<]
TUDelft

Delft University of Technology

Identifying Behavioural Changes due to Parkinson's Disease Progression in Motor
Performance Data

Lugtenborg, Lieke A.; Pel, Johan J.M.; Pool, Daan M.

DOI
10.1016/j.ifacol.2022.10.239

Publication date
2022

Document Version
Final published version

Published in
IFAC-PapersOnline

Citation (APA)

Lugtenborg, L. A., Pel, J. J. M., & Pool, D. M. (2022). Identifying Behavioural Changes due to Parkinson's
Disease Progression in Motor Performance Data. IFAC-PapersOnline, 55(29), 102-107.
https://doi.org/10.1016/j.ifacol.2022.10.239

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.ifacol.2022.10.239
https://doi.org/10.1016/j.ifacol.2022.10.239

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 55-29 (2022) 102—107

Identifying Behavioural Changes due to
Parkinson’s Disease Progression in Motor

Performance Data
Lieke A. Lugtenborg,* Johan J.M. Pel,** and Daan M. Pool *

* Control and Simulation Section, Aerospace Engineering, Delft
University of Technology, Delft, The Netherlands
(e-mail: d.m.pool@tudelft.nl).
** Vestibular and Oculomotor Research Group, Dept. of Neuroscience,
Erasmus MC, Rotterdam, The Netherlands
(e-mail: j.pel@erasmusme.nl).

Abstract: Parkinson’s disease (PD) is a progressive nervous system disorder that affects
movement. PD has a severely negative impact on the quality of life of patients and their
caregivers. The timing of treatment depends, amongst others, on the quantification of patients’
motor performance. To date, the resolution used in scaling motor performance is too low
to detect subtle behavioral changes over time. This paper investigates if ‘longitudinal’ data-
sets of motor performance data obtained from tracking tasks can detect behavioural changes
in motor performance data representative for PD symptoms. Such longitudinal data were
approximated using a combined data-set based on 50 trials of collected experiment data from 25
healthy participants (age range 55-75 years), augmented with 25 bootstrapped samples scaled
to represent ‘Mild’ or ‘Severe’ motor performance degradation. An approach based on general
linear regression models was tested for its capacity to detect the adverse trends in typical
tracking task metrics (Kp, 7, Cums, Wnms, RMSe, and RMSu). Overall, it was found that
with this approach in at least 50% of all participants, a simulated change in motor behaviour
was successfully detected, a number that may increase to 97% for the most sensitive metric
(Cums) and consistent participant data. This indicates that the developed approach is promising
towards the development of more objective and detailed monitoring of disease progression and
treatments in PD patients.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

perturbed by forcing functions and controlled by a human
controller (Flowers, 1976; Hufschmidt and Lucking, 1995;
Soliveri et al., 1997; Oishi et al., 2011; Jones and Ivan,

In Parkinson’s disease (PD), it is especially the loss of € \ .
1989; Pool et al., 2022). While tracking tasks have indeed

motor skills (i.e., eye-hand coordination) that affects pa-

tients’ quality of life (Lees et al., 2009; De Boer, 2015). PD
causes a decrease in dopamine-producing neurons of the
Basal Ganglia that hampers communication in the brain,
especially in the motor area, and causes symptoms such as
slowness of movement (bradykinesia), postural instability,
and tremors (Lees et al., 2009; De Lau and Breteler,
2017). Key to early detection and fine-tuned treatment of
motor symptoms to restore patients’ quality-of-life, is the
accurate quantification and semi-continuous monitoring of
patients’ motor performance (Lees et al., 2009).

In current clinical practice, motor and non-motor PD
symptoms are tested mainly through questionnaires (Gelb
et al., 1999), whose results are translated into a five-
stage Unified Parkinson’s Disease Rating Scale (UPDRS)
(Goetz, 2012), with only a very course resolution in both
symptom severity, as well as time. An alternative ap-
proach, which has received considerable attention in a
research context, is to directly measure motor performance
and its degradation with the use of tracking tasks; manual
control tasks where a dynamic system is continuously

proven to reveal differences in motor performance between
healthy controls and PD patients, their true effectiveness
for monitoring motor symptom progression in individual
patients has, to the best of our knowledge, never been
explored. A key challenge for using tracking task data for
functional diagnostics is that motor performance is gener-
ally characterized by a number of different metrics (e.g.,
performance metrics, human control model parameters
(Mulder et al., 2018)), meaning that the detection of de-
graded motor performance is a multivariate problem. Fur-
thermore, performance in tracking tasks inherently shows
significant, and strongly participant-dependent, day-to-
day variation, which needs to be adequately accounted for
to reliably detect adverse trends in disease progression.

This paper focuses on using trend analysis with multivari-
ate linear regression models (Chandler and Scott, 2011)
for identifying behavioural changes in individuals’ motor
performance data due to PD. To approximate a clini-
cal longitudinal data set, an experiment with 25 healthy
participants aged between 55-75, who each performed 50

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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trials of a pursuit tracking task on a large touchscreen
with both their dominant and non-dominant hands, was
used to collect representative ‘motor symptom free’ refer-
ence data. Participants’ control dynamics in the tracking
task were quantified with a fitted human control model
(Mulder et al., 2018). To simulate a reduction in motor
performance, the experiment data was augmented with
bootstrapped PD data, where trends in human control
model parameters as representative for PD, based on ear-
lier research (Pool et al., 2022), were implemented. For
augmented data sets representative for “Mild” and “Se-
vere” motor skill loss, the accuracy with which behavioural
changes in motor performance data can be detected using
trend analysis techniques was directly assessed.

2. EXPERIMENT
2.1 Tracking Task

The human motor performance data for this study were
gathered using a horizontal-axis pursuit tracking task,
similar to that used in previous research with PD patients
(Pool et al., 2022; Flowers, 1976). The task was performed
on a touch screen (Dell P2341T), see Fig. 1, and partici-
pants wore touchscreen gloves to reduce friction between
finger and the screen. In pursuit tracking the participant
is asked to reduce the error e between the system output y
(blue dot) and the target signal f; (black circle), as shown
in Fig. 2. This means participants controlled the blue dot
so that it was positioned on the black circle at all times. To
ensure sufficient measurable excitation of participants the
neuromuscular dynamics, the blue dot’s response to touch
inputs had single integrator controlled dynamics, i.e., 8/s.
The controlled dynamics gain was heuristically tuned such
that finger movements were within reasonable limits.

Fig. 1. Experiment test set-up.
fi

Fig. 2. Pursuit display

A quasi-random multisine forcing function f; was used
in the tracking task. The signal was identical to that
used in earlier research (Biiskens et al., 2019) and de-
fined as the sum of Ny = 11 sines, ie., fi(t) =
ZkN:fl Ag(k)sin(wg(k)t+¢¢(k)). The frequencies wy of the
multisine were all integer multiples of the base frequency,

ie., wr(k) = 2mnys(k)/Ty, where T),, indicates the mea-
surement time. This signal, for which the detailed settings
are listed in Table 1, covered the whole region of interest in
human behaviour dynamics. Tracking runs lasted a total
of 50 s, of which the first 9.04 s where run-in time.

Table 1. Multisine target signal settings.

ny wy [rad/s] Ay [deg] ¢ [rad]
4 0.614 1.079 7.239
7 1.074 0.776 0.506
13 1.994 0.391 7.860
19 2.915 0.225 8.184
29 4.449 0.117 9.012
37 5.676 0.082 6.141
43 6.596 0.066 6.776
53 8.130 0.051 6.265
79 12.118 0.035 4.672
109 16.720 0.028 2.672
157 24.084 0.024 8.009

2.2 Participants

As listed in Table 2, the participants were 25 healthy
adults in the age range of 56-75 years (1 = 66.88 years, 0 =
6.77 years), coinciding with the average age of symptom
onset in PD (Lees et al., 2009). This elderly participant
population without any neurological impairments shows
similar, though slightly better, visuomotor performance
than PD patients on Levodopa treatment (Hufschmidt and
Lucking, 1995), which provides a good baseline for our
analysis. Minor deficiencies related to natural neurological
degeneration and ageing, such as slowness of movement,
were allowed. All participants signed a consent form. The
experiment was approved by TU Delft’s Human Research
Ethics Committee (HREC) under application number 982.

2.8 Procedures

To approximate longitudinal clinical data, the experiment
was spread over 5 days. On the first day, participants
received a detailed briefing and were asked to perform a
Mini Mental State Examination (MMSE) to assess their
cognitive functioning (Tombaugh and McIntyre, 1992). A
motor performance baseline is defined using a previously
developed dedicated test procedure (De Boer, 2015), mea-~
suring reaction time and eye-hand coordination. On all
five days, participants performed the tracking task with
both their dominant (D) and non-dominant (ND) hand.
Participants always first performed five practice trials with
each hand, to re-acquaint themselves with the task. On the
first day, this training was extended if needed, until par-
ticipants showed convergence to a stable control behavior.
After training, 10 measurement trials for each hand were
performed on all days (20 trials/day). D and ND trials were
alternated and balanced across participants to mitigate
any learning and fatigue effects. Short breaks were taken
frequently to lessen hand and eye fatigue.

2.4 Data analysis
For all trials, the time traces of the target signal f;,

participants’ touchscreen input u, the resulting controlled
dynamics output y (i.e., the position of the blue dot in
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Table 2. Overview of participant information.

Participant 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15

16 17 18 19 20 21 22 23 24 25

Age 56 58 75 75 72 T4 73 T4 75 58 64
Sex f m f f f m f f m m f
Handedness r r r r r T r 1 r T r

64 64 61 67 70 72 62 60 58 69 75 68 T2 56

f

r

m f f f f m f f m f f f f
r r r r r |l r r r r r T T

Fig. 2), and the tracking error e were measured. From these
signals, normalized root mean square (RMS) values of e
and u were calculated, i.e., RMSe = RMS(e)/RMS(f)
and RMSu = RMS(u)/RMS(f;). High values of RM Se
and RM Su indicate bad tracking performance (large er-
rors) and high control activity, respectively. It should be
noted that RMSe < 1 indicates successful error atten-
uation, while for RM Se > 1 participants amplify errors
and do worse than when no inputs u would have been
given (for which RM Se 1). Furthermore, the e and
u signals were used to estimate a model of participants’
control dynamics using a time-domain fitting method,
see (Lugtenborg, 2020) for details. For this, the model
defined in Eq. (1) was used, which is a well-known model
for describing control dynamics in compensatory, as well
as pursuit, tasks with single integrator control dynamics
(Mulder et al., 2018). Using this approach, we obtained
estimates of a participant’s control gain K, time delay 7,
and neuromuscular damping ratio and natural frequency
(Cms and wypms, respectively) for all measurement trials.

2 W

W,

nms

52 + 2C'rwns(/-)nmss + w?zms

Hy(s) = Kpe "

3. TREND ANALYSIS
3.1 Data preparation

Learning trend removal In this paper, the measured
50 trials of participant data are used as a ‘symptom-
free’ reference for detecting (simulated) changes in motor
performance representative for PD progression. While the
pursuit task was designed to be learned quickly (Pool et al.,
2022), and hence no strong learning trends were expected,
any learning trend that still existed in our participants’
data was removed for further analysis. Learning trends
were detected by fitting a linear regression model (using
MATLAB’s muregress function), which was subtracted
from all measured metrics in case a significant linear trend
was present. This correction was applied to 64%, 48%,
54%, 28%, 84% and 68% of the data for K, T, Coms, Wnms,
RMSe, and RM Su, respectively. Fig. 3 shows an example
of the learning trend removal (for Participant 25, D) with
a clear increasing trend in the measured K, data (yellow)
that is removed in the corrected data set (blue).

Participant inclusion criteria  Prior to collecting the
experiment data, we defined a set of inclusion criteria,
see Table 3, for our participants’ data to meet to be
representative of measurements of healthy and motivated
individuals. For example, participants were expected to
achieve RM Se < 1, i.e., better performance than would be
achieved without providing any input (for which RM Se =
1 by definition, see Section 2). Furthermore, for the cog-
nitive functioning assessment using the MMSE, all partic-
ipants were expected to score >26 (no cognitive decline,
(Tombaugh and McIntyre, 1992)). Indeed, all our partici-

pants had an MMSE score of 26 or higher. Finally, reaction
time and tapping performance metrics from the performed
eye-hand coordination tests of De Boer (2015) contributed
to the inclusion criteria. Of the 25 tested participants, only
15 (i.e., 60%) were found to meet our inclusion require-
ments. This group, in the remainder of this paper referred
to as the ‘high performance’ participants, had the same
age range as the complete sample, however, the average
age was almost three years younger (u = 64.07 years).

Table 3. Participant inclusion criteria.

Inclusion metric Accepted range

RMSe [-] <1

MMSE [] > 26
Reaction time simple tap [s] <04
Reaction time screen touch [s] 0.8 < 4§ < 1.2
Reaction time space release [s] 0.2 <§ < 04
Taps per second |[-] >4

Table 4. Parameter ranges for Mild/Severe PD.

Parameter Mild PD Severe PD
Ky [] 05<6<0 -09<6<0
T [s] 0<d§<0.02 0<d<0.07
Cnms [-] 0<§<02 0<36<031
wnms [rad/s] 0<d <3 0<d<5

3.2 Data augmentation

For our analysis, the (corrected) measured data (50 trials)
from all participants and both hands was augmented with
25 additional ‘simulated’ data points representative for PD
symptoms, see Fig. 4. 25 augmented PD trials were chosen
as a representative upper limit, after which symptoms
would certainly be detected. The augmented data for K,
T, Cams, and wpms were generated from each participant’s
measured data using bootstrapping methods (Chandler
and Scott, 2011) and then offset with a bias ¢ that matched
observed changes in PD (Pool et al., 2022). The corre-
sponding RM Se and RM Su data were generated by sim-
ulating the tracking task with the augmented parameters
in the human control model of Eq. (1). This considered
sudden variation in PD symptom severity is representative
for good and bad control days or the influence of treatment
(i.e., ‘on/off moments’ (Lees et al., 2009)).

Two different severity ranges for the PD data offset § were
defined, representative of ‘Mild’ and ‘Severe’ motor skill
loss. For these Mild and Severe cases, the parameter §
values were randomly selected from the ranges in Table 4,
which are based on the average and most extreme early-
stage PD data measured by Pool et al. (2022), respectively.
Fig. 4 shows examples of the combined experimental and
augmented data for the same K, example data also shown
in Fig. 3. In Fig. 4, the blue markers indicate the corrected
measured data, while the green and red markers show Mild
and Severe augmented data points, respectively.
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Fig. 3. Example of learning trend removal for K,,, Partic-
ipant 25, D

3.8 Trend detection

Statistical trend analysis methods can be used to separate
underlying behavioural patterns from noise (Chandler
and Scott, 2011). For the application considered in this
paper, monotonic trends are expected (i.e., a consistent
decline in motor performance due to PD) in human control
behavior metrics that will show considerable day-to-day
variation (i.e., noisy data). For detecting monotonic trends
in noisy data, the use of linear regression models as defined
in Eq. (2) are generally preferred and most powerful
(Chandler and Scott, 2011). In Eq. (2), y; represents a
control behavior metric sequence (e.g., K,) across a certain
time interval, the predictor variable x; is the corresponding
time variation, By and (1 are the regression’s intercept
and slope parameters, and &; represents the fit error. For
our analysis, we fitted linear regressions to each metric
separately using least squares estimation. A t-test was
used to check if a significant linear trend was present, i.e.,
we tested the null hypothesis Hy : 81 = 0, which when
rejected indicates that a significant trend exists.

ye = Bo + Brxy + & (2)

For testing the sensitivity of this trend detection method
we compare two cases: 1) a fixed data window size of
50 trials that moves over the augmented data set, and
2) a ‘full’ window size that always uses all available past
data. For both cases, sensitivity is tested by incrementally
moving over the simulated PD data per sample, giving
a total of 26 different test windows. Examples of ‘full’
window size regressions over the complete augmented
dataset (Window 26) are shown in Fig. 4. With a fixed
window size the detection is less strongly biased by a large
amount of baseline data (blue markers in Fig. 4), hence
it is expected that an initial decline in performance is
detected earlier. A more extensive analysis in (Lugtenborg,
2020), including smaller window sizes (which only provided
negligibly quicker detection at reduced consistency), shows
that the optimal fixed window size is 50 data points.

4. RESULTS
4.1 Healthy participant experiment data

Dominant and non-dominant hand control  All partici-
pants performed the experiment with both their dominant

e Corrected data

041 Mild sim. data 8 S o 1
Mild regression (¢} ©
0.2| o Severesim. data o o &4

Severe regression

1 10 20 30 40 50 60 70
Trial

Fig. 4. Example of mild vs severe symptom trend analysis
for K, Participant 25, D

(D) and non-dominant (ND) hands. As expected, signifi-
cant differences (p < 0.01) were found between D and ND
data for all metrics except 7 and wy,,s. For ND control,
increased K, and reduced (s were found, while RM Se
and RM Su both increased. Overall, these differences are
consistent with the expected inferior motor performance
for ND. For details, please refer to (Lugtenborg, 2020).

Day-to-day variation A crucial aspect of motor perfor-
mance data that needs to be accounted for in disease
progression is that all tracking task metrics will show
considerable day-to-day variations, e.g., see Fig. 4. Table 5
shows an overview of the average (u) and variation (o)
of the corrected data for all participants and metrics for
dominant hand control (D). Despite the observed differ-
ences in control behaviour, the variation in all metrics
for D and ND control is found to be equivalent. Table 5
shows that participants neuromuscular parameters ((pms

Table 5. Measured mean and standard devia-
tion for all metrics and all participants (D).

Kp T Cnms Wnms RMSe RM Su

# [] [s] [ [rad/s] [ [
N o o o 7 o N o o o N o
1 0.90 0.20 0.33 0.12 0.33 0.15 6.6 3.7 1.03 0.20 1.33 0.26
2 1.39 0.26 0.30 0.06 0.25 0.10 11.1 3.1 0.77 0.13 1.38 0.18
3 0.12 0.10 0.35 0.22 0.08 0.08 10.8 7.5 2.07 0.57 1.19 0.38
4 0.23 0.16 0.48 0.31 0.08 0.09 8.6 6.8 3.39 1.23 2.22 0.56
5 1.00 0.31 0.46 0.19 0.32 0.20 7.0 4.3 1.73 0.29 2.63 0.50
6 0.62 0.25 0.38 0.17 0.50 0.21 8.2 5.0 1.38 0.30 1.15 0.25
7 0.75 0.24 047 0.15 041 0.24 108 7.2 1.41 0.38 1.41 0.20
8 0.95 0.33 0.45 0.16 0.32 0.20 8.9 3.3 1.58 0.34 2.02 0.22
9 1.18 0.27 0.36 0.07 0.30 0.20 10.5 3.3 1.05 0.34 1.60 0.24
10 1.14 0.24 0.25 0.06 0.65 0.20 10.1 2.7 0.84 0.13 1.17 0.12
11 0.88 0.54 0.31 0.14 0.51 0.31 8.5 5.0 1.13 0.16 1.60 0.19
12 0.46 0.24 0.43 0.22 042 031 8.3 6.0 1.56 0.29 1.17 0.21
13 1.05 0.17 0.31 0.07 0.52 0.17 6.2 1.9 0.87 0.10 1.15 0.09
14 0.50 0.34 0.54 0.29 0.15 0.12 6.7 5.4 2.24 0.48 2.06 0.57
15 0.74 0.23 0.28 0.09 0.42 0.21 10.2 4.6 1.24 0.19 1.21 0.13
16 0.75 0.36 0.34 0.14 0.52 0.28 9.1 5.8 1.29 0.22 1.33 0.28
17 0.44 0.22 0.56 0.28 0.21 0.14 6.6 6.1 2.46 0.84 2.25 0.44
18 1.36 0.16 0.24 0.11 0.47 0.16 83 3.7 0.72 0.08 1.24 0.14
19 1.20 0.18 0.31 0.07 0.35 0.13 85 2.9 0.85 0.20 1.27 0.16
20 1.07 0.14 0.28 0.11 0.40 0.15 7.4 3.2 0.87 0.07 1.23 0.12
21 1.34 0.31 0.28 0.06 0.60 0.20 9.3 2.8 0.94 0.14 147 0.15
22 0.92 0.27 0.40 0.13 0.45 0.25 104 3.7 1.40 0.36 1.62 0.20
23 1.33 0.32 0.33 0.12 045 0.22 84 3.5 096 0.16 1.54 0.23
24 1.22 0.39 0.39 0.14 0.28 0.13 5.5 2.7 1.32 0.23 2.53 0.69
25 1.24 0.24 0.29 0.06 0.56 0.19 11.9 3.7 0.79 0.09 1.15 0.15
pn 091 0.26 0.37 0.14 0.38 0.19 8.7 4.3 1.36 0.30 1.56 0.27
% 28.4 38.8 48.9 49.5 22.2 17.1
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Fig. 5. Average trend detection p-values as a function of data window number for both a fixed window size of 50 and
the ‘full’ window, and for all participants as well as only the high-performance group (‘Severe’ dataset).

and wy;,s) show the largest day-to-day variation of nearly
50% compared to their means. On average, RM Se (22%)
and RM Su (17%) show the least day-to-day variation.

4.2 Trend analysis

Metric sensitivity  Based on the equivalent day-to-day
variation observed in the D/ND data, both sets of data
were used for our analysis of trend analysis sensitivity.
Furthermore, for brevity, this section will mostly focus
on the “Severe” augmented PD dataset, see Section 3.2.
Table 6 shows the percentage of cases where a significant
trend was detected in the full augmented dataset for the
different metrics, both across all participants and the ‘high
performance’ group. Table 6 shows that except for wyms
a significant trend was detected in at least 50% of partic-
ipants. In earlier research (Pool et al., 2022), especially
Ky, Coms and RMSe showed clear differences between
healthy controls and PD patients. Here, K, and Cnms
show the highest detection rates of 66% and 96%, respec-
tively, when all participant data is considered; numbers
that increase to 77% and 97% for the ‘high performance’
group. However, in our analysis, only 34% of the analyzed
augmented data sets showed a significant trend in all three
PD-related metrics. In future work, we plan to improve on
the overall sensitivity of the trend detection using more
advanced (nonlinear) regression methods.

Trend analysis sensitivity — To evaluate the trend detec-
tion’s sensitivity to picking up on a sudden transition
in motor performance representative of PD, two differ-

Table 6. Percentage of participants with a
trend (p < 0.05) for the “Severe” dataset.

Parameter Ky T Cnms Wnms RMSe RMSu
All participants 66% 64%  96% 46% 50% 58%
High performance 77% 53% 97% 50% 53% 73%

ent ‘windowing’ approaches explained in Section 3.3 are
compared. Fig. 5(a) and 5(b) show the average p-values
for all 26 data windows across all participants when using
a fixed window size of 50 samples and for an increasing
‘full’ window, respectively. Fig. 5(c) and 5(d) show the
same results, but for the ‘high performance’ participants
only. The dashed horizontal red lines in all figures mark
the considered p-value significance threshold, i.e., p < 0.05.
Consistent with Table 6, comparison of the different sets of
results in Fig. 5 shows that K, (pms, RMSe, and RM Su
consistently have the lowest p-values and thus provide
the most sensitive detection. When all participants are
considered (Fig. 5(a) and 5(b)), the full window approach
requires slightly less PD data points for p to approach
the significance threshold. When only the more consistent
high-performance participants are considered, the added
sensitivity of the fixed window size of 50 samples provides
far superior results. For example, Fig. 5(c) shows that for
Ky, Cums, and RM Se significant trends are detected at
Window 6-10, i.e., after only 6-10 augmented PD data
points are present in the 50-point detection window.

Symptom severity ~ While so far not presented, both
‘Mild’ and ‘Severe’ augmented PD data-sets were gen-
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erated as explained in Section 3.2. To show the trend
detection method’s sensitivity to symptom strength, Fig. 6
compares the detection p-values for both data-sets for the
final ‘full’ window (i.e., across all 75 augmented data-set
samples). The boxplots show the variation across partic-
ipants and D/ND, while the dashed horizontal red line
marks the significance threshold. Fig. 6 shows that for
all metrics the trend detection is less effective (higher p-
values) for the ‘Mild’ data. Especially K,, 7, (ums and
Wnms Show notably lower p-values for the ‘Severe’ data,
and trend detection that is much more consistent (less
spread) between participants. Still, Fig. 6 shows that even
for the ‘Mild’ data-set key metrics such as K, and Cnms
are sufficiently sensitive to detect deteriorated motor per-
formance for the majority of tested samples.

0.5

T Mild |
I Severe }
04 . |
|
|
|

|
L

RMSe RMSu

K[J T <nms
Metric

Wnms

Fig. 6. Trend analysis p-values for ‘Mild’ and ’Severe’
augmented PD data (‘full’ window of size 75, high-
performance participants).

5. CONCLUSION

This paper presents a proof-of-concept for the application
of trend analysis using linear regressions to detect changes
in control behavior and motor performance data due to
Parkinson’s disease (PD). Based on pursuit tracking data
collected from 25 healthy participants in the age range
of 55-75 years, augmented data-sets of typical tracking
task metrics (Kp, T, Cnms, Wnms, BMSe, and RM Su)
including a simulated sudden degradation representative
for ‘Mild’ and ‘Severe’ PD symptoms were generated.
Using linear regression models for detecting these changes
showed that for the control gain K, the neuromuscular
damping ratio (,ms, and participants’ tracking perfor-
mance RM Se, a trend was detected in at least 50% of
participant data-sets. Furthermore, for the more consis-
tent (‘high performance’) participant data, using a sliding
window with 50 data points for trend detection accuracy
is most effective, resulting in significant trend detections
after only 6-10 PD data-points. Finally, while detection
accuracy was worse for the ‘Mild’ data-set compared the
‘Severe’, for specific metrics (e.g., K, and (,ms) the ap-
proach was still reasonably effective. Overall, the proposed
approach is capable of detecting behavioural changes in at
least half of the population, which shows its potential for
further development towards a diagnostic tool that would
enable more objective and personalised disease assessment
and symptom monitoring in PD patients.
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