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Band-Passing Nonlinearity in Reset Elements
Nima Karbasizadeh , Member, IEEE, Ali Ahmadi Dastjerdi, Member, IEEE,

Niranjan Saikumar , Member, IEEE, and S. Hassan HosseinNia , Senior Member, IEEE

Abstract— This article addresses nonlinearity in reset elements
and its effects. Reset elements are known for having less phase
lag based on describing function (DF) analysis compared to
their linear counterparts; however, they are nonlinear elements
and produce higher-order harmonics. This article investigates
the steady-state higher-order harmonics for reset elements with
one resetting state and proposes an architecture and a method
of design that allows for band-passing the nonlinearity and
its effects, namely, higher-order harmonics and phase advan-
tage. The nonlinearity of reset elements is not entirely useful
for all frequencies, for example, they are useful for reducing
phase lag at crossover frequency regions; however, higher-order
harmonics can compromise tracking and disturbance rejection
performance at lower frequencies. Using the proposed “phase
shaping” method, one can selectively suppress the nonlinearity of
a single-state reset element in a desired range of frequencies and
allow the nonlinearity to provide its phase benefit in a different
desired range of frequencies. This can be especially useful for the
reset elements in the framework of the “constant in gain, lead in
phase” (CgLp) filter, which is a newly introduced nonlinear filter,
bound to circumvent the well-known linear control limitation—
the waterbed effect.

Index Terms— Higher-order harmonics, mechatronics, motion
control, nonlinear control, precision motion control, reset control,
shaping nonlinearity.

I. INTRODUCTION

THE growing demand on precision, bandwidth, and robust-
ness of controllers in fields like precision motion control

are pushing linear control to its limits [1]. Fundamental limits
of linear controllers, namely, Bode’s phase gain relationship
or Bode’s sensitivity integral theorem, a.k.a., “the waterbed
effect” [2], have made researchers and industries change
course toward nonlinear control to circumvent these limita-
tions [3]. Reset control is one such nonlinear technique that
has gained significant prominence in recent times [4], [5],
especially in the precision motion control field.

The reset control technique was first introduced by Clegg [6]
as a nonlinear integrator and its advantage was described
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in [7] in terms of reducing phase lag compared to its linear
counterparts. The main idea of reset control is to reset a subset
of controller states when a predefined resetting condition is
met. More sophisticated reset elements were developed over
the years, namely, first-order reset element (FORE) [8], gener-
alized first-order reset element (GFORE) [9] and second-order
reset element (SORE) [10]. These reset elements were used
in different capacities such as phase lag reduction, decreasing
sensitivity peak, narrowband and broadband phase compen-
sation, a guarantee of exponential convergence, and approx-
imating the complex-order behavior [11]–[19]. Furthermore,
they have been used for different applications, especially
precision motion control [20]. A new reset-based architecture
was recently proposed by [21], which has a constant gain
while providing phase lead in a broad range of frequencies.
This architecture, named “constant in gain, lead in phase”
(CgLp), can completely replace or take up a significant portion
of derivative duties in the framework of PID. The stability
of reset elements is studied in the literature from different
aspects [22], [23].

Being a nonlinear controller, reset elements produce higher-
order harmonics, which in turn makes reset control two-edged.
While it is capable of overcoming linear control limitations,
the existence of higher-order harmonics can compromise the
performance of the system [24]. Recently, researchers found
describing function (DF) method for analyzing the reset
elements in the frequency domain [9] insufficient, since it
neglects the effect of higher-order harmonics. A generalized
form of the DF method which accounts for higher-order har-
monics called higher-order sinusoidal input describing func-
tion (HOSIDF) [25] was adopted for reset elements in [26]
and [27]. There are efforts in the literature to reduce the
adverse effects of higher-order harmonics in one frequency
or by tuning reset element parameters or finding the optimal
sequence of elements [24], [28]–[32]. However, to the best of
the authors’ knowledge, there is no systematic approach in the
literature for deliberately reducing higher-order harmonics to
a desired upper bound in a range of frequencies.

The main benefit of reset elements is the reduction of phase
lag with respect to their linear counterparts. This character-
ization is beneficial in the crossover frequency region and
has no clear benefit at other frequencies. Furthermore, higher-
order harmonics compromise the performance of the system
in terms of tracking precision and disturbance rejection which
is basically discussed in the loop-shaping method at lower
frequencies [30], [33]. Thus, providing a method to bandpass
the nonlinearity and in turn higher-order harmonics seems
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logical to help keep the positive edge of reset elements while
limiting its negative edge.

The main contribution of this article is the investigation of
higher-order harmonics in reset elements with one resetting
state and proposing an architecture and a method of design
called “phase shaping” to allow for band-passing nonlinearity
in reset elements. In other words, using the proposed architec-
ture and phase shaping method one can create a reset element,
for example, a Clegg integrator, a FORE, or a CgLp, which
is nonlinear in a range of frequencies while it acts linearly in
terms of steady-state response at other frequencies. Meaning
that the element will limit its phase benefits to where it is
needed and will have reduced higher-order harmonics at other
frequencies. The article also investigates the performance of
the proposed element in the framework of CgLp and shows
that using the proposed method the performance of the CgLp
element will be significantly improved.

The remainder of this article is organized as follows.
Section II presents the preliminaries. Section III introduces
and discusses the architecture of the proposed reset element
and investigates its HOSIDF. Section IV will propose the
design and tuning method called phase-shaping. The following
one will introduce an illustrative example and verify the
discussions in practice. Finally, the article concludes with
some remarks and recommendations about ongoing works.

II. PRELIMINARIES

This section discusses the preliminaries of this study.

A. General Reset Controller

Following is a general form of a reset controller [34]:

�
R

:=

⎧⎪⎨
⎪⎩

ẋr (t) = Ar xr (t)+ Br e(t), if e(t) �= 0

xr (t
+) = Aρxr (t), if e(t) = 0

u(t) = Cr xr (t)+ Dr e(t)

(1)

where
�

R is the reset controller and Ar , Br ,Cr , Dr are the
state space matrices of the base linear system and Aρ =
diag(γ1, . . . , γn) is called reset matrix. This matrix contains
the reset coefficients for each state which are denoted by
γ1, . . . , γn . xr (t+) represents the value of the reset state
exactly after reset action. The controller’s input and output
are represented by e(t) and u(t), respectively.

B. Hβ Condition

The quadratic stability of the closed-loop reset system when
the base linear system is stable can be examined by the
following condition [5], [35]:

Theorem 1: There exists a constant β ∈ �nr ×1 and positive
definite matrix Pρ ∈ �nr ×nr , such that the restricted Lyapunov
equation

P > 0, AT
cl P + P Acl < 0 (2)

BT
0 P = C0 (3)

has a solution for P , where C0 and B0 are defined by

C0 = �
βCp 0nr×nnr Pρ

	
, B0 =

⎡
⎣ 0n p×nr

0nnr ×nr

Inr

⎤
⎦. (4)

and

AT
ρ Pρ Aρ − Pρ ≤ 0 (5)

where Acl is the closed-loop A-matrix. nr is the number
of states being reset and nnr being the number of nonre-
setting states and n p is the number states for the plant.
A p, Bp,Cp, Dp are the state space matrices of the plant.

C. Describing Functions

Because of its nonlinearity, the steady-state response of a
reset element to a sinusoidal input is not sinusoidal. Thus,
its frequency response should be analyzed through approxi-
mations like DF method [9]. However, the DF method only
takes the first harmonic of Fourier series decomposition of
the output into account and neglects the effects of the higher-
order harmonics. As shown in [24], this simplification can
sometimes be significantly inaccurate. To have more accurate
information about the frequency response of nonlinear sys-
tems, a method called “higher-order sinusoidal input describ-
ing function” (HOSIDF) has been introduced in [25]. This
method was developed in [26] and [27] for reset elements
defined by (1) as follows:

Gn(ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cr ( jωI − Ar )
−1(I + j�(ω))Br + Dr ,

n = 1

Cr ( jωnI − Ar )
−1 j�(ω)Br ,

odd n > 2

0, even n ≥ 2

�(ω) = −2ω2

π
�(ω)[	(ω)−
−1(ω)]


(ω) = ω2 I + Ar
2

�(ω) = I + e
π
ω Ar

�ρ(ω) = I + Aρe
π
ω

Ar

	(ω) = �−1
ρ (ω)Aρ�(ω)


−1(ω) (6)

where Gn(ω) is the nth harmonic describing function for
sinusoidal input with frequency of ω.

According to definition of reset elements in open-loop in
(1), assuming e(t) = sin(ωt), the resetting condition will be
sin(ωt) = 0 and the reset instants will be tk = (kπ/ω).
However, if by changing the architecture of reset element, one
can manage to change the resetting condition to the following:

�
R

:=

⎧⎪⎨
⎪⎩

ẋr (t) = Ar xr (t)+ Br e(t), if sin(ωt − ϕ) �= 0

xr (t
+) = Aρxr (t), if sin(ωt − ϕ) = 0

u(t) = Cr xr (t)+ Dr e(t)

(7)

means that the signal which determines the reset instants is
phase shifted by ϕ. In other words, if one changes the reset
instants, tk = (kπ + ϕ/ω), while maintaining the input, e(t),
then HOSIDF will change to [27]

Gϕn(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cr (Ar − jωI )−1�ϕ(ω)

+ Cr ( jωI − Ar )
−1 Br + Dr , n = 1

Cr (Ar − jωnI )−1�ϕ(ω), odd n > 2

0, even n ≥ 2
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Fig. 1. Concept of using a combination of a reset lag and a linear lead
element to form a CgLp element. The figure is from [21].

�ϕ(ω) = −2 jωe− jϕ

π
�(ω)(ωI cos(ϕ)+ Ar sin(ϕ))
−1(ω)B

�(ω) = �(ω)−�(ω)�−1
ρ (ω)Aρ�(ω). (8)

It will be discussed later in the article that (8) can be used
to obtain the HOSIDF of the proposed architecture, where the
phase shift, ϕ, is implemented in a set of frequencies.

D. Constant in Gain, Lead in Phase (CgLp)

According to [21], CgLp is a broadband phase compensation
element whose first harmonic gain behavior is constant while
providing a phase lead. Originally, two architectures for CgLp
are suggested using FORE or SORE, both consisting in a reset
lag element in series with a linear lead filter, namely

�
R and

D. For FORE CgLp

�
R

=
�������

Aρ
1

s/ωrα + 1
, D(s) = s/ωr + 1

s/ω f + 1
. (9)

The arrow indicates that the states of element are reset
according to Aρ ; that is, are multiplied by Aρ when the reset
condition is met; see (1). For SORE CgLp,

�
R

=
�������������� Aρ

1

(s/ωrα)
2 + (2sβ/ωrα) + 1

D(s) = (s/ωr )
2 + (2sβ/ωr ) + 1

(s/ω f )
2 + (2s/ω f ) + 1

. (10)

In (9) and (10), ωrα = ωr/α, α is a tuning parameter
accounting for a shift in the corner frequency of the filter due
to resetting action, β is the damping coefficient, and [ωr , ω f ] is
the frequency range where the CgLp will provide the required
phase lead.

The main idea behind the CgLp is to take the phase
advantage of the reset lag element over its linear counterpart
and use it in combination with a corresponding lead element
to create a broadband phase lead. Ideally, the gain of the
reset lag element should be canceled out by the gain of the
corresponding linear lead element, which creates a constant
gain behavior. The concept is depicted in Fig. 1.

Fig. 2. Block diagrams of a conventional FORE and a single-state reset
element including a shaping filter proposed by this article. (a) Conventional
FORE. (b) Single-state reset element including a shaping filter.

III. SINGLE-STATE RESET ELEMENT INCLUDING

A SHAPING FILTER

This article proposes an architecture for reset elements with
only one resetting state including a shaping filter. This section
will analyze the HOSIDF of such an element and its specific
properties. The block diagram of the proposed element is
presented in Fig. 2(b).

HOSIDF of this element can be found using (6) with

Aρ = diag(1, . . . , 1� �� �
nF+nK

, γ , 1, . . . , 1� �� �
nT

)

where nF , nK , and nT are the number of states for linear filters
F(s), K (s), and T (s), respectively.

However, in this article, (8) will be used, since it will reveal
more useful information. Let us define

ψ(ω) := � X1( jω)

E( jω)
for γ = 1. (11)

It is to be noted that ψ is defined in a linear context and is
based on base linear system and X1( jω) and E( jω) are the
Fourier transform of the signals x1(t) and e(t), respectively,
in Fig. 2(b).

Theorem 2: The higher-order harmonics of the architecture
in Fig. 2(b) is an exponential function of ψ(ω)

Hn(ω) = f (n, ω)(1 − e− j2ψ) (12)

where

f (n, ω) = Cr (Ar − jωnI )−1 ωe− j tan−1( ωωr
)

π

�
1 +

�
ω
ωr

�2

×
�
(1 − γ )

�
1 + γ e

−πωr
ω

�−1�
1 + e

−πωr
ω

��
. (13)

Proof: Let us temporarily denote Q(s) := F(s)K (s). For
HOSIDF analysis, e(t) = sin(ωt), thus

x2(t) = |Q( jω)| sin(ωt + φ(ω)) (14)
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Fig. 3. Assuming that the output of the base linear element (x1(t) for γ = 1)
for a reset element has no phase shift with respect to its input (e(t)), the output
of the reset element itself (x1(t) for γ �= 1) will match the base linear element
output at steady state.

where φ(ω) = � Q( jω). From the block diagram of Fig. 2(b),
we have

φ(ω) = ψ(ω)+ tan−1

�
ω

ωr

�
. (15)

It can be readily seen that input to the
�

R is x2(t) while
the resetting condition is determined by e(t), which have a
phase difference. One can find the nth harmonic, Hn(ω), by the
following equation:

Hn(ω) = Q( jω)Gϕn(ω)T ( jnω) (16)

where Gϕn can be obtained using (8) using

ϕ = φ(ω) = ψ(ω)+ tan−1

�
ω

ωr

�
. (17)

For
�

R , in this article, we have

Ar = −ωr , Br = ωr , Cr = 1, Dr = 0, Aρ = γ. (18)

Using (8), (17), and (18), after some simplifications we have

Gϕn(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (n, ω)
�
1 − e− j2ψ�

+ Cr ( jωI − Ar )
−1 Br + Dr , n = 1

f (n, ω)
�
1 − e− j2ψ

�
, odd n > 2

0, even n ≥ 2.

(19)

�
Remark 1: Let us define

ωlb := {ω|ψ(ω) = 0}. (20)

According to (8) and (19)

Gϕn(ωlb) =
�

C( jωlb I − Ar )
−1 Br + Dr , n = 1

0, n ≥ 2.
(21)

Remark 1 shows that for each frequency in ωlb, all the
higher-order harmonics will be zero; in other words, the
element will act as its base linear system in terms of steady-
state output. By way of explanation, when ψ is zero, the reset
element,

�
R , will reset its state to zero when the state value is

already zero. Hence, the resetting action has no effect on the
steady-state response. Fig. 3 depicts this situation. Obviously,
in this situation, there exists no phase advantage for the reset
element.

Remark 2: For a fixed value of ω,ωr , and γ , the maxi-
mum of higher-order harmonics magnitude will happen when
ψ(ω) = ((k + 1)π/2), k ∈ Z.

Remark 3: For ω > 10ωr , the phase of the first-harmonic
of the reset element can be approximated by

� Gϕ1(ω) ≈ tan−1

�
U sin(2ψ) − 1

2U sin2(ψ)

�
(22)

where

U = 2(1 − γ )

π(1 + γ )
.

Thus, the phase of the first harmonic of the reset element for
ω > 10ωr only depends on ψ and γ .

Remark 3 implies that at a frequency that is at least one
decade higher than ωr , different combinations of ψ and γ
may result in the same first-harmonics phase for the reset
element. Meanwhile, ψ and γ also affect the higher-harmonics
magnitude as indicated in (19). Thus, in solving an optimiza-
tion problem, one can find the best combination of ψ and γ
for a desired first-harmonic phase and minimum higher-order
harmonics magnitude.

IV. PHASE SHAPING METHOD

Theorem 2 and its following remarks constitute the main
idea of the phase shaping method for band-passing nonlin-
earity in reset elements. Previous discussions revealed that
the nonlinearity in the reset element and its two immediate
consequences, namely, phase advantage and higher-order har-
monics are dependent on ψ(ω). The proposed architecture in
this article allows for shaping this phase difference, ψ , and
consequently nonlinearity in a reset element.

From Fig. 2(b), we have

ψ(ω) = � (F( jω)K ( jω)R( jω)) (23)

where R(s) represents the base linear element for
�

R . Let

K (s) = R−1(s)

s/ω f + 1
= s/ωr + 1

s/ω f + 1
(24)

which is the inverse of the R(s) multiplied to a low-pass filter
to make it proper. For a large enough ω f ,

ψ(ω) = � F( jω). (25)

Shaping ψ(ω) is now reduced to shaping the phase of F(s).
If one designs F(s) to have a phase plot as depicted in Fig. 4,
the following will happen according to Theorem 2 and its
following remarks.

1) Each zero-crossing frequency belongs to ωlb , where
the reset element produces no higher-order harmonics
the steady state. These frequencies will be seen as
higher-order harmonic notches in HOSIDF.

2) For frequencies out of [ωl, ωh ], one can upper bound
nonlinearity by determining ψb. For a small enough ψb,
higher-order harmonics can be approximated to zero.
There will be no phase advantage for reset elements at
these frequencies.
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Fig. 4. Desired shape of phase for ψ(ω) for band-passing nonlinearity.

3) For frequencies in [ωl, ωh], the reset element will
produce high-order harmonics and will have a phase
advantage.

4) ψ f and γ determine the phase advantage of the reset
element in [ωl, ωh].

It can be concluded that by this design, the nonlinearity of the
reset element is band-passed in [ωl, ωh ]. The details on how
to design F(s) to have this phase behavior will be discussed
in the next section.

A. Band-Passed CgLp

In order to create a band-passed CgLp, let

T (s) = F−1(s) (26)

then we have

Hn(ω) =
�

K ( jω)Gϕn(ω), n = 1

F( jω)K ( jω)Gϕn(ω)F
−1( jnω), n > 1

ϕ(ω) = � F( jω)+ tan−1

�
ω

ωr

�
(27)

where F(s) and K (s) should be designed based on the
guidelines of the phase shaping method. As mentioned above,
it has to be noted that resetting action will cause a shift in the
corner frequency of R(s) [21]. In order to account for this
frequency shift, an additional filter of

W (s) = (s/ωrα + 1)

(s/ωr + 1)
(28)

can be used in T (s)

T (s) = F−1(s)W (s). (29)

In order to verify the discussion, a CgLp element has been
band-passed in (1, 10) rad/s. The HOSIDF analysis of the
band-passed CgLp is compared with a conventional one in
Fig. 5. Both CgLps have ωr = 0.5 rad/s, γ is chosen to get
approximately same phase advantage. As expected, the shaped
ψ has made higher-order harmonics zero at frequencies in ωlb

and almost zero at other frequencies out of [1, 10] rad/s. The
phase advantage is also limited to the band specified.

Fig. 5. Comparison of HOSIDF of a band-passed CgLp with a conventional
one, along with their ψ plot. ωr = 0.5 rad/s and γ is 0.2 and 0.35 for
band-passed CgLp and conventional one, respectively.

It is noteworthy that by changing the ψ shape in
(ωl, ωh), one can change the shape of phase advantage.
This can be useful in creating properties like iso-damping
behavior [36]–[38].

B. Band-Passed Clegg Integrator and Band-Passed FORE

Following the same design approach and by letting

T (s) = F−1(s)

s
(30)

one can create a band-passed Clegg integrator. Likewise,
a band-passed FORE can be created by

T (s) = F−1(s)

s/ωrr + 1
(31)

where ωrr will be the new corner frequency for the FORE.
Figs. 6 and 7 compares the HOSIDF of a band-passed Clegg
integrator and a band-passed FORE with their conventional
counterparts. Both reset elements are band-passed in [1, 10]
rad/s. As mentioned above, reset elements are usually known
and used for their phase lag reduction compared to their linear
counterparts [8], [39], [40]. Phase lag reduction is mainly
useful in the crossover frequency region, and in other regions,
it does not have a clear benefit. Thus, due to the ill effect of
higher-order harmonics especially for tracking and disturbance
rejection, the proposed method is useful to bandpass the
nonlinearity of these reset elements and its consequent benefits
and ill effects on the crossover frequency region.

V. DESIGNING THE SHAPING FILTER

This section proposes a method to design the shaping filter,
F(s), such that its phase mimics the schematic shape of
Fig. 4. The first parameter to consider is ψ f , which affects
the phase of the reset element. Assuming the nonlinearity
of the reset element is being band-passed in the crossover
frequency region, if ωr is less than ωc/10, where ωc is the
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Fig. 6. Comparison of HOSIDF of a band-passed Clegg integrator with a
conventional one, along with their ψ plot. γ is 0.2 and 0.47 for band-passed
Clegg Integrator and conventional one, respectively. For band-passed Clegg,
ωr = 0.5 rad/s.

Fig. 7. Comparison of HOSIDF of a band-passed FORE with a conventional
one, along with their ψ plot. ωr = 0.5 rad/s and γ is 0.2 and 0.4 for band-
passed FORE and conventional one, respectively. For band-passed FORE,
ωrr = 0.5 rad/s.

crossover frequency, one can choose a combination of γ and
ψ f according to (22) to achieve the desired first-harmonic
phase of the reset element at ωc.

The suggested architecture for the shaping filter consists of
a lag filter, a notch, and an anti-notch filter. The notch and the
anti-notch filters should be placed at ωh and ωl , respectively.
Since it is required for the phase of the shaping filter to reach
a certain value in the passing band, this method requires a flat
phase behavior which is not an integer multiple of 90◦. This
is achievable using fractional lag filters; thus, the poles and
zeros of the lag filter can be placed according to guidelines of
the CRONE approximation of a fractional-order element [41].
Such a placement will simplify the calculations.

Fig. 8. Bode diagram of the composition of F(s).

The CRONE approximation is�
s/ωl + 1

s/ωh + 1

�λ
≈ C

N�
m=1

1 + s
ωz,m

1 + s
ωp,m

(32)

ωz,m = ωl

�
ωh

ωl

� 2m−1−λ
2N

(33)

ωp,m = ωl

�
ωh

ωl

� 2m−1+λ
2N

(34)

where λ ∈ �− and N is number of poles and zeros. CRONE
makes sure that the poles and zeros are placed in equal distance
in the logarithmic scale. C is the tuning parameter for adjusting
the gain of the approximation. However, in this article, only the
phase behavior of this filter is of interest since the first-order
gain behavior of this element will be canceled out according
to (27). Thus, for the sake of simplicity, one can use C = 1.

The proposed design of the shaping filter is

F(s) = N1(s)L f (s)N2(s) (35)

L f (s) =
�

s/ωl + 1

s/ωh + 1

�λ
(36)

N1(s) = (s/ωl)
2 + s/ωl + 1

(s/ωl)
2 + s/(qωl)+ 1

(37)

N2(s) = (s/ωh)
2 + s/(qωh)+ 1

(s/ωh)
2 + s/ωh + 1

. (38)

Thus, there are two parameters to tune, namely, λ and q .
According to Fig. 8 and criteria mentioned in Section IV for
the shaping filter, two constraints can be introduced to find the
proper value for λ and q

� F( jωc) = ψ f (39)
� F( jωm1) = � F( jωm2) = ε1 (40)

where ε1 is a small positive value and

ωm1 ∈ (0, ωl) | d

dω
� N1( jωm1) = 0 (41)

ωm2 ∈ (ωh,+∞) | d

dω
� N2( jωm2) = 0. (42)
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Equation (40) ensures that the phase of the shaping filter
remains close to zero and crosses the zero line two times
before ωl and two times after ωh . By symmetry, constraints
will be simplified to

� L f ( jωc)+ 2 � N1( jωc) = ψ f (43)
� L f ( jωm1)+ � N1( jωm1) = ε2. (44)

As a rule of thumb, one can choose ε2 = π/180 rad.
In this article, without loss of generality, it is assumed that

the band-passing range is one decade, that is, ωh = 10ωl and
the equations are derived in the following.

Assuming ωh = 10ωl , we have ωc = √
10ωl , thus

� L f ( jωc) ≈ λ

�
tan−1

�√
10

�
− tan−1

�
1√
10

��
(45)

� N1( jωc) = tan−1

�√
10

9q

�
− tan−1

�√
10

9

�
(46)

� L f ( jωm1) = λ
�
tan−1(ζ )− tan−1(ζ/10)

�
(47)

� N1( jωm1) = tan−1

�
ζ

1 − ζ 2

�
− tan−1

�
ζ/q

1 − ζ 2

�
(48)

where

ζ = ωm1

ωl
=

√
2

2

�
2q + 1 − √

1 + 4q

q
. (49)

VI. ILLUSTRATIVE EXAMPLE

In order to illustrate the application of the proposed architec-
ture and method in precision motion control, three controllers
have been designed and their performance has been compared.
The three controllers are a band-passed CgLp, a conventional
CgLp designed based on guidelines of [21] and a PID.

A. Plant

The plant which is used for practical implementation is a
custom-designed precision stage that is actuated with the use
of a Lorentz actuator. This stage is linear-guided using two
flexures to attach the Lorentz actuator to the base of the stage
and actuated at the center of the flexures. With a laser encoder,
the position of the precision stage is read out with a 10-nm
resolution. A picture of the setup can be found in Fig. 9. The
identified transfer function for the plant is

G(s) = 3.038e4

s2 + 0.7413s + 243.3
. (50)

Generally precision motion setups can be modeled as mass-
spring-damper systems as this is the case for this setup.
Fig. 10 shows the measured frequency response and that of
the identified model.

B. Controller Design Approach

Controllers are designed for a bandwidth of ωc = 100 Hz
and a phase margin of 40◦. The block diagram of the
closed-loop system for CgLps is presented in Fig. 11. The
tamed differentiator [33] is designed such that the linear part
of the controller provides 10◦ of PM for the system and
CgLps are designed to provide the remaining 30◦. The main

Fig. 9. Custom-designed precision stage used for comparison of controllers
performance.

Fig. 10. Measured frequency response of the plant and corresponding
identified model.

Fig. 11. Designed control architecture to compare the performance of the
controllers.

reason for the existence of the tamed differentiator for CgLp
controllers is stabilizing the base linear system, which is one
of the necessary conditions for stability using the Hβ theorem.
For the case of the PID controller, the whole required PM is
provided through a tamed differentiator.

Table I shows the parameters for the designed controllers.
Fig. 12 shows the open-loop HOSIDF analysis for them
including the plant. As expected, CgLp controllers show a
higher first-order harmonic gain than PID in lower frequencies,
while they have the same phase margin as PID. However, due
to the design method presented in this article, the band-passed
CgLp shows a significant decrease in higher-order harmonics
than the conventional one. Consequently, one can expect an
improvement in precision in the results of band-passed CgLp.

The reset controllers has been checked regarding the Hβ

condition as presented in Theorem 1. Both reset controllers



340 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2023

TABLE I

PARAMETERS OF THE DESIGNED CONTROLLERS. FREQUENCIES ARE IN Hz

Fig. 12. Open-loop HOSIDF analysis of the designed controllers including
the plant. At lower frequencies, first harmonic gain of band-passed CgLp and
FORE CgLp are on top of each other.

satisfy the condition, thus, their quadratic closed-loop stability
is guaranteed.

C. Practical Implementation
In order to validate the theories, architectures, and methods

discussed, the designed controllers have been implemented
in practice and their performance has been compared. The
implementation was done using National Instruments Com-
pactRIO with a sampling frequency of 10 kHz. The overall
order of controller for PID, FORE CgLp, and Band-passed
CgLp are 3, 5, and 16, respectively. Since high-end hardware
for implementing the controller is used, the high order of
Band-passed CgLp is feasible to implement, which is the case
for most precision motion control system hardware.

Sinusoidal tracking of different frequencies and different
amplitudes has been tested in practice for three designed
controllers. Fig. 13 shows the error and control input of three
controllers to track a 5-Hz sinusoidal input with an amplitude
of 200 μm.

As it is shown in Fig. 13, band-passed CgLp has better
steady-state precision than PID as it could be predicted by
referring to Fig. 12. However, conventional CgLp due to
the presence of higher-order harmonics cannot live up to
the expectation of first-order DF. The Root Mean Square
(RMS) of error for controllers are 0.346, 1.32, and 0.465 μm
for the band-passed CgLp, the conventional one, and PID,
respectively. The figures show a reduction of 25.7% and 74%
in RMS of steady-state error for the band-passed CgLp with
respect to PID and the conventional CgLp.

Fig. 13 also reveals another interesting characteristic of the
band-passed CgLp. Reset controllers are known for having

Fig. 13. Error and control input of designed controllers, measured in practice
for a sinusoidal input of 5 Hz and amplitude of 0.2 mm.

Fig. 14. Single-sided FFT spectrum of steady-state error for a sinusoidal
input of 10 Hz. The amplitude of reference is 71.43 μm.

large peaks in control input which can saturate the actuator.
However, the band-passed CgLp due to limited nonlinearity
shows a much smaller control input with respect to the
conventional CgLp. The maximum control input for controllers
is 0.297, 6.980, and 0.448 V for the band-passed CgLp, the
conventional one, and PID, respectively.

The main contribution of this article and designing
band-passed CgLp is to limit nonlinearity to a range of fre-
quencies and reduce it to other frequencies. Thus, it is expected
that the band-passed CgLp has lower higher-order harmonics
than the conventional ones in the range of [0.1–30] Hz. This
was also verified in practical implementation as it is shown in
the single-sided spectrum of Fast Fourier Transform (FFT) of
steady-state error for a sinusoidal input of 10 Hz, presented in
Fig. 14. From the figure, it can be observed that the third
and the fifth harmonics, which are at 30 and 50 Hz, are
significantly lower for band-passed CgLp. The same holds
for other sinusoidal inputs with frequencies in [0.1, 30] Hz,
however, they are not presented for the sake of brevity.

Furthermore, in order to have a broader view of tracking the
performance of designed controllers, L2 and L∞ norm of their
steady-state error for sinusoidal inputs of amplitude 71.43 μm
and frequencies of 1–24 Hz in steps of 1 Hz is depicted
in Fig. 15. The figure clearly shows a significant decrease
of steady-state error for band-passed CgLp with respect to
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Fig. 15. L2 and L∞ norm of normalized steady-state error for sinusoidal
inputs with amplitude of 71.43 μm and frequencies of 1–24 Hz with a step
of 1 Hz. The error is normalized with respect to amplitude of input.

TABLE II

HARMONICS OF STEADY-STATE ERROR FOR SINUSOIDAL INPUTS OF 21,
22, AND 23 Hz. COLUMNS 2–5 SHOW HARMONICS IN m AND IN

COLUMNS 5–8, HARMONICS ARE NORMALIZED BY THE

AMPLITUDE OF INPUT AND PRESENTED IN dB

conventional one, indicating the adverse effect of higher-order
harmonics in lower frequencies for tracking precision. Due to
large peaks present in the control input of the conventional
CgLp, tracking sinusoidal waves of frequencies larger than
10 Hz was not possible due to actuator saturation. Moreover,
L∞ norm (rms) of error for band-passed CgLp is lower
than PID in almost the entire frequency range till 17 Hz.
By resorting to Fig. 12, one can notice that from 17 Hz, the
higher-order harmonics will increase for band-passed CgLp
and decrease again at 22 Hz. The same trend holds for
Fig. 15. At very low frequencies, that is, 1–3 Hz, higher-
order harmonics of band-passed CgLp is relatively high, and
thus the steady-state error. A possible suggestion to improve
performance at these frequencies is designing a shaping filter
such that a frequency within this range, for example, 2 Hz is
included in ωlb . This will reduce the higher-order harmonics
in this range.

Remark 1 suggests that for every frequency in ωlb , higher-
order harmonics will be zero. However, in practice, due to
practical challenges like discretization, quantization, and delay,
it is expected that this claim does not hold completely. In other
words, one can expect a decrease in higher-order harmonics
to drop for frequencies in ωlb . Table II presents the first, third,
fifth, and seventh harmonics of steady-state error for sinusoidal
inputs of 21, 22, and 23 Hz, where 22 Hz is in ωlb. The
harmonics are obtained using the FFT method. The significant
drop in higher-order harmonics is observable for 22 Hz.

At last, in order to evaluate the performance of the proposed
band-passed CgLp controller for multi-sinusoidal tracking,
an input constituted of three sinusoidal wave was used. The
reference which was used is

r(t) = 10−5(1.5 sin(2π13 t)+ 2.5 sin(2π7 t)+ 5 sin(2π5 t)).

(51)

Fig. 16. Error and control input compared for three designed controllers
for the input of (51). The rms of error is 0.463, 1.17, and 0.535 μm for
band-passed CgLp, conventional CgLp, and PID, respectively. The maximum
of steady-state error for controllers is 1.13, 3.47, and 1.18 μm.

Fig. 16 shows the error and control input for three
designed controllers. The band-passed CgLp still shows a less
steady-state error with respect to other controllers and no large
peak in control input.

VII. CONCLUSION

This article investigated the nonlinearity and higher-order
harmonics for reset elements with one resetting state. A new
architecture was introduced which allowed for band-passing
nonlinearity in a range of frequencies and selectively reduc-
ing higher-order harmonics in a range of frequencies. After
developing the HOSIDF analysis of the proposed architecture,
a method called “phase shaping” was proposed for the design
and tune of the introduced architecture. It was shown that
FOREs such as Clegg integrator, single-state reset elements,
or CgLp can be band-passed using the proposed architecture
and method.

It was discussed that nonlinearity and higher-order harmon-
ics can be beneficial in some range of frequencies such as a
crossover frequency region for increasing the phase margin and
can be harmful in others like lower frequencies. In the phase
shaping method, the approach to eliminate nonlinearity at one
frequency was also introduced which is useful for systems
with a single important working frequency.

In order to validate the architecture, method, and developed
theories, three controllers were designed to control a precision
positioning stage. The controllers were a band-passed CgLp,
a conventional one, and a PID. It was validated in practice
that higher-order harmonics for band-passed CgLp at lower
frequencies is much smaller than the conventional one. More-
over, it was shown that there is a clear relation between the
reduction of higher harmonics at lower frequencies and the
tracking precision of the system. It was verified in practice that
a poorly designed conventional CgLp which performs poorly
compared to PID can outperform or at least equally perform
compared to PID in terms of precision in a certain range of
frequencies, when the nonlinearity of conventional CgLp is
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band-passed using the phase shaping method presented in the
article. In other words, while the main contribution of this
article was not to outperform the PID controller but to improve
the performance of CgLp controllers, the current controller
shows the potential to outperform the linear controllers and
overcome their limitations. However, the optimal tuning of
reset elements using the phase-shaping method is a subject
for further studies.

Since the phase shaping method is capable of shaping the
phase benefit of the reset element, one may suggest shaping
the phase benefit to achieve other characteristics such as
iso-damping behavior for the system or constant gain and
positive phase slope. Furthermore, in this article, only the
band-passed CgLp was studied in detail, investigation of band-
passed Clegg, and FORE are considered future works.
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