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Abstract

We construct and analyze the Jacobi process – in mathematical biology referred to as Wright–Fisher
iffusion – using a Dirichlet form. The corresponding Dirichlet space takes the form of a Sobolev
pace with different weights for the function itself and its derivative and can be rewritten in a canonical
orm for strongly local Dirichlet forms in one dimension. Additionally to the statements following from
he general theory on these forms, we obtain orthogonal decompositions of the Dirichlet space, derive
obolev embeddings, verify functional inequalities of Hardy type and analyze the long time behavior
f the associated semigroup. We deduce corresponding properties of the Markov process and show that
t is up to minor technical modifications a solution to the Jacobi SDE. We also provide uniqueness
tatements for this SDE, such that properties of general solutions follow.

2022 Elsevier B.V. All rights reserved.

SC: 60J46; 46E35; 92D25; 33C05

eywords: Jacobi process; Dirichlet form; Wright–Fisher diffusion; Hypergeometric functions

1. Introduction

The Jacobi process is a [0, d]-valued solution to the stochastic differential equation

dYt = (a − bYt ) dt + σ
√

Yt (d − Yt ) dWt . (1.1)

Here, a, b and σ, d > 0 are parameters and W is a Brownian motion. The Jacobi process arises
in different applications, most prominently as a model for allele frequencies in mathematical
biology, see [10, Section 10.2], where it is commonly referred to as Wright–Fisher diffusion.
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Moreover, the Jacobi processes can be used as a model for membrane depolarization [8] and
interest rates [7] or in the modeling of electricity prices [6,28].

The parameters

α =
2b
σ 2 −

2a
σ 2d

− 1 and β =
2a
σ 2d

− 1 (1.2)

capture the behavior of the process close to the boundary points. Indeed, if Yt is close to 0, the
rift is approximately given by adt and the stochastic fluctuation by σ (Yt d)

1
2 dWt which has

ariance σ 2(Yt d)dt . Therefore, the ratio 2a
σ 2d

quantifies how much the drift pushes the process
ack into the state space [0, d] compared to the stochastic fluctuations. This demonstrates the
mportance of the parameter β and an analogous argument shows that α quantifies the boundary
ehavior near d.

If α, β > −1, the Jacobi process is one of three types of real-valued diffusions, which
re associated to a family of orthogonal polynomials, see [21]. This allows for an explicit
xpression of the transition semigroup, which can be used as in [7] to analyze the process.
he Jacobi process can be constructed by its associated Feller semigroup [10] and belongs to

he larger class of Pearson diffusions [13]. For an extensive study of the associated differential
perator we refer to [9]. Examples of how to analyze the Jacobi process using classical methods
or one-dimensional diffusions can be found in [15]. There are many other works on the Jacobi
rocess, but we hope that this selection gives an overview of the main tools, which were used
o construct and analyze the Jacobi process up to now. In the current article, we take the new
pproach to construct and analyze solutions to (1.1) by Dirichlet form methods. We stress that
e allow for the case α ≤ −1 or β ≤ −1 which leads to additional mathematical challenges.
As state space of the Dirichlet form we define X as the union of the interval (0, d) with the

ight boundary point {d} if −1 < α < 0 and with the left boundary {0} if −1 < β < 0. We
rite B for the Borel σ -field on X and dx for the Lebesgue measure. The generator of (1.1)

s given by

G f (x) =
1
2
σ 2x(d − x) f ′′(x) + (a − bx) f ′(x) (1.3)

or x ∈ [0, d]. The stationary solution to the corresponding Kolmogorov forward equation on
0, d) is

m(x) =
xβ(d − x)α

dα+β+1 (1.4)

and is the natural candidate for the density of the invariant measure of the Jacobi process.
Therefore, we equip X with the measure with density m with respect to dx . Then, dm = mdx
is a positive Radon measure on X with full support and we define dcm = cmdx using the
additional density c(x) =

1
2σ

2x(d − x). The calculation

(cm)′(x) =
1
2
σ 2
[

2a
σ 2d

(d − x) −

(
2b
σ 2 −

2a
σ 2d

)
x
]

xβ(d − x)α

dα+β+1 = (a − bx)m(x) (1.5)

mplies that

( f ′cm)′(x) =
[
c(x) f ′′(x) + (a − bx) f ′(x)

]
m(x) = m(x)G f (x) (1.6)

or f ∈ C2((0, d)). Consequently, the operator (G,C∞
c ((0, d))) is of the form [14, Eq. (3.3.17)].

y [14, Theorem 3.3.1]

D(E) =
{

f ∈ L2(X, dm)
⏐⏐ f ′

∈ L2(X, dcm)
}
,

E : D(E) × D(E) → R, ( f, g) ↦→

∫
f ′(x)g′(x) dcm(x)

(1.7)
X
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defines a strongly local Dirichlet form corresponding to the maximal Markovian self-adjoint
extension (L , D(L)) of (G,C∞

c ((0, d))) in L2(X, dm).
One can rewrite (E, D(E)) in the form of [5, Section 2.2.3] by introducing the measure

ds =
1

2cm dx and the corresponding distribution function s determined up to an additive constant
y

s(y) − s(z) = ds((z, y]) =

∫ y

z

1
2cm(x)

dx . (1.8)

Indeed, a function f absolutely continuous with respect to ds, in the sense that

f (x) − f (y) =

∫ y

x

d f
ds

ds

for a density function d f
ds ∈ L1

loc((0, d), ds) and all x, y ∈ (0, d), admits the density d f
ds

1
2cm with

respect to dx . By [4, Lemma 8.2], f has d f
ds

1
2cm as weak derivative on (0, d) and hence

f ′
∈ L2(X, dcm) ⇐⇒

1
2

∫ d

0

(
d f
ds

)2 1
2cm

dx < ∞ ⇐⇒
d f
ds

∈ L2(X, ds). (1.9)

sing [4, Theorem 8.2] on compact subintervals shows that any weakly differentiable function
f on (0, d) has 2cm f ′ as density with respect to ds and (1.9) holds again. Hence, D(E) consists
f all f ∈ L2(X, dm) absolutely continuous with respect to ds sufficing d f

ds ∈ L2(X, ds) and

E( f, g) =
1
2

∫
X

d f
ds

dg
ds

ds, (1.10)

.e. up to the factor 1
2 , (E, D(E)) coincides with the Dirichlet form [5, Eq. (2.2.30)]. In this

ontext dm is called the speed measure and s is called the scale function of (E, D(E)). For a
eneral decomposition theorem of strongly local Dirichlet forms in one dimension into Dirichlet
orms of this type, we refer to [19].

In the following, we denote the Markovian, symmetric, strongly continuous semigroup
enerated by (L , D(L)) by (Tt )t>0 and write

Eλ( f, g) = E( f, g) + λ( f, g)L2(X,dm)

or λ > 0 and f, g ∈ D(E). We equip D(E) with the topology induced by any of the inner
roducts Eλ and, if considered as a Hilbert space, we equip it with E1 unless stated otherwise.
e write F for the closure of C∞

c ((0, d)) in D(E).
In the preliminary Section 2 we introduce and analyze a notion of solutions to (1.1), which

erve later on to translate our findings on Hunt processes to statements on general solutions to
1.1). In Section 3 we consider the Dirichlet form (E, D(E)). In particular, many basic properties
f (E, D(E)) follow by the general theory from [5, Section 2.2.3]. Moreover, we provide
rthogonal decompositions of D(E), prove embedding theorems and functional inequalities
nd analyze the asymptotic behavior of (Tt )t>0 depending on the parameters α and β. Finally,
n Section 4 we translate the findings on (E, D(E)) and (Tt )t>0 into properties of an associated
unt process. We show under which assumption on the parameters, the process is recurrent,

rgodic, conservative or a variant of transitive. Furthermore, we show how a Markov process
ssociated to (E, D(E)) as well as its restriction to (0, d) is related to general solutions to
1.1). This allows to transfer the gathered results from this article as well as future findings on
E, D(E)) into statements on (1.1).
378



M. Grothaus and M. Sauerbrey Stochastic Processes and their Applications 157 (2023) 376–412

i
o

D
c
a
f

e

R

a

µ

e

i
[
W

2. Local solutions to the Jacobi SDE

Throughout this article we fix parameters a, b ∈ R and σ, d > 0. Unless stated otherwise
n the assumptions, all theorems hold for any choice of these parameters. Moreover, equality
f random variables is meant almost surely unless stated otherwise.

efinition 2.1. A local solution to the stochastic differential equation (1.1) is a quadruple,
onsisting of a filtered probability space (Ω ,A, P,F), a Brownian motion W , a real-valued,
dapted process Y and a stopping time ζ , such that F satisfies the usual conditions and the
ollowing conditions are satisfied.

(i) The mapping Y·(ω) : [0, ζ (ω)] → R is [0, d]-valued and continuous for every ω ∈ Ω .
(ii) For all t ≥ 0 we have that

Yt∧ζ = Y0 +

∫ t∧ζ

0
(a − bYs) ds +

∫ t∧ζ

0
σ
√

Ys(d − Ys) dWs . (2.1)

(iii) It holds P({Yζ /∈ {0, d}} ∩ {ζ < ∞}) = 0.

We sometimes call (Y, ζ ) a local solution and (Ω ,A, P,F,W ) its stochastic basis or do not
ven specify the latter.

emark 2.2. We understand the first integral in (2.1) as the continuous and adapted process∫
·

0
1[0,ζ ](s)(a − bYs) ds.

t time t . The second integral is meant as the stochastic integral∫ t

0
1[0,ζ ](s)σ

√
Ys(d − Ys) dWs,

which is well-defined, since the integrand is left-continuous, adapted and bounded.

In the next definition (Y, ζ ) and (Ỹ , ζ̃ ) are local solutions on the same stochastic basis.

Definition 2.3. The solution (Ỹ , ζ̃ ) is an extension of (Y, ζ ), if ζ̃ ≥ ζ and Yt∧ζ = Ỹt∧ζ for all
t ≥ 0. If additionally ζ = ζ̃ , we identify the local solutions.

If (Ỹ , ζ̃ ) is an extension of (Y, ζ ), we write (Y, ζ ) ≲ (Ỹ , ζ̃ ). In the case of equality we write
(Y, ζ ) = (Ỹ , ζ̃ ). The relation ≲ is then a partial ordering on the equivalence classes of local
solutions on a fixed stochastic basis.

Definition 2.4. A local solution (Y, ζ ) is called minimal (maximal), if it is a minimal (maximal)
element with respect to the ordering ≲ of local solutions.

To use the theory of stochastic differential equations on R we let µ ∈ C∞
c (R) such that

µ(x) = (a −bx) on a neighborhood of [0, d] and ν(x) = 1[0,d](x)σ
√

x(d − x) for x ∈ R. Then
is Lipschitz continuous and ν is 1/2-Hölder continuous. Therefore, the stochastic differential

quation

d Z t = µ(Z t )dt + ν(Z t )dWt (2.2)

s well-posed. Indeed, existence of weak solutions follows by the Skorohod existence theorem
17, Theorem 18.7; Theorem 18.9] and pathwise uniqueness holds due to the Yamada–

atanabe condition [17, Theorem 20.3]. Consequently, the Yamada–Watanabe theorem [17,
379
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Lemma 18.17] implies that strong existence and uniqueness in law hold for arbitrary initial
distributions on R.

Theorem 2.5. Let (Y, ζ ) be a local solution with respect to a stochastic basis (Ω ,A, P,F,W ).
hen the unique solution Z to (2.2) with initial value Y0 satisfies

Z t∧ζ = Yt∧ζ (2.3)

or all t ≥ 0. Moreover,

(i) (Y, ζ ) is minimal iff ζ = inf{t ≥ 0|Z t ∈ {0, d}},
(ii) (Y, ζ ) is maximal iff ζ = inf {t ≥ 0|Z t /∈ [0, d]}.

Proof. Let (Y, ζ ) be a local solution, then the first part of the claim follows by a localized
Yamada–Watanabe condition, see Lemma A.1. We define ζ̃ as the infimum in (i), which defines

stopping time. In particular (Z , ζ̃ ) is a local solution to (1.1). Due to condition (iii) of
efinition 2.1 we have that

P({ζ̃ > ζ }) = P({ζ̃ > ζ } ∩ {Yζ ∈ {0, d}}).

By (2.3) it follows that P({Zζ ̸= Yζ } ∩ {ζ < ∞}) = 0 and therefore P({ζ̃ > ζ }) is dominated
y

P({ζ̃ > ζ } ∩ {Zζ ∈ {0, d}}) = 0.

ence (Z , ζ̃ ) ≲ (Y, ζ ). Therefore, if ζ ̸= ζ̃ , the local solution (Y, ζ ) is not minimal. Conversely,
f ζ = ζ̃ , it holds (Z , ζ̃ ) = (Y, ζ ) and by our previous considerations it follows (Z , ζ̃ ) ≲ (Ŷ , ζ̂ )
or every other local solution (Ŷ , ζ̂ ).

Next, let ζ̃ be the infimum from (ii) instead. The identity (2.3) implies that

P({ζ̃ < ζ }) ≤ P({inf{t |Z t∧ζ /∈ [0, d]} < ∞}) ≤ P({∃t ≥ 0 : Yt∧ζ /∈ [0, d]}) = 0.

n the latter equality we used condition (i) of Definition 2.1. We conclude (Y, ζ ) ≲ (Z , ζ̃ ) and
btain (ii) analogously to (i). □

The previous statement implies pathwise existence and uniqueness of minimal and maximal
ocal solutions to (1.1) with a prescribed initial value. To formulate a uniqueness statement
oncerning their laws, we introduce the space [0, d]∆ as the set [0, d] ∪ {∆}, where ∆ is
opologically adjoined as a separate point. We equip the space X = ([0, d]∆)[0,∞) with the
orresponding product of Borel σ -fields.

orollary 2.6. Let ((Ω (i),A(i), P (i)),F(i),W (i), Y (i), ζ (i)) for i ∈ {1, 2} be two minimal
maximal) local solutions to (3.18) with the same initial distribution on [0, d]. Then the laws
P (i)

◦ (Ỹ (i))−1 on X coincide, where

Ỹ (i)
t (ω) =

{
Yt (ω), t ≤ ζ (i)(ω)
∆, t > ζ (i)(ω),

ω ∈ Ω (i).

n particular, the laws of their lifetimes P (i)
◦ (ζ (i))−1 coincide.

roof. We first consider the case that the two solutions are maximal. Let Z (i) be the solution to
˜ (i)
2.2) with the same initial value and ζ the stopping time as in Theorem 2.5 (ii) for i ∈ {1, 2}.
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By the uniqueness in law of (2.2), we have that P (1)
◦ (Z (1))−1

= P (2)
◦ (Z (2))−1 as probability

easures on C([0,∞),R), where we equip the latter space with its Borel σ -field. We note that

τ : C([0,∞),R) → R ∪ {∞}, f ↦→ inf {t ≥ 0| f (t) /∈ [0, d]}

s measurable. Therefore, the mapping φ : C([0,∞),R) → X , where

φ( f )(t) =

{
f (t), t ≤ τ,

∆, t > τ

is measurable as well. Consequently, if we denote the measure P (i)
◦ (Z (i))−1 by Q, which is

ndependent of i, we obtain that

P (i)
◦ (Ỹ (i))−1

= Q ◦ φ−1, (2.4)

y Theorem 2.5. The statement for minimal solutions follows analogously by replacing τ by

f ↦→ inf {t ≥ 0| f (t) ∈ {0, d}} . □

. The Dirichlet space

We recall that the Dirichlet form (E, D(E)) was defined in (1.7) and can be rewritten in the
orm [5, Eq. (2.2.30)] by (1.9) and (1.10). Following [5, pp. 65–66], the right boundary d is
alled approachable, if the function s defined by (1.8) satisfies

lim
x↗d

s(x) < ∞. (3.1)

ince

s ′(x) =
1

2cm(x)
=

dα+β+1

σ 2xβ+1(d − x)α+1 ,

3.1) is satisfied if and only if α < 0. Analogously, the left boundary 0 is approachable iff
< 0. By [5, p. 65], every function f ∈ D(E) admits a dm-version that is continuous on

X̃ , where we define X̃ as the union of (0, d) with the approachable boundary points. In the
following, we denote this dm-version of f by f̃ . Equipping C(X̃ ) with the topology of uniform
convergence on compact subsets, we obtain the following continuous embedding.

Proposition 3.1. The mapping

D(E) → C(X̃ ), f ↦→ f̃ (3.2)

s a continuous embedding.

roof. The inclusion D(E) ⊂ C(X̃ ) follows by the preceding considerations. Moreover,
he space C(X̃ ) is a complete metric vector space by [12, pp. 167–168]. Since every
D(E)-convergent sequence admits a dm-almost everywhere convergent subsequence it follows
hat (3.2) has closed graph and therefore is continuous by the closed graph theorem, see
25, Theorem 2.3, p. 78]. □

Following [5, p. 66], d is a regular boundary point, if d is approachable and dm((c, d)) < ∞

or every c ∈ (0, d). Since dm has density (1.4) with respect to dx , d is regular iff −1 < α < 0
nd analogously 0 is regular iff −1 < β < 0. Consequently, the choice of the state space X
oincides with the one in [5, Theorem 2.2.11] and using the previous boundary classification,
e obtain the following result. For definitions of the appearing properties, we refer to

14, Section 1.1], [14, p. 55] and [14, Eq. (1.5.4)].
381
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Theorem 3.2. The Dirichlet form (E, D(E)) is a regular, strongly local and irreducible
Dirichlet form on L2(X, dm). Moreover, (E, D(E)) is recurrent if and only if α, β > −1 and
transient otherwise.

As shown in [5, p. 68] the quasi notions with respect to (E, D(E)) trivialize as stated in the
ollowing proposition. For definitions of the 1-capacity and quasi notions, see [14, Eq. (2.1.3)]
nd [14, pp. 68–69].

roposition 3.3. Every non-empty subset of X has positive 1-capacity and a function on X
s quasi-continuous with respect to (E, D(E)), iff f is continuous on X.

In particular, the quasi-continuous version of a function f ∈ D(E), which exists by
14, Theorem 2.1.3], coincides with the previously introduced version f̃ . Finally, using
19, Theorem 3.2], we obtain the following characterization of the space F introduced in the
ntroduction, which is useful later on.

heorem 3.4. The space F is given by{
f ∈ D(E) : f̃ (d) = 0, if − 1 < α < 0 and f̃ (0) = 0, if − 1 < β < 0

}
. (3.3)

We conclude this part by observing when the Dirichlet form (E, D(E)) is conservative, for
definition of this property see [14, p. 56]. The case in which (E, D(E)) is conservative can

e straightforwardly treated using [14, Theorem 1.6.6]. For the remaining cases we use the
haracterization of conservativeness of a one dimensional Dirichlet form in terms of a scale
unction and speed measure from [11, Theorem 5.1].

roposition 3.5. The Dirichlet form (E, D(E)) is conservative if and only if α, β > −1.

roof. If α, β > −1 we have 1 ∈ D(E), such that (E, D(E)) is conservative by [14, Theorem
.6.6]. We assume next that α ≤ −1. In this case, d /∈ X , (3.1) holds and∫ d

d
2

∫ x

d
2

dm(y) ds(x) ≤ Cβ,σ,d

∫ d

d
2

∫ x

d
2

(d − y)α dy (d − x)−(α+1) dx

= Cβ,σ,d

∫ d

d
2

∫ d

y
(d − x)−(α+1)dx (d − y)α dy

= Cβ,σ,d

∫ d

d
2

−1
α

dy < ∞,

here we used that α < 0 in the latter equality. That (E, D(E)) is not conservative follows
ow from [11, Lemma 5.1; Theorem 5.1]. The case β ≤ −1 can be treated analogously. □

.1. Orthogonal decompositions of the domain

This subsection is devoted to calculating the orthogonal complements of the spaces{
f ∈ D(E)

⏐⏐ f̃ (d) = 0
}

and
{

f ∈ D(E)
⏐⏐ f̃ (0) = 0

}
(3.4)

n (D(E), Eλ) for λ > 0, which we denote by Hλ
{d}

and Hλ
{0}

respectively. They are of interest
ince they are connected to the hitting distributions of the corresponding boundary point,
382
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see [14, Section 4.3]. To motivate the following considerations, we assume that f ∈ Hλ
{d}

.
Then, in particular,

∀ϕ ∈ C∞

c ((0, d)) :

∫ d

0
f ′(x)ϕ′(x) dcm(x) + λ

∫ d

0
f (x)ϕ(x) dm(x) = 0.

y (1.6) this is a weak formulation of the differential equation G f = λ f , where we recall
hat G was defined as (1.3). For a general study of solutions to the resolvent equation of the
enerator of a diffusion, we refer to [20, Chapter II] or [16, Section 5.12]. In our situation,
olutions to this differential equation are proper candidates to span Hλ

{d}
. To simplify the

otation we introduce the λ-dependent parameter

γ =

√
σ 4 − 4bσ 2 − 8λσ 2 + 4b2

2σ 2

such that by definition(
α + β + 1

2

)2

− γ 2
=

2λ
σ 2 . (3.5)

Using 2 F1 as notation for hypergeometric functions, we define the real-valued function

ξλ(x) =

⎧⎨⎩2 F1

(
α+β+1

2 + γ,
α+β+1

2 − γ ;β + 1;
x
d

)
, β > −1,( x

d

)−β
2 F1

(
α−β+1

2 + γ,
α−β+1

2 − γ ; 1 − β;
x
d

)
, β ≤ −1

n (0, d). Since ξλ is a rescaled version of the solution to a hypergeometric differential equation,
ee [18, p. 163], it satisfies indeed Gξλ = λξλ on (0, d). In course of this subsection, we prove
he following result.

heorem 3.6. Let λ > 0 and −1 < α < 0, then we have

Hλ
{d}

= span{ξλ}.

Since the proof of Theorem 3.6 relies on an integration by parts argument, we first
nvestigate the boundary values of ξλ based on the following general formulae for boundary
alues of hypergeometric functions. They are the key tool to perform the explicit calculations
nd can be found in [2, Theorem 2.1.3; Theorem 2.2.2]. The appearing function Γ is the
ell-known gamma function and we write R for the real part of an imaginary number.

emma 3.7. Let κ, ι, υ ∈ C with −υ /∈ N0.

(i) If R(υ − κ − ι) > 0, then

lim
x↗1

2 F1(κ, ι; υ; x) =
Γ (υ)Γ (υ − κ − ι)
Γ (υ − κ)Γ (υ − ι)

. (3.6)

(ii) If υ − κ − ι = 0, then

lim
x↗1

2 F1(κ, ι; υ; x)
− log(1 − x)

=
Γ (υ)

Γ (κ)Γ (ι)
. (3.7)

(iii) If R(υ − κ − ι) < 0, then

lim 2 F1(κ, ι; υ; x)
=

Γ (υ)Γ (κ + ι− υ)
. (3.8)
x↗1 (1 − x)υ−κ−ι Γ (κ)Γ (ι)
383
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They result in the following statements on ξλ. The detailed calculations leading to it are
contained in Appendix A.2.

Lemma 3.8. The function ξλ admits the following properties.

(i) It holds that

lim
x↘0

ξλ(x) =

{
1, β > −1,
0, β ≤ −1.

(ii) It holds that

lim
x↗d

ξλ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ (β+1)Γ (−α)

Γ
(

−α+β+1
2 +γ

)
Γ
(

−α+β+1
2 −γ

) , α < 0, β > −1,

Γ (1−β)Γ (−α)

Γ
(

−α−β+1
2 +γ

)
Γ
(

−α−β+1
2 −γ

) , α < 0, β ≤ −1,

∞, α ≥ 0

and the above limit is positive if it is finite.
(iii) It holds that

lim
x↘0

ξ ′

λcm(x) =

{
0, β > −1,
−βσ 2

2 , β ≤ −1.

(iv) Under the additional assumption

λ >
σ 2

2

(
α + β + 1

2

)2

(3.9)

for α < −1 and β ≤ −1 it holds that

lim
x↗d

ξ ′

λcm(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λΓ (β+1)Γ (α+1)

Γ
(
α+β+3

2 +γ
)
Γ
(
α+β+3

2 −γ
) , α > −1, β > −1,[

2λ
σ 2 − β(α + 1)

]
σ 2Γ (1−β)Γ (α+1)

2Γ
(
α−β+3

2 +γ
)
Γ
(
α−β+3

2 −γ
) , α > −1, β ≤ −1,

∞, α ≤ −1

and the above limit is positive if it is finite.

emma 3.9. Let λ > 0 and −1 < α < 0, then ξλ ∈ D(E).

roof. Since Gξλ = λξλ on (0, d), the identity (1.6) yields that

(ξ ′

λcm)′(x) = λm(x)ξλ(x) (3.10)

or all x ∈ (0, d). Hence, integration by parts yields that∫ d−ϵ

ϵ

ξ ′

λξ
′

λcm(x) dx + λ

∫ d−ϵ

ϵ

ξλξλm(x) dx =
[
ξλξ

′

λcm
]d−ϵ

ϵ

or ϵ > 0. By letting ϵ ↘ 0 we get∫
X
ξ ′

λξ
′

λ dcm(x) + λ

∫
X
ξλξλ dm(x) = lim

ϵ↘0

[
ξλξ

′

λcm
]d−ϵ

ϵ
. (3.11)

arts (i) and (iii) of Lemma 3.8 imply that ξλξ ′

λcm(x) converges as x ↘ 0. If we assume
1 < α < 0, parts (ii) and (iv) yield that ξλξ ′

λcm(x) converges as well as x ↗ d. In particular,

3.11) is finite in this case and ξλ ∈ D(E). □
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To complete the proof of Theorem 3.6, we also need the following observation. Since the
ensity functions m and cm are both bounded from below on every compactly contained subset
f (0, d), D(E) embeds continuously in the local Sobolev space H 1

loc((0, d)), for an introduction
o these spaces we refer to [3]. Hence, we obtain the following integration by parts formula

f̃ (r )g(r ) − f̃ (l)g(l) =

∫ r

l

[
f ′g(x) + f g′(x)

]
dx (3.12)

for any function g which is continuously differentiable on [l, r ] ⊂ (0, d) as a consequence of
[4, Corollary 8.10].

Proof of Theorem 3.6. Since the point evaluation

δ{d} : D(E) → R
is a rank one operator for −1 < α < 0,{

f ∈ D(E)
⏐⏐ f̃ (d) = 0

}
(3.13)

as codimension one and it suffices to check that span{ξλ} and (3.13) are orthogonal to each
ther in (D(E), Eλ) by Lemma 3.9. To this end, we distinguish different cases of β. For β ≤ −1
r β ≥ 0 the space (3.13) coincides with (3.3). Hence it suffices to check that

∀ϕ ∈ C∞

c ((0, d)) : Eλ(ξλ, ϕ) = 0.

or ϕ ∈ C∞
c ((0, d)), we choose l, r such that supp(ϕ) ⊂ (l, r ) and then

Eλ(ξλ, ϕ) =

∫ r

l
ϕ′ξ ′

λcm(x) dx + λ

∫ r

l
ϕξλm(x) dx = 0

y integration by parts and (3.10). This finishes the proof for these cases of β. For −1 < β < 0,
e use the integration by parts formula (3.10) and (3.12) to conclude that[

f̃ ξ ′

λcm
]d−ϵ

ϵ
=

∫ d−ϵ

ϵ

f ′ξ ′

λcm(x) + λ f ξλm(x) dx

or f in (3.13) and ϵ > 0. Hence,[
f̃ ξ ′

λcm
]d−ϵ

ϵ
→ Eλ( f, ξλ)

as ϵ ↘ 0. By Lemma 3.8 (iv) together with f̃ (d) = 0 we get limx↗d f̃ ξ ′

λcm(x) = 0.
emma 3.8 (iii) together with the continuity of f̃ at 0 implies that limx↘0 f̃ ξ ′

λcm(x) = 0.
ence Eλ( f, ξλ) = 0, which completes the proof also in this case. □

To also calculate Hλ
{0}

we define the dual set of parameters

(d†, a†, b†, σ †) = (d, bd − a, b, σ ).

hen, accordingly

G† f (x) =
1
2
σ 2x(d − x) f ′′(x) + ((bd − a) − ax) f ′(x)

uch that G f = λ f is equivalent to G†( f (d−·)) = λ f (d−·). Hence, the function ηλ = ξ
†
λ (d−·)

atisfies Gηλ = ληλ. It is straightforward to verify that α†
= β, β†

= α and γ †
= γ such that

e can write explicitly

ηλ(x) =

⎧⎨⎩2 F1

(
α+β+1

2 + γ,
α+β+1

2 − γ ;α + 1; 1 −
x
d

)
, α > −1,(

1 −
x )−α

2 F1

(
−α+β+1

+ γ,
−α+β+1

− γ ; 1 − α; 1 −
x
)
, α ≤ −1
d 2 2 d
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for x ∈ (0, d). In the following corollary we collect all the properties of ηλ, which follow
mmediately from the respective properties of ξ †

λ .

orollary 3.10. The function ηλ admits the following properties.

(i) We have Gηλ = ληλ on (0, d).
(ii) It holds that

lim
x↗d

ηλ(x) =

{
1, α > −1,
0, α ≤ −1.

(iii) It holds that

lim
x↘0

ηλ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ (α+1)Γ (−β)

Γ
(
α−β+1

2 +γ
)
Γ
(
α−β+1

2 −γ
) , β < 0, α > −1,

Γ (1−α)Γ (−β)

Γ
(

−α−β+1
2 +γ

)
Γ
(

−α−β+1
2 −γ

) , β < 0, α ≤ −1,

∞, β ≥ 0

and the above limit is positive if it is finite.
(iv) It holds that

lim
x↗d

η′

λcm(x) =

{
0, α > −1,
ασ 2

2 , α ≤ −1.

(v) Under the additional assumption

λ >
σ 2

2

(
α + β + 1

2

)2

for α ≤ −1 and β < −1 it holds that

lim
x↘0

η′

λcm(x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−λΓ (α+1)Γ (β+1)

Γ
(
α+β+3

2 +γ
)
Γ
(
α+β+3

2 −γ
) , β > −1, α > −1,[

2λ
σ 2 − α(β + 1)

]
−σ 2Γ (1−α)Γ (β+1)

2Γ
(

−α+β+3
2 +γ

)
Γ
(

−α+β+3
2 −γ

) , β > −1, α ≤ −1,

−∞, β ≤ −1

and the above limit is negative if it is finite.

Using the same line of arguments as in the proof of Theorem 3.6 one shows the following.

heorem 3.11. Let λ > 0 and −1 < β < 0, then we have

Hλ
{0}

= span{ηλ}.

.2. Sobolev type embeddings

In this subsection we analyze the embedding properties of D(E) in the spaces Lq (X, dm)
or q > 2. By Proposition 3.1 we have the embedding D(E) ↪→ L∞(X, dm), if α, β < 0. Since
rivially D(E) ↪→ L2(X, dm) also the embeddings D(E) ↪→ Lq (X, dm) for 2 ≤ q ≤ ∞ follow
y Hölder’s inequality. To derive a similar result in the case that α ≥ 0 or β ≥ 0 we state
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a special case of the characterization of embeddings of weighted Sobolev spaces from [24].
To formulate it, we introduce for s ∈ R, 1 ≤ q ≤ ∞ the weighted spaces Lq

s (R) as the Lq

space on R equipped with the measure with density |x |
s with respect to the Lebesgue measure.

Moreover, we set

∥ f ∥
2
W 1,(2,2)

s,s+1 (R\{0})
= ∥ f ∥

2
L2

s (R)
+ ∥ f ′

∥
2
L2

s+1(R)
, (3.14)

for functions f , which are weakly differentiable on R \ {0} and define W 1,(2,2)
s,s+1 (R \ {0}) as the

space of all f such that (3.14) is finite. As a consequence of the completeness of the involved
spaces L2

s (R) and L2
s+1(R) the space W 1,(2,2)

s,s+1 (R \ {0}) is complete as well.

Lemma 3.12. Let s ≥ 0 and 1 ≤ q < ∞. If we define

qs =

{
2
(
1 +

1
s

)
, s > 0,

∞, s = 0,

hen W 1,(2,2)
s,s+1 (R \ {0}) embeds continuously in Lq

s (R) if and only if q ∈ [2, qs].

roof. The stated embedding holds if and only if any of the cases (i)–(vi) of [24, Theorem
.1] holds. The cases (ii), (v) and (vi) are impossible and the case (iii) corresponds to the trivial
ase q = 2. The case (iv) is impossible if s = 0, else it corresponds to q = qs . Finally, we

note that the case (i) is equivalent to q ∈ (2, qs). □

Using a cutoff argument we can transfer these findings to the setting of a bounded interval,
which results in the following theorem. During its proof we denote by K... a constant only
depending on its indices, which may change from line to line.

Theorem 3.13. We define q∗ = min{qα, qβ}, where

qα =

{
2
(
1 +

1
α

)
, α > 0,

∞, α ≤ 0,
and qβ =

{
2
(

1 +
1
β

)
, β > 0,

∞, β ≤ 0.

hen there is a continuous embedding D(E) ↪→ Lq (X, dm) for q ∈ [2, q∗). If additionally
, β ̸= 0, then the embedding is also true for q = q∗.

Proof. Let α < 0. Then the restriction mapping

C(X̃ ) → C
([

d
2
, d
])
, f ↦→ f |[ d

2 ,d
]

s continuous. Therefore, by Proposition 3.1 we can estimate

∥ f ∥
L∞

([
d
2 ,d

]
,dm

) = ∥ f̃ ∥
C
([

d
2 ,d

]) ≤ Kα,β,d

√
E1( f, f )

or every f ∈ D(E). Due to Hölder’s inequality we conclude that

∥ f ∥
Lq
([

d
2 ,d

]
,dm

) ≤ ∥ f ∥

2
q

L2
([

d
2 ,d

]
,dm

)∥ f ∥

q−2
q

L∞

([
d
2 ,d

]
,dm

) ≤ Kα,β,d

√
E1( f, f ).

or any q ∈ [2, q ].
α
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For α ≥ 0 we choose a smooth cutoff-function ϕ ∈ C∞
c (R≥0), 0 ≤ ϕ ≤ 1 such that ϕ(x) = 1

or 0 ≤ x < d
2 and ϕ(x) = 0 for x > 3d

4 . For f ∈ D(E) we define the function

fϕ(x) =

{
f (d − x)ϕ(x), x ∈ (0, d),
0, else.

hen for any 1 ≤ q < ∞ we have the estimate

∥ f ∥
Lq
([

d
2 ,d

]
,dm

) = Kα,β,d

(∫
d
2

d
| f (x)|q xβ(d − x)α dx

) 1
q

≤ Kα,β,d

(∫ d
2

0
| fϕ(x)|q xα dx

) 1
q

≤ Kα,β,d∥ fϕ∥Lq
α (R).

(3.15)

oreover, for any ψ ∈ C∞
c (R \ {0}) we have ϕψ ∈ C∞

c ((0, d)), where we use the convention
(x) = 0 for x < 0, and consequently

−

∫
R

fϕ(x)ψ ′(x) dx = −

∫ d

0
f (d − x)

[
(ϕψ)′(x) − ϕ′(x)ψ(x)

]
dx

=

∫ d

0
f (d − x)ϕ′(x)ψ(x) dx −

∫ d

0
f ′(d − x)(ϕψ)(x) dx

=

∫
R

[
f (d − x)ϕ′(x) − f ′(d − x)ϕ(x)

]
ψ(x) dx .

ence fϕ is weakly differentiable on R\{0} with the ψ-independent part of the latter integrand
s weak derivative. We can estimate

∥ fϕ∥2
L2
α (R)

=

∫ d

0
f 2(d − x)ϕ2(x)xα dx ≤

∫ d

d
4

f 2(x)(d − x)α dx ≤ Kα,β,d∥ f ∥
2
L2(X,dm).

imilarly, we obtain that

∥ f ′

ϕ∥
2
L2
α+1(R)

≤

∫ d

0
2
[

f 2(d − x)ϕ′2(x) + f ′2(d − x)ϕ2(x)
]

xα+1 dx

≤ 2

[
sup
y∈R

|ϕ′(y)|2
∫ d

2

d
4

f 2(x)(d − x)α+1 dx +

∫ d

d
4

f ′2(x)(d − x)α+1 dx

]
≤ Kα,β,d,ϕ∥ f ∥

2
L2(X,dcm) + Kα,β,d∥ f ′

∥
2
L2(X,dcm) ≤ Kα,β,d,ϕE1( f, f ).

n the last line we used that the function c is bounded. Combining now (3.15), Lemma 3.12
nd the previous two estimates, we obtain that

∥ f ∥
Lq
([

d
2 ,d

]
,dm

) ≤ Kα,β,d∥ fϕ∥Lq
α (R) ≤ Kα,β,d,q∥ fϕ∥W 1,(2,2)

α,α+1 (R\{0}) ≤ Kα,β,d,ϕ,q

√
E1( f, f ).

or any finite q ∈ [2, qα]. Analogously, we find that

∥ f ∥
Lq
([

0, d
2

]
,dm

) ≤ Kα,β,d,ϕ,q

√
E1( f, f )

or q ∈ [2, qβ], where we additionally require q to be finite for β = 0. The claim follows now
y

∥ f ∥Lq (X,dm) ≤ ∥ f ∥ q
([

d
] ) + ∥ f ∥ q

([
d

] ). □

L 0, 2 ,dm L 2 ,d ,dm
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3.3. Hardy type inequalities

In this subsection we provide Hardy-type inequalities for the integrability pairs (p, q) =

(2, 1) and (2, 2). The former gives rise to reference functions for (E, D(E)) and the latter
o an estimate on the spectral gap of (L , D(L)) later on. The proofs rely on verifying

conditions which are derived similarly to the more general situations [22, Theorem 1, p. 50] and
[23, Theorem 1]. As a preliminary step, we need the following observation regarding the
boundary behavior of functions from D(E).

Proposition 3.14. Let f ∈ D(E). Then it holds⎧⎪⎨⎪⎩
limx↗d f̃ cm(x) = 0, α ≥ 0,
limx↗d f̃ (x) ∈ R, −1 < α < 0,
limx↗d f̃ (x) = 0, α ≤ −1,

as well as⎧⎪⎨⎪⎩
limx↘0 f̃ cm(x) = 0, β ≥ 0,
limx↘0 f̃ (x) ∈ R, −1 < β < 0,
limx↘0 f̃ (x) = 0, β ≤ −1.

Proof. We prove the first part of the statement, the second part can be shown analogously.
The case −1 < α < 0 follows from the continuity of (3.2). We recall that for α ≤ −1, the
boundary point d is approachable but non-regular, such that

lim
x↗d

f̃ (x) = 0

by [5, Eq. (2.2.39)] and the fact that D(E) is contained in its extended Dirichlet space. Lastly,
we assume that α ≥ 0 and first show that

lim
x↗d

f̃ cm(x) = 0 (3.16)

for f ∈ F . By an approximation argument, this follows if we can verify continuity of(
C∞

c ((0, d)), E1
)

→ C
([

d
2
, d
])
, ϕ ↦→ cmϕ|[ d

2 ,d
]. (3.17)

By (1.5) we have that

(ϕcm)′(x) = cm(x)ϕ′(x) + (a − bx)m(x)ϕ(x) (3.18)

or every ϕ ∈ C∞
c ((0, d)) and therefore

|cmϕ(x)| ≤

∫ d

d
2

|ϕ′
| dcm +

(
|a| + |b|d

) ∫ d

d
2

|ϕ| dm

≤

⎡⎣(∫ d

d
2

1 dcm

) 1
2

+ (|a| + |b|d)

(∫ d

d
2

1 dm

) 1
2
⎤⎦ √

E1(ϕ, ϕ)

or any x ∈
[ d

2 , d
]
. The prefactor on the right-hand side is finite since α > −1 and consequently

3.17) is indeed bounded. Now, by Theorem 3.4, D(E) = F if β ≤ −1 or β ≥ 0, such that the
laim follows in this case. If −1 < β < 0, F coincides with

{ f ∈ D(E)
⏐⏐ f̃ (0) = 0}
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such that

D(E) = F ⊕ span{ηλ}

orthogonally with respect to Eλ by Theorem 3.11. But by Corollary 3.10 (ii) ηλ attains a limit
at d such that

lim
x↗d

ηλcm(x) = 0

by α ≥ 0. Consequently, (3.16) holds for all f ∈ D(E), which finishes the proof. □

Lemma 3.15. If α ≤ −1 or β ≤ −1 and r, s ∈ R such that either

(i) β ≤ −1, α > −1, r > −2−β

2 and s > max{−1 − α, −2−α
2 },

(ii) β > −1, α ≤ −1, r > max{−1 − β,
−2−β

2 } and s > −2−α
2 or

(iii) β ≤ −1, α ≤ −1, r > −2−β

2 and s > −2−α
2 .

Then there is a constant Cα,β,σ,d,r,s < ∞ such that∫
X

| f (x)|xr (d − x)s dm(x) ≤ Cα,β,σ,d,r,s

√
E( f, f ) (3.19)

for every f ∈ D(E).

Proof. Let f ∈ D(E). In the case of (i) we have f̃ (0) = 0 by Proposition 3.14 such that an
pplication of [4, Theorem 8.2] and Fubini’s theorem yields∫ d

0
| f (x)|xr (d − x)s dm(x) ≤

∫ d

0

∫ x

0
| f ′(y)| dy

xβ+r (d − x)α+s

dα+β+1 dx

=

∫ d

0

∫ d

y

xβ+r (d − x)α+s

dα+β+1 dx | f ′(y)| dy.

f we can show that∫ d

0
g(y)2 2dα+β+1

σ 2 yβ+1(d − y)α+1 dy (3.20)

s finite, where

g(y) =

∫ d

y

xβ+r (d − x)α+s

dα+β+1 dx,

an application of Hölder’s inequality yields that∫
X

| f (x)|xr (d − x)s dm(x)

≤

(∫ d

0
g(y)2 2dα+β+1

σ 2 yβ+1(d − y)α+1 dy
) 1

2
(∫ d

0
| f ′(y)|2

σ 2 yβ+1(d − y)α+1

2dα+β+1 dy
) 1

2

nd the claim follows. To estimate (3.20) we observe that for y ≥
d
2

g(y) ≤ Cα,β,d,r

∫ d

(d − x)α+s dx = Cα,β,d,r

∫ d−y

xα+s dx = Cα,β,d,r,s(d − y)α+s+1
y 0
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by the assumption s > −1 − α. Using additionally s > −2−α
2 we conclude that∫ d

d
2

g(y)2 2dα+β+1

σ 2 yβ+1(d − y)α+1 dy ≤ Cα,β,σ,d,r,s

∫ d

d
2

(d − y)2α+2s+2

(d − y)α+1 dy

= Cα,β,σ,d,r,s < ∞. (3.21)

or y < d
2 we obtain instead the bound

g(y) ≤ g
(

d
2

)
+ Cα,β,d,s

∫ d
2

y
xβ+r dx ≤ Cα,β,d,r,s

⎧⎪⎨⎪⎩
(1 + yβ+r+1), β + r ≤ −1,
(1 + | log(y)|), β + r = −1,
1, β + r > −1.

(3.22)

herefore, by Young’s inequality and the assumptions β ≤ −1 and r > −2−β

2

∫ d
2

0
g(y)2 2dα+β+1

σ 2 yβ+1(d − y)α+1 dy ≤ Cα,β,σ,d,r,s

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ d

2
0

1+y2β+2r+2

yβ+1 dy, β + r ≤ −1,∫ d
2

0
1+log(y)2

yβ+1 dy, β + r = −1,∫ d
2

0
1

yβ+1 dy, β + r > −1.

= Cα,β,σ,d,r,s < ∞.

(3.23)

dding up (3.21) and (3.23) we conclude that (3.20) is indeed finite. The case (ii) can be
reated analogously. For the last case (iii) we use that f̃ (d) = f̃ (0) = 0 and obtain that∫

X
| f (x)|xr (d − x)s dm(x)

≤

∫ d
2

0

∫ x

0
| f ′(y)| dy

xβ+r (d − x)α+s

dα+β+1 dx +

∫ d

d
2

∫ d

x
| f ′(y)| dy

xβ+r (d − x)α+s

dα+β+1 .

(3.24)

s before, we estimate the first integral of the right-hand side by∫ d
2

0

∫ d
2

y

xβ+r (d − x)α+s

dα+β+1 dx | f ′(y)| dy

≤

(∫ d
2

0
h(y)2 2dα+β+1

σ 2 yβ+1(d − y)α+1 dy

) 1
2
(∫ d

2

0
| f ′(y)|2

σ 2 yβ+1(d − y)α+1

2dα+β+1 dy

) 1
2

,

here we set this time

h(y) =

∫ d
2

y

xβ+r (d − x)α+s

dα+β+1 dx .

We estimate the function h as before by

h(y) ≤ Cα,β,d,s

∫ d
2

y
xβ+r dx,

which is a term appearing in (3.22). In particular, continuing as in (3.23) we conclude finiteness
of ∫ d

2
h(y)2 2dα+β+1

dy

0 σ 2 yβ+1(d − y)α+1
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due to β ≤ −1 and r > −2−β

2 . The second term of the right-hand side of (3.24) can be estimated
analogously and therefore the claim follows. □

Lemma 3.16. The following holds if either α ≤ −1, β > −1 or α > −1, β ≤ −1.

∫
X

f 2(x) dm(x) ≤ E( f, f ) ·

⎧⎪⎪⎨⎪⎪⎩
2

σ 2 min{|α+1|,|β+1|}2 , α, β ̸= −1,
8
σ 2 supx∈(0,1) x(1 − x)

[ 1
α+1 − log(x)

]2
, β = −1,

8
σ 2 supx∈(0,1) x(1 − x)

[
1

β+1 − log(x)
]2
, α = −1.

(3.25)

emark 3.17. It would be interesting to show an estimate (3.25) with a good constant also
or the case α, β ≤ −1, which requires probably a different approach. While the calculation in
3.26) is still possible in this case, the hypergeometric function from (3.27) is not well-defined
f −(α + 2) ∈ N. Even if it is well-defined an application of Euler’s integral representation
3.29) requires α + 1 > 0.

roof. We assume that β ≤ −1, α > −1 and calculate using [4, Corollary 8.10]∫
X

f 2(x) dm(x) ≤

∫ d

0

∫ x

0
2| f (y) f ′(y)| dy m(x) dx

= 2
∫ d

0

∫ d

y
m(x) dx | f (y) f ′(y)| dy

≤ 2
(∫ d

0
f ′(y)2cm(y) dy

) 1
2
(∫ d

0
f 2(y)

(∫ d

y
m(x) dx

)2

cm(y)−1 dy

) 1
2

≤ 2
(∫ d

0
f ′(y)2cm(y) dy

) 1
2
(∫ d

0
f 2(y)m(y) dy

) 1
2

× sup
y∈(0,d)

[(∫ d

y
m(x) dx

)2

cm(y)−1m(y)−1

] 1
2

.

(3.26)

herefore, we have∫
X

f 2(x) dm(x) ≤ 4 sup
y∈(0,d)

[(∫ d

y
m(x) dx

)2

cm(y)−1m(y)−1

]
E( f, f )

nd it is left to estimate the supremum in front of E( f, f ). If we define

M(y) =

(
1 −

y
d

)α+1

(α + 1) 2 F1

(
−β, α + 1;α + 2; 1 −

y
d

)
, (3.27)

e see directly that M(d) = 0 since α + 1 > 0. Moreover, term-wise differentiation yields

M ′(y) = −

(
1 −

y
d

)α
d 2 F1

(
−β, α + 1;α + 1; 1 −

y
d

)
(3.28)

he appearing hypergeometric function is of the form
∞∑ (−β)n

n!

(
1 −

y
d

)n
=

( y
d

)β

n=0
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by Taylor expansion of the function (1 − x)β in x = 0. Inserting this into (3.28) yields
M ′(y) = −m(y) such that

M(y) =

∫ d

y
m(x) dx .

To estimate M(y), we use Euler’s transformation formula and Euler’s integral representation,
see [2, Theorem 2.2.1; Theorem 2.2.5] to obtain that

2 F1

(
−β, α + 1;α + 2; 1 −

y
d

)
=

( y
d

)β+1
2 F1

(
α + β + 2, 1;α + 2; 1 −

y
d

)
= (α + 1)

( y
d

)β+1
∫ 1

0
(1 − t)α

(
1 −

(
1 −

y
d

)
t
)−(α+β+2)

dt.
(3.29)

f α + β + 2 ≥ 0 the hypergeometric function

2 F1 (α + β + 2, 1;α + 2; x)

s monotonously increasing in x and we can estimate it under the additional assumption β < −1
y its limit

lim
x↗1

2 F1 (α + β + 2, 1;α + 2; x) =
α + 1

−(β + 1)
,

ue to (3.6). For β = −1 we have

2 F1

(
−β, α + 1;α + 2; 1 −

y
d

)
=

∞∑
n=0

(
1 −

y
d

)n (α + 1)n

(α + 2)n

≤ 1 + (α + 1)
∞∑

n=1

(
1 −

y
d

)n 1
α + n + 1

≤ 1 + (α + 1)
∞∑

n=1

(
1 −

y
d

)n 1
n

= 1 − (α + 1) log
( y

d

)
.

f α + β + 2 < 0, which implies in particular β < −1, we can instead estimate∫ 1

0
(1 − t)α

(
1 −

(
1 −

y
d

)
t
)−(α+β+2)

dt ≤

∫ 1

0
(1 − t)α dt =

1
α + 1

.

ll in all we obtained the estimate

2 F1

(
−β, α + 1;α + 2; 1 −

y
d

)
≤

⎧⎪⎨⎪⎩
( y

d

)β+1
, α + β + 2 < 0,

α+1
−(β+1)

( y
d

)β+1
, α + β + 2 ≥ 0, β ̸= −1,

1 − (α + 1) log
( y

d

)
, β = −1.

his implies

M(y) ≤

⎧⎨⎩ (
y
d )
β+1
(1−

y
d )
α+1

min{a+1,−(β+1)} , β ̸= −1,(
1 −

y
d

)α+1 [ 1
α+1 − log

( y
d

)]
, β = −1,

hich in the case β ̸= −1 leads us to

M(y)2

cm(y)m(y)
≤

2d2(α+β+1)
( y

d

)2β+2 (1 −
y
d

)2α+2

σ 2 y2β+1(d − y)2α+1 min{a + 1,−(β + 1)}2

=
2
( y

d

) (
1 −

y
d

)
≤

1
.

σ 2 min{a + 1,−(β + 1)}2 2σ 2 min{a + 1,−(β + 1)}2
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If β = −1 we obtain instead

M(y)2

cm(y)m(y)
≤

2
( y

d

) (
1 −

y
d

) [ 1
α+1 − log

( y
d

)]2

σ 2

≤
2
σ 2 sup

x∈(0,1)
x(1 − x)

[
1

α + 1
− log(x)

]2

.

he case α ≤ −1, β > −1 can be treated analogously. □

.4. Spectral gap and asymptotics of the semigroup

We recall that (Tt )t>0 is the Markovian, symmetric operator semigroup associated to
L , D(L)). In this last subsection we analyze its properties as t → ∞. If α, β > −1, the
rescaled) family of Jacobi polynomials is given by

Qn(x) = 2 F1

(
−n, n + α + β + 1;α + 1; 1 −

x
d

)
, n ∈ N0.

his is a complete orthogonal basis of L2(X, dm) and moreover we have

G Qn(x) =
−σ 2n(n + α + β + 1)

2
Qn(x)

or x ∈ (0, d), see [2, Theorem 6.4.3; Theorem 6.5.2] and [2, Eq. (6.3.8)]. The following
emma shows, that (Qn)n∈N is even an orthogonal system of eigenfunctions of (L , D(L)) in this
ase.

emma 3.18. The following holds.

(i) If α, β > −1, it holds (G,C∞([0, d])) ⊂ (L , D(L)).
(ii) If α > −1, it holds (G,C∞

c ((0, d])) ⊂ (L , D(L)).
(iii) If β > −1, it holds (G,C∞

c ([0, d))) ⊂ (L , D(L)).

roof. We provide a proof of (i), the remaining parts can be shown analogously. We assume
, β > −1 and let f ∈ C∞([0, d]). Then we have G f ∈ C([0, d]) and in particular

f,G f ∈ L2(X, dm) since dm has finite total mass. Similarly, we conclude f ∈ D(E) and
he claim follows if we can verify that

E( f, g) = − (G f, g)L2(X,dm) (3.30)

or any g ∈ D(E) by [26, Proposition 10.4 (ii)]. Due to (1.5) we have

( f ′cm)′(x) =
[
c(x) f ′′(x) + (a − bx) f ′(x)

]
m(x)

or all x ∈ (0, d). The integration by parts formula (3.12) yields that∫ d−ϵ

ϵ

g′(x) f ′(x) dcm(x) = −

∫ d−ϵ

ϵ

g(x)G f (x) dm(x) +
[
g̃ f ′cm

]d−ϵ

ϵ
(3.31)

or ϵ > 0. Observe that f ′(x) converges as x ↘ 0 and x ↗ d. Furthermore, we get
imx↘0 g̃cm(x) = limx↗d g̃cm(x) = 0 by Proposition 3.14. Hence, taking ϵ ↘ 0 in (3.31)
ields (3.30). □
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Using spectral theory, we obtain the explicit representation of the semigroup

Tt f =

∞∑
n=0

e
−σ2n(n+α+β+1)t

2 ( f, Qn)L2(X,dm)

∥Qn∥
2
L2(X,dm)

Qn (3.32)

or f ∈ L2(X, dm) by [26, Proposition 5.12] whenever α, β > −1.

orollary 3.19. The following holds for every t > 0 and f ∈ L2(X, dm).

(i) If α, β > −1 we haveTt f −

∫
X f dm
dm(X )

1


L2(X,dm)

≤ e−bt
 f −

∫
X f dm
dm(X )

1


L2(X,dm)

. (3.33)

(ii) If α, β > −1 we haveTt f −

∫
X f dm
dm(X )

1


D(E)

→ 0 (3.34)

as t → ∞. If additionally f ∈ D(E), the estimateTt f −

∫
X f dm
dm(X )

1


D(E)

≤ e−bt
√
E1( f, f ) (3.35)

holds as well.
(iii) If α ≤ −1, β > −1 or α > −1, β ≤ −1 we have

∥Tt f ∥L2(X,dm) ≤ e
−t

C(α,β,σ ) ∥ f ∥L2(X,dm),

where C(α, β, σ ) is the constant from the right-hand side of (3.25).

Proof. For (i) we observe that Q0 = 1 and consequently (3.32) yieldsTt f −

∫
X f dm
dm(X )

1

2

L2(X,dm)
=

∞∑
n=1

e−σ 2n(n+α+β+1)t
( f, Qn)

2
L2(X,dm)

∥Qn∥
2
L2(X,dm)

≤ e−2bt
∞∑

n=1

( f, Qn)
2
L2(X,dm)

∥Qn∥
2
L2(X,dm)

= e−2bt
 f −

∫
X f dm
dm(X )

1

2

L2(X,dm)
.

n the inequality we used additionally that σ 2(α + β + 2) = 2b by (1.2). We conclude that
3.33) holds by taking the square-root. For (ii) we use [26, Eqs. (10.7), (10.8)] to calculateTt f −

∫
X f dm
dm(X )

1

2

D(E)

=

∞∑
n=1

(
1 +

σ 2n(n + α + β + 1)
2

)
e−σ 2n(n+α+β+1)t

( f, Qn)
2
L2(X,dm)

∥Qn∥
2
L2(X,dm)

. (3.36)

y introducing

C = sup
(

1 +
x )

e−x < ∞

x>0 2
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we can estimate(
1 +

σ 2n(n + α + β + 1)
2

)
e−σ 2n(n+α+β+1)t

≤ C

for all t ≥ 1 and positive n ∈ N. Since also(
1 +

σ 2n(n + α + β + 1)
2

)
e−σ 2n(n+α+β+1)t

( f, Qn)
2
L2(X,dm)

∥Qn∥
2
L2(X,dm)

→ 0

s t → ∞ for every positive n ∈ N, the dominated convergence theorem yields (3.34). The
uantitative version (3.35) follows by continuing in (3.36) as in the proof of (i). Part (iii) is
n immediate consequence from Lemma 3.16 together with [27, Theorem 1.1.1]. □

. The corresponding process

In this section we analyze a dm-symmetric Hunt process, which is associated to the Dirichlet
form (E, D(E)) in the sense that its transition semigroup determines (Tt )t>0 as in [14, Lemma

.4.3]. To this end, we adjoin the cemetery ∆ as Alexandroff point to the state space X and
rite X∆ = X ∪ {∆}. Moreover, we let M =

(
Ω ,A, (Yt )t∈[0,∞], (Px )x∈X∆

)
be a Hunt process

associated to (E, D(E)), for details on Hunt processes see [14, Appendix A.2]. We denote its
transition function on X by (ρt )t>0 and its life time by ζ .

Remark 4.1. The Dirichlet form (E, D(E)) is regular by Theorem 3.2 and therefore there
exists an associated Hunt process. A construction of it can be found in [14, Chapter 7].

4.1. Basic properties

We use the convention that f (∆) = 0 for any function f , which is a priori defined on X
and we write Yζ− for the left limit of the process Y at ζ . We recall that a statement holds
quasi-everywhere in X iff it holds for all x ∈ X and a function is quasi-continuous iff it is
continuous on X by Proposition 3.3. Moreover, as a consequence of [14, Theorem 4.2.1 (ii)],
there are no (properly) exceptional sets with respect to M, for a definition see [14, pp. 152–153].

Theorem 4.2. The following holds.

(i) The transition probability ρt (x, ·) is absolutely continuous with respect to dm for every
t > 0 and x ∈ X.

(ii) If α, β > −1, we have Px ({ζ < ∞}) = 0 for every x ∈ X.
(iii) The path [0, ζ ) → X, t ↦→ Yt is Px -almost surely continuous for every x ∈ X.
(iv) It holds Px

({
Yζ− ∈ X

}
∩ {ζ < ∞}

)
= 0 for every x ∈ X.

(v) If α ≤ −1 or β ≤ −1, we have

Px

({
lim
t↗∞

Yt = ∆

}
∩ {ζ = ∞}

)
= Px ({ζ = ∞})

for every x ∈ X.
(vi) If α, β > −1, then∫

∞

0
1B(Ys) ds = ∞
Px -almost surely for every x ∈ X and B ∈ B(X ) with dm(B) > 0.
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(vii) If α ≤ −1 or β ≤ −1 and r, s ∈ R according to Lemma 3.15, then∫
∞

0
Y r

t (d − Yt )s dt < ∞ (4.1)

Px -almost surely for every x ∈ X.
(viii) If α, β > −1, then

lim
t→∞

1
t

∫ t

0
f (Ys) ds =

1
dm(X )

∫
X

f dm

Px -almost surely for every x ∈ X and B-measurable f ∈ L1(X, dm).
(ix) If α, β > −1, then

lim
t→∞

Ex ( f (Yt )) =
1

dm(X )

∫
X

f dm (4.2)

for every x ∈ X and universally measurable f ∈ L2(X, dm). If moreover f ∈ D(E),
then ⏐⏐⏐⏐Ex ( f (Yt )) −

1
dm(X )

∫
X

f dm
⏐⏐⏐⏐ ≤ Cα,β,σ,d,x e−bt

√
E1( f, f ). (4.3)

emark 4.3. We note that due to the convention f (∆) = 0 the integrand in (4.1) vanishes as
oon as Yt = ∆.

Proof. Part (i) follows from Theorem 3.13 and [14, Theorem 4.2.7]. By Proposition 3.5
nd [14, Exercise 4.5.1] we obtain (ii). Since (E, D(E)) is strongly local as remarked in the
ntroductory section, parts (iii) and (iv) follow from [14, Theorem 4.5.3]. If α ≤ −1 or β ≤ −1,
E, D(E)) is transient by Theorem 3.2 and hence [5, Theorem 3.5.2] yields (v).

Part (vi) follows from [14, Lemma 4.8.1] together with irreducible recurrence of (E, D(E))
n this case by Theorem 3.2. For (vii) we choose strictly positive functions (ϕn)n∈N on X with
n(x) ↗ 1 for every x ∈ X such that fn(x) = ϕn(x) f (x) is bounded on X and integrable with
espect to dm for every n ∈ N, where f (x) = xr (d − x)s . If we choose Cα,β,σ,d,r,s as in (3.19)
he function

fn

Cα,β,σ,d,r,s

is a reference function of (E, D(E)) for every n ∈ N, see [14, p. 40] for a definition. By
[14, Theorem 1.5.1] it holds∫

X
fn

(
lim
λ↘0

Rλ fn

)
dm ≤ C2

α,β,σ,d,r,s,

where (Rλ)λ>0 denotes the resolvent associated to (Tt )t>0, for details see [14, Section 1.3], and
he limit is attained almost everywhere. We have also

Rλ fn(x) = Ex

(∫
∞

e−λt fn(Ys) ds
)

→ Ex

(∫
∞

fn(Ys) ds
)

0 0
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as λ ↘ 0 for almost every x ∈ X by [14, Theorem 4.2.3] and monotone convergence.
Employing again the monotone convergence theorem we conclude that

C2
α,β,σ,d,r,s

≥

∫
X

fn(x)Ex

(∫
∞

0
fn(Ys) ds

)
dm(x) →

∫
X

f (x)Ex

(∫
∞

0
f (Ys) ds

)
dm(x).

Therefore, transience of (E, D(E)) and [14, Theorem 4.2.6] yield that

Ex

(∫
∞

0
f (Ys) ds

)
is quasi-continuous in x and in particular finite for every x ∈ X . We conclude that the integrand∫

∞

0
f (Ys) ds

is finite Px -almost surely. Part (viii) is a consequence of irreducible recurrence of (E, D(E))
in this case together with [14, Theorem 4.7.3 (iii)]. Finally, for (ix) let f ∈ L2(X, dm) be
universally measurable and x ∈ X , then Corollary 3.19 (ii) and Proposition 3.1 yield that

T̃t f (x) →
1

dm(X )

∫
X

f dm

as t → ∞. Since

Ex ( f (Yt )) = T̃t f (x) (4.4)

y [14, Theorem 4.2.3 (i)], (4.2) follows. If f ∈ D(E), (3.35) and Proposition 3.1 yield that⏐⏐⏐⏐T̃t f (x) −
1

dm(X )

∫
X

f dm
⏐⏐⏐⏐ ≤ Cα,β,σ,d,x e−bt

√
E1( f, f ),

here the constant denotes the operator norm of the point evaluation δx on D(E). The estimate
4.3) follows by (4.4). □

By parts (iv) and (v) of the preceding Theorem, the process Y approaches ∆ as t ↗ ζ in
he transient case α ≤ −1 or β ≤ −1 Px -almost surely for every x ∈ X . Considering X as a
ubset of [0, d], this means that Y converges to an element of [0, d] \ X due to the continuity
f paths (iii). The following corollary gives a stronger statement.

orollary 4.4. Let α ≤ −1 or β ≤ −1, then we have

Px

({
lim
t↗ζ

Yt ∈ X̃ \ X
})

= 1

or every x ∈ X.

roof. Since X̃ = [0, d] for α, β < 0, this case is treated by the preceding considerations. For
he remaining cases α ≥ 0, β ≤ −1 and α ≤ −1, β ≥ 0 [5, Eq. (3.5.14)] yields the claim. □

For a nearly Borel set B ⊂ X , see [14, p. 392] for the definition, we define the λ-order
itting distribution

λ −λτB
HB(x, E) = Ex (e 1E (XτB )) (4.5)
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for positive λ > 0 and universally measurable subsets E of X . The appearing random time τB

s defined as

τB = inf{t > 0|X t ∈ B}

nd is a stopping time with respect to the minimum completed admissible filtration of M, see
14, Theorem A.2.3]. Using the relation between orthogonal projections on the spaces Hλ

{d}
and

λ
{0}

from Section 3.1 and the λ-order hitting distribution of the corresponding sets {d} and {0}

iven by [14, Theorem 4.3.1], we calculate the hitting probabilities of the boundary points.

heorem 4.5. The following holds.

(i) If −1 < α < 0, we have for every x ∈ X that

Px
(
{τ{d} < ∞}

)
=

⎧⎪⎨⎪⎩
1, β > −1,
1, β ≤ −1, x = d,

Γ (−α−β)

Γ (1−β)Γ (−α)

( x
d

)−β
2 F1

(
α + 1,−β; 1 − β;

x
d

)
, β ≤ −1, x < d.

(ii) If −1 < β < 0, we have for every x ∈ X that

Px
(
{τ{0} < ∞}

)
=

⎧⎪⎨⎪⎩
1, α > −1,
1, α ≤ −1, x = 0,

Γ (−α−β)

Γ (1−α)Γ (−β)

(
1 −

x
d

)−α
2 F1

(
β + 1,−α; 1 − α; 1 −

x
d

)
, α ≤ −1, x > 0.

roof. We assume that −1 < α < 0 and additionally that β > −1. Then the Dirichlet form
E, D(E)) is irreducible recurrent by Theorem 3.2, such that the claim follows by [14, Theorem
.7.1 (iii)]. Next, we assume β ≤ −1 and let f ∈ D(E) with f̃ (d) = 1. In the following,
e first identify PHλ

{d}

f , the orthogonal projection of f onto Hλ
{d}

in (D(E), Eλ). Due to
14, Theorem 4.3.1] the function

Hλ
{d}

f̃ (x) = Ex (e−λτ{d} f̃ (Xτ{d}
)) (4.6)

xists for every x ∈ X and defines a continuous version of PHλ
{d}

f . Knowing (4.6) allows us

hen by f̃ (Xτ{d}
) = 1 to calculate the limit

Hλ
{d}

f̃ (x) → Px ({τ{d} < ∞}) (4.7)

s λ ↘ 0. Take λ > 0, then the space Hλ
{d}

coincides with span{ξλ} by Theorem 3.6. Since

f − PHλ
{d}

f is an element of (3.13) we have f̃ (d) − P̃Hλ
{d}

f (d) = 0. Lemma 3.8 (ii) yields

lim
x↗d

ξλ(x) =
Γ (1 − β)Γ (−α)

Γ
(

−α−β+1
2 + γ

)
Γ
(

−α−β+1
2 − γ

) > 0,

uch that

PHλ f =

Γ
(

−α−β+1
2 + γ

)
Γ
(

−α−β+1
2 − γ

)
ξλ.
B Γ (1 − β)Γ (−α)
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It follows that Hλ
{d}

f̃ (x) equals⎧⎨⎩
Γ
(

−α−β+1
2 +γ

)
Γ
(

−α−β+1
2 −γ

)
Γ (1−β)Γ (−α)

( x
d

)−β
2 F1

(
α−β+1

2 + γ,
α−β+1

2 − γ ; 1 − β;
x
d

)
, x < d,

1, x = d.

If we let λ ↘ 0 to calculate (4.7) the corresponding parameter

γ =

√(
α + β + 1

2

)2

−
2λ
σ 2 (4.8)

tends towards
⏐⏐⏐ α+β+1

2

⏐⏐⏐. Analyticity of the gamma function and 2 F1 in its first two parameters,
see [2, p. 65], yields that

Px ({τ{d} < ∞}) =

{
Γ (−α−β)

Γ (1−β)Γ (−α)

( x
d

)−β
2 F1

(
α + 1,−β; 1 − β;

x
d

)
, x < d,

1, x = d,

or every x ∈ X . This finishes the proof of (i), part (ii) can be shown analogously. □

.2. Maximal local solutions to the Jacobi SDE

In this subsection we draw a connection between M and maximal local solutions to the
acobi stochastic differential equation (1.1). As we show, this is quite immediate whenever
, β > −1, but requires some technical work in any other case. We denote the minimum
ompleted admissible filtration of M by F, its last element by F∞ and the completion of F
ith respect to Px by FPx , for details see [14, p. 386]. Then for every f ∈ D(L) the process

f̃ (Yt ) − f̃ (Y0) −

∫ t

0
L f (Ys) ds (4.9)

s a martingale under Px for every x ∈ X , see [1, Remark 3.2]. We point out that the convention
L f (∆) = 0 is used again. For the remainder of this subsection we fix an x ∈ X and choose

∈ F∞ as a set of full measure under Px such that

(i) Y·(ω) : [0, ζ (ω)) → X is continuous,
(ii) Yζ−(ω) = ∆ if ζ (ω) < ∞ and

(iii) ζ (ω) > 0

or every ω ∈ Λ. Such a set exists due to Theorem 4.2 (iii), (iv) and the fact that M is a normal
arkov process. We recall the functions µ, ν introduced in Section 2 and define u(t) and v(t)

s the solutions to the differential equation u′(t) = µ(u(t)) with initial value u(0) = d and
(0) = 0, respectively.

emark 4.6. Under the assumption α ≤ −1 we have µ(d) = a − bd ≥ 0 and therefore
(t) ≥ d for all t ≥ 0. Indeed, if µ(d) = 0, u(t) is constant and equal to d. If µ(d) > 0,
′(0) > 0 and hence u(t) > d for t ∈ (0, ϵ) for some ϵ > 0. Hence, if u(t) = d again for
ome t > 0, there is a smallest strictly positive time t∗ with u(t∗) = d. But then u′(t∗) ≤ 0
ontradicts

u′(t∗) = µ(u(t∗)) = µ(d) > 0.

Similarly, v(t) ≤ 0 for t ≥ 0 whenever β ≤ −1.
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We introduce the modified process

Z t (ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Yt (ω), ω ∈ Λ, t < ζ (ω),
u(t − ζ (ω)), ω ∈ Λ, t ≥ ζ (ω), lims↗ζ Ys(ω) = d,
v(t − ζ (ω)), ω ∈ Λ, t ≥ ζ (ω), lims↗ζ Ys(ω) = 0,
0, Ω \ Λ

(4.10)

nd the modified life time

ζ̃ (ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞, ω ∈ Λ, α = −1, ζ < ∞, limt↗ζ Yt (ω) = d,
∞, ω ∈ Λ, β = −1, ζ < ∞, limt↗ζ Yt (ω) = 0,
0, ω ∈ Ω \ Λ,

ζ (ω), else.

(4.11)

otice that we interpret here the limit limt↗ζ Yt as an element of R instead of the topological
pace X∆, such that we can distinguish between the boundary points at which Y dies. We make
ome technical observations.

emma 4.7. The following holds.

(i) The process Z has continuous paths, is FPx -adapted and satisfies Z t∧ζ̃ ∈ [0, d] for all
t ≥ 0.

(ii) ζ̃ is a stopping time with respect to FPx .
(iii) It holds Px -almost surely ζ̃ = inf{t ≥ 0|Z t /∈ [0, d]}.

roof. The continuity assertion and the claim that Z t∧ζ̃ ∈ [0, d] of part (i) follow by the
efinition of Λ, Z and ζ̃ together with the observation, that u = d (v = 0) is constant whenever
= −1 (β = −1). The claim regarding adaptedness in (i) reduces to verifying that

{u(t − ζ ) ∈ B} ∩ {0 < ζ ≤ t} ∩ {lim
s↗ζ

Ys = d} ∈ FPx
t (4.12)

nd

{v(t − ζ ) ∈ B} ∩ {0 < ζ ≤ t} ∩ {lim
s↗ζ

Ys = 0} ∈ FPx
t

or every B ∈ B(R). We observe that

{u(t − t ∧ ζ ) ∈ B} ∈ FPx
t , (4.13)

ince t ∧ ζ is FPx
t -measurable. Moreover, we have

{0 < ζ ≤ t} ∩

(⋃
k∈N

⋂
n≥k

{
Yt∧(ζ∨ 1

n −
1
n ) >

d
2

})
∈ FPx

t , (4.14)

s a consequence of Yt∧(ζ∨ 1
n −

1
n ) being FPx

t+ 1
n
-measurable and the right-continuity of FPx , for the

latter see [14, Lemma A.2.2]. Since the left-hand side of (4.12) is the intersection of (4.13)
and (4.14), (4.12) follows. Similarly, (ii) reduces to showing that

{0 < ζ ≤ t} ∩

{
lim
s↗ζ

Ys = d
}

∈ FPx
t (4.15)

nd

{0 < ζ ≤ t} ∩

{
lim Ys = 0

}
∈ FPx

t .

s↗ζ
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Both statements can be verified by rewriting the events analogously to (4.14). To also verify
(iii) we notice that as a consequence of part (i) we have

Px ({ζ̃ = ∞} ∩ {inf{t ≥ 0|Z t /∈ [0, d]} = ∞}) = Px ({ζ̃ = ∞}).

ence, it is sufficient to verify that ζ̃ = inf{t ≥ 0|Z t /∈ [0, d]} Px -almost surely on the set
ζ̃ < ∞}. Therefore, we only have to consider the cases α < −1 or β < −1 by Theorem 4.2
iii) and the definition of ζ̃ . We assume that α ≥ −1 and β < −1 and let ω ∈ {ζ̃ < ∞} ∩ Λ.
t follows that lims↗ζ Ys(ω) = 0. Indeed for α > −1 this follows by the choice of Λ and for
= −1 by definition of ζ̃ and the assumption ω ∈ {ζ̃ < ∞}. Since v(t) < 0 for t > 0 we

onclude that

inf{t ≥ 0|Z t (ω) /∈ [0, d]} = ζ (ω) = ζ̃ (ω). (4.16)

t follows that

Px ({ζ̃ < ∞} ∩ {inf{t ≥ 0|Z t /∈ [0, d]} = ζ̃ }) = Px ({ζ̃ < ∞}) (4.17)

s desired. The case α < −1, β ≥ −1 can be treated analogously. Lastly, we assume that
, β < −1. In this case we additionally have that u(t) > 0 for t > 0 by Remark 4.6. Hence,
or each ω ∈ {ζ̃ < ∞} ∩ Λ we conclude again (4.16), which yields (4.17). This finishes the
roof. □

In the final theorem of this subsection we prove that the tuple (Z , ζ̃ ) is a maximal local
olution to (2.2) with initial value x . The main ingredients are Theorem 2.5 and the martingale
roblem characterization of the auxiliary equation (2.2). To apply the latter we let W ′ be a
rownian motion on a probability space (Ω ′,A′, P ′) with respect to a right-continuous filtration
′. We define the enriched probability space by Ω†

= Ω×Ω ′, P†
= Pν× P ′ and the completed

-field A†
= FPx

∞ × A′
P†

. We equip it with the filtration F†, which we define as the P†-
ompletion of FPx

t × F′
t in A†. In particular, F† satisfies the usual conditions by [17, Lemma

6.8]. We note that any random variable defined on Ω or Ω ′ extends canonically to the enriched
pace. Moreover, we denote the generator of (2.2) by G, i.e. we set

G f (x) =
ν2(x)

2
f ′′(x) + µ(x) f ′(x) (4.18)

for f ∈ C2(R). Note that this is consistent with (1.3), which was introduced for functions on
[0, d].

Theorem 4.8. There exists a Brownian motion W † on (Ω†,A†, P†) such that Z is a solution
o (2.2) with initial value x. In particular, (Z , ζ̃ ) is a maximal local solution to (1.1).

Proof. If we prove the first part of the statement, the second one follows by Lemma 4.7 (iii)
together with Theorem 2.5 (ii). For the first part it is again sufficient to show that Z solves the
G-martingale problem, i.e. that

f (Z t ) − f (Z0) −

∫ t

0
G f (Zs)ds (4.19)

s for every f ∈ C∞
c (R) a martingale with respect to FPx , due to [10, Theorem 3.3, p.293].

To verify this we distinguish different cases. We assume first that α, β > −1. In this case
= ∞ P -almost surely by Theorem 4.2 (iii) and therefore Y and Z are indistinguishable.
x
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Since (4.9) is an FPx -martingale it follows that indeed Z solves the G-martingale problem
y Lemma 3.18 (i). Secondly, we assume that α > −1 and β ≤ −1 such that (L , D(L)) ⊃

G,C∞
c ((0, d])) by Lemma 3.18 (ii). Let f ∈ C∞

c (R), then we decompose (4.19) into

f (Zζ∧t ) − f (Z0) −

∫ ζ∧t

0
G f (Zs) ds + f (Z t ) − f (Zζ∧t ) −

∫ t

ζ∧t
G f (Zs) ds. (4.20)

y definition of Z we can replace the last three terms of (4.20) by

1{t>ζ }

[
f (v(t − ζ )) − f (v(0)) −

∫ t−ζ

0
µ(v(s)) f ′(v(s)) ds

]
,

ecause ν = 0 on (−∞, 0]. Since v′(s) = µ(v(s)) an application of the fundamental theorem
f calculus shows that the above term vanishes. To also treat the remaining part of (4.20) we
ntroduce

ζn = inf
{

t ≥ 0
⏐⏐⏐⏐Yt ≤

1
n

}
,

hich is a stopping time for every n by [14, Theorem A.2.3]. It follows then that limn→∞ ζn =

Px -almost surely by Corollary 4.4. Using additionally Lemma 4.7 (i) we conclude that

M (n)
t = f (Yζn∧t ) − f (Y0) −

∫ ζn∧t

0
G f (Ys) ds = f (Zζn∧t ) − f (Z0) −

∫ ζn∧t

0
G f (Zs) ds

(4.21)

onverges Px -almost surely to the first three terms of (4.20) as n → ∞. We can replace f with
function g ∈ C∞

c ((0, d]), which coincides with f on [− 1
n , d], without changing the value

f (4.21). It follows by Lemma 3.18 (ii) that M (n) is a stopped version of (4.9) and therefore
n FPx -martingale for every n ∈ N. Since moreover M (n)

t is uniformly bounded for fixed t
t follows that its limit is an FPx -martingale as well. We conclude that Z indeed solves the

G-martingale problem. The cases α ≤ −1 and β > −1 as well as α, β ≤ −1 can be treated
nalogously, the latter by using the approximating sequence of stopping times

ζn = inf
{

t ≥ 0
⏐⏐⏐⏐Yt ≤

1
n

∨ Yt ≥ d −
1
n

}
nstead. □

Remark 4.9. By definition, the process Z and its life time ζ̃ can be constructed from Y and ζ .
onsidering also uniqueness in law of maximal local solutions as shown in Corollary 2.6 one
btains properties of a general maximal local solution to (1.1) by transferring the properties of
.

.3. Minimal local solutions to the Jacobi SDE

In this last subsection we consider the restriction of the Hunt process M to the open interval
X̂ = (0, d). The restricted process is obtained by defining the stopping time

τ̇X\X̂ = inf{t ≥ 0|Yt ∈ X \ X̂}

nd stopping the process at this time, i.e. by setting

Ŷt (ω) =

{
Yt (ω), t < τ̇X\X̂ (ω),

∆, t ≥ τ̇X\X̂ (ω).
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Then M̂ = (Ω ,A, (Px )x∈X̂∆
, (Ŷt )t≥0) is a Hunt process again, see [14, Theorem A.2.10]. We

ote that, as shown in the proof of the cited theorem, M̂ is quasi-left continuous and a strong
arkov process with respect to the minimum completed admissible filtration F of M. Its life

ime is given by ζ̂ = ζ ∧ τ̇X\X̂ and its transition function by

ρ̂t (x, B) = Px ({X t ∈ B} ∩ {t < τ̇X\X̂ }) (4.22)

or B ∈ B(X̂ ). We restrict the Dirichlet form (E, D(E)) as well by replacing its domain by

{ f ∈ D(E)| f̃ = 0 on X \ X̂}.

e denote the restricted form by (Ê, D(Ê)) and obtain as a consequence of Theorem 3.4 that
Ê, D(Ê)) = (E,F). In particular, it is the form corresponding to the Friedrichs extension of
he operator (G,C∞

c ((0, d))). By [14, Theorem 4.4.3 (i)] (Ê, D(Ê)) is a regular Dirichlet form
n L2(X̂ , dm). Since X̂ is an open subset of X [14, Theorem 4.4.2] yields that (Ê, D(Ê)) is
ssociated to M̂. Since Ŷ = Y unless −1 < α < 0 or −1 < β < 0, we obtain the following
roposition trivially.

roposition 4.10. We assume that neither −1 < α < 0 nor −1 < β < 0. Then the properties
tated in Theorem 4.2 hold also for M̂.

In any other case, we conclude the following.

heorem 4.11. Let −1 < α < 0 or −1 < β < 0, then the following holds.

(i) The transition probability ρ̂t (x, ·) is absolutely continuous with respect to dm for every
t > 0 and x ∈ X̂ .

(ii) The path [0, ζ̂ ) → X̂ , t ↦→ Ŷt is Px -almost surely continuous for every x ∈ X̂ .
(iii) It holds Px

({
Ŷζ̂− ∈ X̂

}
∩

{
ζ̂ < ∞

})
= 0 for every x ∈ X̂ .

(iv) We have for every x ∈ X̂ that

Px ({ζ̂ < ∞})

≥

⎧⎪⎨⎪⎩
1, α, β > −1,

Γ (−α−β)

Γ (1−β)Γ (−α)

( x
d

)−β
2 F1

(
α + 1,−β; 1 − β;

x
d

)
, α > −1, β ≤ −1,

Γ (−α−β)

Γ (1−α)Γ (−β)

(
1 −

x
d

)−α
2 F1

(
β + 1,−α; 1 − α; 1 −

x
d

)
, β > −1, α ≤ −1.

roof. Part (i) follows from (4.22) together with Theorem 4.2 (i). Part (ii) is a direct
onsequence of Theorem 4.2 (iii) and the definitions of Ŷ and ζ̂ . We decompose the probability
rom (iii) into the parts

Px

({
Ŷζ̂− ∈ X̂

}
∩

{
ζ̂ = ζ < ∞

})
+ Px

({
Ŷζ̂− ∈ X̂

}
∩

{
ζ̂ < ζ

})
.

The first term vanishes by Theorem 4.2 (iv). The second one vanishes as a consequence
f part (iii) of the same Theorem. Part (iv) follows from Theorem 4.5 and the fact that

ˆ ≤ τ{d} ∧ τ{0}. □

Finally, we prove a statement similar to Theorem 4.8 relating the restricted process M̂ to
inimal solutions to the Jacobi stochastic differential equations. Therefore let x ∈ X̂ and
∈ F and Z be the corresponding set and process from the preceding subsection.
∞
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Lemma 4.12. It holds the following.

(i) We have Px -almost surely for every t ≥ 0 that

Z t∧ζ̂ =

⎧⎪⎨⎪⎩
Ŷt , t < ζ̂ ,

d, t ≥ ζ̂ , limt↗ζ̂ Ŷt = d,
0, t ≥ ζ̂ , limt↗ζ̂ Ŷt = 0.

(4.23)

(ii) We have that ζ̂ = inf{t ≥ 0|Z t ∈ {0, d}} Px -almost surely.

Proof. Due to u(0), v(0) ∈ {0, d}, part (ii) follows by the definition of ζ̂ and Z . Since we have

1
{t<ζ̂ } Z t = 1

{t<ζ̂ }Yt = 1
{t<ζ̂ }Ŷt

Px -almost surely and Z has continuous paths, the right-hand side of (4.23) is nothing but the
process Z stopped as it hits the set {0, d}. Therefore, (i) is a consequence of (ii). □

Finally, we consider the enriched probability space (Ω†,A†, P†) with the filtration F†.

orollary 4.13. (Z , ζ̂ ) is a minimal local solution to (1.1) with initial value x.

roof. By Theorem 4.8 the process Z is a solution to (2.2) with initial value x on
Ω†,A†, P†) with respect to a Brownian motion W †. The claim follows by Lemma 4.12 (ii)

and Theorem 2.5 (i). □

Remark 4.14. By (4.23) and the uniqueness in law statement from Corollary 2.6 the properties
of a general minimal local solution to (1.1) can be derived from the properties of M̂.
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Appendix

A.1. A localized Yamada–Watanabe condition

We provide a localized version of the Yamada–Watanabe condition. The proof translates
verbatim from the classical setting, see [17, Theorem 20.3], and is contained for convenience
of the reader.

Lemma A.1. Let µ, ν :R → R be mappings such that µ is Lipschitz and ν is 1
2 -Hölder

continuous. Moreover, let (Ω ,A, P) be a probability space equipped with a filtration satisfying
the usual conditions and W a Brownian motion. If there are two adapted processes Y (1) and
Y (2) and a stopping time ζ such that
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(i) Y (1)
0 = Y (2)

0 ,
(ii) Y (i)

·∧ζ has continuous paths and
(iii) Y (i)

t∧ζ =
∫ t∧ζ

0 µ(Y (i))ds +
∫ t∧ζ

0 ν(Y (i))dWs for all t ≥ 0, i ∈ {1, 2},

then Y (1)
t∧ζ = Y (2)

t∧ζ for all t ≥ 0.

Proof. We define the process

Dt = Y (1)
t∧ζ − Y (2)

t∧ζ =

∫ t∧ζ

0
µ(Y (1)

s ) − µ(Y (2)
s ) ds +

∫ t∧ζ

0
ν(Y (1)

s ) − ν(Y (2)
s ) dWs .

It suffices to show that D = 0. By a localization argument we can assume that D is uniformly
bounded. Let (L x

t )t≥0,x∈R be a cadlag version of the local time of D, for existence of such a
ersion see [17, Theorem 19.4]. Then [17, Theorem 19.5] yields for any t ≥ 0 that∫

∞

−∞

f (x)L x
t dx =

∫ t

0
f (Ds) d ⟨D⟩s

=

∫ t∧ζ

0
f (Y (1)

s − Y (2)
s )(ν(Y (1)

s ) − ν(Y (2)
s ))2 ds ≤ C2t,

here we choose f (x) =
1
|x |

for x ̸= 0 and f (0) = 1 and C to be the 1
2 -Hölder seminorm of

. By taking the expectation we obtain that

∞ > E
[∫

∞

−∞

f (x)L x
t dx

]
=

∫
∞

−∞

f (x)E
[
L x

t

]
dx .

ue to the right-continuity of L x
t in x we can employ Fatou’s lemma to conclude that

E(L0
t ) ≤ lim inf

x↘0
E(L x

t ) = 0.

sing the defining property of the local time we obtain

|Dt | =

∫ t∧ζ

0
sign(Ds)(µ(Y (1)

s ) − µ(Y (2)
s )) ds +

∫ t∧ζ

0
sign(Ds)(ν(Y (1)

s ) − ν(Y (2)
s )) dWs,

here the convention sign(0) = −1 is used. We note that the integrand of the stochastic integral
is uniformly bounded by the boundedness of D and the Hölder continuity of ν. Therefore, the
stochastic integral is a martingale and taking the expectation yields that

E(|Dt |) ≤ C
∫ t

0
E(|Ds |) ds,

where we let here C be the Lipschitz coefficient of µ. Since this holds for any t ≥ 0 it is left
to apply Grönwall’s Lemma. □

A.2. Boundary values of hypergeometric functions

In this part of the appendix we perform the tedious steps leading to Lemma 3.8.
Proof of Lemma 3.8 (i). This is a direct consequence of the definition of ξλ. □
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Proof of Lemma 3.8 (ii). First, we consider the case β > −1. To make use of Lemma 3.7
e distinguish between different signs of −α. If α < 0 the identity (3.6) applies and yields

lim
x↗d

ξλ(x) =
Γ (β + 1)Γ (−α)

Γ
(

−α+β+1
2 + γ

)
Γ
(

−α+β+1
2 − γ

) . (A.1)

o conclude that this limit is positive we first note that its numerator is positive by the
ssumptions on α, β and the fact that Γ (z) > 0 for z > 0. Furthermore, as a consequence
f (3.5) we have that(

−α + β + 1
2

)2

− γ 2 >

(
α + β + 1

2

)2

− γ 2 > 0.

It follows that either γ is purely imaginary or satisfies 0 ≤ γ <
−α+β+1

2 . In the latter case
positivity of the denominator follows as for the numerator. In the former case positivity follows
instead by Γ (z̄) = Γ (z) and that Γ is non-zero outside of the negative real axis. Next, we
ssume that α = 0. Then (3.7) applies and yields

lim
x↗d

ξλ(x)
− log

(
1 −

x
d

) =
Γ (β + 1)

Γ
(
β+1

2 + γ
)
Γ
(
β+1

2 − γ
) .

y analogous arguments as before we conclude that the right-hand side is positive. Since
log

(
1 −

x
d

)
converges to infinity as x ↗ d, it follows that limx↗d ξλ(x) = ∞. Lastly, we

ssume α > 0. The identity (3.8) gives us then

lim
x↗d

ξλ(x)(
1 −

x
d

)−α =
Γ (β + 1)Γ (α)

Γ
(
α+β+1

2 + γ
)
Γ
(
α+β+1

2 − γ
) .

he same reasoning as before applies to argue that the right-hand side is positive. Since
1 −

x
d

)−α approaches infinity as x ↗ d, we obtain limx↗d ξλ(x) = ∞.
Now we consider the case β ≤ −1, where it is sufficient to consider the hypergeometric

art of ξλ. To make use of Lemma 3.7 we distinguish between the signs of −α again. If α < 0,
3.6) gives us

lim
x↗d

ξλ(x) =
Γ (1 − β)Γ (−α)

Γ
(

−α−β+1
2 + γ

)
Γ
(

−α−β+1
2 − γ

) .
f α = 0, (3.7) applies and yields

lim
x↗d

ξλ(x)
− log

(
1 −

x
d

) =
Γ (1 − β)

Γ
(

1−β

2 + γ
)
Γ
(

1−β

2 − γ
) .

inally, if α > 0, we get by (3.8) that

lim
x↗d

ξλ(x)(
1 −

x
d

)−α =
Γ (1 − β)Γ (α)

Γ
(
α−β+1

2 + γ
)
Γ
(
α−β+1

2 − γ
) .

nalogous considerations as in the case β > −1 yield positivity of these three limits. In
articular, for α ≥ 0 we can conclude that lim ξ (x) = ∞. □
x↗d λ
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Before proceeding with the remaining statements we note that the product rule, termwise
ifferentiation of the hypergeometric function as well as the identities (3.5) and(

α − β + 1
2

)2

− γ 2
=

(
α + β + 1

2
− β

)2

− γ 2
=

2λ
σ 2 − β(α + 1)

ield the explicit expression

ξ ′

λ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2λ

σ 2d(β+1) 2 F1

(
α+β+3

2 + γ,
α+β+3

2 − γ ;β + 2;
x
d

)
, β > −1,

2λ
σ2 −β(α+1)

d(1−β)

( x
d

)−β
2 F1

(
α−β+3

2 + γ,
α−β+3

2 − γ ; 2 − β;
x
d

)
−
β

d

( x
d

)−(β+1)
2 F1

(
α−β+1

2 + γ,
α−β+1

2 − γ ; 1 − β;
x
d

)
, β ≤ −1

or x ∈ (0, d).

roof of Lemma 3.8 (iii). For β > −1 the claim follows, because cm(x) converges to 0 as
x ↘ 0. If β ≤ −1, the derivative of ξλ consists out of two summands. For the first one we
bserve that

σ 2xβ+1(d − x)α+1

2dα+β+1

( x
d

)−β

2 F1

(
α − β + 3

2
+ γ,

α − β + 3
2

− γ ; 2 − β;
x
d

)
→ 0

as x ↘ 0. Hence,

lim
x↘0

ξ ′

λcm(x)

= lim
x↘0

−
βσ 2(d − x)α+1

2dα+1 2 F1

(
α − β + 1

2
+ γ,

α − β + 1
2

− γ ; 1 − β;
x
d

)
=

−βσ 2

2
. □

Proof of Lemma 3.8 (iv). We consider β > −1. In this case we have

lim
x↗d

ξ ′

λcm(x)

= lim
x↗d

λxβ+1(d − x)α+1

dα+β+2(β + 1) 2 F1

(
α + β + 3

2
+ γ,

α + β + 3
2

− γ ;β + 2;
x
d

)
=

λ

β + 1
lim
x↗d

(
1 −

x
d

)α+1
2 F1

(
α + β + 3

2
+ γ,

α + β + 3
2

− γ ;β + 2;
x
d

)
.

To make use of Lemma 3.7 we distinguish between the signs of −(α + 1). We assume first
> −1, i.e. −(α + 1) < 0. Then (3.8) applies and yields

lim
x↗d

ξ ′

λcm(x) =
λΓ (β + 2)Γ (α + 1)

(β + 1)Γ
(
α+β+3

2 + γ
)
Γ
(
α+β+3

2 − γ
) .

The claimed identity follows since Γ (β + 2) = (β + 1)Γ (β + 1). The numerator of the limit is
ositive, again by our assumptions on α, β. Note that(

α + β + 3
2

)2

− γ 2 >

(
α + β + 1

2

)2

− γ 2 > 0

ue to (3.5). Hence either γ is purely imaginary or 0 ≤ γ <
α+β+3

2 and positivity of the
denominator follows as in the proof of Lemma 3.8 (ii). Next we assume that α = −1,
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i.e. −(α + 1) = 0. Then (3.7) gives us that

lim
x↗d

2 F1

(
β+2

2 + γ,
β+2

2 − γ ;β + 2;
x
d

)
− log

(
1 −

x
d

) =
Γ (β + 2)

Γ
(
β+2

2 + γ
)
Γ
(
β+2

2 − γ
) .

ositivity of the right-hand side follows as before and consequently we have limx↗d ξ
′

λcm(x) =

. Lastly, we assume that α < −1, i.e. −(α + 1) > 0. Applying (3.6) results in

lim
x↗d

2 F1

(
α + β + 3

2
+ γ,

α + β + 3
2

− γ ;β + 2;
x
d

)
=

Γ (β + 2)Γ (−(α + 1))

Γ
(

−α+β+1
2 + γ

)
Γ
(

−α+β+1
2 − γ

)
nd analogous arguments as before yield that the right-hand side is positive. Since

(
1 −

x
d

)α+1

pproaches infinity as x ↗ d we conclude limx↗d ξ
′

λcm(x) = ∞ also in this case.
Now we consider β ≤ −1. Then we have

lim
x↗d

ξ ′

λcm(x)

= lim
x↗d

[
2λ
σ 2 − β(α + 1)

]
σ 2(d − x)α+1

2(1 − β)dα+1 2 F1

(
α − β + 3

2
+ γ,

α − β + 3
2

− γ ; 2 − β;
x
d

)
−

σ 2β(d − x)α+1

2dα+1 2 F1

(
α − β + 1

2
+ γ,

α − β + 1
2

− γ ; 1 − β;
x
d

)
.

(A.2)

e start by investigating the limit of

−
σ 2β

2

(
1 −

x
d

)α+1
2 F1

(
α − β + 1

2
+ γ,

α − β + 1
2

− γ ; 1 − β;
x
d

)
(A.3)

as x ↗ d . To make use of Lemma 3.7 we distinguish between the signs of −α. If α > 0, (3.8)
yields that the limit

lim
x↗d

(
1 −

x
d

)α
2 F1

(
α − β + 1

2
+ γ,

α − β + 1
2

− γ ; 1 − β;
x
d

)
xists. Because of the additional factor

(
1 −

x
d

)
the term (A.3) converges to 0 as x ↗ d . If

= 0, (3.7) yields that the limit

lim
x↗d

2 F1

(
α−β+1

2 + γ,
α−β+1

2 − γ ; 1 − β;
x
d

)
− log

(
1 −

x
d

)
xists and since limx↗d

(
1 −

x
d

)
log

(
1 −

x
d

)
= 0 we get that (A.3) converges to 0 for x ↗ d.

If α < 0, (3.6) implies that

lim
x↗d

2 F1

(
α − β + 1

2
+ γ,

α − β + 1
2

− γ ; 1 − β;
x
d

)
=

Γ (1 − β)Γ (−α)

Γ
(

−α−β+1
+ γ

)
Γ
(

−α−β+1
− γ

) . (A.4)
2 2

409



M. Grothaus and M. Sauerbrey Stochastic Processes and their Applications 157 (2023) 376–412

a

c
a

a

S
t
b

B
p

A
l

For −1 < α < 0 we conclude as before that (A.3) converges to 0 as x ↗ d because of the
dditional prefactor. For α = −1 the term (A.3) instead converges to a real number which we

do not specify and instead denote by y during this proof. For α < −1 the prefactor
(
1 −

x
d

)α+1

onverges to infinity as x ↗ d. Since the right-hand side of (A.4) is positive by analogous
rguments as before we see that (A.3) tends to infinity as x ↗ d as well. We combine all

cases in the following formula.

lim
x↗d

−σ 2β

2

(
1 −

x
d

)α+1
2 F1

(
α − β + 1

2
+ γ,

α − β + 1
2

− γ ; 1 − β;
x
d

)

=

⎧⎪⎨⎪⎩
0, α > −1,
y, α = −1,
∞, α < −1.

(A.5)

We proceed by investigating the limiting behavior of[
2λ
σ 2 − β(α + 1)

]
σ 2(d − x)α+1

2(1 − β)dα+1 2 F1

(
α − β + 3

2
+ γ,

α − β + 3
2

− γ ; 2 − β;
x
d

)
(A.6)

s x ↗ d using Lemma 3.7 and therefore distinguish between the signs of −(α + 1).
For α > −1, i.e. −(α + 1) < 0, we get by (3.8) that

lim
x↗d

[
2λ
σ 2 − β(α + 1)

]
σ 2(d − x)α+1

2(1 − β)dα+1

× 2 F1

(
α − β + 3

2
+ γ,

α − β + 3
2

− γ ; 2 − β;
x
d

)
=

[
2λ
σ 2 − β(α + 1)

]
σ 2Γ (2 − β)Γ (α + 1)

2(1 − β)Γ
(
α−β+3

2 + γ
)
Γ
(
α−β+3

2 − γ
) .

ubstituting Γ (2 − β) = (1 − β)Γ (1 − β) together with (A.5) yields the claimed identity in
his case. Note that the fraction on the right-hand side is positive by analogous reasoning as
efore. Also the prefactor is positive in this particular case of α and β.

Next, we consider the case α = −1. Then (3.7) yields

lim
x↗d

2 F1

(
2−β

2 + γ,
2−β

2 − γ ; 2 − β;
x
d

)
− log

(
1 −

x
d

) =
Γ (2 − β)

Γ
(

2−β

2 + γ
)
Γ
(

2−β

2 + γ
) .

y analogous arguments as before we conclude that this limit is positive. Since also the
refactor of the expression (A.6) is positive due to α = −1 it follows that (A.6) tends to

infinity as x ↗ d. Together with (A.5) this implies that (A.2) equals infinity in this case.
It remains to consider α < −1, i.e. −(α + 1) > 0. Then (3.6) yields

lim
x↗d

2 F1

(
α − β + 3

2
+ γ,

α − β + 3
2

− γ ; 2 − β;
x
d

)
=

Γ (2 − β)Γ (−(α + 1))

Γ
(

−α−β+1
2 + γ

)
Γ
(

−α−β+1
2 + γ

) .
nalogously as before we get that the right-hand side of the above equality is positive. By

im (d − x)α+1
= ∞ it is sufficient to show 2λ

−β(α+ 1) > 0 to conclude that (A.6) tends
x↗d σ 2
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to infinity as x ↗ d . We assumed in this particular case that (3.9) holds which implies that

2λ
σ 2 − β(α + 1) >

(
α + β + 1

2

)2

− β(α + 1) =

(
β − (α + 1)

2

)2

≥ 0.

he claimed identity follows by employing (A.5). □
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