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Abstract: Forests’ ecosystems are an essential part of the global carbon cycle with vast carbon storage
potential. These systems are currently under external pressures showing increasing change due
to climate change. A better understanding of the biophysical properties of forests is, therefore, of
paramount importance for research and monitoring purposes. While there are many biophysical
properties, the focus of this study is on the in-depth analysis of the connection between the C-band
Copernicus Sentinel-1 SAR backscatter and evapotranspiration (ET) estimates based on in situ me-
teorological data and the FAO-based Penman–Monteith equation as well as the well-established
global terrestrial ET product from the Terra and Aqua MODIS sensors. The analysis was performed
in the Free State of Thuringia, central Germany, over coniferous forests within an area of 2452 km2,
considering a 5-year time series (June 2016–July 2021) of 6- to 12-day Sentinel-1 backscatter acqui-
sitions/observations, daily in situ meteorological measurements of four weather stations as well
as an 8-day composite of ET products of the MODIS sensors. Correlation analyses of the three
datasets were implemented independently for each of the microwave sensor’s acquisition parameters,
ascending and descending overpass direction and co- or cross-polarization, investigating different
time series seasonality filters. The Sentinel-1 backscatter and both ET time series datasets show a
similar multiannual seasonally fluctuating behavior with increasing values in the spring, peaks in
the summer, decreases in the autumn and troughs in the winter months. The backscatter difference
between summer and winter reaches over 1.5 dB, while the evapotranspiration difference reaches
8 mm/day for the in situ measurements and 300 kg/m2/8-day for the MODIS product. The best
correlation between the Sentinel-1 backscatter and both ET products is achieved in the ascending
overpass direction, with datasets acquired in the late afternoon, and reaches an R2-value of over
0.8. The correlation for the descending overpass direction reaches values of up to 0.6. These results
suggest that the SAR backscatter signal of coniferous forests is sensitive to the biophysical property
evapotranspiration under some scenarios.

Keywords: evapotranspiration; backscatter; SAR; Sentinel-1; MODIS; remote sensing; time series;
coniferous forests; thuringia; single spectrum analysis

1. Introduction

Forests play a major role in the global carbon cycle with their huge carbon storage
potential while providing large heterogenous ecosystems vital for a diverse fauna and
flora [1]. The temperate and boreal forests provide an estimated yearly carbon sink of
around one to two billion tons of atmospheric CO2 [2], of which up to 80% is stored
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in the temperate regions with fire suppression and plantation forestry [3,4]. Even with
extensive research, the absolute contribution of forests to terrestrial carbon storage still
shows uncertainties of 20% [5]. Information with higher spatial and temporal resolution
is not only necessary for conservation and scientific studies of forests but can also be
required for the economic evaluation of forest areas. Besides its role as a diverse natural
habitat, forests provide an important socio-economic function, for example, by providing
recreational areas as well as sustainable building materials [6]. Due to climate change, a
slow change of tree type distribution is foreseeable in central Europe with the urgency to
shift to more resilient tree types. The trend is turning away from coniferous trees such as
spruce or pine towards deciduous tree types including beech, oak or sycamore and towards
more diverse mixed forest stands instead of monocultures [7].

With forests being an ecosystem under pressure due to climate change, monitoring
and studying their short-term, seasonal and long-term changes and developments are
paramount [8–12]. This demands quantitative and timely characterization of a multi-
tude of different biophysical properties of forest areas. More advanced biophysical forest
properties, such as physiology/structure, dry and wet biomass, water and sap flux infor-
mation, vegetation water content or transpiration are covered by the standard inventory
measurements either with low precision or not at all [7]. One important metric is evapo-
transpiration which describes the gas and energy exchange between the Earth’s surface
and its atmosphere. In particular for forests, the large volumetric surface area means
that these exchanges are relevant on a local, regional and continental scale [13]. A better
understanding of these water-, gas- and energy fluxes (in short, evapotranspiration) is
important, to quantify these developments for large research fields such as climatology,
meteorology or hydrology [14,15].

The incoming solar radiation at the Earth’s surface is at least partially re-emitted as
heat radiation by all surface features to a varying degree. Due to the inflowing energy,
water is lost to the atmosphere through soil evaporation [16]. As plants uptake water
through the roots in the process of the photosynthetic cycle to produce energy, a varying
percentage of this water is lost as water vapor through the leaf stomatal pores [17]. This
process is called transpiration. The combined evapotranspiration (ET) is, therefore, one
of the major components of the global water and energy exchange and functions as the
driving force of land–atmosphere interactions which is inherently difficult to analyze at a
larger scale [16]. Due to its linkage to both heat flux systems and soil moisture systems, it is
a very important metric for monitoring plants’ water demand, productivity and agricul-
tural management systems [18] as well as a very useful indicator for drought monitoring,
early warning systems and even flood warning [19]. An extensive review and overview of
the most common ground-based and remotely sensed evapotranspiration estimation ap-
proaches are presented by Talsma et al. [20] and Verstraeten et al. [19]. Evapotranspiration
is also regarded as an important factor in the monitoring of the essential climate variables
“Evaporation” and “Soil Moisture” by the Global Climate Observing System (GCOS) which
is using latent heat flux and surface soil moisture as estimation products [21].

Evapotranspiration calculations are very sensitive to the available input parameters
and can present vastly different behavior if the input datasets are not of very high qual-
ity [22]. For this reason, the scale of evapotranspiration measurement or estimation is a
very important factor to consider for each individual analysis. With increasing scale from
single-plant to landscape or national levels, the estimation difficulty and effort increases
exponentially with in situ measurements, and the high accuracy of small-scale measure-
ments cannot be maintained [22]. Therefore, remote sensing capabilities are integrated for
large-scale evapotranspiration estimations, especially if a higher temporal resolution is
necessary [19]. While there are multiple approaches for calculating the evapotranspiration
based on either meteorological and/or remotely sensed input datasets, this study focuses
on the Penman–Monteith-based approach, adapted by the Food and Agriculture Organi-
zation of the United Nations (FAO), which combines different ET estimation approaches
based on the work by Monin and Obukhov [23], Penman [24] and Monteith [17] into one
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generalized approach [25]. Its basic input variables consist of temperature, wind speed,
solar radiation and vapor pressure (see Section 3.3), but for most parameters alternative
substitute variables are presented by the FAO approach [25]. In addition to comparatively
easily obtainable meteorological datasets, the FAO Penman–Monteith approach can be
used to calculate evapotranspiration based on remotely sensed datasets.

Most remotely sensed evapotranspiration acquisition approaches utilize optical sen-
sors, capable of detecting near- and thermal infrared wavelengths to estimate the land
surface temperature (LST) [19]. Commonly used optical sensors in the estimation of
evapotranspiration are the Terra/Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors with high temporal resolution and moderate spatial resolution (500 m)
for the infrared wavelengths. Previous studies [26] could show that LST data alone are
insufficient for a precise evapotranspiration estimation by the MODIS sensors, which is why
the current models utilize a combination of remote sensing and meteorological datasets for
the estimation [20,27].

With the introduction of radar remote sensing with high temporal and spatial reso-
lution, different approaches are presented to utilize the advantages of radar systems for
a more advanced evapotranspiration estimation using remote sensing data. Due to its
sensitivity to soil moisture and vegetation water content, a connection to optical-remote-
sensing-based evapotranspiration estimation seems obvious [28]. Most analyses utilizing
radar remote sensing datasets either focus on the correlation of backscatter and soil mois-
ture or the fusion of optical evapotranspiration estimation with supporting radar remote
sensing data [13,28–31]. Other approaches estimate the influence of soil moisture and
evapotranspiration together on the water drainage volume (irrigation quantification) based
on Sentinel-1 datasets and are able to distinguish between both influences individually [32].
In other studies, the correlation between Sentinel-1 backscatter and evapotranspiration
was created indirectly by correlating evapotranspiration and optical vegetation indices and
afterwards correlating vegetation indices and radar backscatter [33,34]. Even though the
study by El-Shirbeny and Abutaleb [33] does not utilize a huge number of acquisitions, a
high degree of correlation between evapotranspiration and radar backscatter was observed.

To our knowledge, no direct correlation of Sentinel-1 backscatter with ground-based
and remotely sensed evapotranspiration was done for forested areas over a long period
of time with such a high temporal and geometric resolution. We present here, therefore, a
direct assessment of the potential of SAR backscatter to give information about the seasonal
behavior of evapotranspiration over coniferous forest in order to get better insight into
energy fluxes over these ecosystems.

2. Materials and Study Site
2.1. Study Site

The considered study site is shown in Figure 1. It is located in the southeast of the Free
State of Thuringia in central Germany. While the northwestern and southeastern regions
are dominated by agricultural land cover, the center and southwest regions consist mainly
of coniferous forests in the lower mountain ranges of the Thuringian Forest [35]. Four areas
of interest (AOI) were defined within the study site (blue circles in Figure 1), with a radius
of 5 km each. These areas are centered around four weather stations (see Section 2.2.3) and
cover a total area of roughly 315 km2. The AOIs are named after the closest villages to the
weather stations in the center of each AOI, with “Lotschen” in the northeast, “Burkersdorf”
in the southeast, “Treppendorf” in the northwest and “Oberweissbach” in the southwest.
The land cover around all four stations is dominated by agriculture with interspersed
coniferous forested areas (119 km2) [36]. For the further analysis, we selected 25 patches of
coniferous forest (yellow dots on Figure 1) within each AOI. The coniferous areas in the
AOI are characterized by a tree canopy density (TCD) ranging from 70% up to 94% and
with a mean TCD of 85% [37]. In the study site, the main coniferous tree species are spruce,
pine and fir. All four AOIs show light to moderate topography ranging from 1◦ up to 24◦

with a median slope of 6◦ across 100 measured sites (25 per AOI) [38].
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Figure 1. Overview of the study site (red), the areas of interest (AOI, blue circles), the coniferous sam-
pling sites (yellow dots) and the weather stations (white stars) located in southeast Thuringia in central
Germany. Satellite imagery provided by GeoBasis DE/BKG through Google Earth (©2021 Google).

The temperate climate in the study area is dominated by the Westerlies with aver-
age monthly temperatures between −1 ◦C and 19 ◦C and a resulting vegetation period
of around seven months. Average cumulative precipitation of the long-term reference
(1961–1990) lies between 530 and 690 mm per year, measured across ten weather stations
throughout the study site [39]. Within the last ten years, only two (2013, 2017) showed
above average cumulative precipitation, while four years (2011, 2015, 2018, 2019) showed a
decrease in yearly precipitation of at least 10% compared to the reference time period [39,40].
In addition to rising average temperatures, an increase of sunshine hours can be observed
for the Free State of Thuringia as well. According to the Thuringian climate report of
2020, a clear trend of rising average temperatures, increasing CO2-levels and decreasing
precipitation has led to more occurrences of droughts during the summer months [40].

2.2. Datasets

A portfolio of different data products was used, ranging from in situ ground station
data to spaceborne remote sensing observations of different platforms. The main datasets
consist of weather station data, Sentinel-1 C-band SAR time series as well as Terra/Aqua
MODIS evapotranspiration time series. All remote sensing datasets were acquired for the
period between July 2016 and June 2021. In the preliminary selection of suitable test sites,
additional Copernicus Land Monitoring Service datasets such as “land cover”, “tree canopy
density” and “tree type” products were utilized [36,37,41,42].

2.2.1. Sentinel-1 Time Series

To characterize evapotranspiration with active radar remote sensing data, the widely
used Copernicus Sentinel-1 synthetic aperture radar (SAR) data are utilized. Sentinel-1
provides C-band SAR data with a frequency of 5.405 GHz. In this study, ground-range-
detected SAR scenes acquired in interferometric wide swath mode (IW GRD) of both
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satellites (Sentinel-1 A and B) are used (rel. radiometric accuracy: <0.42 dB [43]). All
scenes are pre-processed to a radiometrically terraincorrected (RTC) product through
the application of orbit files, radiometric calibration to gamma0, multi-looking to 20 m
pixel size, radiometric terrain flattening and geocoding by utilizing the pyroSAR code
library [44]. The data collection is a continued time series of the dataset presented in
a previous study [45] (see Figure 2). A summary of the Sentinel-1 dataset is presented
in Table 1.
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Figure 2. Overview of the backscatter behavior of AOI “Burkersdorf” depending on polarization and
pass direction for only coniferous forested area with precipitation (grey) and temperature (yellow)
(y-axis combined for precipitation and average temperature). The thick lines show the filtered time
series using a simple moving average filter with a window size of 10 (corresponds to 2 months in the
time series).

Table 1. Acquisition parameters for the Sentinel 1 datasets.

Dataset Flight
Direction

Relative
Orbit

Incidence
Angle

No. of
Acquisitions

Time of Acquisition
(UTC) Acquisition Period

1 Descending 168 37.7◦–41.3◦ 225 05:25 07/14/2016–07/12/2021

2 Ascending 44 33.2◦–37.4◦ 270 16:59 07/05/2016–06/27/2021

3 Ascending 117 42.2◦–45.5◦ 262 17:08 07/17/2016–07/08/2021

Three relative orbits are considered (two datasets in ascending overpass direction and
one dataset in descending overpass direction). Due to the availability of both Sentinel 1 A
and Sentinel 1 B for the study period, a temporal resolution of 6 days is achieved. Descend-
ing overpasses are acquired roughly around 05:25 UTC, while ascending overpasses are
acquired at 16:59 UTC and 17:08 UTC depending on the relative orbit. For all datasets, co-
(VV) and cross-polarized (VH) scenes were considered and analyzed separately. Only the
coniferous forested areas (yellow dots in Figure 1) were considered for the time series data
extraction for each AOI.
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2.2.2. Terra/Aqua MODIS ET Time Series

The well-established and mature Global Terrestrial Evapotranspiration Product (MOD16A2)
Version 6 was used as a spaceborne, remotely sensed evapotranspiration (ET) product [46].
MOD16A2 is a composite product utilizing eight days of Moderate Resolution Imaging
Spectroradiometer (MODIS) remote sensing data along with meteorological data to deter-
mine evapotranspiration and latent heat flux based on the Penman–Monteith approach [17].
The scenes have a geometric resolution of 500 m with ET being represented by the total evapo-
transpiration in kg/m2/8 day (= mm/8 day) (see Figure 3). A dataset size of 470 individual
scenes is available between July 2016 and June 2021, 235 each for Terra MODIS and Aqua
MODIS. Terra’s local day overpass time is during the morning around 10:30, while Aqua’s
local day overpass time is in the early afternoon around 13:30 [47]. Using the same loca-
tions as for the Sentinel-1 time series extraction, only the coniferous forested areas were
considered, ensuring that most of the 500 m sample pixel was covered by coniferous forests.
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Figure 3. Terra/Aqua MODIS evapotranspiration (mm/8 day) time series for the coniferous forested
area surrounding the “Burkersdorf” weather station.

2.2.3. In Situ Meteorological Data

Ground-based meteorological data were collected from the four available weather
stations at the center of the AOIs and used to calculate the in situ evapotranspiration
(in mm/day) time series (see Figure 4). The stations were selected based on availability of
collected meteorological information, as specific datasets must be available for the subse-
quent calculation of the evapotranspiration based on the Penman–Monteith approach [17].
The respective elevation of each station is as follows: “Burkersdorf” (height: 422 m),
“Lotschen” (height: 228 m), “Oberweissbach” (height: 682 m) and “Treppendorf” (height:
421 m). All four stations are maintained and the data are distributed directly by or on
behalf of the “Thuringian State Office for Agriculture and Rural Areas” [48]. The diurnal
data necessary for the Penman–Monteith approach [25], namely average temperature (◦C),
minimum daily temperature (◦C), maximum daily temperature (◦C), average wind speed
(m/s), sum of daily precipitation (mm) and sum of global radiation (Wh/m2) were acquired
from July 2016 through June 2021. Temperature is measured at 2 m above the ground, while
the wind speed is measured at 2.5 m above the ground.
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Figure 4. Daily Evapotranspiration time series calculated from the meteorological data of one weather
station (Burkersdorf) using the FAO Penman–Monteith approach.

2.2.4. Auxiliary Datasets

For this analysis, precise information about the land cover, tree cover and forest type
were required on a high geometric resolution. These datasets were utilized to extract
the coniferous forested areas within the AOIs, which are the basis of the remote sensing
data analysis. The freely accessible “CORINE Land Cover” (CLC) and “High Resolution
Layers” datasets provided by the European Environment Agency (EEA) through the
“Copernicus Land Monitoring Service” provide the desired datasets [42]. To gain a general
understanding of the land cover composition of the study site, the Copernicus Land
Monitoring Service (CLMS) CLC2018 layer was used. Updated every six years, last revised
in May of 2020, the current CLC2018 is based on data acquisitions (Sentinel-2 A and B
and Landsat-8) from 2017 and 2018 and provides land cover information with a minimum
mapping unit of 25 hectares and a minimum width of linear elements of 100 m [36]. As the
focus of this study is the investigation of forested areas, the CLMS “Forests High Resolution
Layers” for “Tree Cover Density” (TCD) and “Forest Type” (FTY) were additionally utilized
to help define the coniferous forested areas as exactly as possible. Both products are
provided in 10 m pixel resolution and are based on Sentinel-2 A and B data, collected
between March and October of 2018 [37,41].

3. Methods
3.1. Data Selection

As the rough extent and location of the areas of interest within the study site are
defined by the location of the four available weather stations, all forest sites for the analyses
had to be located within a radius of 5 km around the weather stations in order to keep
comparable meteorological conditions. The average distance of the observation sites from
the corresponding weather stations is between 3.1 and 3.6 km. For each of the four AOIs,
25 sites were selected over coniferous forest, resulting in 100 individual observation/data
collection sites (yellow dots in Figure 1). All points were manually selected based on the
FTY layer and visually reviewed using the most recent Google Earth imagery to obtain
only the most homogeneous areas of each forest class (see Figure 5). By considering
slope information, forested areas with least slope angle were preferably selected to reduce
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incidence and the aspect angles’ influence. This data selection approach was chosen to
ensure the same number of data points for each AOI.
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3.2. SAR Time Series Preprocessing

For each of the data observation sites, a square buffer of 120 m was created to extract
all pixel information of the Sentinel-1 time series stack based on [35], while ensuring the
coniferous land cover stays homogenous. With a 20 m pixel size of the Senti-nel-1 data, this
leads to a patch of six-by-six Sentinel-1 pixels for each data observation site. The spatial
stability analysis in another study suggests homogenous results of the Sentinel-1 data for
multiple neighboring pixels [45]. All backscatter datasets were aggregated again by spatially
averaging all data observations around the respective weather station to subsequently
compare. This results in a one-dimensional time series per weather station. To examine the
behavior of the backscatter signal throughout the study site, the backscatter is visualized in
its four different acquisition settings, VH/ascending (VH_Asc), VH/descending (VH_Desc),
VV/ascending (VV_Asc), VV/descending (VV_Desc). This allows for the differentiation
between morning (5:30 am) and evening (5:00 pm) acquisitions as well as pointing directions
of the Sentinel-1 sensor. This is in line with previous studies, as the influence of evaporation
and general water content changes throughout the day [49,50]. In addition, the influence of
the polarization on wave–canopy interaction can be examined.

In order to remove outliers due to external influences (not related to ET), frost and snow
days were removed from the time series of all datasets. Different filtering approaches were
also applied to the time series datasets to reduce high-frequency temporal variation while
carefully maintaining the seasonal variations of each time series. A simple moving average
filter (SMA) with a window size of 10 was applied to the time series [51]. This corresponds
to roughly two months of time aggregated for each filtering step. A Singular Spectrum
Analysis (SSA) was additionally implemented as a more advanced approach based on [52].
The SSA with a window length of n/2 (n = no. of acquisitions) was used to extract only
the seasonal component of each time series while removing very low (interannual) and
high-frequency (daily and weekly) temporal variation as much as possible without prior
knowledge of the composition of the time series. A comprehensive characterization of the
capabilities of SSA for time series analysis is provided in [53].
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3.3. ET Time Series Preprocessing

In order to estimate the evapotranspiration based on meteorological parameters of the
weather stations, the FAO Penman–Monteith equation was applied [25].

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 is the reference evapotranspiration (mm/day), Rn is the net radiation at crop
surface (MJ/m2/day), G is the soil heat flux density (MJ/m2/day), T is the mean daily
air temperature at 2 m height (◦C), u2 is the wind speed at 2 m height (m/s), es is the
saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), ∆ is the slope vapor
pressure curve (kPa/◦C) and γ is the psychrometric constant (kPa/◦C). This reference
equation describes the theoretical evapotranspiration for grass vegetation, and a so-called
crop coefficient is needed for different vegetation types [25]. A crop coefficient of 0.95 for
coniferous trees was applied based on the suggestion of the FAO [25].

As the weather stations used in this study do not provide all the necessary meteorolog-
ical parameters, estimates of the missing data are needed. The missing data estimates are
already provided by the FAO as standardized equations, requiring only global radiation,
mean temperature, minimum temperature, wind speed and elevation for the calculation of
the modified FAO Penman–Monteith ET equation. Missing humidity data can be estimated
by assuming a dew point equal to the daily minimum temperature Tmin as well as assuming
nearly fully saturated air at the minimum temperature, which allows one to calculate the
actual vapor pressure ea. The saturation vapor pressure es can be calculated similarly but
should take the maximum and minimum temperatures into account as well. For daily or
weekly evapotranspiration calculations, the soil heat flux density G is very small compared
to the Rn, which is why it can be ignored in this analysis and is set to zero [25]. The slope of
the saturation vapor pressure curve ∆ is given by the following equation and describes the
relationship between es and T:

∆ =
4098 × es

(T + 237.3)2 (2)

The specific heat at constant pressure (psychrometric constant) γ is a function of
altitude z, as pressure is expected at standard atmosphere P (1013.25 hPa, 20 ◦C) and
calculated as [25]:

γ = 0.665 × 10−3 × P (3)

with

P = 101.325 ×
(

293 − 0.0065 × z
293

)5.26
(4)

As wind speed measurements u2 are required to be at 2 m above the surface and the
wind speed measured at the weather stations is measured at a height of 2.5 m, a logarithmic
wind speed adjustment is performed [25].

4. Results and Discussion
4.1. Sentinel-1 Backscatter Time Series

Over coniferous forests, a clear seasonal pattern is recognizable (see Figure 2) with a
decrease of backscatter in autumn and an increase of backscatter in spring. The average
backscatter difference between the meteorological summer (1 June–31 August) and meteo-
rological winter (1 December–28 February) is 1.50 dB for cross-polarized data and 1.23 dB
for co-polarized data [54]. The mean backscatter ranges from −13.73 dB to −14.45 dB for
cross-polarized data and from −8.29 dB to 8.98 dB for co-polarized data across all four
AOIs. Compared with other studies, the Sentinel-1 backscatter of coniferous forests shows
similar behavior with maxima in the summer and minima in the winter months [35,55].
This behavior is congruent with the yearly temperature, water, and carbon cycle, which in
turn controls the photosynthetic cycle, leading to a plant growing season represented by
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the peak of the yearly backscatter curve from spring to autumn in northern latitudes. While
this general behavior of coniferous forests in Europe has been described in different studies
using C-band SAR data, such as by Rüetschi et al. [56], this holds true only for dense forests,
and the behavior weakens in sparsely vegetated coniferous forests [55]. This behavior could
be dominated by the changing vegetation water content when having constant biomass
conditions (no structural change). This can be assumed, as there should be no dominant
influence of the soil moisture at C-band wavelengths in these forests [57].

This behavior is opposite to the findings by Monteith and Ulander [58], who observed
a decrease of backscatter intensity in the spring and summer months and an increase of
backscatter values in autumn and winter. These behaviors could be explained by the
different wavelengths, as Monteith and Ulander [58] used a longer wavelength P-band
microwave sensor for their study, where more influence of the ground (soil moisture) and
the tree trunks instead of the canopy should be more prominent. Additionally, more sparse
boreal forests were studied compared to the temperate forests in this study.

Both ascending and descending overpass directions show very similar seasonal be-
havior which is also true for all four AOIs. Throughout the time series, “Lotschen” shows
the smallest temporal standard deviation of backscatter with 0.48 dB in ascending direc-
tion, with “Burkersdorf” showing the highest temporal standard deviation with 0.75 dB
in ascending direction. Although special attention was set on the selection of preferably
homogenous forest areas without disturbances such as forest roads or forest clearings in
close proximity to the coniferous sampling site, some areas classified as coniferous forested
areas may still contain a small number of deciduous trees within the forest stand, which
could explain the observable differences between the stations. Especially mixed forests
present different characteristics compared to coniferous or deciduous forests [35].

Comparing the distribution of VH backscatter between the morning (descending) and
evening (ascending) acquisition times [59] as well as between summer and winter season
for “wet” (2017, 2021) and “dry” (2016, 2018, 2019) years shows a discernible difference
only for the summer months (Figure 6). In the years with less precipitation compared
to the long-term average (1961–2010) [39,60], the morning acquisitions show a decreased
backscatter by around 0.5 dB compared to years with above average precipitation. In the
winter months, this phenomenon cannot be observed with the same scale. This decrease
is also only present in the morning acquisitions, suggesting some influence of the time of
day on the backscatter which can be attributed to the different vegetation water content
levels present at different times of the day. In the morning hours (around 7:30 am local
time), the water storage of the plant is replenished after refilling during the night. A smaller
backscatter intensity in the morning for dry years would suggest that the water storage
is not entirely replenished during the night in dry years. Here not addressed, additional
effects of dew present on the vegetation in the morning could also have an influence on
this difference [61,62].

As shown in previous works using time series analyses, even small differences in
seasonal behavior can be observed with Sentinel-1 C-band data [45]. The different inci-
dence angle for each relative orbit, in addition to the fact that objects are observed from a
southwesterly direction in ascending overpass direction and from southeasterly direction
in descending overpass direction, renders a direct comparison of backscatter behavior very
complex let alone a correlation analysis of different datasets. This is especially true for
the small-parceled forests in this study site. Most radiometric and geometric differences
should be minimized by the preprocessing applied to all Sentinel-1 scenes based on [44].
Nevertheless, the influence of different look-direction between ascending and descending
overpass direction as well as the different local incidence angles could have a stronger effect
in forested areas compared to other land cover types [63]. Studies show a significant L-band
backscatter decrease of forested areas with increasing incidence angle, where near-range
(low incidence angle) objects had a systematically higher backscatter compared to far-range
(high incidence angle) objects [63,64]. This behavior was observed in dense forests with
L-band sensors compared to the current study with C-band, where the range of incidence
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angle difference is significantly smaller throughout the study site compared to the study
by [64]. In the end, some degree of influence based on the incidence angle cannot be ruled
out completely.
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4.2. Evapotranspiration Time Series

The in situ evapotranspiration shows very similar seasonal patterns to the Sentinel-1
backscatter signal with the maximum values during the summer months and the minimum
values during the winter (see Figure 4). The in situ evapotranspiration time series consists
of daily measurements with between 1818 and 1838 valid acquisitions depending on the
weather station. The mean evapotranspiration over the observation period ranges from 2.62
to 3.06 mm/day between the four AOIs while the median ranges from 1.91 to 2.29 mm/day
with a difference between meteorological summer and winter of 4.26 to 4.94 mm/day.
The estimated in situ evapotranspiration ranges from 0 mm/day in the winter months to
>11 mm/day in July of 2019 at station “Burkersdorf”.

As a result of the stand-in equations for the missing climate variables, the entire FAO
evapotranspiration equation is based on four physical base units—temperature, solar radi-
ation, wind speed and elevation—and uses different constants or coefficients to derive the
needed additional information. It becomes apparent, that the most influential variable is the
temperature, as transpiration and evaporation are significantly linked to the energy cycle
(the heat fluxes created by the sun). Due to missing direct measurements of variables such
as actual (ea) and saturation (es) vapor pressure, instead of using approximations from other
measurements, additional inaccuracies or error sources are introduced. Simultaneously, the
dependence on the temperature variable is leading to higher inaccuracies if the values do
not represent reality in some instances. It should also be noted here that the Sentinel-1 C-
band SAR is directly sensitive not to air temperature but rather to water content variations
driven by environmental changes of several variables including air temperature [65].

It is important to note here that the goal of the study is not the comparison of absolute
evapotranspiration values or validate absolute results on individual daily or weekly time
scales, but rather the focus is on the relative comparability of the seasonal behavior of
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the different datasets. The interpretation and analysis of the absolute values of the two
evapotranspiration products is only done on a comparative basis.

It should be considered that the weather stations are based in open fields at ground
level with measurements two meters above the ground while the considered forest canopies
reach heights of 20 to 30 m [66], where some meteorological values may be different. Wind
speeds, for example, generally increase with increasing distance from the ground [67] and
could have a bigger influence at the canopy level compared to the ground-proximate level.
As we are comparing only the relative seasonal behavior of the different time series, these
influences should be minimal.

The Terra/Aqua MODIS evapotranspiration is measured for the same areas as the
selection of the Sentinel-1 pixels of coniferous forests and presents a similar seasonal pattern
as the in situ evapotranspiration (see Figure 7) as well as the Sentinel-1 backscatter (see
Figure 3). The highest values of over 300 mm/8 day are reached in June and July while
the values drop below 30 mm/8 day in the winter months. The temporal sampling rate
is not uniform with clusters in early spring and summer due to the higher availability
of cloud-free images. The mean evapotranspiration ranges from 129.46 mm/8 day up to
146.82 mm/8 day, with a standard deviation of 78.95 to 90.18 mm/8 day.
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Figure 7. A very similar seasonal behavior for the Terra/Aqua MODIS (green) and in situ (black) ET
product (A), the correlation between both ET products (B), SMA-filtered Sentinel-1 time series (C)
SSA-filtered Sentinel-1 time series (E) can be seen. The correlation scatter plot of SSA- and SMA-
filtered (D,F) Sentinel-1 time series and ET products show a positive trend, meaning increasing
backscatter values also mean increasing evapotranspiration values. All data were acquired for station
“Burkersdorf” and cross-polarized (VH) Sentinel-1 backscatter in ascending pass direction.
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Almost all scenes contain data gaps where cloud cover prevented the optics-based
acquisition for that scene. Acquisitions are more frequent in spring and summer compared
to autumn or winter over central Germany. This particularity also affects the data sampling
process for each AOI, as a different selection of sampling sites contain valid, cloud-free ET
values for each scene. While its spatial resolution and scale are considerably/very much
greater than the in situ ET estimation, a pixel size of 500 m over a heterogenous landscape
is bound to introduce mixed land cover influence within a pixel cell. This can lead to ET
estimation inaccuracies, which should be minimized by the careful selection of sampling
sites as well as through the spatial aggregation of multiple pixels, which was done in this
study (see Section 3.2). While the MODIS product does not estimate evapotranspiration
equally accurately for all land cover classes [26], ongoing optimizations try to mitigate
these problems [27]. At least these problems of absolute accuracy should not affect this
analysis in a major way, as the relative values should be comparatively accurate for the
same locations over time, which is the focus of this study. The absolute values of the in
situ and remotely sensed evapotranspiration are not directly comparable, still the time
of increase and decrease of both time series match very well (Figure 7). The correlation
between both datasets is high, with R2-values between 0.67 and 0.82 compared at the dates
of the corresponding Sentinel-1 acquisition times (Table 2)

Table 2. Correlation coefficient (R2) of in situ evapotranspiration (weather stations) and remotely
sensed evapotranspiration (Terra/Aqua MODIS) for each AOI and both ascending and descending
Sentinel-1 acquisition times.

R-Squared

SMA (ws = 10) Burkersdorf Lotschen Oberweissbach Treppendorf

S1 ascending 0.796 0.795 0.782 0.822

S1 descending 0.725 0.759 0.667 0.712

4.3. Sentinel-1 Backscatter vs. Evapotranspiration

The filtered time series (see Section 3.2) are compared in order to evaluate the correla-
tion between Sentinel-1 backscatter and in situ evapotranspiration. The evapotranspiration
time series are filtered with the same methods as the presented Sentinel-1 time series to
guarantee comparability. All results in this subsection are calculated with the exclusion of
frost days [68,69].

For the ascending overpass direction and cross-polarized backscatter (VH), the R2-
values of the SMA-filtered time series (window size ws = 10) range from 0.65 to 0.86,
compared to lower R2-values from 0.35 to 0.63 for the descending overpass direction.
Similar to the previous filtering methods, R2-values for the AOI “Oberweissbach” are about
25% lower compared to the other AOIs in the ascending overpass direction (Table 3). The
co-polarized (VV) backscatter shows very similar results for both ascending and descending
overpass direction with R2-values ranging from 0.49 to 0.87 in ascending and 0.43 to 0.58 in
descending overpass direction.

Analyzing all results of the correlation analysis over coniferous forests (cf. Table 3),
a clear pattern becomes visible. The ascending overpass direction shows significantly
higher correlation for both polarizations and all AOIs compared to the descending overpass
direction. One explanation for this behavior might be the different acquisition times
between descending (morning) and ascending (evening) overpass direction. Indeed, daily
transpiration mostly occurs between the descending and ascending overpasses and results
in a change of water content that may explain the difference in observed correlation. The
VH backscatter is primarily influenced by the small and randomly oriented scatterers, i.e.,
leaves and needles where water loss to the atmosphere occurs. The rate at which this
water can be replaced depends on the water status of the trees, but water uptake generally
continues after transpiration stops to replace the moisture lost higher up in the canopy
with water from the root zone. It must be noted here that the scope of this study is the
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investigation of seasonal dynamics of ET and backscatter with the source of influence
on the backscatter signal not yet fully understood. The seasonal increase of backscatter
and ET signals might be explained by the increase in vegetation water content during the
vegetation period. The seasonal behavior might be able to explain some of the underlying
factors of ET influencing the backscatter. Moreover, while the Sentinel-1 acquisitions are
either early in the morning or evening, the in situ evapotranspiration is based on the daily
averages. Compared to the Sentinel-1 acquisition times, the other product acquisition
times fall, therefore, within different domains of the diurnal cycle of biophysical activity,
which might explain a decrease in the correlation for some data combinations compared
to others [58,65,68].

Table 3. Correlation coefficient (R2) of in-situ evapotranspiration and cross-polarized (VH) Sentinel 1
backscatter for each AOI and both ascending and descending Sentinel-1 acquisitions. All datasets
were filtered with SMA (top) and SSA (bottom) respectively.

R-Squared

SMA (ws = 10) Burkersdorf Lotschen Oberweissbach Treppendorf

Ascending (117) 0.815 0.858 0.736 0.776

Ascending (44) 0.856 0.851 0.646 0.706

Descending (168) 0.627 0.353 0.496 0.525

SSA (L = n/2)

Ascending (117) 0.969 0.974 0.946 0.966

Ascending (44) 0.994 0.966 0.956 0.952

Descending (168) 0.564 0.255 0.311 0.561

A noticeable decrease in correlation for the ascending overpass direction can be ob-
served at the AOI “Oberweissbach”, where the correlation values are systematically lower
compared to the other stations. At the same time, the correlation for the descending over-
pass direction is on a similar level compared to the other AOIs. This might be explained by
the relatively steep slope angles of the AOI “Oberweissbach”, making this area more prone
to influence by the local incidence angle compared to the other AOIs. Additionally, this
station is situated at a higher elevation compared to the three other stations; the response of
coniferous trees to changes in energy fluxes could be either delayed or attenuated in such
more mountainous areas. Further analysis would be needed to confirm this hypothesis.

Using the extracted seasonal periodicity based on the SSA, a very high correlation
between the Sentinel-1 backscatter and the in situ evapotranspiration is evident (Figure 7e
compared to Figure 7c). It should be noted that this approach does not directly correlate
backscatter and evapotranspiration but rather the periodicity of the respective time se-
ries (see Section 3.2). The correlation in ascending overpass direction for cross-polarized
backscatter (VH) ranges from R2-values of 0.95 up to 0.99 and from 0.26 up to 0.56 for the
descending overpass direction. Similar to the SMA-filtered time series, the differences of the
co-polarized (VV) backscatter datasets are negligible with R2-values for the ascending over-
pass direction ranging from 0.88 to 0.99 and from 0.31 to 0.60 for the descending overpass
direction. The influence of the overpass direction on the correlation between backscatter
and evapotranspiration is far greater than the influence of polarization throughout all AOIs
and with different filtering approaches.

Regarding the influence of the filter approach as well as the individual filter size, it
seems filtering is necessary to eliminate the high-frequency temporal variations from both
datasets and to better investigate the seasonal component of the time-series. The singular
spectrum analysis provides the highest correlation results, as the correlated datasets are
not a filtered time series anymore but merely the periodicity component of the original
time series [53]. This might be useful to some extent, as the seasonal behavior shows the
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strongest manifestation in real-life data, but this caveat should be considered for more
in-depth analyses, where the absolute values are analyzed as well.

5. Conclusions

In this multi-sensor study, a high correlation in seasonal patterns was found between
Copernicus Sentinel-1 backscatter and in situ evapotranspiration. For the first time, a
Sentinel-1 time series of five years was compared to in situ evapotranspiration (FAO
Penman–Monteith method) time series. Additionally, the results were compared with the
Terra/Aqua MODIS evapotranspiration product for a first validation. Therefore, this study
is a first analysis of the influence of multiannual seasonal behavior of evapotranspiration
for coniferous forests on the C-band SAR signal.

The analysis was conducted for the different Sentinel-1 acquisition characteristics,
overpass directions (ascending, descending) and polarizations (VH, VV). We used different
filtering approaches to focus on the seasonal dynamics and to take out high-frequency
temporal variations. For coniferous forest, a high correlation (R2) was achieved between
the Sentinel-1 SAR backscatter and the ET products of up to 0.86 (full signal) and up to
0.99 (filtered signal with only the seasonality component). Additionally, an influence of
overpass direction on the degree of the correlation with an increase from an R2 of around
0.5 (descending, morning) to around 0.9 (ascending, evening) was shown, suggesting
that the daily change of vegetation water storage due to canopy transpiration is visible,
even though not fully decrypted at the moment [70]. Moreover, differences of backscatter
variability were shown between dry and wet years, further endorsing this outcome.

These results show the potential of using high-resolution Sentinel-1 SAR backscatter
data for complementary evapotranspiration monitoring and for synergistic combination
with optical/thermal ET products to improve spatial resolution of evapotranspiration
estimates (<100 m) and temporal coverage (daylight and weather independence). The
results of this study also help improve forest remote sensing capabilities by expanding
the knowledge of factors influencing the SAR signal and its seasonal fluctuations. A
similar approach [71], combined with the high-resolution datasets used in this study, could
enable the development of an evapotranspiration estimation approach based on active
microwave data.

The main constraint of this study in terms of spatial coverage was the scarcity of
available meteorological stations for in situ measurements, which limited the selection of
AOIs. Including additional sites, such as the large untapped forest area in the center of
the study site and including different forests altogether, will foster further analyses and
findings. In 2022, an updated version of the CLMS land cover datasets should be made
available which could further improve the accuracy of the selected sites for each forest
class. Finally, a comparable analysis for deciduous forests should be conducted. This could
enable a more balanced analysis of the two main temperate forest types in central Europe
and present a clearer assertion of the differences between the two. For a large-scale retrieval
of ET utilizing active and passive sensors, a comprehensive look at multiple land cover
types is necessary. With an increasing temporal and spatial resolution of new datasets with
similar or improved specifications as Sentinel-1, there should be a possibility to expand
on this study in the future. Ideally this should include a wider range of sensors and in
situ measurements to establish clear external influences on the individual signals of each
remote sensing product.
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