ) and the

nknowns u ∈ H (div;ΩT ), p ∈ L2 (ΩT ), λ ∈ H 1/2
(

◦

Γ ∪ ΓN

)

L
(
u, p, λ; f, p̂, û

)
=

T∑
i=1

{∫
Mi

1
2

u⊺K−1u dΩ −

∫
Mi

p (div u − f ) dΩ +

∫
∂Mi \(ΓD∪ΓN )

λ (u · n) dΓ

+

∫
∂Mi ∩ΓN

λ
(
u · n − û

)
dΓ +

∫
∂Mi ∩ΓD

p̂ (u · n) dΓ
}
, (42)

here, on the right hand side, the first term is the kinetic energy term, the second term imposes the constraint on
ivergence of velocity field u, the third term imposes continuity of flux across the sub domain faces, the fourth
erm imposes the Neumann boundary condition and the fifth term imposes the Dirichlet boundary conditions.

Note that, in the third term, upon assembly over an interface Γi j , we get∫
γi j

λ
(
u · ni + u · n j

)
dγ = 0 , for 1 ≤ i < j ≤ T ,

here the orientation of the unit outward normals have to be taken into account. Also see Example 1, in Appendix.
The optimality conditions at the continuous level for the Lagrange functional (42) are given by: For given

f ∈ L2 (Ω), p̂ ∈ H 1/2 (ΓD), û ∈ H−1/2 (ΓN ), find u ∈ H (div;ΩT ), p ∈ L2 (ΩT ), λ ∈ H 1/2
(

◦

Γ ∪ ΓN

)
, such
13
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that ⎧⎪⎪⎨⎪⎪⎩
(
v,K−1u

)
− (div v, p) + (v · n, λ) = −

(
v · n, p̂

)
∀v ∈ H (div;ΩT )

− (q, div u) = − (q, f ) ∀q ∈ L2 (ΩT )

(µ, u · n) =
(
µ, û

)
∀µ ∈ H 1/2

(
◦

Γ ∪ ΓN

) . (43)

The finite dimensional problem, using broken FE spaces from Section 3.3, is then given by: For given f ∈ L2 (Ω),

p̂ ∈ H 1/2 (ΓD), û ∈ H−1/2 (ΓN ), find u ∈ D (ΩT ), p ∈ S̃ (ΩT ), λ ∈ D̃b

(
◦

Γ ∪ ΓN

)
, such that⎧⎪⎪⎨⎪⎪⎩

(
v,K−1u

)
− ⟨div v, p⟩ + ⟨v · n, λ⟩ = −

(
v · n, p̂

)
∀v ∈ D (ΩT )

− ⟨q, div u⟩ = − ⟨q, f ⟩ ∀q ∈ S̃ (ΩT )

⟨µ, u · n⟩ =
⟨
µ, û

⟩
∀µ ∈ D̃b

(
◦

Γ ∪ ΓN

) . (44)

In (44) we see that all the terms except the weighted inner product term,
(
v,K−1u

)
, are the duality pairing

between the functions of the primal and the dual space, where we can use Corollary 1. Consequently, these terms
do not require evaluation of (dense) mass matrices. The only matrices associated with these terms are the sparse,
metric-free divergence operator E3,2

hyb, or the inclusion matrix N2 with non-zero entries −1 and +1, that have to be
evaluated only once and remain the same for each sub domain. See also (45).

4.3. The algebraic formulation

The bilinear forms for the left hand side terms of (44) are evaluated as(
v,K−1u

) (22)
= N 2 (v)

⊺M(2)
K−1,hyb

N 2 (u) ,

⟨q , div u⟩
(32)
= Ñ 0 (q)

⊺E3,2
hybN

2 (u) ,

⟨µ , u · n⟩
(31)
= B̃0 (µ)

⊺N⊺
2N

2 (u) ,

and the projection of right hand side terms of (44) on finite element spaces are evaluated as

⟨
v · n , p̂

⟩
=

T∑
i=1

N 2
i (v)

⊺N2i

∫
ΓD∩∂Mi

Ψ̃bi (x) p̂ (x) dΓ = N 2 (v)
⊺N2B̃0 (

p̂
)
,

⟨q , f ⟩ =

T∑
i=1

Ñ 0
i (q)

⊺
∫
Ω

Ψ̃ 0
i (x) f (x) dΩ = Ñ 0 (q)

⊺N 3 ( f ) ,

⟨
µ , û

⟩
=

T∑
i=1

B̃0
i (µ)

⊺
∫
ΓN ∩∂Mi

Ψb
2
i (x) û (x) dΓ = B̃0 (µ)

⊺N⊺
2N2B2 (

û
)
.

Using the above relations we can write the discrete formulation for (44) as⎡⎢⎢⎣
M(2)

K−1,hyb
−E3,2

hyb
⊺

N2

−E3,2
hyb 0 0

N⊺
2 0 0

⎤⎥⎥⎦
⎡⎢⎣ N 2 (u)

Ñ 0 (p)

B̃0 (λ)

⎤⎥⎦ =

⎡⎢⎣ −N2B̃0
(

p̂
)

−N 3 ( f )

N⊺
2N2B2

(
û
)

⎤⎥⎦ . (45)

In (45), we see that the matrices E3,2
hyb, N2, are sparse and metric-free, i.e. only consist of the non-zero entries −1

and 1. By metric-free, we mean independent of the size of the elements, the shape of the elements (orthogonal or
highly curved) or the order of the approximation. All the metric dependence is contained in the basis functions
and therefore in the mass matrix M(2)

K−1,hyb
. Using static condensation (45) can be solved efficiently for the trace

variables B̃0 (λ) only. We first solve for a global system of B̃0 (λ) by(
N⊺

2AhybN2
)
B̃0 (λ) = −B2 (

û
)
+ N⊺

2

(
M(2)

−1

−1
E3,2⊺

hyb

(
E3,2

hybM
(2)

−1

−1
E3,2

hyb
⊺)−1

N 3 ( f )− AhybN2B̃0 (
p̂
))

(46)
K ,hyb K ,hyb
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where,

Ahyb = M(2)
K−1,hyb

−1
− M(2)

K−1,hyb

−1
E3,2

hyb
⊺
(
E3,2

hybM
(2)
K−1,hyb

−1
E3,2

hyb
⊺
)−1

E3,2
hybM

(2)
K−1,hyb

−1
.

The left hand side of (46) can be constructed efficiently by evaluating for each sub domain separately, as

N⊺
2,iAiN2,i = N⊺

2,iM
(2)
K−1,i

−1
N2,i − N⊺

2,iM
(2)
K−1,i

−1
E3,2

i
⊺
(
E3,2

i M(2)
K−1,i

−1
E3,2

i
⊺
)−1

E3,2
i M(2)

K−1,i

−1
N2,i , (47)

and then assembling over all the sub domains. The matrices M(2)
K−1,i

and
(
E3,2

i M(2)
K−1,i

−1
E3,2

i
⊺
)

in (47) are symmetric,
positive definite. We use the Cholesky decomposition of these matrices to evaluate (47). The left hand side of (46)
is also symmetric, positive definite and the λ is solved using Cholesky algorithm. Once the interface variables λ
are solved, the local degrees of freedom in sub domains Mi , i = 1, . . . , T are then evaluated, as(

E3,2
i M(2)

K−1,i

−1
E3,2

i
⊺
)
Ñ 0

i (p) =

(
N 3

i ( f )+ E3,2
i M(2)

K−1,i

−1
N2i

(
B̃0

i

(
p̂
)
+ B̃0

i (λ)
))

(48)

M(2)
K−1,i

N 2
i (u) =

(
E3,2

i
⊺Ñ 0

i (p)− N2i
(
B̃0 (

p̂
)

i + B̃0
i (λ)

))
. (49)

Note that (48) and (49) can be independently solved for each sub domain separately, and this step can be done
in parallel. The interface variables λ serve as boundary conditions, compare with (40) and (41). Further details of
computational implementation are given in Section 4.4.

4.4. Computational implementation

Algorithm 2: Algorithm for solving the DD formulation

construct global E3,2

onstruct global N2,i
or all sub domains do

construct global M(2)
K−1

evaluate Cholesky decomposition of M(2)
K−1 and save

evaluate
(
E3,2M(2)

K−1

−1
E3,2⊺

)
using Cholesky decomposition of M(2)

K−1

evaluate Cholesky decomposition of
(
E3,2M(2)

K−1

−1
E3,2⊺

)
and save

evaluate LHS of (47)
evaluate RHS of (47)

nd
ssemble LHS and RHS
valuate Cholesky decomposition of LHS of (46)
olve (46) using MATLAB Cholesky solver
or all sub domains do

evaluate Ñ 0
i (p) from (48) using Cholesky decomposition of

(
E3,2M(2)

K−1

−1
E3,2⊺

)
evaluate N 2

i (u) from (49) using Cholesky decomposition of M(2)
K−1

end

The system (45) is solved by static condensation, i.e. first for the global unknown B̃0 (λ), and then locally for
the unknowns, Ñ 0

i (p) and N 2
i (u), in the sub domains.

First, we evaluate the mass matrix M(2)
K−1,i

, and then its Cholesky decomposition. Here, we use the MATLAB

function chol [22] to evaluate the lower triangle matrix. Next we evaluate the matrix,
(
E3,2

i M(2)
K−1,i

−1
E3,2

i
⊺
)

by

sing the lower triangular decomposition of M(2)
K−1,i

. Similar to the previous step, using MATLAB function chol,

e evaluate the Cholesky decomposition of
(
E3,2

i M(2)
K−1,i

−1
E3,2

i
⊺
)

. Then, we can evaluate the left hand side and the
ight hand side of (47), for each sub domain separately. In the next step we assemble the left hand side and the right

and side systems of all the sub domains, to construct a global system of equations for the Lagrange multipliers λ.
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The global system is solved by first evaluating the decomposition [21] and then using MATLAB solver to solve
he system. Once the values of B̃0 (λ) are obtained, the local unknowns are evaluated by Cholesky solver using
ecomposition of

(
E3,2

i M(2)
K−1,i

−1
E3,2

i
⊺
)

and M(2)
K−1,i

, in a loop over all the sub domains, first for the unknown˜0
i (p) and then for the unknown N 2

i (u).

.5. Well-posedness

It remains to show that (45) is well-posed, i.e. its determinant is non-zero and the system of equations has a unique
olution. To prove well-posedness, we must show that for the choice of right hand side terms ( p̂, f, û) = (0 p̂, 0 f , 0û),

the unique solution is given by N 2 (u) , Ñ 0 (p) , B̃0 (λ) = (0u, 0 p, 0λ).
Before we start with the proof, we propose the following two Lemmas.

Lemma 1. The incidence matrix E3,2
hyb is surjective.

Proof. Consider the divergence operator, E3,2
i , for any sub domain, Mi . To prove that the discrete divergence

operator E3,2
i is surjective, we need to prove that for an arbitrary function p ∈ S̃(Mi ), there is a q ∈ D(Mi ) which

is mapped by the divergence operator onto p. For this, we use an auxiliary problem: Find ψ ∈ S̃(Mi ) such that,

div g̃rad (ψ, 0) = p .

The variational formulation of this equation is given by∫
Mi

g̃rad (φ, 0) · g̃rad (ψ, 0) dM = −

∫
Mi

pφ dM , ∀φ ∈ S̃(Mi ) .

Using the definition of weak grad, (20), and mass matrix of dual basis, the above equation is reduced to

Ñ 0
i (φ)⊺E3,2

i

(
M(2)

i

)−1
E3,2

i
⊺Ñ 0

i (ψ) = −Ñ 0
i (φ)⊺

(
M(3)

i

)−1
Ñ 0

i (p) ∀φ ∈ S̃ (Mi ) ,

which has to hold for all vectors Ñ 0
i (φ). Therefore we have

E3,2
i

(
M(2)

i

)−1
E3,2

i
⊺Ñ 0

i (ψ) = −

(
M(3)

i

)−1
Ñ 0

i (p) . (50)

Using definition of weak gradient, where the operator E3,2
i

⊺
maps degrees of freedom from space S̃ (Mi ) to the

space D̃ (Mi ), and Definition 1 where operator
(
M(2)

i

)−1
maps degrees of freedom from D̃ (Mi ) to D (Mi ) we

define
(
M(2)

i

)−1
E3,2

i
⊺Ñ 0

i (ψ) = −N 2
i (u) ∈ D(Mi ) in which case (50) can be written as

E3,2
i N 2

i (u) =

(
M(3)

i

)−1
Ñ 0

i (p) ,

or

M(3)
i E3,2

i N 2
i (u) = Ñ 0

i (p) .

This equation states that for an arbitrary function p ∈ S̃ (Mi ) there exists a vector u ∈ D (Mi ) which is mapped
by the discrete divergence operator, E3,2

i to degrees of freedom in S(Mi ) and then mapped by the mass matrix M(3)
i

onto S̃(Mi ).
Since the divergence operator E3,2

hyb is composed of block diagonal E3,2
i , it is also surjective by construction. □

Lemma 2. Injectivity/Surjectivity of inclusion/trace map.

Proof. Let ι : Ω → ∂Ω be a continuous inclusion map. Then∫
∂Ω

tr a(n−1) dΓ =

∫
ι(Ω)

tr a(n−1) dΓ =

∫
Ω

ι⋆(tr a(n−1)) dΩ .

Clearly, ι is surjective. The discrete analogue of this inclusion map is the inclusion matrix N and its trace is N⊺.
Also see Example 1, in Appendix. □
16



V. Jain, A. Palha and M. Gerritsma Computer Methods in Applied Mechanics and Engineering 404 (2023) 115827

d

T

I

I

S

λ

S

S

a

f

T

w

a

5

s

Now, let us start with the proof of well-posedness of (45). If the right hand side terms of (45) are zero, finite
imensional variational formulation (44) is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

N 2 (v)⊺M(2)
K−1,hybN

2 (u) −N 2 (v)⊺ E3,2
hyb

⊺Ñ 0 (p) +N 2 (v)⊺ N2B̃0 (λ) = 0 ∀ N 2 (v) ∈ D (ΩT )

−Ñ 0 (q)⊺ E3,2
hybN 2 (u) = 0 ∀Ñ 0 (q) ∈ S̃ (ΩT )

B̃0 (µ)⊺ N⊺
2N 2 (u) = 0 ∀B̃0 (µ) ∈ D̃b

(
◦

Γ ∪ ΓN

) .

(51)

he first equation is valid for all v ∈ D (Ω), then it should also be valid for the solution u ∈ D (Ω), which gives

N 2 (u)⊺ M(2)
K−1,hyb

N 2 (u)− N 2 (u)⊺ E3,2
hyb

⊺Ñ 0 (p)+ N 2 (u)⊺ N2B̃0 (λ) = 0 . (52)

f we consider the second equation, as it is valid for all q ∈ S̃ (Ω), then it should also be valid for the solution
p ∈ S̃ (Ω) of the equation, which gives

Ñ 0 (p)⊺ E3,2
hybN

2 (u) = 0 .

f we take transpose on both the sides, we get

N 2 (u)⊺ E3,2⊺
hybÑ 0 (p) = 0 . (53)

imilarly, the last equation is valid for all µ ∈ D̃b

(
◦

Γ ∪ ΓN

)
, then it should also be valid for the solution

∈ D̃b

(
◦

Γ ∪ ΓN

)
, which gives

N 2 (u)⊺ N2B̃0 (λ) = 0 . (54)

ubstituting, (53) and (54) in (52), we get

N 2 (u)⊺ M(2)
K−1,hyb

N 2 (u) = 0 .

ince, M(2)
K−1,hyb

is positive definite by construction, we have that N 2 (u) = 0.
The first equation is now reduced to

N 2 (v)⊺E3,2
hyb

⊺Ñ 0 (p)+ N 2 (v)⊺N2B̃0 (λ) = 0 ∀ N 2 (v) ∈ D (Ω) ,

nd it remains to show that Ñ 0 (p) = 0, and B̃0 (λ) = 0.
Since, by Lemma 1, E3,2

hyb is a surjective map from surface degrees of freedom to volumetric degrees of freedom,
or any vector N 3 (q) there exists a vector N 2 (v), such that we can write

N 3 (q) = E3,2
hybN

2 (v) .

herefore, we have that

N 2 (v)⊺ E3,2
hyb

⊺Ñ 0 (p) = N 3 (q)⊺ Ñ 0 (p) = 0 ⇒ Ñ 0 (p) = 0 ∀ q ∈ S (ΩT ) ,

hich is another way of saying that if a matrix A is surjective, its transpose is injective.
Similarly, since by Lemma 2, N2 is a surjective map, any vector B2 (µ) can be written as

B2 (µ) = N2N 2 (v) ,

nd a similar argument reveals that the only solution is that B̃0(λ) = 0.
This shows that the discrete Darcy problem using broken FE spaces defined in Section 3.3, is well-posed.

. Test cases

In this section we present the computational results for two test cases using the DD formulation. All the

imulations are executed on MATLAB release 2020b on a Macintosh machine with 2.6 GHz Intel Core i7 processor.
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5.1. Test case I: Manufactured solution

In this section we will solve a test problem from [19] and compare the results of the DD formulation with the
ontinuous formulation for elements of order N = 1, 2, 3 with varying mesh refinements. We will show that (i)
he results from both formulations are the same up to machine precision, (ii) that the DD formulation has optimal
onvergence rates, (iii) the speed-up in simulation run times using the DD formulation, and (iv) comparison of
ondition number of (40) and (46).

The domain for the problem is obtained by mapping the reference domain (ξ , η , ζ ) ∈ Ω̂ = [−1, 1]3 by⎧⎪⎨⎪⎩
x = x̂ + 0.03 cos

(
3π x̂

)
cos

(
3π ŷ

)
cos

(
3π ẑ

)
y = ŷ − 0.04 cos

(
3π x̂

)
cos

(
3π ŷ

)
cos

(
3π ẑ

)
z = ẑ + 0.05 cos

(
3π x̂

)
cos

(
3π ŷ

)
cos

(
3π ẑ

) where,

⎧⎪⎨⎪⎩
x̂ = 0.5 (1 + ξ)

ŷ = 0.5 (1 + η)

ẑ = 0.5 (1 + ζ )

. (55)

In Fig. 2, in the left plot we show the reference domain Ω̂ and on the right plot we show the domain of the
problem which is obtained using (55).

The permeability tensor, K, and the exact solution, pex , are given by

K (x, y, z) =

⎡⎣ x2
+ y2

+ 1 0 0
0 z2

+ 1 sin (xy)
0 sin (xy) x2 y2

+ 1

⎤⎦ , and pex (x, y, x) = x + y + z − 1.5 ,

nd the right hand side term is given by

fex = −div Kgradpex .

s in [19], we impose the Dirichlet boundary conditions p̂ at x̂ = 0, 1 faces and Neumann boundary conditions û
at ŷ = 0, 1, ẑ = 0, 1 faces, where

p̂ = pex |ΓD and û = (−Kgradpex · n) |ΓN .

For the DD formulation of this test case we decompose the domain Ω in an equal number of sub domains, K1, in
each direction. For the N = 1, 2 cases each of the sub domains is further discretized into 2 × 2 × 2 elements.
For N = 3 case each sub domain consists of a single element only. Therefore, the total number of elements in one
direction, K , are K = 2K1 for N = 1, 2 case, and K = K1 for N = 3 case. We define ĥ = 2/K as the size of an
element of the reference domain Ω̂ = [−1, 1]3.

5.1.1. Error convergence analysis
In Fig. 3 we present the pressure and velocity components of the DD formulation, and the difference between

the continuous and the DD formulation for K = 3, N = 2 case. In the first row we plot the pressure, in the second
row we plot the x-component of the velocity, in the third row we plot the y-component of the velocity, and in the
fourth row we plot the z-component of the velocity. In the first column we plot the results from the DD formulation
and in the second column we plot the difference of results between the continuous and the DD formulation. We
see that the solution is the same up to machine precision for both the formulations and the maximum difference
between the continuous and the DD formulation for any of the pressure or velocity field is of the order O

(
10−13

)
.

In Fig. 4 we show the convergence results for the DD formulation. At the top-left we show the convergence of
the L2-error for the constraint (div u − fex ), at the top right we show the convergence of the error for the velocity
field in the H (div;Ω) norm, and in the bottom-centre we show the convergence of the error for the pressure field
in the weak H 1 (Ω) norm (using (36)). On the x-axis we have the length of the non-deformed element ĥ. The error
and convergence rates of the continuous formulation and the DD formulation are same up to machine precision.
All the error plots show optimal rate of convergence of order O (N ).

5.1.2. Simulation times
In Table 1, Table 2, Table 3 we give the average simulation times to solve the continuous formulation, the DD

formulation, and the comparison between the two cases respectively. The simulation time (in seconds) is the average

for five simulation runs.

18



V. Jain, A. Palha and M. Gerritsma Computer Methods in Applied Mechanics and Engineering 404 (2023) 115827

t
c
t

Fig. 3. Comparison of pressure and velocity profiles for the continuous formulation and the DD formulation for K = 3, N = 2 case. In
he first column we see the results of the DD formulation, and in the second column we present the difference between the results of the
ontinuous and the DD formulation. In the first row we see the pressure, in the second row the x-component of the velocity field, in the
hird row the y-component of the velocity field and in the fourth row the z-component of the velocity field.
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Fig. 4. Convergence results for the DD formulation. Top left: Error (div u − fex ) in L2 (Ω) norm. Top right: Error (u − uex ) in H (div;Ω)
orm. Bottom centre: Error (p − pex ) in the weak H1 (Ω) norm.

In Table 1, we give the average simulation time to solve for continuous formulation for elements of order
N = 1, 2, 3. In the first column we have the number of elements in one direction, in the second column we
have the time taken to set-up the matrices (this also includes the time taken for Cholesky decomposition of M(2)

K−1 ),
in the third column the time taken to solve (40) and (41) and in the fourth column the total simulation time. The
simulation times that are less than 0.1 s, have not been measured with further accuracy.

In Table 2, we give the average simulation time to solve for DD formulation for elements of order N = 1, 2, 3.
n the first column, we give the total number of elements in one direction, K . In the second column we give the
umber of sub domains in one direction, K1. In the third column we give the number of elements in each direction
ithin each sub domain, K2. In the fourth column we give the time to set-up the matrices (this includes the time

o calculate the Cholesky decomposition of M(2)
K−1,i

and
(
E3,2

i M(2)
K−1,i

−1
E3,2

i
⊺
)

for all the sub domains). In the fifth
olumn we give the time to solve the global system of Lagrange multiplier (46), i.e. decomposition of the left hand
ide of (46) and the solution. In the sixth column we give the time to solve for the pressure unknowns (48) and the
elocity unknowns (49) over all the sub domains. In the seventh column we give the total time, and in the eighth
olumn we give the % amount of time spent to evaluate (46). For the cases where simulation times are less than
.1 s the accurate simulation times are not determined and therefore we do not calculate the last column. We observe
n the last column that for all the three cases i.e. N = 1, 2, 3, as we increase the total number of sub domains the
ercentage of time spent on solution of the Lagrange multiplier system increases. In the most refined mesh case
or N = 1, 2, 3, the time spent in solution of (46) is above 80%. Given that the objective of DD formulation is
o solve large simulations, we see that majority of the time is spent on solution of the Lagrange multiplier system
20
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Table 1
Average computational time (in seconds) for set-up and solution of the continuous
elements formulation.

K Set-up time Solve time Total time

N = 1

4 < 0.1 < 0.1 < 0.2
8 < 0.1 < 0.1 < 0.2
16 0.2 7.1 7.3
20 0.4 34.3 34.7
24 0.8 118.7 119.5
28 1.5 369.6 371.1
32 2.6 1276.5 1279.1

N = 2

4 < 0.1 < 0.1 < 0.2
8 < 0.1 < 0.1 < 0.2
12 0.4 92.7 93.1
16 1.3 1058.1 1059.4

N = 3

4 < 0.1 < 0.1 < 0.2
6 0.2 14.0 14.2
8 0.5 95.6 96.1

Table 2
Average computational time (in seconds) for set-up and solution of the DD formulation.

K K1 K2 Set-up time Solve (46) Solve (48) & (49) Total % to solve (46)

N = 1

4 2 2 < 0.1 < 0.1 < 0.1 < 0.3 –
8 4 2 < 0.1 < 0.1 < 0.1 < 0.3 –
16 8 2 0.5 < 0.1 < 0.1 < 0.7 –
20 10 2 1.0 < 0.1 < 0.1 < 1.2 –
24 12 2 1.7 < 0.1 < 0.1 < 1.9 –
28 14 2 2.7 0.2 < 0.1 < 3.0 –
32 16 2 4.0 0.4 < 0.1 < 4.5 –
64 32 2 32.1 22.3 1.0 55.4 40.25%
128 64 2 263.0 2180.1 20.0 2463.1 88.51%

N = 2

4 2 2 < 0.1 < 0.1 < 0.1 < 0.3 –
8 4 2 0.2 < 0.1 < 0.1 < 0.4 –
12 6 2 0.7 < 0.1 < 0.1 < 1.0 –
16 8 2 1.7 0.3 0.2 < 2.2 –
32 16 2 16.4 12.9 1.8 31.1 41.48%
64 32 2 268.9 1959.6 56.3 2284.8 85.77%

N = 3

4 4 1 < 0.1 < 0.1 < 0.1 < 0.3 –
6 6 1 0.5 < 0.1 < 0.1 < 0.7 –
8 8 1 0.8 < 0.1 < 0.1 < 1.0 –
16 16 1 6.0 3.0 0.4 9.4 31.91%
32 32 1 49.6 290.8 11.8 352.2 82.57%

(46). This also directs attention to the second challenge for DD methods mentioned in the introduction, that is to
find an efficient way to solve the global Lagrange multiplier system.

In Table 3 we compare the total time taken to solve the continuous formulation and the DD formulation for
lements of order N = 1, 2, 3. The comparison is made for cases where the topology of the mesh discretization
21
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Table 3
Average computational time (in seconds) for the (i) continuous formulation, (ii) DD
formulation, and the speed-up in simulation time (56).

K Continuous DD Speed-up

N = 1

16 7.3 < 0.7 10.4
20 34.7 < 1.2 28.9
24 119.5 < 1.9 62.9
28 371.1 < 3.0 123.7
32 1279.1 < 4.5 284.2

N = 2

12 93.1 < 1.0 93.1
16 1059.4 < 2.2 481.5

N = 3

6 14.2 < 0.7 20.3
8 96.1 < 1.0 96.1

Fig. 5. Comparison of the size of the left hand side system for cases N = 1, 2, 3 for continuous formulation (40), and DD formulation (46).

emains the same. In the first column we have the total number of elements in one direction K , in the second column
e have the total simulation time from continuous formulation, in the third column we have the total simulation

ime from DD formulation. In the fourth column we give the speed-up factor as

speed-up =
simulation time continuous formulation

simulation time DD formulation
. (56)

irstly, the simulation time required for the same refinement is less for the DD formulation than for the continuous
ormulation in all the cases. Secondly, the speed-up factor increases as the mesh is more refined. Therefore, a DD
ormulation is more advantageous in case of large simulations.

.1.3. Size of the system matrices
In Table 1 we have seen that for the continuous formulation the maximum time is spent on solving the pressure

nknown (40), and in Table 2 we have seen that the maximum time is spent to solve the Lagrange multiplier
q. (46). In Fig. 5 we compare the size of the left hand side systems for these equations for the same number of

otal elements and topological discretization, for cases N = 1, 2, 3. On the x-axis we have K , the total number of
lements in one direction, and on the y-axis we have the size of the left hand size system.
22
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Fig. 6. Sparsity plot of the left hand side system of (i) Left plot: (40) for K = 4, N = 3, (ii) Right plot: (46) for K 1 = 4, K 2 = 1, N = 3.

Fig. 7. Comparison of the number of non zeros in the left hand side system for cases N = 1, 2, 3 for the continuous formulation (40), and
he DD formulation (46).

For the N = 1 case the size of the λ system of the DD formulation is bigger than the size of the pressure
nknown system of the continuous formulation. Even then, the simulation time to solve the λ system is less. For

N = 2 and N = 3 case we see that the size of the left hand side system grows less for the DD formulation than
or the continuous formulation, upon mesh refinement.

In Fig. 6 we show the sparsity plot for the left hand system of (40) and (46) for similar topological configuration
f total number of elements = 4 × 4 × 4 and N = 3. We see in the left plot that system for the continuous
ormulation is a full matrix with number of non-zeros = 2985984, whereas the left hand side of the Lagrange
ultiplier system is sparse with number of non-zeros = 146448.
In Fig. 7, we compare the number of non zeros in the left hand side system of (40) and (46), for the cases

N = 1, 2, 3. We see that the number of non-zeros in continuous case grow more rapidly than in the DD case, in
ll the three cases.
23
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Fig. 8. Comparison of condition number of (40) and (46) for N = 1, 2, 3.

Fig. 9. Natural logarithm of permeability field for SPE10 case.

In Fig. 8 we compare the condition number of the global system of (40) and (46) for N = 1, 2, 3. In all the
cases, we observe similar rate of growth of condition number for the continuous formulation and the DD formulation.
Furthermore, for the same discretization, the condition number of the Lagrange multiplier system (46) is higher than
the condition number of the pressure unknowns of (40), even though the Lagrange multiplier system has much less
degrees of freedom, and number of non-zeros in the left hand side system. This further emphasizes, the need to use
an appropriate preconditioner, for eg. the ones developed in [23,24], when solving the Lagrange multiplier system
with iterative methods.

5.2. Test case II: SPE 10

In this section we show the results for the SPE10 benchmark problem [20]. It is often used for validation
of numerical schemes for reservoir modelling applications because of its challenging permeability field. The
domain of the problem and the natural logarithm of the permeability field is shown in Fig. 9. The size of the
domain is 1200 ft × 2200 ft × 170 ft. The domain is divided into equal blocks of size 20 ft × 10 ft × 2 ft,
.e. 60×220×85 = 1122000 blocks. Each block has a constant isotropic permeability tensor Ki = ki I. The top 70 ft
f the domain represents the Tarbert formation that has smooth changes in the permeability field component, and
he bottom 100 ft represents the Upper Ness formation that has sharp changes in the permeability field component.

The right hand side term is fex = 0. We impose Neumann boundary conditions, û = u · n = 0, on ŷ, ẑ = 0, 1
aces, and the Dirichlet boundary conditions, p̂ = 1 on x̂ = 0 face, and p̂ = 0 on x̂ = 1 face.

For the numerical solution using the DD method, we use two different approaches. In Case 1, we divide the

omain into 15 × 55 × 17 sub domains, and each sub domain is further divided into 4 × 4 × 5 elements. In Case 2,

24
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Fig. 10. The contour plots of pressure field for SPE10 benchmark problem. Left: results from Case 1. Centre: results from Case 2. Right:
difference between results from Case 1 and Case 2.

Table 4
Average computational time (in seconds) for set-up and solution of SPE10 case using DD formulation.

Kx × K y × Kz K1x × K1y × K1z K2x × K2y × K2z Set-up time Solve (46) Solve (48) & (49) Total % (46)

Case 1 1122000 15 × 55 × 17 4 × 4 × 5 154.0 259.4 20.4 433.8 59.8%
Case 2 1122000 12 × 44 × 17 5 × 5 × 5 184.2 159.5 24.3 368.0 43.3%

we divide the domain into 12 × 44 × 17 sub domains, and each sub domain is further divided into 5 × 5 × 5
elements. The total number and topological configuration of the elements remain the same in all the cases. We use
only the lowest order elements, i.e. N = 1, in both the cases. The results of the pressure field from both the cases
are shown in Fig. 10. In the left plot we see the results from Case 1, in the centre plot we see the results from

ase 2, and in the right plot we see the difference between the two results. We observe that the solution is exact up
o machine precision in both the cases, independent of the decomposition of the domain, with maximum difference
n results of the order of O

(
10−12

)
.

In Table 4 we give the average run time of five simulation runs to solve the SPE10 case (in seconds) using the
D formulation. In the second column we have the total number of elements, in the third column we have the total
umber of sub domains, in the fourth column we have the total number of elements within each sub domain, in
he fifth column we have the set-up time of matrices (including the time take to inverse the matrices M(2)

K−1,i
and(

E3,2
i M(2)

K−1,i

−1
E3,2

i

)
), in the sixth column we have the time taken to solve the Lagrange multiplier system (46), in

the seventh column we have the time taken to solve the pressure unknowns (48) and the velocity unknowns (49),
in the eighth column we have the total time, and in the ninth column we have the % of time taken to solve the
Lagrange multiplier system (46) with respect to the total time. The results show that for the same total number and
topology of elements, the choice of sub domain decomposition affects the simulation times.

This test case demonstrates that use of algebraic dual spaces with a DD method can be applied to practical
applications.

6. Conclusions

In this paper we have presented the use of algebraic dual spaces for DD formulation of Darcy flow. We have
defined the broken Sobolev spaces and their finite dimensional counterparts. We have also defined the global finite
dimensional trace space that connects the broken spaces. These spaces are then used to solve the DD formulation
of Darcy equations. It is shown that using algebraic dual spaces the matrix representation of the constraint on
divergence of velocity, the pressure gradient term and the continuity constraint across the sub domains becomes
sparse and metric-free. The first test case is a manufactured solution where it is shown that (i) the results from the
continuous formulation and the DD formulation are exact up to machine precision and that DD formulation has
optimal rate of convergence of errors, (ii) the DD formulation is more efficient in terms of simulation run times. In
the second test case we show that DD scheme can be used to solve for practical applications.

There are two immediate steps for future work. The first is to improving the efficiency of solving the global
Lagrange multiplier system. For example, by investigating a hierarchical DD method or using an iterative solver

with a suitable preconditioner for solving (46). The second, in this work we have used broken H (div;Ω) and
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L2 (Ω) spaces. In future this work will be extended to broken H 1 (Ω) and H (curl;Ω) spaces, to address problems
such as vector Laplacian, Stokes flow, and linear elasticity.
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Appendix. Examples of the inclusion matrix and the divergence operator

Example 1. In Fig. 2, on the left plot we show a domain [−1, 1]3
⊂ R3 discretized into 2 × 2 × 2 volumes. The

inclusion map N2 for this domain is given by

N⊺
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

he domain has a total number of 36 faces, and 24 boundary faces. Therefore the dimension of N2 is 36 × 24. The
utward unit normal at the x = 1 or y = 1 or z = 1 faces acts in the positive direction, and therefore we use +1
ntry, and at the x = −1 or y = −1 or z = −1 faces it acts in the opposite direction and we use −1 entry. In the
ight plot of Fig. 2 we have a deformed domain, but the inclusion map remains the same.

The inclusion matrix is a sparse metric-free matrix, that consists of +1,−1 and 0 entries only, and is independent
f shape and size of elements as long as the topology, numbering of the degrees of freedom and the orientation of
he mesh remains the same.
xample 2. Divergence operator for 3D mesh
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Let us consider Fig. 2 again. The expansion coefficients of N 2 (u), are defined at the surfaces in the mesh. The
divergence operation on any volume Vi , is then defined as∫

Vi

div u dK =

∫
∂Vi

u · n dγ = −N 2 (u)le f t + N 2 (u)right − N 2 (u)bottom + N 2 (u)top − N 2 (u)back + N 2 (u) f ront . (57)

If we assemble (57) for all the 8 volumes, with appropriate numbering, we get the discrete divergence operator as

E3,2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We have 8 volumes and 36 faces, therefore dimension of E3,2 is 8 × 36. It is a sparse, metric free matrix that
consists of +1,−1, 0 entries only. If the domain is deformed, for example see the right plot of Fig. 2, but the
connection between the nodes, edges, surfaces, and volumes, remains the same, relation (57) remains the same and
consequently the matrix E3,2 remains unchanged.
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