
 
 

Delft University of Technology

Human Performance in Solving Multi-UAV Over-Constrained Dynamic Vehicle Routing
Problems

Gupta, Ankit; Borst, Clark; Mulder, Max

DOI
10.1016/j.ifacol.2022.10.234
Publication date
2022
Document Version
Final published version
Published in
IFAC-PapersOnline

Citation (APA)
Gupta, A., Borst, C., & Mulder, M. (2022). Human Performance in Solving Multi-UAV Over-Constrained
Dynamic Vehicle Routing Problems. IFAC-PapersOnline, 55(29), 73-78.
https://doi.org/10.1016/j.ifacol.2022.10.234

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ifacol.2022.10.234
https://doi.org/10.1016/j.ifacol.2022.10.234


IFAC PapersOnLine 55-29 (2022) 73–78

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.10.234

10.1016/j.ifacol.2022.10.234 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Human Performance in Solving Multi-UAV
Over-Constrained Dynamic Vehicle

Routing Problems

Ankit Gupta, Clark Borst 1 and Max Mulder

Control and Simulation, Faculty of Aerospace Engineering, TU Delft,
2629 HS, Delft, The Netherlands

Abstract: For many logistics applications, such as drone delivery missions, finding an optimized
network of routes yields a Vehicle Routing Problem (VRP). Such optimizations are mostly
conducted offline prior to actual operations for reasons of computational complexity. In case
disturbances arise during operations, for example a sudden loss of a vehicle, the VRP needs
to be re-optimized in real-time and this raises concerns regarding obtaining a solution within
time. In a previous study, it was demonstrated that humans, when supported through a human-
machine interface, can quickly deal with these routing problems through satisficing, providing
workable solutions. This paper extends our previous research by exposing human operators to
an over-constrained VRP with different mission priorities and vehicle capabilities. Experiment
results (n = 16) indicate that the mission type had the largest impact on how participants used
the interface and what constraints were relaxed. In particular, during a search-and-rescue context
the mission emphasis was put on delivering (medical) payload (close) to as many customers as
possible, even if this would involve sacrificing vehicles and relaxing the depot constraint. Ethical
aspects of the VRP are taken into account which algorithms do not by themselves, underlining
the importance of involving humans in automation. Human operators complement algorithms
with their context awareness, yielding more safe, resilient and responsible systems.

Keywords: Human operator support, Decision making and cognitive processes

1. INTRODUCTION

Vehicle routing problems (VRPs) play a central role in
streamlining and optimizing many logistic challenges, for
example drone delivery services and responding to emer-
gencies (Dorling et al. (2017); Wang and Sheu (2019)).
In its most succinct form, a VRP can be defined as
“the problem of designing optimal routes from a depot
to geographically scattered customers, subject to side con-
straints” (Laporte (1992)) and is illustrated in Figure 1.

The most basic VRP is the so-called Distance-Constrained
Capacitated VRP (DCVRP). Here, the side constraints
are the range endurance for each vehicle (governed by
e.g., fuel capacity), vehicle payload and a depot constraint
which limits the number of vehicles that can take-off and
land simultaneously at the depot. Hence, every vehicle is
expected to depart from the depot, deliver payload to its
assigned customers and ultimately return to the depot.

Most VRP algorithms assume a well-defined problem and
an unlimited number of vehicles. The objective is then
to gather an optimal solution that would either account
for the least number of vehicles or minimize the total
travel cost while satisfying all constraints (Hiermann et al.
(2016)). In reality and during operations, however, the
number of vehicles is limited and part(s) of the problem
may be unknown a priori and only revealed dynamically
during the execution phase of the planned routes. Oper-
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Fig. 1. Graphical illustration of the VRP [taken from Klein
Koerkamp et al. (2019)].

ational disturbances, such as changing demands from the
customer or a vehicle failure, may require the routes to
be re-optimized in real-time. For reasons of limiting the
computational complexity and extensive modeling require-
ments involved in solving dynamic VRPs using algorithms,
an alternative approach is to make use of human ingenuity
in solving VRPs by creative and adaptive problem solving.

In a previous study, Klein Koerkamp et al. (2019) demon-
strated that humans are indeed capable to quickly deal
with a dynamic DCVRP in real-time, when supported
by a human-machine interface which visualizes the route
patterns, mission constraints and depot arrival capacity
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over time and also allows for ‘what-if?’ probing and the
manipulation of vehicle routes. In that study, the VRP
involved one or two vehicle failures, but the problem
could always be solved by using the remaining vehicles.
In reality, a VRP could become over-constrained, meaning
that vehicles would not be able to deliver to all customers
while satisfying all constraints (Ding et al. (2005)). Over-
constrained problems typically require certain constraints
to be relaxed in order to find a (sub-optimal) solution.
However, deciding on what constraint(s) to relax is often
difficult as that may depend on the mission context. Such
decisions could be motivated by factors that are not easily
captured in algorithms, for example ethical considerations
(Tsamados et al. (2022)). Hence, over-constrained prob-
lems may increase the need for more human involvement.

This study investigates how humans work with the
previously-developed interface and decide on which con-
straints to relax when faced with an over-constrained
DCVRP in two delivery missions having different contexts.
To further increase the complexity of the DCVRP com-
pared to the previous experiment, the scenarios in this
study also included two vehicle types (having different
capabilities in terms of battery capacity and travel speed)
that may influence decisions and strategies.

2. HUMAN-MACHINE INTERFACE

2.1 Extensions to Previous work

In the previous study by Klein Koerkamp et al. (2019) an
interface prototype was developed in Java (using OpenGL
graphics) that visualized the following information: 1)
a map of geographical customer locations and their de-
mands, 2) vehicle payload capacity, 3) vehicle routes, 4)
and endurance/range ellipses (based on battery capacity),
5) temporal arrival schedule of the vehicles and 6) depot
capacity limit. For the purpose of this study, two addi-
tional parameters needed to be visualized: 7) UAV battery
capacity along route segments and 8) UAV icon size to
distinguish between vehicle capabilities.

When dealing with dynamic and over-constrained prob-
lems, there might be a need to explicitly display the bat-
tery capacity of each UAV along each route segment. Such
an indicator would allow the human operator to perceive
the required battery level to complete the entire mission
and mission elements (= route segments), the predicted
battery level when changing the route and lastly, the cur-
rent battery level. For this purpose, an interactive battery
indicator, inspired by the work of Fuchs et al. (2014), has
been added to the interface prototype, see Figure 2b. The
battery indicator of a UAV is only shown when the human
operator selects that UAV.

The green color represents that there is sufficient battery
to cover all the waypoints. Anything below the red line
represents the surplus in battery capacity after reaching
the depot, as it can be seen for UAV 1 in Figure 2b. A bat-
tery capacity shortage is colored red, meaning that certain
waypoints would not be reached. When considering UAV
2 in Figure 2b, it has insufficient capacity to return to the
depot and will thus (crash)land anywhere between D8 and
the depot. The same information is also depicted on the
map view (Figure 2a), allowing operators to link battery

(a) Map view. showing the area covered by the two UAVs. The
leg where UAV 2 will run out of battery is visualized in red.

(b) UAV 1 has enough energy to visit all the waypoints,
however, UAV 2 does not have not have enough energy to reach
the depot after delivering to customer D8.

Fig. 2. Side by side view of the map view along with the
battery indicator.

capacity components to the different route segments and
endurance range.

The battery indicator also allows for interaction; by hover-
ing the mouse cursor over the different capacity segments,
the corresponding route segments on the map view will
be highlighted. Additionally, when the UAV route is ma-
nipulated on the map view, the predicted capacity will be
displayed, allowing the operator to probe solutions before
committing them.

Finally, different UAV icon sizes were used to indicate
UAVs of different capabilities. For example, smaller UAVs
that commonly travel with lower speeds and smaller bat-
teries are displayed with small icons.

2.2 Layout, Structure and Functionality of the interface

Figure 3 shows the interface layout, structure and operat-
ing modes by using an example scenario. This scenario
includes two vehicles with four payload levels each to
deliver to five customers from the depot. In Figure 3a,
the interface has four separate views: the map view, the
payload details and the depot arrival schedule. The battery
view and UAV range envelope (map view) will appear
when clicking on an individual vehicle (see Figure 3b).

The range envelope, based on the UAV’s battery capacity,
represents the available re-routing space for the selected
UAV. In this case, the selected UAV can be re-routed
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and endurance/range ellipses (based on battery capacity),
5) temporal arrival schedule of the vehicles and 6) depot
capacity limit. For the purpose of this study, two addi-
tional parameters needed to be visualized: 7) UAV battery
capacity along route segments and 8) UAV icon size to
distinguish between vehicle capabilities.

When dealing with dynamic and over-constrained prob-
lems, there might be a need to explicitly display the bat-
tery capacity of each UAV along each route segment. Such
an indicator would allow the human operator to perceive
the required battery level to complete the entire mission
and mission elements (= route segments), the predicted
battery level when changing the route and lastly, the cur-
rent battery level. For this purpose, an interactive battery
indicator, inspired by the work of Fuchs et al. (2014), has
been added to the interface prototype, see Figure 2b. The
battery indicator of a UAV is only shown when the human
operator selects that UAV.

The green color represents that there is sufficient battery
to cover all the waypoints. Anything below the red line
represents the surplus in battery capacity after reaching
the depot, as it can be seen for UAV 1 in Figure 2b. A bat-
tery capacity shortage is colored red, meaning that certain
waypoints would not be reached. When considering UAV
2 in Figure 2b, it has insufficient capacity to return to the
depot and will thus (crash)land anywhere between D8 and
the depot. The same information is also depicted on the
map view (Figure 2a), allowing operators to link battery

(a) Map view. showing the area covered by the two UAVs. The
leg where UAV 2 will run out of battery is visualized in red.

(b) UAV 1 has enough energy to visit all the waypoints,
however, UAV 2 does not have not have enough energy to reach
the depot after delivering to customer D8.

Fig. 2. Side by side view of the map view along with the
battery indicator.

capacity components to the different route segments and
endurance range.

The battery indicator also allows for interaction; by hover-
ing the mouse cursor over the different capacity segments,
the corresponding route segments on the map view will
be highlighted. Additionally, when the UAV route is ma-
nipulated on the map view, the predicted capacity will be
displayed, allowing the operator to probe solutions before
committing them.

Finally, different UAV icon sizes were used to indicate
UAVs of different capabilities. For example, smaller UAVs
that commonly travel with lower speeds and smaller bat-
teries are displayed with small icons.

2.2 Layout, Structure and Functionality of the interface

Figure 3 shows the interface layout, structure and operat-
ing modes by using an example scenario. This scenario
includes two vehicles with four payload levels each to
deliver to five customers from the depot. In Figure 3a,
the interface has four separate views: the map view, the
payload details and the depot arrival schedule. The battery
view and UAV range envelope (map view) will appear
when clicking on an individual vehicle (see Figure 3b).

The range envelope, based on the UAV’s battery capacity,
represents the available re-routing space for the selected
UAV. In this case, the selected UAV can be re-routed
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(b) Selecting a UAV.
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(c) Selecting a route segment.
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(d) Including a customer.
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(e) Exploring more customer to add.
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(f) Solution after including the an out-of-
range customer.

Fig. 3. Step-by-step overview of the interface workings for a simple scenario.

to include customer D2 as it lies within the envelope.
To include D2 in the flight plan, the operator selects
the nearest flight leg (Figure 3c) and clicks on the D2
point to include it. The battery indicator is then updated
accordingly and when the operator is satisfied, she presses
ENTER on the keyboard to commit the revised route.

In Figure 3d it can be seen that the depot capacity
constraint is still violated, as the two UAVs are expected
to arrive at the depot at the same time. Path-stretching
actions can be undertaken to the other UAV to solve this
depot capacity issue. Figure 3e illustrates that the selected
UAV does not have sufficient battery capacity to fly to
customer D5 and back to the depot. By previewing that
action (Figure 3f), it can be seen that the UAV can deliver
payload to D5, but will crashland somewhere between D5
and the depot. It is at the operator’s discretion to either
commit this action, resulting in a vehicle loss, or leave the
route as it was and not deliver the payload to D5.

3. EXPERIMENT

The experiment aimed to examine how participants used
the interface elements and what constraints were relaxed in
an over-constrained DCVRP with different mission types.

3.1 Participants and instructions

Sixteen participants volunteered, all graduate students
(10) or staff members (6) from Delft University of Technol-
ogy (TU Delft), with an average age of 25.38 (SD = 7.19).
The group had fourteen males and two females. Eight of
the participants considered themselves as regular gamers.

After participants were briefed and trained on how to use
the interface, they were instructed to solve several VRP
scenarios to the best of their ability.

3.2 Independent variables

Three within-participant variables were manipulated:

(1) Payload Capacity : The problem size of the over-
constrained DCVRP dependent on the payload ca-
pacity of a single UAV. There were four payload levels
used: 4, 5, 6 and 7 payloads for each vehicle. Each of
the vehicles was provided with the same number of
payloads in every scenario.

(2) Perturbation Severity : To produce an over-constrained
problem, each scenario was initiated by either a single
low-battery level vehicle, or two low-battery level ve-
hicles. The low-level vehicle was defined as the vehicle
which will initially deliver to two customers while
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having the least amount of battery capacity. In other
words, this vehicle would have the highest payload
margin with the lowest battery capacity. In that case,
the operator would lose at least one vehicle if they
choose to serve all customers in a scenario.

(3) Mission Objective: Two distinct delivery missions
were chosen, one within a search-and-rescue context
(delivering medical supplies) and one with supplying
customers with commercial items (here, packages of
coffee beans). Before the start of each scenario, the
mission type for that scenario was verbally communi-
cated to participants.

3.3 Scenarios

In all scenarios (lasting five minutes each), a batch of
UAVs was deployed every thirty seconds (equal to the
depot service time). The number of UAVs deployed was
equivalent to the depot capacity. Only lateral waypoint
modifications could be made. Additionally, there were two
types of vehicles used in the scenario. One of them had a
higher maximum flight time of 900 s and airspeed of 20
m/s, and the other vehicle had a maximum flight time of
750 s and an airspeed of 13m/s. In case of an even number
of vehicles, the two types of vehicles were equally divided,
whereas, in the case of an odd number of vehicles, there
was one more of the lower performing vehicle.

To create the scenarios for the experiment, there was
an offline VRP optimization algorithm developed, which
allowed the inputs for different properties of vehicles used
and varying payload level. The scenario was first optimized
for a static case (before the addition of customers during
mission operation). The level of customers, in this case,
was determined by the payload margin for each vehicle
and the number of low-battery level vehicles. Disregarding
the low-level vehicle, the rest of the fleet was given a
payload margin of one during mission operation. Once the
number of customers was determined, their locations were
randomly generated. A minimum distance criterion was
applied to avoid clusters of locations in one particular area.
The optimizing algorithm then routed this static scenario
considering the DCVRP. For this algorithm, the Google
Optimization (Google-OR) Tools were adapted to feature
the variable fleet capacity and its properties.

Once the static scenario was completed, the dynamic
elements were added and the remaining customers were
then placed randomly around the area. Two example
scenarios are shown in Figure 4. To validate whether the
scenarios were indeed over-constrained, it was run again
through the Google optimization algorithm to check if the
resulting scenarios indeed produced no solutions.

3.4 Control variables

The control variables (summarized in Table 1) were the
depot service time, sector size, depot capacity, scenario
duration, UAV fleet, and payload margin for each vehicle.

3.5 Dependent Measures

It was of particular interest to learn what constraints
participants preferred to relax (measured by the percent-
age of meeting and violating the constraints), how they

(a) Payload capacity 4 and one low-level vehicle.

(b) Payload capacity 7 and two low-level vehicles.

Fig. 4. Two of the scenarios which were given to the
participants.

Table 1. Control variables in the experiment.

Variable Value

UAV 1 - Max flight time [s] 900
UAV 1 - Airspeed [m/s] 20

UAV 2 - Max flight time [s] 750
UAV 2 - Airspeed [m/s] 13

Service Time [s] 30
Scenario Duration [s] 300

Payload Margin for high-battery vehicles [-] 1
Sector Size [m2] 5000 x 5000
Depot Capacity 30% of nVehicles

approached solving the scenarios (observations during the
experiment and post-experiment interviews) and the sub-
jective workload (measured by Rating Scale Mental Effort
(RSME) scores (Zijlstra, 1993) and mouse clicks).

4. RESULTS

4.1 Constraint adherence

Figure 5 shows the feasibility of each of the constraints for
every condition and mission type. The constraints were
considered infeasible if a solution was: 1) unable to serve
as many customers as possible by using the limited payload
of the vehicle, 2) overrunning the provided flight time limit
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having the least amount of battery capacity. In other
words, this vehicle would have the highest payload
margin with the lowest battery capacity. In that case,
the operator would lose at least one vehicle if they
choose to serve all customers in a scenario.

(3) Mission Objective: Two distinct delivery missions
were chosen, one within a search-and-rescue context
(delivering medical supplies) and one with supplying
customers with commercial items (here, packages of
coffee beans). Before the start of each scenario, the
mission type for that scenario was verbally communi-
cated to participants.

3.3 Scenarios

In all scenarios (lasting five minutes each), a batch of
UAVs was deployed every thirty seconds (equal to the
depot service time). The number of UAVs deployed was
equivalent to the depot capacity. Only lateral waypoint
modifications could be made. Additionally, there were two
types of vehicles used in the scenario. One of them had a
higher maximum flight time of 900 s and airspeed of 20
m/s, and the other vehicle had a maximum flight time of
750 s and an airspeed of 13m/s. In case of an even number
of vehicles, the two types of vehicles were equally divided,
whereas, in the case of an odd number of vehicles, there
was one more of the lower performing vehicle.

To create the scenarios for the experiment, there was
an offline VRP optimization algorithm developed, which
allowed the inputs for different properties of vehicles used
and varying payload level. The scenario was first optimized
for a static case (before the addition of customers during
mission operation). The level of customers, in this case,
was determined by the payload margin for each vehicle
and the number of low-battery level vehicles. Disregarding
the low-level vehicle, the rest of the fleet was given a
payload margin of one during mission operation. Once the
number of customers was determined, their locations were
randomly generated. A minimum distance criterion was
applied to avoid clusters of locations in one particular area.
The optimizing algorithm then routed this static scenario
considering the DCVRP. For this algorithm, the Google
Optimization (Google-OR) Tools were adapted to feature
the variable fleet capacity and its properties.

Once the static scenario was completed, the dynamic
elements were added and the remaining customers were
then placed randomly around the area. Two example
scenarios are shown in Figure 4. To validate whether the
scenarios were indeed over-constrained, it was run again
through the Google optimization algorithm to check if the
resulting scenarios indeed produced no solutions.

3.4 Control variables

The control variables (summarized in Table 1) were the
depot service time, sector size, depot capacity, scenario
duration, UAV fleet, and payload margin for each vehicle.

3.5 Dependent Measures

It was of particular interest to learn what constraints
participants preferred to relax (measured by the percent-
age of meeting and violating the constraints), how they

(a) Payload capacity 4 and one low-level vehicle.

(b) Payload capacity 7 and two low-level vehicles.

Fig. 4. Two of the scenarios which were given to the
participants.

Table 1. Control variables in the experiment.

Variable Value

UAV 1 - Max flight time [s] 900
UAV 1 - Airspeed [m/s] 20

UAV 2 - Max flight time [s] 750
UAV 2 - Airspeed [m/s] 13

Service Time [s] 30
Scenario Duration [s] 300

Payload Margin for high-battery vehicles [-] 1
Sector Size [m2] 5000 x 5000
Depot Capacity 30% of nVehicles

approached solving the scenarios (observations during the
experiment and post-experiment interviews) and the sub-
jective workload (measured by Rating Scale Mental Effort
(RSME) scores (Zijlstra, 1993) and mouse clicks).

4. RESULTS

4.1 Constraint adherence

Figure 5 shows the feasibility of each of the constraints for
every condition and mission type. The constraints were
considered infeasible if a solution was: 1) unable to serve
as many customers as possible by using the limited payload
of the vehicle, 2) overrunning the provided flight time limit

of the UAVs (i.e., exceed battery capacity limits) and/or
3) by exceeding the depot capacity limit.

There appears to be no effect of payload level and the
number of the low-level vehicles. From Figure 5a it can be
seen that the main priority has been to serve all customers,
especially in the search-and-rescue context. This priority
came at the expense of violating the battery constraint and
the depot constraint. In the context of delivering coffee
beans, the emphasis was put on making sure the UAV
returns to the depot rather than serving all customers.

4.2 Control strategy

How participants prioritized different aspects is also re-
flected by the remaining payload per experiment condition
as shown in Figure 6. There is no effect on the number
of low-level vehicles on the percentage of payload that
is remaining at the end of the scenario. However, it can
be seen that there is an effect caused by the payload
level and the mission type. As the payload capacity in-
creases, the percentage of payload remaining decreases.
A repeated-measures ANOVA adopting a threshold of
α = 0.05 confirmed this (F (3, 45) = 100.899, p < 0.01).
When observing the different mission types, there is also
a higher payload margin remaining in case of delivering
coffee beans compared to the search-and-rescue mission
(F (1, 15) = 68.655, p < 0.01).

Observations during the experiment showed that some
participants adopted an interesting strategy. While sac-
rificing the vehicles in a search-and-rescue context, some
participants were able to deliver the payload to as many
customers as possible and made sure the UAV would only
fail when flying its last segment towards the depot. The
underlying rationale was that the failed vehicle would
drop down somewhere close to the depot, making it more
convenient to pick it up later.

Additionally, the strategy adopted by most participants
was to use the vehicles with the highest battery capacity
and higher speed to go to customers further away from the
depot, whereas the vehicles with the lower battery capacity
and speed were used to provide the customers closer to
the depot. Moreover, participants tended to sacrifice the
smaller UAV to provide to as many customers as possible.

4.3 Workload

Figure 7 shows the clustered boxplots of the RSME sub-
jective workload scores for each condition. The mission
type had a significant effect on the perceived workload
(F (1, 15) = 9.784, p < 0.05) as well as number of low-
battery level vehicles (F (1, 15) = 59.331, p < 0.01). In
a search-and-rescue context participants apparently felt a
higher pressure to serve all customers and make a decision
on what constraint(s) to relax.

Regarding physical workload (mouse click events), Figure
8 shows that the click events have opposite trends com-
pared to the subjective workload, especially for ‘smaller’
problems (in terms of low-battery level vehicles and pay-
load capacities). In a search-and-rescue context, subjective
workload is higher than in a generic delivery mission,
but the number of mouse clicks is significantly lower

(a) Percentage of customers served.

(b) Percentage of vehicles satisfying the battery constraint.

(c) Percentage of vehicles satisfying the depot constraint.

Fig. 5. Clustered Bar chart for the feasibility of each of the
constraints for every condition and mission objectives.

Fig. 6. Clustered Box plot for the total payload remaining
after each condition and mission objectives.

(F (1, 15) = 4, 929, p < 0.05). This can be explained by
the fact that when delivering coffee beans, participants
more often tweaked flight routes to optimize solutions,
whereas in the search-and-rescue mission the preference
was to satisfice. This behaviour can clearly be observed by
the number of path-stretch events shown in Figure 9.
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Fig. 7. Clustered box plots of the Rating Scale Mental
Effort (RSME) scores.

Fig. 8. Clustered box plots for the total map view clicks.

Fig. 9. Bar chart of the total path stretch events.

5. DISCUSSION AND RECOMMENDATIONS

The work described in this article aimed to let humans
solve an over-constrained Vehicle Routing Problem (VRP)
of various complexities by means of a human-machine
interface. Results from a human-in-the experiment (n =
16) showed that participants were able to use the interface
in formulating workable solutions, despite the increased
scenario complexity compared to the previous experiment
conducted by Klein Koerkamp et al. (2019).

Most interestingly, participants’ control strategy and the
decision on what constraints to relax changed with the mis-
sion type. When faced with a delivery mission in a search-
and-rescue context, the emphasis was put on delivering to
as many customers (far away from the depot) as possible,
even when this would involve sacrificing vehicles. In a more
generic mission of delivering coffee beans, the participants’
priorities changed and the main objective became to let the

vehicle safely return to the depot, even if this would lead
to unserved customers.

The main lessons one can learn from this result are three-
fold. First, we can learn from human solutions how to
(re-)shape computer algorithms such that they generate
solutions that are most appropriate for the problem con-
text (in terms of respecting human values). Second, human
involvement in automated processes can be beneficial,
especially in cases where the automation cannot find a
solution and creative problem solving is required. A pre-
requisite for successful human involvement, however, is
the availability of an effective human-machine interface
that allows operators to perceive the problem’s structure
and all degrees of freedom to formulate solutions and act
accordingly. Third, being ethical creatures, humans can
adopt strategies unforeseen by and unsupported by op-
timization algorithms. Without being instructed to do so,
our participants changed their strategy based on the moral
consequences of failing either the customer, or sacrificing
the vehicle. Faced with the ethical dilemma posed by the
experimental scenarios, most of our participants adopted
a ‘humans come first, technology comes second’ approach.

It is recommended to study how operators can use the
interface in complementing an algorithm in real-time.
That is, when faced with an over-constrained problem
due to unanticipated circumstances during operations,
humans could use the interface to adjust the mission
objective and its constraints, then an algorithm could
optimize the solution within the new objective. True
human-automation teamwork could then be achieved.
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