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(e-mail: {d.m.pool, m.mulder} @tudelft.nl).

Abstract: This paper presents the results of an experiment that was performed to verify the
‘supervisory control algorithm’, a well-known model of human operator adaptation to changes
in controlled element dynamics. This model proposes that human adaptive behavior is triggered
once the magnitudes of the tracking error or error rate exceed certain decision region limits. In
the experiment, a compensatory tracking task with a sudden transition in the controlled element
dynamics, as also tested in other recent experiments, was performed by six skilled participants.
In addition to performing the control task, participants had to indicate with a button press
when they detected a controlled element transition. The results indicate that the published
detection limits for the ‘supervisory control algorithm’ are too conservative for our experiment
data, as measured detections could be related to error or error rate occurrences that exceeded
2-6 times their respective pre-transition standard deviations. The effectiveness of new detection
limits proportional to these pre-transition standard deviations was tested. The best match to our
experiment data was obtained with limits at 3.90, for which in only 9.38% and 11.5% of cases a
(false positive) too early detection or a (false negative) missed detection occurred, respectively.
Overall, these results demonstrate that human operator adaptation can indeed be effectively

predicted from statistical variations in tracking error and error rate.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

In this era of increasing automation, in which for many
applications human controllers are increasingly removed
from the control loop, human controllers’ ability for ‘fast’
adaptations to changes in task dynamics remains an es-
sential source of inspiration for adaptive automation de-
sign (Phatak, 1969; Mulder et al., 2018). Humans are
still unsurpassed when it comes the effectiveness of their
control adaptations, which are generally fully realized in
2-5 seconds depending on the type of transition (Young
et al., 1964). Of special recent interest are human control
adaptations to sudden changes in the dynamics of the
system that is controlled, i.e., the Controlled Element (CE)
(Hess, 2009; Zaal, 2016; Mulder et al., 2018; Plaetinck
et al., 2019).

Young et al. (1964) identified three main phases of the
human control adaptation process: 1) detection, where the
human operator detects a change in CE dynamics; 2) iden-
tification, where the human operator correctly identifies
the new CE dynamics; 3) modification, where operators
adapt their own control dynamics to the new CE. The
key driver of this adaptation process is believed to be an
‘internal model’ of their task that human operators build
up and that enables them to notice when, for example,
the characteristics of occurring control errors (e) and error
rates (¢) change (Miller and Elkind, 1967; Phatak and
Bekey, 1969b; Niemela and Krendel, 1975; Hess, 2009;

Weir and Phatak, 1967; Mulder et al., 2018). This hypoth-
esis for modeling the human adaptive process is formalized
in the ‘supervisory control algorithm’ (Phatak and Bekey,
1969b,a; Phatak, 1969), which defines explicit limits on
tracking error and error rate that trigger human operators
to detect, identify, and adapt to a change in CE dynam-
ics. However, at present the detection limits proposed in
this adaptive human control framework have not been
validated, nor has the model been compared to recent
experiment data on human control adaptation (Zaal, 2016;
Plaetinck et al., 2019).

The goal of this paper is to verify whether human con-
trollers’ detection of changes in CE dynamics can be
predicted based on outliers that occur in tracking error
and error rate compared to their expected statistical vari-
ations. To achieve this goal, an experiment was run with
six trained participants who performed a compensatory
pitch tracking task with time-varying CE dynamics, as
also considered in several earlier experiments (Plaetinck
et al., 2019; Zaal, 2016). Participants were instructed to
focus on detecting CE dynamics changes while performing
the tracking task and to report these subjective detections
by pressing a button on the front of their side stick. The
results of this experiment were used to verify if human
controllers’ detections could be predicted from deviations
in the statistical properties of the error and error rate in a
human adaptive control framework as proposed by Phatak
and Bekey (1969b).

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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2. BACKGROUND

The model considered for the prediction of adaptive hu-
man control in this research is the ‘supervisory control
algorithm’ (Phatak and Bekey, 1969b,a; Phatak, 1969).
Fig. 1 shows the structure of this model, implemented in
the block scheme of a compensatory tracking task. In such
a task, human operators aim to minimize the tracking error
e, thereby making the CE’s output y follow the target sig-
nal f;. The ‘Supervisor’ and ‘Human Operator Dynamics’
blocks together represent the model of the adaptive human
controller. The ‘Supervisor’ is a higher-level controller
that implements a four-phase decision-making process as-
sumed to occur in human control adaptation (Phatak,
1969): 1) pre-transition retention (i.e., controlling the
post-transition CE dynamics, assuming the pre-transition
dynamics), 2) detection of the change, 3) identification of
the new CE dynamics, and 4) post-transition steady-state
tracking. The ‘Supervisor’ then drives the adaptation by
reorganizing the structure of the ‘Human Operator Dy-
namics’ based on an internal model of different potential
CE dynamics. As shown in Fig. 1, the main input to the
‘Supervisor’ is the tracking error signal e. The control
input u is also an hypothesized input for detecting a CE
change (Phatak, 1969), however, its potential contribution
has so far not been investigated.
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Fig. 1. Hypothetical structure of the adaptive human
operator model (Phatak, 1969).
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Fig. 2. Proposed decision regions of the Supervisor’s se-
quential identification (Phatak and Bekey, 1969b).

The ‘Supervisor’ algorithm is based on sequential ‘yes’ or
‘no’ decisions by following the development of the error
and error rate during a run, induced by a sudden transition
in CE dynamics. These decisions determine when and
how the human operator will adapt her control strategy
to maintain stable control. The algorithm’s decisions are
based on the instantaneous magnitudes of error (e) and
error rate (é), as well as sign changes of the error rate.
Fig. 2 displays a phase plane (e on the z-axis and ¢ on
the y-axis) with the decision regions (DRs) as defined by
(Phatak, 1969). These decision regions define the moment
of a binary decision by the supervisory control algorithm,
as well as the type of action taken.

The DR limits shown in Fig. 2 were determined by
analyzing data of experimentally measured transitions
(Phatak and Bekey, 1969b). The exact values of e and
é where the DR limits occur are part of the ‘internal
model’” operators develop by performing the task: they are
based on past information of the (pre-transition) system.
In this paper, we will focus on the first decision region,
DR-1 in Fig. 2, which represents the limits beyond which
human operators are hypothesized to detect a change in
CE dynamics. As can be verified from Fig. 2, Phatak and
Bekey (1969b) defined the DR-1 limits for both e and é
to be at 2é,,4., Where €4, is the maximum (absolute)
occurring peak in steady-state (pre-transition) error rate.

3. METHOD
3.1 Control Task

The human-in-the-loop experiment was similar to earlier
experiments on time-varying human operator behavior
(Zaal, 2016; Plaetinck et al., 2019). Participants were
asked to perform a compensatory pitch attitude tracking
task, in which the tracking error e (f;-y, see Fig. 1) was
presented using a simplified primary flight display, see
Fig. 3(a). Participants tracked a quasi-random sum-of-
sinusoids target signal (f;) consisting of 10 sines with a
measurement window of 90 s. The CE dynamics were
defined using a second-order transfer function (Zaal, 2016)
H.(s,t) = K.(t)/(s(s+ws(t))), where the CE gain K, and
break frequency w;, were both time-varying. To simulate
a transition from approximately single integrator (SI) to
double integrator (DI) CE dynamics (Zaal, 2016), both
parameters were varied according to a sigmoid function
(K.: 90 to 30, wp: 6 to 0.2 rad/s) with a maximum rate of
change (G in the notation of Zaal (2016)) of 100 s'!. The
sigmoid’s moment of maximum rate of change (M) was
varied across different tested cases, see Section 3.4.

~ 2 s 4

(b) Button on the side stick

(a) Simulator set-up

Fig. 3. Fixed-base simulator experiment set-up.
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Table 1. Experiment conditions

Condition  fy M [s] Condition  fr M [s]
C1 1 33.5 C2 1 42.5
C3 2 37.5 C4 2 38.5
Cb5 3 35.5 C6 3 36.5
C7 4 44.0 C8 4 33.0
C9 5 42.0 C10 5 36.5
C11 6 42.5 C12 6 41.0
C13 7 41.0 C14 7 44.5
C15 8 33.5 C16 8 36.5

3.2 Apparatus

The experiment was performed in the Human-Machine
Interaction Laboratory at TU Delft, a fixed-based simu-
lator with a right-handed side stick, see Fig. 3(a). The
stick moved up to +22 deg in forward/backward direction
only and its spring constant, inertia, damping constant and
break-out moment were set to 5.0 Nm/rad, 0.01 kg/m?, 0.2
Nm s/rad and 0.0 Nm, respectively. Participants used the
trigger button on the front of the side stick, see Fig. 3(b),
to provide a subjective detection of a CE change.

3.3 Participants and Instructions

The experiment was approved by the Human Research
Ethics Committee (HREC) of TU Delft (application num-
ber 1,352). Six participants performed the experiment; all
were MSc students at TU Delft and between 20 and 30
years old. All had prior experience with tracking tasks from
earlier experiments. They were briefed on the experiment
procedures, the control task, and the simulator setup.
The instruction was to track as accurately as possible,
while also paying attention to potential changes in the
CE dynamics. When they detected a change, they were
instructed to press the button on the front of the side stick,
see Fig. 3(b). After each run, the participants’ tracking
score (rms of e) was shown; they did not receive any feed-
back about their performance in detecting the transition.

3.4 Ezperiment Conditions

As listed in Table 1, the experiment collected human con-
trol data for a total of 16 experiment conditions, defined
by a combination of levels of the following two variables:
the target signal realization and the moment of occurrence
of the CE transition. To prevent participants from mem-
orizing and anticipating the target signal, eight different
f+ realizations with different sinusoid phase shifts ¢;[n]
were used, see Table 2. The sine frequencies wy[n] and
amplitudes A;[n] were identical for the different f; realiza-
tions. Furthermore, to avoid artifacts due to participants’
anticipation of the CE transition, two different transition
times (sigmoid parameter M) were defined for each f;
realization, see Table 1.

3.5 Experiment Procedure

The total tracking run length was 95 s, including 5 s of
run-in time. As shown in Fig. 4, the remaining 90 s of
measurement time was split over three separate 30-second
windows. The target signal f; was designed to have a
period of 30 s, thus exactly the same signal was tracked

Transition Region

%

=

=]
£ SIPhase DI Phase

50 30 60 90
t [s]

Transition Phase

Fig. 4. Example of a run with its periodic target signal,
showing the different phases and the transition region.

across the three windows to facilitate direct comparison.
During the first 30-second period participants tracked the
SI CE dynamics. Then, at a variable moment in the
‘Transition Region’ (see M in Table 1) the CE dynamics
changed to approximate a DI. Within the ‘Transition
Phase’ the participants had to detect the CE change and
adapt their response to continue stable tracking. During
the last 30-second phase participants performed steady-
state tracking of the post-transition DI dynamics.

In the experiment, data from a total of 16 runs (one
for each condition) were collected from each participant.
These 16 measurement runs were performed in a ran-
domized order across the different participants to elimi-
nate order effects. Note that a perfectly balanced design
was not possible with our six participants. Prior to the
measurement runs, all participants were trained for 3-5
runs with time-invariant CE dynamics for both SI and
DI, as well as 3-5 runs including the CE transition, until
they showed constant performance. Finally, 3-5 runs with
the time-varying CE were performed to practice with the
subjective detection and button press. The full experiment
was completed in approximately 1 hour per participant.

8.6 Data Analysis

Our analysis focused on determining the “outlying” post-
transition e or é occurrences that caused the participants
to detect a change, see Fig. 5. Between participants’
detection of a CE change and the recorded button, some
Reaction Time (RT) is expected. Based on research by
Thorpe et al. (1996), who measured reaction times for
button presses in response to visual inputs, the minimum
and maximum RT values expected for our data were 0.3 s

011

Bu%ush

0.12f <
g 0l Pred. Moment of Detection S
: g
—0.08f et
= ax RT | 5
0.06 | M
356 358 36 36.2 364 366 368 37
t [s]

Fig. 5. Predicted moment of detection determined by error
rate for an example run.
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Table 2. Forcing functions parameter values

ki[—] wilrad/s] A¢ldeg] d¢1lrad]  @iolrad] i 3[rad]  Pralrad] @i slrad]  ¢ielrad]  pizlrad]  Prglrad]
3 0.63 0.888 3.01 3.61 4.20 3.55 1.00 0.90 2.31 0.78
7 1.47 0.481 2.33 5.06 2.26 4.29 5.21 1.51 6.05 4.73
11 2.30 0.269 3.84 0.27 1.29 0.48 4.84 2.59 0.52 0.95
17 3.56 0.138 4.29 2.83 3.83 4.31 1.33 4.67 2.98 1.37
21 4.40 0.103 5.51 2.93 0.40 3.10 4.23 3.70 5.74 1.05
29 6.07 0.063 3.71 3.06 3.33 3.56 5.52 6.14 6.08 2.30
41 8.59 0.040 0.94 3.32 0.55 5.94 2.05 0.01 4.85 1.03
53 11.10 0.034 5.77 6.04 2.09 1.18 5.43 2.23 4.17 2.95
71 14.97 0.034 4.29 0.32 0.08 1.49 4.36 6.24 6.02 2.70
87 18.22 0.023 2.31 1.62 0.43 4.70 0.71 5.40 3.66 5.89
and 0.6 s, respectively. As shown in Fig. 5, the predicted
moment of detection was determined by 1) finding the .
highest peaks in e or é in the gray-shaded window, 2) —x—Fl P3 PS5 — — —Median
L . . . —%—P2 —x—P4 P6
normalizing the peak values with their respective steady-
state standard deviations in the pre-transition SI tracking 50
phase, and 3) selecting the most “outlying” e or é value
as the likely trigger for the participant to detect the
transition (Young, 1969). Fig. 5 shows an example where 40
the predicted detection is attributed to an é peak.
= 307
4. RESULTS Eé)
g 207
4.1 Detection Lag %
&
In total 96 tracking runs were performed across all six A 10
participants. The detection lag, calculated as the time
difference between the CE change (M) and a participant’s 0
button push, is shown per condition in Fig. 6. Colored False Positives
lines show the detection lag for each participant (P1-P6) 10

per condition. Boxplots indicate the variation across all
participants for each condition. The median of all mea-
sured detection lags was found to be 6.6 s, the horizontal
dashed red line in Fig. 6; this is consistent with the earlier
experiment of Plaetinck et al. (2019), who found lags
between 2.2 s and 7.4 s. Fig. 6 further shows that there
were three false positive detections (for P3 and P6 only),
i.e., moments where participants pressed the button before
a transition, and one false negative (for P4), where the
transition was not detected.

Furthermore, Fig. 6 shows that participants consistently
detected a CE change more quickly for specific conditions
(e.g., condition 12) and took consistently longer for others
(e.g., condition 8). This indicates that, as expected, the
forcing function characteristics at the moment of transition
(and hence the f; realization) impact how long it takes for
participants to detect a CE transition. While our current
16 conditions are insufficient to fully characterise this
dependency, this result shows that this is a key factor that
may affect experiments with time-varying CE dynamics
and should be accounted for when designing experiments.

4.2 Detection Error and Error Rate Analysis

The DR-1 decision region from (Phatak and Bekey,
1969b), shown in Fig. 2, is intended to encompass error
and error rate magnitudes representative for pre-transition
tracking. In this paper, the pre-transition tracking was
always performed with the same CE dynamics, which
closely resemble a single integrator in the crossover region,

o
—ANOILOONDD -
Condition [-

-1

Fig. 6. Detection lag per experiment condition.

see Section 3.1. Fig. 7 shows the measured range of all pre-
transition e and é values as the blue surface, which is a
top view on the 2-dimensional distribution of all measured
error and error rate values. The outlying post-transition
e or é values that were linked to the subjective button
press data, see Section 3.6, are plotted with red cross
symbols. The three false positives (see Fig. 6) are indicated
with yellow crosses. The diagonal lines in Fig. 7 separate
the detections based on e or é outliers, see Section 3.6;
detections in the left and right quadrants (41 out of 95)
are due to peaks in e, while those in the top and bottom
quadrants (54 out of 95) are linked to outlying é values.

Fig. 7 further shows the DR-1 limits from (Phatak and
Bekey, 1969b), here calculated from the average maximum
é across all participants, using a black dash-dotted line.
Comparison with our detection data (cross markers) shows
that only one of the detections in fact corresponds to an
e or é value outside the DR-1 region, i.e., 95.8% lie within
the previously proposed DR-1 region. Furthermore, Fig. 7
shows that the e or é values that led to detections are at
the outskirts of the natural variation in e or é during SI
tracking (blue area), which contrasts with the square shape
of the DR-1 limits. The dashed and dotted lines indicate
the regions of 20 and 60, respectively, with respect to the
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Table 3. Individual and average pre-transition e and é standard deviations and DR-1 limits.

P1 P2 P4 P5 P6 Mean
oe [rad] 0.023 0.022 0.023 0.023 0.024 0.022 0.023
o¢ [rad/s] 0.047 0.043 0.046 0.042 0.046 0.043 0.045
2|émae] [rad/s]  0.312  0.291 0.276 0.255 0.299 0.253  0.281
0.16 T T
I ST Tracking % Detection g 6
— — —20 False Positive 014,*5\. ............................. ]
,,,,,,,,,, 6o 6= g_z"*e =N Late Det
fffff DR-1 042F B g5
\
O | RN Yol
3 [ Exp. Det.
+=.0.08 1 \
E ............................... ’. Y L au iy’
0.06+  Too Early Det. |
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g
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Fig. 7. Spread in pre-transition tracking errors and error
rates compared to measured detections.

mean of the pre-transition SI tracking data. Especially the
20-region, which assuming a normal distribution encloses
around 95% of the pre-transition e and é data, includes
only 8.4% of the measured detections, as well as one of
the false positives. This suggests that detection limits
for predicting human adaptation based on the statistical
variations that occur in pre-transition error and error rate
signals may be more effective than the DR-1 limits.

Table 3 presents the pre-transition standard deviations for
error and error rate — g, and o, respectively — for each
participant, as well as the corresponding DR-1 limit values,
2€maz- The rightmost column lists the averages across
all participants. Table 3 shows remarkable consistency
in 0. and o¢ across participants, with individual values
that deviate less than 5% from the averages of 0.023
rad and 0.045 rad/s, respectively. Consistent with Fig. 7,
Table 3 further indicates the unrealistically large gap —i.e.,
2emazr ~ 120, and 2é,,4, =~ 60s — between normal pre-
transition statistical variations in e and é and the DR-1
detection limit as proposed by Phatak and Bekey (1969b).

4.8 Proposed Detection Limits

Based on Fig. 7, we propose to base the detection limits
that could be used to predict human operator adaptation
on multiples of the pre-transition e and é standard devia-
tions. As shown in Fig. 7, with a common factor on o, and
o¢ this results in a ‘rectangular’ detection limit boundary.
To determine this optimal factor for our experiment data,
we considered the range of 20 to 60 and used our pro-

Fig. 8. Example absolute error signal showing the early,
expected, and late detections that may occur for
different detection limit values.

posed new limits to determine the first moment at which
either e or é passes this limit for each participant, i.e., we
determined the predicted detection from the measured e
and é data. For this analysis, we used the average standard
deviations of the error and error rate as listed in Table 3.
We also performed the same analysis with individual stan-
dard deviation limits for each participant, but given the
consistency between participants (see Table 3), the results
are equivalent and not presented here.

Fig. 8 shows an example (absolute) e signal from our
experiment data, together with different e-detection limits
(dotted horizontal lines) to illustrate our methodology.
As shown in Fig. 8 for a detection limit of 30, Fxpected
detections are detections that fall within range of the
expected detection times, i.e., between 2.2-7.4 s after the
CE transition (Plaetinck et al., 2019). Predicted detections
that occur earlier than this, as would happen here for a
20 limit, are labelled as Too Farly detections, i.e., false
positives. Detections that occur later than 7.4 s, see Fig. 8,
are classified as Late detections. The final category of No
Detection (not shown in Fig. 8) consists of all cases where
no detection limit was crossed, i.e., false negatives. Note
that while Fig. 8 only shows e, we in fact performed this
analysis on both e and é and always used the first predicted
detection based on either signal.

Fig. 9 shows the classification of predicted detections
across all participants, using the average e and é standard
deviations from Table 3 — i.e., 0.023 rad and 0.045 rad/s,
respectively — as the reference pre-transition variability.
The cumulative occurrence of Too Early, Expected, Late
and No detections, which always adds up to 100%, is shown
as a function of the detection limit magnitude. Fig. 9 shows
that a limit below 2.50 results in only Early detections.
This is expected, as a single e or é occurrence that far from
their respective means is highly likely, see also Fig. 8. At
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Fig. 9. Classification of predicted detections from the
experiment data using average e and ¢é standard
deviations to define the detection limits.

around 4o, mostly Expected and Late detections occur,
meaning that false positives and false negatives are both
mostly suppressed. For limit values above 40, cases with
No detections quickly become dominant.

The detection limit with the lowest proportion of Too
Early detections (9.38%) and No detections (11.5%) is
3.90. For this setting, the fraction of Expected detections
is 46.9%, with the remaining 32.3% resulting in Too
Late detections. These percentages reasonably match the
results obtained from the subjective button press data,
for which we found 6.25% Too Early detections, 50.0%
Expected detections, 42.7% Late detections and 1.05%
No detections. For reference, when the DR-1 limits from
(Phatak and Bekey, 1969b) are applied, which for this
experiment corresponds to detection boundaries of 120 for
e and 60 for é, there would be no Too Early detections
and no Expected detections, but 7.3% Late detections
and 92.7% No detections. Overall, the proposed detection
limits, based on 3.9 times the e and é standard deviations,
seem to faithfully represent human operators’ detection of
changes in CE dynamics in our experiment. In future work,
experiments with other CE transitions — e.g., matching
those of earlier experiments by Phatak and Bekey (1969b)
— should be performed to verify to what extent our
proposed limits may be more generally applicable.

5. CONCLUSIONS

In this paper, we focused on predicting human operators’
detection of a change in Controlled Element (CE) dy-
namics from variations in tracking error and error rate.
For this research, a dedicated experiment with six skilled
participants was performed, in which a tracking task was
performed with a CE that transitioned from approximate
single integrator to double integrator dynamics. The par-
ticipants indicated, by pressing a trigger button on the
side stick, when they detected a CE transition. Results
show that human operators’ detection of a CE change can
be linked to occurring statistical ‘outliers’ in the error (e)
or error rate (é) signals, but that previously proposed de-

tection limits (Phatak and Bekey, 1969b) (2|é14.|, DR-1)
are insufficiently sensitive to explain our experiment data.
For our tested CE transition, operators detected a CE
change after occurrences of e and é values outside of 2-6
times their respective pre-transition standard deviations.
Based on this, new detection limits proportional to the pre-
transition standard deviations of e and é were proposed
and applied for predicting our measured detection data.
The best detection limit was found to be 3.90, which
resulted in a reasonable match with the measured sub-
jective detections, with only 9.38% false positives (too
early detections) and 11.5% false negatives (missed detec-
tions). Overall, our analysis suggests that human operator
adaptation is likely triggered by statistical variations in
tracking error and error rate, which may be used directly
for developing predictive models of human adaptation.
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