
 
 

Delft University of Technology

A Novel Multi-vision Sensor Dataset for Insect-Inspired Outdoor Autonomous Navigation

Verheyen, Jan K.N.; Dupeyroux, Julien; Croon, Guido C.H.E.de

DOI
10.1007/978-3-031-20470-8_28
Publication date
2022
Document Version
Final published version
Published in
Biomimetic and Biohybrid Systems - 11th International Conference, Living Machines 2022, Proceedings

Citation (APA)
Verheyen, J. K. N., Dupeyroux, J., & Croon, G. C. H. E. D. (2022). A Novel Multi-vision Sensor Dataset
for Insect-Inspired Outdoor Autonomous Navigation. In A. Hunt, V. Vouloutsi, K. Moses, R. Quinn, A. Mura,
T. Prescott, & P. F. Verschure (Eds.), Biomimetic and Biohybrid Systems - 11th International Conference,
Living Machines 2022, Proceedings (pp. 279-291). (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13548 LNAI).
Springer. https://doi.org/10.1007/978-3-031-20470-8_28
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-20470-8_28
https://doi.org/10.1007/978-3-031-20470-8_28


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



A Novel Multi-vision Sensor Dataset
for Insect-Inspired Outdoor Autonomous

Navigation

Jan K. N. Verheyen(B), Julien Dupeyroux, and Guido C. H. E. de Croon

Micro Air Vehicle Laboratory, Department of Control and Simulation Faculty
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Abstract. Insects have—over millions of years of evolution—perfected
many of the systems that roboticists aim to achieve; they can swiftly
and robustly navigate through different environments under various con-
ditions while at the same time being highly energy efficient. To reach
this level of performance and efficiency, one might want to look at and
take inspiration from how these insects achieve their feats. Currently, no
dataset exists that allows bio-inspired navigation models to be evaluated
over long >100m real-life routes. We present a novel dataset containing
omnidirectional event vision, frame-based vision, depth frames, inertial
measurement (IMU) readings, and centimeter-accurate GNSS position-
ing over kilometer long stretches in and around the TUDelft campus.
The dataset is used to evaluate familiarity-based insect-inspired neu-
ral navigation models on their performance over longer sequences. It
demonstrates that current scene familiarity models are not suited for
long-ranged navigation, at least not in their current form.

Keywords: Long-range navigation · Neuromorphic systems ·
Event-based camera · RGB Camera · GPS · GNSS

1 Introduction

To date, some insect-inspired aerial robots have been developed [9,19] which
mimic the flight capabilities of insects and while basic navigating capabilities
have already been shown on board such limited platforms [26], their naviga-
tional performance falls short compared to their biological counterparts. Recent
neural insect-inspired navigational models [2,3,11,36] show promising results
over short distances, but lack the capacity for long-ranged (>100m) navigation.
This could be overcome by chaining local navigation strategies [10], although the
difficulty here lies in where to transition from one local navigation strategy into
the other. One of the major hurdles still holding back high-performance naviga-
tion onboard robots is energy-efficient visual processing. Insects’ visual system
is event-based, where photosensitive cells react independently from each other
to changes in light intensity and subsequently generate spikes that propagate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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through the visual system to be processed in their miniature brains. Event cam-
eras are neuromorphic vision sensors that mimic that process. Here, pixels take
the role of the photosensitive cells and generate events asynchronously. Visual
information is thus captured in a stream of events opposed to synchronous frames
as taken by traditional cameras. This allows neuromorphic cameras to operate
at very high temporal resolution and low latency (in the order of microseconds),
very high dynamic range (140 dB compared to 60 dB of standard cameras), high
pixel bandwidth (in the order of kHz), and low power consumption (order of
mW) [14]. Processing such information requires novel methods to be developed.
Biologically plausible methods involve the use of spiking neural networks (SNNs)
since they are biologically more similar to networks of neurons found in animal
nervous systems than regular artificial neural networks (ANNs). Implemented on
neuromorphic processors such as Intel’s Loihi and IBM’s Truenorth, SNNs can
deliver highly powerful computing at a fraction of the power budget of traditional
hardware (CPUs, GPUs), making them promising candidates for implementation
on robots.

Datasets form an important part of training and evaluating such novel meth-
ods. Currently, there are several event-based vision datasets focusing on naviga-
tion, covering applications in visual odometry, depth reconstruction, and SLAM,
but little focusing on insect-inspired navigation. Images, events, optic flow, 3D
camera motion, and scene depth in static scenes using a mobile robotic plat-
form are provided in [4]. A large automotive dataset containing over 250000
human-labeled box annotations of cars and pedestrians is presented by [31]. The
dataset provided by [35] includes synchronized stereo event data, augmented with
grayscale images, and inertial measurement unit (IMU) readings. Ground truth
pose and depth images are provided through a combination of a LiDAR system,
IMU, indoor and outdoor motion capture, and GPS. The DDD20 [17] dataset
consists of an extensive automotive dataset with events, frames, and vehicle
human control data collected from 4000 km of mixed highway and urban driv-
ing. However, most insects have compound eyes that cover an almost panoramic
FOV and this plays an important role in insects’ navigational dexterity [15].
Additionally, insects fuse various sensory inputs from their environment together
during navigation [13], making datasets that combine sensors valuable sources
for training and evaluating such methods in e.g. multimodal navigation such
as [16,30]. None of the datasets above provide event data captured through an
omnidirectional lens enhanced with additional sensors over long distances.

This paper presents two main contributions. First, a dataset containing omni-
directional event camera and IMU data, forward-facing high-resolution footage,
and centimeter-level accurate GPS data along with a software package to load,
process and manipulate the dataset. The dataset, including the software package,
will be made available at https://github.com/tudelft/NavDataset. Secondly, an
evaluation is presented of three different familiarity-based insect-inspired navi-
gation models from the literature [2,3,36] with respect to their performance in
long-ranged navigation.

https://github.com/tudelft/NavDataset
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2 The Biological Principles in Insect Navigation

2.1 Visual Perception

Insects’ compound eyes consist of small individual hexagonally-shaped photore-
ceptive units, called ommatidia, which are arranged to form a faceted surface,
capable of covering an almost panoramic field of view. Each such ommatidium
receives light only from a small angle in the visual field, constricting the visual
acuity of the insect’s visual system. When excited by photons, these photorecep-
tive cells generate electric signals encoding the amount of light it absorbs, which
downstream neurons turn into spikes that are passed through to the under-
lying optic lobes [25]. This low resolution but often almost panoramic vision
from insects plays a crucial role in the success of their visual navigation’s neural
implementations.

2.2 Insect Visual Navigation Models

Insects are adept navigators capable of maneuvering through cluttered environ-
ments and memorizing long routes. Cartwright and Collett’s [8] seminal snapshot
model presented some of the first work that studied and modeled the visual nav-
igation feats of honeybees. It hypothesized that honeybees store a single retino-
topic snapshot of the place that they later want to navigate back to. Other meth-
ods include the Average Landmark Vector (ALV) model [21], image warping [12],
and rotationally invariant panoramic methods that utilize Fourier-transformed
[29] images or other frequency-domain-based methods [28].

The area surrounding the stored snapshot from which agents can successfully
return is categorized as the catchment area. The extent of the catchment area
changes depending on various factors such as the deployed navigation technique
and the complexity and texture of the environment [34]. Insects therefore imple-
ment different visual navigation strategies, depending on whether they are on an
already familiar route or find themselves in unfamiliar surroundings, respectively
switching between route-following and visual homing behaviors [33].

Route-following methods commonly exploit the fact that generally, in natu-
ral scenes, the root-mean-square difference between the stored panoramic snap-
shot and another panoramic snapshot (also called the image difference) changes
smoothly in correlation with the distance from the stored snapshot, where it
terminates in a sharp minimum [34]. Visual route following methods include the
Descent in Image Difference (DID) methods, which follows the declining gradi-
ent in image difference towards the stored snapshot [23]. Later, more biologically
plausible DID models employed an ANN-based approach. In the scene familiar-
ity model [3], a route is learned through training a 2-layer feedforward network
to memorize snapshots along a route. An SNN-based scene familiarity model,
modeled after the mushroom bodies (MBs) of ants was later formulated by [2].
Other work looked at integrating various cues in a multimodal decentralized
neural model, combining input from the Central Complex (CX), the MB and
the Path Integration (PI) centers [30].
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2.3 Neuromorphic Processing

Event-Based Vision Sensors. Event cameras are vision sensors that take
inspiration from the working principle of the biological retina. Each pixel reacts
asynchronously to changes in light intensity. The sensor logs the pixel’s location,
time (in microsecond resolution), and polarity (‘ON’ or ‘OFF’), and sends it over
a digital bus in an Address-event Representation (AER) format [14]. Because
event cameras only react to small changes in light intensity at individual pixels,
visual information is more efficiently conveyed compared to frame-based cameras.

Spiking Neural Networks. Analogous to their biological counterparts, arti-
ficial neurons in SNNs generate a spike (action potential) if their membrane
potential reaches a certain threshold after receiving a series of excitatory spikes
from upstream neurons over their synaptic connections. After firing, the neuron
lowers its internal voltage to a resting state. For a short time (the so-called refrac-
tory period) the neuron will not react to any incoming signals anymore. Various
computational models of biological neurons exist to replicate this behavior. The
most used neuronal models in artificial spiking neural networks nowadays are
the Leaky Integrate-and-Fire (LIF) [27], Spike Response Model (SRM) [20], and
the Izhikevich [18] model. The LIF neuron model in Eq. 1 shows how presynaptic
spikes sj(t) arriving from neurons in layer l−1 increase (or decrease)—depending
on weight matrix Wi,j , denoting its synaptic connectivity—the neuron’s mem-
brane potential vi(t) (scaled with the time constant λv) after which it decays to
its resting potential vrest if no more signals arrive. If enough excitatory presynap-
tic spikes arrive in short succession, the membrane potential will reach a certain
internal threshold after which the neuron spikes (si(t)), resets its membrane
potential, and enters a refractory period. Inhibiting presynaptic spikes have the
opposite effect and will lower the membrane potential.

λv
dvi(t)

dt
= −(vi(t)− vrest) +

nl−1∑

j=1

(
Wi,js

l−1
j (t − τd)

)
(1)

Information in SNNs can be encoded in several different manners including posi-
tion, temporal, rate coding, and subsequent combinations thereof. Learning in
SNNs thus takes place in these domains, traditionally with much focus on a
mechanism called Spike-Timing-Dependent Plasticity (STDP) [7]. STDP is a
(biological) form of Hebbian learning that changes the synaptic strength of neu-
ron connections dependent on their relative spike timing.

3 Dataset Design

The following section presents the utilized sensors and how the dataset was
collected. The dataset was collected in both rural and urban environments in
and around the TUDelft campus (Delft, The Netherlands). It mainly consists
of events and IMU readings captured by a DAVIS240 event camera (as a more
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biologically accurate source of visual data) and video from a GoPro Hero 8
Black along with RTK GNSS positioning data. Video was collected in HEVC
encoded MP4 and ROS bag files for the rest. The dataset also provides the
same raw data in HDF5 containers. The DAVIS240 sensor was fitted with an
omnidirectional lens to more accurately represent insects’ vision, and its benefits
in visual route following. Section 3.1 gives an overview of the dataset collection
platform and the acquisition environment. A Python3 package will be made
available for converting the bag and HDF5 files to and from various formats, as
well as performing the data (pre)processing as elaborated upon in Sect. 3.2.

3.1 Sensors and Data Acquisition

Sensors. Table 1 provides an overview of the sensors with their characteristics.
The complete logistical overview of the dataset acquisition platform can be seen
in Fig. 1A and B. The dataset junction box forms the housing holding the var-
ious sensors as well as the Intel Up board computation platform. The Intel Up
board runs ROS Kinetic and is responsible for collecting and time synchronizing
the data from the various sensors which are connected over USB2/3 buses. The
GNSS antenna was mounted at the back of the bike to minimize interference
from the USB3 controllers. A mobile phone with cellular was connected to the
Intel Up board by connecting to the phone’s wifi hotspot. This allowed for run-
ning commands on the Intel Up board over ssh as well as provided the Intel Up
board with internet access. This was needed for RTK GNSS positioning; RTCM
messages were sent to the ublox ZED-F9P GNSS receiver by connecting to the
EUREF-IP network ntrip server allowing for up to centimeter-accurate position-
ing. The DAVIS240 camera was mounted to an omnidirectional catadioptric lens
to achieve omnidirectional vision. The GoPro camera was manually operated,
thus a small gap exists between its timing and the rest of the sensors; this has
been manually compensated for in the post-processing of the data. An external
portable SSD was utilized to offload the collected data after every single run as
the internal storage of the Intel Up board was limited. The dataset box was then
mounted to a bike (Fig. 1B).

Sequences. The dataset consists of 12 routes traversed by bike from and to the
start point (Fig. 2). The runs cover both rural and urban environments in and
around the TUDelft campus. The dataset was collected over two days in April
in the afternoon with similar partially clouded sunny weather conditions. Each
bike run was travelled at about 18 km/h on primarily bike lanes.

3.2 Data Processing

Central to this dataset is the data provided by the DAVIS240 equipped with the
omnidirectional catadioptric lens. As can be seen in Fig. 3, the omnidirectional
lens projects its light on a circular region on the DAVIS240 sensor. In Fig. 3A
the direction of the view with respect to the bike’s heading is annotated. The
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Table 1. Dataset collected data

Type Sensor Characteristics Container

Visual DAVIS240 240× 180 pixel DVS ROS bag/HDF5
AER

Visual GoPro Hero 8 Black 1920× 1080 pixel mp4 (HEVC)
60 fps

Visual Intel Realsense d435i 720× 1280 pixel depth ROS bag
30 fps
16UC1

Position- Ublox ZED-F9P GNSS NavPVT ROS bag/HDF5
ing 5 Hz capture rate

Position Accuracy 1.3 cm CEP

Fig. 1. Dataset acquisition hardware. A shows an overview of the various sensors
mounted on the dataset box. B shows the full setup—the dataset box mounted on
a bike to cover the long distances. C shows the data flow diagram between the sensors
and the central computers.

approximate location of the capture can be seen in Fig. 3B. This circular projec-
tion can easily be masked as it stays fixed with respect to the sensor, subsequent
unwrapping (in this case unwrapping is simply performed by mapping the polar
coordinates of view Fig. 3A directly to image coordinates) results in the view
presented by Fig. 3C.
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Fig. 2. Map of the routes covered by the dataset. Route ‘a’ indicates runs away from
the start point, ‘b’ towards the start point. Samples are shown in 1–3.

Fig. 3. Example of the omnidirectional events captured by the DAVIS240 and subse-
quent preprocessing. A shows an accumulated event frame as captured by the omni-
directional system, the two concentric circles show the boundaries of the visible field.
B shows a frame from the GoPro footage, the left snapshot coincides with the camera
position in the frame. C shows the event stream after masking and unwrapping the
events.

4 Experimental Study: Evaluating Familiarity-Based
Neural Insect Navigation Models

The following section presents the use of the dataset to investigate a few recent
neural insect-inspired familiarity-based navigational models. The experiments
compare three neural familiarity-based insect navigation models in terms of their
performance for long-ranged navigation, namely [3]’s scene familiarity neural net-
work, [2]’s Mushroom Body (MB) model, and [36]’s MB model. The mushroom
bodies are relatively large structures in the insect brain that consist of large
parallel arrangements of neurons, called Kenyon Cells (KCs), which are sampled
by a relatively small amount of extrinsic neurons, also called Mushroom Body
Output Neurons (MBONs). The mushroom bodies’ role in visual learning has
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been investigated, revealing direct neural connections between the medulla and
mushroom bodies [32]. Recent research has shown that MBs are necessary for
learned visual navigation [6]. The aforementioned scene-familiarity models have
been mostly tested in either simulated environments [2,3] or over very short
distances in a controlled environment [36]. This dataset provides an interesting
testing ground to evaluate these methods in real-life conditions with visual data
inspired by the way insects perceive their environment. The inclusion of frame-
based video allows for comparison between frame-based [2,3] and event-based
[36] methods, but could also be used for multimodal models, utilizing the GNSS
data as a virtual compass. We are specifically interested in how these methods
hold up over longer distances.

4.1 Neural Familiarity-Based Insect Navigation Models

Baddeley et al.’s Scene Familiarity Model. The (frame-based) scene famil-
iarity model of [3] consists of an input layer with the same dimensions as the
number of pixels in the acquired images, which is fully connected by feedfor-
ward connections to a novelty layer which consists of tanh activation functions.
The information about the input presented by the novelty layer is maximized
through weight adaptation following the Information-Maximization (infomax)
principle [5]. The infomax principle adjusts the weights of the network in such
a way as to maximize the information about the input that the novelty layer
presents. This is performed by following the gradient of mutual information [3].
By maximization of information through weight adaptation, the output of the
novelty layer units is decorrelated, effectively reducing the network’s output for
sequences that have already been seen. ‘Familiar’ frames can be discerned after
a single training run.

Ardin et al.’s Mushroom Body Model. The (frame-based) SNN MB model
presented by [2] consists of 360 visual projection neurons (vPNs) that are sparsely
connected to 20000 KCs which connect to a single MBON. Each such vPN can
thus activate only a handful of KCs, representing a sparse encoding of infor-
mation. Learning is performed by lowering the synaptic weights (Long-Term
Depression (LTD)) between the KCs and the MBON through STDP. As a result,
after training, the MBON’s spike rate is lower for familiar views opposed to novel
ones. Due to solely applying LTD, these connections are permanently weakened.
This limits the model’s capacity to memorize long sequences to the amount of
depletable weights and the sparseness of the connections.

Zhu et al.’s Mushroom Body Model. The model presented by [36] (event-
based) adapts Ardin et al.’s [2] model based on the finding that 60% of the
input synapses of KCs come from other KCs. Instead of performing learning on
the weights connecting the KCs to the MBON; when a KC spikes, it inhibits its
connection to downstream KCs that spike at a later time based on an STDP rule.
The KCs are split up into two groups of 5000 neurons to speed up learning; each
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solely acting within its group. Additionally, an anterior paired lateral (APL) [1]
neuron is included that inhibits the activity of the KC layer.

4.2 Setup

The aforementioned neural networks were trained on sequences of 8, 16, 24, and
32 s from a 32-s section of route 1a (see Fig. 2). The respective networks were
trained to ‘memorize’ that stretch of the route. Ensuing runs would result in a
lower response from the network for already seen sequences, compared to unseen
sequences. Ideally having a high (thus comparable to the untrained baseline run
in orange) response for unfamiliar views and vice versa for familiar views. During
the validation run, the same sequence was injected with unfamiliar views over
stretches of 4 s and presented to the networks (gray bars in Fig. 4). The injected
parts were sampled from sections of other routes in the dataset. For the event-
based networks, the injected sequences were closely matched to the event rate of
the original sequence, to maintain similar levels of activity in the network’s layers.
The frame-based models were presented with 28 × 8 pixel grayscale histogram
equalized frames flattened to a 1D array. Input from the DAVIS240 sensor was
max-pooled to 32× 7 pixels before passing it to the network.

4.3 Results

The results of the experiment can be seen in Fig. 4. Inspired by [36]’s novelty
index, we apply a performance index P

P =
∑

sunfamiliar −
∑

sfamiliar∑
stotal

(2)

with s the response (familiarity index/spike rate) of the network, to evaluate the
model’s performance over increasingly longer test sequences (P = 1 is ‘perfect’
performance). The performance index captures the normalized relative differ-
ence in the response of the network between familiar and unfamiliar views. Its
results are visualized in Fig. 4D. The Infomax scene familiarity [3] model’s per-
formance index decreased overall, while Ardin et al.’s [2] stabilized, but both
these frame-based models maintain an adequate performance level to still sepa-
rate familiar from unfamiliar views. This is in stark contrast with Zhu et al.’s [36]
event-based model, which has depleted its ‘memory’ after about 16 s of learn-
ing (so not showing the full 32 s for visual clarity in Fig. 4). This deteriorating
performance over longer distances is a result of the limited capacity of the net-
works, as synaptic connections’ weights are depleted during training. This could
be improved upon by a number of factors. First, the networks were trained with
a constant learning rate, this could be tuned for longer distances, although at
the cost of lower performance in general. Secondly, one could lower the number
of presented frames 60Hz to lower rates based on some metric of the input data.
Further increases in the network’s size by increasing the amount of KCs remains
an option as well, although its computational increase would severely limit the
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Fig. 4. Insect navigation models response to 8-, 16-, 24-, and 32-second sequences of a
section of route 1a. A Infomax neural network [3] (frame-based). B Ardin et al.’s [2]
MB model (frame-based). C Zhu et al.’s [36] MB model (event-based). D Performance
index P (Eq. 2)

number of deployable robotic platforms. The frame-based method’s more stable
performance could be a consequence of them having more control over their input
through well-established techniques such as normalization, which are less devel-
oped for event-based vision. Investigating intrinsically modulating mechanisms
such as [24]’s adaptive LIF neuron could perhaps provide more fundamental
solutions for this. Furthermore, it is known that insects perform a number of
preprocessing steps (including elementary motion detection such as optic flow)
in their optic lobes [25] as well as have mechanisms present that adjust the
learning and forgetting of ‘unnecessary’ information [13], worth investigating.

5 Conclusion

The aforementioned navigational models have been evaluated on their capabil-
ity to discriminate between familiar and unfamiliar views, which differs from
closed-loop navigation evaluations as presented in e.g. [2,3]. Nonetheless, the
experiments in Sect. 4 present some issues with how usable these networks are for
memorizing longer sequences. Successful navigational methods could utilize dif-
ferent mechanisms to still obtain dependable navigational e.g. combining attrac-
tive and repulsive cues [22] or integrating several navigational cues [16,30]. This
work aims to provide a valuable tool with which the further development of such
neural insect-inspired long-range navigation methods can be accelerated.
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