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Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks and their properties
within this category and recommends next steps for this category towards next year’s edition
of the competition. In comparison with tools on non-probabilistic models, the tools for
stochastic models are at the early stages of development that do not allow full competition
on a standard set of benchmarks. We report on an initiative to collect a set of minimal
benchmarks that all such tools can run, thus facilitating the comparison between efficiency
of the implemented techniques. The friendly competition took place as part of the workshop
Applied Verification for Continuous and Hybrid Systems (ARCH) in Summer 2022.

1 Introduction

The subgroup “Stochastic Models” of the annual friendly ARCH-Competition focusses on recent
developments of tools that can analyze systems which exhibit uncertain, stochastic behavior in
its various expressions (e.g., continuously applied stochasticity or discrete mode changes, which
happen with a certain probability).

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).

G. Frehse, M. Althoff, E. Schoitsch and J. Guiochet (eds.), ARCH22 (EPiC Series in Computing, vol. 90),
pp. 113–141

https://gitlab.com/goranf/ARCH-COMP
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This report presents the results of the ARCH Friendly Competition 2022 in the group
stochastic models. We refer the reader to the survey paper [53] and references therein for
the details of most of the underlying techniques used in the development of the tools of this
category. The following tools and frameworks have participated in this category so far: (in
alphabetical order): AMYTISS, FAUST2, FIGARO workbench, hpnmg, HYPEG, Mascot-SDS, the
Modest Toolset, ProbReach, PyCATSHOO, RealySt, SDCPN & IPS, SReachTools, StocHy, and
SySCoRe.

Tools participated in this year are (in alphabetical order): FIGARO workbench, HYPEG, the
Modest Toolset, PyCATSHOO, RealySt, SDCPN & IPS, SySCoRe. In particular, the new tool
RealySt joined the competition this year. A substantial new development was also observed
in SySCoRe. The benchmark collection has been extended by two interesting benchmarks: a
Package Delivery benchmark that include simple (linear) dynamics of the system but allow for
defining more expressive specifications to go beyond safety and reachability. This benchmark
can be used to check specifications that are expressed by various classes of finite state automata.
We have also developed a new benchmark as a minimal example such that different tools can be
employed with the least modifications of the underlying model. The initiative for developing this
benchmark will allow us to compare the tools that previously were only applicable to separate
set of benchmarks.

Similar to last years, all participants were encouraged to provide a repeatability package
(e.g., a Docker container) for centralized evaluation on the servers of the ARCH-group. Apart
from providing repeatable results, this allows for sharing of the tools themselves to both the
ARCH and the wider research community.

This report has the following structure. Section 2 provides a short overview of the par-
ticipating tools and frameworks. Section 3 presents already established benchmarks and a
set of new benchmark descriptions are presented in Section 4, which include a discussion of
the individual models syntax and semantics. Next, in Section 5 we present the results of the
friendly competition with the participating tools or algorithmic frameworks that are used to
solve instances of the collection of benchmarks. We identify key challenges and discuss future
plans in Section 6.

2 Participating Tools & Frameworks

Here we present the tools which participated this year in alphabetical order.

FIGARO workbench The Figaro language, created in 1990, is a (free and public) domain
specific object oriented modeling language dedicated to dependability. It generalizes all the
usual reliability models, and can easily be associated to various graphical representations. It
allows to cast generic models in knowledge bases (KB). A formal definition of its semantics
is available in [11] and [12]. The Figaro workbench, mostly developed by EDF (Electricité
de France) since the creation of the Figaro language, comprises a set of tools to create Figaro
models and to process them in order to perform dependability analyses; the main tools are:

• FigaroIDE is an integrated development environment for creating KBs;

• KB3 is a generic graphical user interface. Once a KB has been loaded in KB3, it becomes
a specialized GUI for building a certain kind of graphical models. KB3 comes with a few
“abstract KBs” corresponding to classical reliability models, including reliability block
diagrams, digraphs, Petri nets and BDMP (Boolean logic Driven Markov Processes). KB3
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provides sophisticated functions to input and manage complex system models, perform
interactive simulations and can generate fault trees and display them graphically. KB3 is
intensively used at EDF to automatically generate fault trees and a few dynamic models
for Probabilistic Safety Assessment of its nuclear power plants;

• Figseq [9, 14] is a quantification tool for continuous time Markov chains that explores the
sequences leading to a target state, defined by a Boolean expression. Given the mission
time and truncation criteria, Figseq computes an estimated value and an upper bound of
the undesirable event probability. It can perform reliability and availability calculations;

• YAMS [10] is another solver: it uses Monte Carlo simulation on the system model to
compute various quantities, including reliability and availability. Any kind of probability
distribution can associated to transitions with this tool. YAMS is also able to output a
selection of simulated scenarios, but the obtained results are much more “noisy” than
those obtained with Figseq.

• All the above cited tools are “industry proof” tools, used in real studies of complex
systems such as nuclear power plants, telecommunication and electrical networks... KB3
is commercially available under the name RiskSpectrum ModelBuilder. A new tool, still a
prototype, is available to process FIGARO Markovian models: it is based on the STORM
probabilistic model checker, cf [50, 49]. This open source tool, called STORM-Figaro, is
now available on github. The paper [13] explains its principles, where to find it, how to
use it and compares its performances to those of Figseq and YAMS on a set of test cases.

HYPEG The Java-based library HYPEG [66] implements time-bounded discrete-event simula-
tion for hybrid Petri nets with general transitions (HPnGs) [37], which combine discrete and
continuous components with a possibly large number of random variables, whose stochastic
behavior follows arbitrary probability distributions. HYPEG uses well-known statistical model
checking techniques to verify complex properties, including time-bounded reachability [67]. These
techniques comprise several hypothesis tests as well as different approaches for the computation
of confidence intervals. Continuous behavior that can be expressed by systems of ordinary
differential equations can be simulated using an approximative approach [65, 64], whereas
piecewise-linear continuous behavior is simulated without approximation. Recently, HYPEG
was extended to resolve discrete nondeterminism using reinforcement learning to maximize or
minimize the probability of a property [63].

The tool is available at https://zivgitlab.uni-muenster.de/ag-sks/tools/HYPEG.

The Modest Toolset A collection of tools for the modelling and analysis of stochastic
timed and hybrid systems, ranging from discrete-time Markov chain models to stochastic
hybrid systems with general probability distributions and nonlinear continuous dynamics, the
Modest Toolset [43] notably includes the modes statistical model checker [16] and the prohver [42]
safety checking tool that participate in the ARCH friendly competition. The Modest Toolset is
currently jointly developed at the University of Twente and Saarland University. It is available
online at modestchecker.net. All tools in the Modest Toolset support the formal Modest [42] and
JANI [17] input languages; in this competition, we use Modest models handwritten to represent
the respective benchmarks.

modes is, at its core, a Monte Carlo simulator. It implements an automated importance
splitting method [15] to tackle the rare events problem, and lightweight scheduler sampling
(LSS) [57] to find near-optimal decisions for nondeterministic choices. It contains simulation
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engines specialised to different semantic formalisms such as discrete-time Markov chains or
probabilistic timed automata [51]. For this competition, its engines for singular and general
non-linear stochastic hybrid automata are relevant; we use the former unless noted otherwise.
In past ARCH competitions, modes exercised its rare event simulation capabilities; this time, it
will be applied to nondeterministic models instead, exploiting its implementation of LSS. By
sampling schedulers, LSS delivers under-/overapproximations of maximum/minimum reachability
probabilities, respectively.

prohver model-checks safety properties of stochastic hybrid automata (SHA) [34] by (1) over-
approximating continuous stochastic choices by splitting them into discrete probabilistic choices
plus continuous nondeterminism, and (2) separating the numeric analysis into a non-stochastic
computation of the reachable state set using a modified version of PHAVer [35] followed by
reintroducing the probabilities to finally compute the value of interest on a Markov decision
process. In this way, prohver computes an overapproximation of maximum reachability probabil-
ities. In certain settings, such as singular probabilistic hybrid automata, where PHAVer is exact,
prohver can also compute an exact (up to floating-point and value iteration errors) result. For
models that sample from continuous probability distributions, prohver needs a user-specified set
of intervals to split the distributions into. For this competition, we added a new algorithm that
iteratively refines the provided intervals by dividing those intervals in two or more equal parts
that led to the largest change in the resulting probability in the previous refinement. Still, as
we saw in our experiments, the effectiveness of this method depends on a good choice of initial
intervals.

PyCATSHOO The PyCATSHOO [26] tool has been developed in the R&D division of EDF.
This development was motivated by the need to address, in some safety studies, the continuous
deterministic phenomena that unfold in the studied systems. It provides modelling tools that
take into account the synchronization between, on the one hand, the discrete stochastic behavior,
classically taken into account in dependability-oriented modelling and, on the other hand, the
0D/1D physical modelling. PyCATSHOO is based on the theoretical framework of piecewise
deterministic Markov processes (PDMP). It implements this theoretical framework through
Distributed Stochastic Hybrid Automata (DSHA). PyCATSHOO leverages Hybrid Stochastic
Automata (HSA) to implement PDMPs and introduced the notion of distribution which allows
modular modelling and avoids the problem of the combinatorial explosion which SHAs suffer
from when it comes to an industrial-sized system modelling. In a nutshell, PyCATSHOO is
a dynamic library written in C++ that can be used via a C++ or a Python API. Thanks
to a mainly declarative approach, this library allows the modelling of the discrete stochastic
behavior of complex system actors. It also allows for an effective formulation of ordinary or
algebraic differential equations that govern the continuous state variables of these actors. These
equations are solved by PyCATSHOO and can be efficiently adapted to the different system’s
operating modes. Indeed, PyCATSHOO takes over boundary crossings and managing of a
system multimodal behavior. Reconfigurations can thus be easily modelled, whether they are
due to a deterministic behavior of the I&C or to stochastic events such as failures and repairs.
PyCATSHOO embeds a Monte Carlo simulation engine where the development of an Importance
Sampling algorithm is in process [25]. PyCATSHOO also provides a fault tree generator that
can be used when a static view of the modelled system is required. Its open software architecture
allows it to interoperate easily with other tools. PyCATSHOO can also be used to build generic
modelers. This functionality has been used to develop the PyCABIA modeler which implements
an extension of the reliability diagrams formalism. PyCABIA can be used in a static way and
automatically generate fault trees. It can also be used in dynamic modelling. It then provides
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the notion of passive redundancies, shared resources, etc.

RealySt RealySt is a tool which optimizes reachability probabilities for the class of rectangular
automata with random clocks, which exhibit discrete and continuous nondeterminism as well
as stochasticity. Using forwards reachability anaylsis and a backwards refinement approach,
probabilities can be optimized. It is implemented in C++ and relies on the library HyPro [68] for
the state-set representation via convex polytopes as well as efficient geometric operations. The
GNU Scientific Library (GSL) [36], providing Monte Carlo integration algorithms, is used for
multi-dimensional integration.

RealySt builds on the tool hpnmg [45], a model checker for Hybrid Petri nets with an arbitrary
but finite number of general transition firings against specifications formulated in STL [47].
Each general transition firing results in a random variable which follows a continuous probability
distribution. It efficiently implements and combines algorithms for a symbolic state-space
creation [46, 44], transformation to a geometric representation as convex polytopes [48], model
checking a potentially nested STL formula and integrating over the resulting satisfaction set to
yield the probability that the specification holds at a specific time.

RealySt is currently being developed within the DFG project 471367371 as a cooperation
between the RWTH Aachen and the University of Münster.

RealySt is available at https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst.

SySCoRe SySCoRe stands for Synthesis via Stochastic Coupling Relations for stochastic
continuous state systems. This tool is developed for temporal logic control synthesis of discrete-
time stochastic dynamical systems with outputs. It allows both model order reduction and
space discretization while quantifying the error induced in the probability of satisfying the
given property. The development of SySCoRe is based on the papers [38, 39, 40, 41, 77] and
encode directly the coupling between stochastic processes into the simulation relation that assess
the similarity between the associated dynamical systems. The developed algorithms compute
two precision parameters (ϵ, δ), which allow bounding the deviations between models in both
the output trajectories ϵ and the transition probabilities δ. The obtained abstract models,
either with deterministic continuous states or with stochastic finite states, are then employed in
probabilistic model checking. The current version of SySCoRe is capable of handling co-safe
LTL properties with infinite horizon. The main advantage of SySCoRe compared to alternative
tools is the fact that the computed error does not grow linearly in time, which makes the
tool applicable for infinite horizon properties. Besides that, it can handle an unbounded (e.g.
Gaussian) additive disturbance.

It is worth noting that AMYTISS [52], StocHy [21], and FAUST2 [72] did not participate in
this year competition, since they do not natively support stochastic hybrid systems, which are
the main benchmark models employed in this report. In particular, these are software tools for
designing correct-by-construction controllers of stochastic discrete-time control systems. The
underlying idea of the implemented algorithms is abstraction to finite Markov decision processes
(MDPs) with error bounds formulated in a series of previous works [69, 70, 71]. The underlying
computation part in AMYTISS is similar to the one used in FAUST2, however, it is developed to
solve a two-player stochastic game by providing parallel algorithms over GPUs and hardware
accelerators [54, 55, 56]. StocHy, instead, leverages scalable and robust abstractions as interval
MDPs [22, 21].
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2.1 Frameworks

In contrast to complete tools, frameworks usually provide a collection of algorithms and data
structures or collect several tools for different sub-problems into one library.

SDCPN & IPS is a reach probability modelling and estimation framework that has been
developed for the evaluation of multi-actor air traffic designs on mid-air collision risk. Because
this air traffic application domain is very demanding, the selected mathematical setting is General
Stochastic Hybrid System (GSHS) [19]. GSHS incorporates Brownian motion in continuous-time
Piecewise Deterministic Markov Processes [29]. Because a direct specification of a large GSHS
model does not work, the framework of Stochastically and Dynamically Coloured Petri Nets
(SDCPN) [30, 31, 32, 33] has been developed for the compositional specification of a GSHS
model. For the acceleration of MC simulation of rare events, the Interacting Particle Systems
(IPS) approach for GSHS is used [23, 7, 8, 58, 59]. The SDCPN & IPS framework is applied to
the Heated Tank benchmark.

3 Established benchmarks, revisited

3.1 Building Automation Systems

The building automation benchmark is split into a 4 and 7-dimensional models with the aim of
generating a control policy which maximises a safety problem. An in-depth description of the
benchmark can be found in ARCH 2018 [4] and [20].

3.2 Heated Tank

The Heated Tank benchmark stems from the safety literature; there it is a well-known example of
a Piecewise Deterministic Markov Process (PDMP) [29]. This made the Heated Tank benchmark
a logical candidate for inclusion in the set of ARCH stochastic models [1, 2, 3, 4].

The heated tank system consists of a tank containing liquid whose level is influenced by
two pumps and one valve managed by a controller. The purpose of the liquid in the tank is
to absorb and transport energy from a heat source; this means that under nominal conditions
one of the pumps produces a constant inflow of cool liquid while a similar flow of heated liquid
leaves the tank through the valve. The Euclidean valued state components are height xH,t and
temperature xT,t of the liquid in the tank at moment t. Pumps and Valve may fail, and a
Controller switches Pumps or Valve if the height of the liquid becomes too high or too low. The
reach probabilities to be estimated on a given time interval are: Dryout probability, Overflow
probability, and Overheating probability.

In literature, e.g. [27, 75], the heated tank benchmark has five versions. In version 1, Pumps
and Valve have constant failure rates. In version 2, Pumps and Valve have mode dependent
failure rates. In version 3, the Controller in version 1 may forget to implement its switching
decision. In version 4, the Pumps and Valve in version 1 are repaired. In version 5, the failure
rates in version 1 depend on the liquid temperature. Because version 4 involves repairs of failed
pumps and valve, its Dryout probability is much lower than for the other versions. Therefore
in [4], version 4 has been selected as most suitable rare event estimation benchmark. In [2]
relevant rare event extensions of this version have been identified. Table 1 gives an overview of
these combinations, including the version number used within ARCH, and the relation to the
version numbers in literature.
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Table 1: Heated Tank benchmarks defined in [2].

ARCH version 4.0 4.I 4.II 4.III 4.IV 4.V
Based on version(s) in literature 4 2+4 3+4 5+4 4 4

Pumps and Valve failure Y Y Y Y Y Y
Pumps and Valve repair Y Y Y Y Y Y

Mode dependent failure rate - Y - - - -
Communication failure - - Y - - -

Temperature dependent failure rate - - - Y - -
Non-exponential failure / repair rate - - - - Y -
Brownian motion in Heat source - - - - - Y

In [2] version 4.0 has formally been described in the model specification language SDCPN,
and in the languages Modest and HPnGs that are used by modes and HYPEG respectively.
In [4, 2, 3], Heated Tank version 4.0 has been evaluated by the tools modes and HYPEG and by
the framework SDCPN&IPS. In [1], Heated Tank version 4.III has been evaluated by the tools
FIGARO and PyCATSHOO, and by the framework SDCPN&IPS.

3.3 Stochastic Van der Pol Oscillator

The discrete-time state evolution of the oscillator is given by:

x1(k + 1) = x1(k) + x2(k)τ + w1(k)

x2(k + 1) = x2(k) + (−x1(k) + (1− x1(k)
2)x2(k))τ + w2(k), (1)

where the sampling time τ is set to 0.1s and (w1(k), w2(k)) is a pair of stochastic noise signals
at time k drawn from a uniform density function with a compact support D = [−0.02, 0.02]×
[−0.02, 0.02].

Consider a safety specification for staying within the working area A := [−5, 5] × [−5, 5].
This property is denoted by □A, where □ should be read as ‘always’. Consider also the Büchi
specification □♢B, which means repeatedly reaching the target set B := [−1.2,−0.9]× [−2.9,−2].
The notation □♢ should be read as ‘always eventually’. This property means the set B should
be always visited in the future of the trajectory, and equivalently requires visiting B infinite
number of times along a trajectory.

Problem 1 (Qualitative Verification). Compute the set of initial states from which the probability
of satisfying the specification □A ∧□♢B under dynamics (1) is equal to 1.

Problem 2 (Quantitative Verification). Compute the probability of satisfying the specification
□A ∧□♢B under dynamics (1) as a function of initial state.

Since some of the tools are not able to handle □♢B, the following modified dynamical system
can be used together with a reachability specification that gives an upper-bound for probability
of satisfying □A ∧□♢B. Let us denote the right-hand side of (1) by f(x(k)) + w(k). Define a
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new dynamical system with state space A ∪ {ϕ1, ϕ2} such that ϕ1 and ϕ2 are sink states and

x(k + 1) =



f(x(k)) + w(k) if w(k) ∈ A\f(x(k)) and x(k) ̸∈ B

ϕ1 if w(k) ̸∈ A\f(x(k)) and x(k) ̸∈ B

f(x(k)) + w(k) if w(k) ∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 0

ϕ1 if w(k) ̸∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 0

ϕ2 if w(k) ∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 1

ϕ2 if w(k) ̸∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 1,

(2)

where ν(k) are independent and identically distributed Bernoulli random variables with success
probability (1− ζ).

Problem 3 (Quantitative Reachability). Compute the probability ♢ϕ2 under dynamics (2).

The solution of Problem 3 is an upper bound for Problem 2. Moreover, it converges to the
solution of Problem 2 when ζ → 1−.

The dynamics in (1) can be extended to include inputs for shaping the limiting behaviour of
the system. Consider the non-autonomous version of the oscillator dynamics given by:

x1(k + 1) = x1(k) + x2(k)τ + w1(k)

x2(k + 1) = x2(k) + (−x1(k) + (1− x1(k)
2)x2(k))τ + u(k)w2(k). (3)

Problem 4 (Quantitative Synthesis). Compute a policy for dynamical system (3) that maximises
the probability of satisfying □A ∧□♢B.

Instead of multiplicative noise it is also interesting to consider additive Gaussian noise. To
this end, consider the following version of the oscillator dynamics

x1(k + 1) = x1(k) + x2(k)τ + w1(k)

x2(k + 1) = x2(k) + (−x1(k) + (1− x1(k)
2)x2(k))τ + u(k) + w2(k), (4)

with w ∼ N (0, 0.2I2), where I2 denotes the two-dimensional identity matrix.

Problem 5 (Quantitative Synthesis). Compute a policy for dynamical system (4) that maximises
the probability of satisfying the scLTL specification A UB.

4 New Benchmarks

In this section we present novel benchmarks or variants of old benchmarks that have been
proposed during the competition which allow for new outcomes.

4.1 Package Delivery

With this case study we aim at showing if the tools can also be used to synthesize controllers
for more complex specifications, i.e., for non-acyclic DFAs. For this, we consider the following
setup:
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Consider a simple time-discrete system with a continuous state x, control input u, and
disturbance w. Assume that the system’s dynamics are captured by the following equations:[

ẋ1

ẋ2

]
︸︷︷ ︸
ẋ(t)

= A

[
x1

x2

]
︸︷︷ ︸
x(t)

+B

[
u1

u2

]
︸︷︷ ︸
u(t)

+

[
w1

w2

]
︸ ︷︷ ︸
w(t)

, (5)

y(t) = x(t), (6)

with states x ∈ X = [−6, 6]× [−6, 6] and where the dynamics matrices are given by

A =

[
0.9 0
0 0.8

]
B =

[
1.4 0
0 1.4

]
,

and the noise w is normally distributed with mean
[
0; 0

]
and variance 0.2I2, that is w ∼

N (0, 0.2I2). These equations capture the dynamics of the agent in a package delivery scenario.
For this, we define three regions p1, p2, and p3 as follows: p1 := [5, 6]×[−1, 1], p2 := [0, 1]×[−5, 1]
and p3 := [−4,−2]× [−4,−3]. The scenario is as follows: the agent can pick up a parcel at p1
and must deliver it to p3 (c.f. Fig. 1). If the agent visits p2 while carrying a package, he loses
the parcel and has to restart by picking up a new parcel at p1. This corresponds to the scLTL
specification ♢(p1 ∧ (¬p2 U p3)) whose DFA is given in Fig. 2.

Problem 6. Compute a policy for dynamical system (5) that maximises the probability of
satisfying the scLTL specification ♢(p1 ∧ (¬p2 U p3)).

p1

p3

p2

Figure 1: Regions defined over the output
space

q0start q1 q2

¬p1

p1

¬p2 ∧ ¬p3

p2

p3 ∧ ¬p2

1

Figure 2: DFA

4.2 Van der Pol Oscillator in Continuous time

We define a specification on this system that is suitable for rare event estimation. We consider
three polytopes

Pi = {X ∈ R2 |AX ≤ Bi}, i ∈ {out,mid, in},
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Pout (3.2351,-0.8270) (1.1919,4.6216) (-3.2351,0.8270) (-1.1919, -4.6216)
Pin (1.3338,0.6432) (1.0500,1.4000) (-1.3338,-0.6432) (-1.0500,-1.4000)
Pmid (2.2845,-0.0919) (1.1209,3.0108) (-2.2845,0.0919) (-1.1209,-3.0108)

Table 2: Vertices of the polytopes in the specification (8) of the Van der Pol Oscillator for rare
event estimation.

in the two-dimensional space. The two polytopes Pout and Pin specify a region around the limit
cycle of the system. The Pin polytope specifies a area between the previous two polytopes. The
dynamics of the system in continuous time is as follows

dx1 = x2dt+ σ1dW1

dx2 = (−x1 + (1− x2
1)x2)dt+ σ2dW2, (7)

with W1 and W2 being independent standard Brownian motion.

Problem 7 (Rare event computation). Compute the probability that the trajectory goes outside
of the region between Pout and Pin around the limit cycle in the time internal [0, T ] after entering
the polytope Pmid:

t1 := inf{t;Xt ∈ Pmid}
t2 := inf{t > t1; (Xt ∈ Pin) ∨ (Xt ∈ R2/Pout)}
compute or estimate P{t2 ≤ T}. (8)

The following numerical values can be used: time horizon T = 13, initial state X0 = [4, 2]T ,

A =


+α1 −1
−α2 +1
−α1 +1
+α2 −1

 , Bout =


−β1

+β2

−β1

+β2

 , Bin =


−γ1
+γ2
−γ1
+γ2

 , Bmid = (Bout +Bin)/2,

where α1 = 6/7, α2 = −8/3, β1 = −2.9, β2 = 7.2, γ1 = −1, γ2 = 4.5. Sample trajectories of the
system is plotted in Figure 3 together with polytopes Pout (in black), Pin (in green), Pmid (in
blue), and the limit cycle for the deterministic version of the system (in blue). The diffusion
terms are σ1 = σ2 = 0.2. Applying a standard Monte Carlo approach to this problem with
10, 000 trajectories gives the estimate 0.027 for the probability in (8). To reduce this probability
further, we can change the values of βi and γi, which are intercepts of the lines in the polytopes,
to enlarge the region around the limit cycle (the region between the two polytopes). For this
purpose, we choose β1 = −3.6, β2 = 7.8, γ1 = −0.5, and γ2 = 4.2. Table 2 summarises the
vertices of the polytopes.

4.3 Comparison over minimal examples

The idea of this benchmark is to create minimal examples of stochastic hybrid automata, which
fit several formalisms. This allows us to compare different model characteristics and see how
different tools are able to tackle these. Hence, the following cases include instances of discrete
nondeterminism and race conditions between random variables, stochastic noise and time locks.
Case A (see 4.3.1) is the most simple one which contains two random variables modeling random
transition delays. The corresponding property checks whether one of the other locations is
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Figure 3: Sample trajectories of the stochastic Van der Pol Oscillator starting from initial state
X0 = [4, 2]T . Most of the trajectories remain between the outer polytope Pout (black) and the
inner polytope Pin (green).

reached before a specific time. Case B (see 4.3.2) extends case A by a conflict between two
urgent discrete transitions. We consider different ways to resolve this discrete nondeterminism.
Case C (see 4.3.3) is based on case B and adds stochastic noise to the automaton. Case D (see
4.3.4) is again an adaption of case A, where the time spent in the initial location is restricted by
an invariant. This leads to a potential time lock, which different tools and approaches tackle
differently.

All cases contain two random variables X1 and X2, which model the initial conflict between
two transitions as a race condition. Initially, these random variables are exponentially distributed,
however, different tools are also able to compute results for different distributions.

4.3.1 Case A

The automaton of this minimal example contains three locations and one continuous variable x.
From the initial location ℓ0, two transitions are enabled, which both correspond to a random
variable. Hence, the time delay in location ℓ0 depends on these random variables. The transition
to location ℓ1 corresponds to random variable X1. Location ℓ2 is reached with the expiration of
another random variable X2. An illustration is given in Figure 4.

To compare probabilities, we define property ϕ, which checks if the valuation of the continuous
variable x reaches −1 before a total time of 10:

ϕ = F≤10(x ≤ −1).

Due to the derivatives of x in the three locations, x can only reach the specified value, if
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ℓ0

ẋ = 2

x := 0

ℓ1

ẋ = 0

Pr(X1 ≤ X2)

ℓ2

ẋ = −3

Pr(X2 ≤ X1)

X1 X2

Figure 4: Case A. Simple stochastic hybrid automaton with two random variables.

location ℓ2 is reached, which can only happen, if X2 < X2. Due to the time bound of the
property, location ℓ0 has to be left within 5.8 time units. The probability of ϕ hence equals
Pr(X2 < X1) · Pr(X2 ≤ 5.8).

4.3.2 Case B

In this case, the initial stochastic choice between location ℓ1 and ℓ2 is the same as in case A.
However, in location ℓ2 the variable x does not evolve and the goal valuation for x cannot be
reached here. Instead, there is an invariant connected to an additional continuous variable y,
which evolves with rate 1. Due to this invariant and the guards of both outgoing edges, ℓ2 has
to be left after exactly 2 time units. As two transitions are enabled at t = 2, there is a conflict
between the transitions to location ℓ3 and ℓ4. An illustration of case B is provided in Figure 5.

We want to check whether the continuous variable x reaches the valuation of −1 within a
time bound of 10 (as before) and with a time bound of 12:

ϕ′ = F≤12(x ≤ −1).

When maximizing, the probability to fulfil property ϕ′ should be equal to the probability
of property ϕ for case A, since there is an additional delay of two time units in location ℓ2. If
the discrete non-determinism is resolved probabilistically and both transitions have the same
probability, the probability is expected to be half the one computed for case A. Accordingly, for
property ϕ, the probability is expected to be smaller, since there is less time to reach the goal
valuation due to the time delay in ℓ2.

4.3.3 Case C

The automaton for case C is very similar to the one in case B (see Figure 5). However, we
assume the evolution of y in location ℓ2 to be stochastically disturbed by a N (0, 2) distributed
random variable n1. Thus ẏ = 1 + n1.

Again, we propose to compute results for formulas ϕ and ϕ′.
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ℓ0

ẋ = 2
ẏ = 0

x := 0; y := 0

ℓ1

ẋ = 0
ẏ = 0

Pr(X1 ≤ X2)

ℓ2

ẋ = 0
ẏ = 1
y ≤ 2

Pr(X2 ≤ X1)

ℓ3

ẋ = 0
ẏ = 0

ℓ4

ẋ = −3
ẏ = 0

X1
X2

y = 2 y = 2

Figure 5: Case B. Simple stochastic hybrid automaton with two random variables as well as a
pair of an invariant and corresponding guards.

4.3.4 Case D

This example is an extension of case A, hence, the time spent in location ℓ0 depends on the two
random variables X1 and X2. However, there is an invariant in x ≤ 6 in the initial location.
This leads to the case that none of the transitions can be taken if both delays corresponding to
the random variables are larger than 3, which results in a time lock. The illustration is given in
Figure 6.

To compare how different approaches and tools handle this situation, we want to compute
the probability of the established formula ϕ:

ϕ = F≤10(x ≤ −1).
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ℓ0

ẋ = 2
x ≤ 6

x := 0

ℓ1

ẋ = 0

Pr(X1 ≤ X2)

ℓ2

ẋ = −3

Pr(X2 ≤ X1)

X1 X2

Figure 6: Case D. Simple stochastic hybrid automaton with an invariant resulting in a time lock.

Table 3: Tool-benchmark matrix: We indicate the year a tool was first applied to a given
benchmark. Shortkeys: automated anesthesia (AS), building automation (BA), heated tank
(HT), water sewage (WS), stochastic Van der Pol (VP), integrator chain (IC), autonomous
vehicle (AV), patrol robot (PR), Geometric Brownian Motion (GB), minimal examples (ME),
package delivery (PD).

Tool
Benchmarks

AS BA HT WS VP IC AV PR GB ME PD

FAUST2 2018 2018 2020
StocHy 2019 2019 2020
SReachTools 2018 2018 2020
AMYTISS 2020 2020 2020 2020 2020 2021
hpnmg 2020
HYPEG 2019 2020 2022
Mascot-SDS 2020 2021
modes 2018 2020 2022
ProbReach 2020
prohver 2020 2020 2022
RealySt 2022
SDCPN&IPS 2019 2021
SySCoRe 2021 2022 2022
Figaro 2021
PyCATSHOO 2021
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Table 4: Overview of benchmark properties. Shortkeys: Time horizon: Finite (F) or Infinite
(I); Type of control: Switching (S), Drift (Dr), or Multiple (M); Time line: Discrete (D) or
Continuous (C); State space: Continuous (C) or Hybrid (H); Drift in ODE/SDE: Linear (L),
Piecewise Linear (pL), or Nonlinear (NL); Noise : Brownian motion (BM) or independently and
identically distributed (iid)

Aspect
Benchmarks

AS BA HT WS VP IC AV PR GB ME PD

Liveness/deadlock ✓ ✓
Prob. reachability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Control synthesis ✓ ✓ ✓ ✓ ✓ ✓
Min-max ✓ ✓
Time horizon F F F F I F F I F F I
Type of control S M Dr Dr M M
Time line D D C C D D D D C C D
State space C H H H C C C H C H C
Drift in ODE/SDE pL NL NL pL NL L NL NL L pL L
Noise in SDE Fixed Fixed Fixed Fixed Fixed Fixed State State Fixed
Noise: BM or i.i.d. iid iid iid iid iid iid BM iid iid
Guards ✓ ✓ ✓ ✓ ✓
Rate spont. jumps Fixed State Fixed Fixed State
Size spont. jumps Fixed Fixed Fixed Fixed Fixed
Environment ✓ ✓ ✓ ✓
Subsystems ✓ ✓ ✓
Concurrency ✓ ✓ ✓
Synchronization ✓ ✓
Shared variables ✓ ✓
# discr. states 5 576 35 2 3-5 1
# continuous vars. 3 7 2 11 2 50 7 4 1 1-2 2
# model params. 24 19 15 36 3 8 11 2 5 7 6

5 Friendly Competition – Setup and Outcomes

5.1 Building automation benchmark results

Table 5 compares the performance of the tools based on their run time and the highest stochastic
reach probability starting from any state in the initial safe set for the building automation
benchmark. The benchmark defines a stochastic viability problem for a four-dimensional and
seven-dimensional Gaussian-perturbed LTI system model (see Section 3.1).

SySCoRe has been applied to the 7-dimensional version of this benchmark. SySCoRe uses
both model reduction and space discretization to compute a bound for the reach probability.
The dimension of the system is reduced from 7 to 2. The lowerbound on the Maximum reach
probability is equal to 0.9035 with the total run time 83.35 seconds. These values are obtained
by setting (ϵ, δ) = (0.35, 0.0161).

127



ARCH-COMP22 Stochastic Models Abate et. al.

Table 5

Property StocHy AMYTISS SySCoRe

Case 1, 4-dimensional system
Run time on common CPU(sec) 7.17 0.92 not tested
Maximum reach probability ≥ 0.99± 0.05 ≈ 0.99 not tested

Case 2, 7-dimensional system
Run time on common CPU (sec) 335.876 12.5 83.35

Maximum reach probability ≥ 0.8± 0.23 ≈ 0.8 ≥ 0.9035

5.2 Heated Tank benchmark results

Both in ARCH2018, ARCH2019 and ARCH2020 the focus has been on the estimation of the
dryout probability for Heated Tank version 4.0 [4, 2]. Within ARCH2021 the objectives has
been to evaluate Heated Tank version 4.III. The extension of the formal model specification
of HT version 4.0 to HT version 4.III consists of the following three extensions: i) Change in
differential equation for the temperature xT,t; ii) Temperature dependent failure rates of Valve
and Pumps; and iii) Change in model parameter values. None of these extensions impact the
graphical Petri Net model of version 4.0 [2]. The details of these exyensions have been specified
in subsection 5.4 of [1]. In 2021 and 2022, Heated Tank version 4.III has been evaluated by
FIGARO, PyCATSHOO, SDCPN&MC, SDCPN&IPS, SDCPN&IS, and HYPEG. The results
obtained for Dry-out probability are given in Table 6Table 6 presents the results obtained in
2021.It should be noted that in case of reaching Boiling prior to reaching the Dryout level, the
simulations are continued; this is indicated as P-Dryout non-stop.

The FIGARO tools used for HT 4.III are: FigaroIDE to build a small knowledge base, KB3
to input the system graphically, the Figaro0 language for a self-contained model, and YAMS
for running Monte Carlo simulations. For the numerical solution of the differential equations a
forward Euler method is used with a fixed time step. Conducting 1 million runs asked 3 h53
min on an Intel Core i5-6200U, 2.3Ghz Processor with a time step of 0.5h, and 18h40mn with a
time step of 0.1h. The reduction of the time step increases precision, this is why Table 6 only
contains the result obtained with the time step of 0.1h. But it is interesting to note that taking
a larger time step leads to an overestimation of the probability (9.4× 10−5 with time step 0.5h).

The PyCATSHOO model for the HT 4.III is based on four concrete python classes: Tank,
Pump, Valve and ThermalSource. Each one of these classes is modelled by automata, by a set
of state variables, and by equations that govern these variables. These classes provide message
boxes where incoming and outgoing channels are used as a means of communication between
the interconnected objects in the system. As the PyCASTHOO acceleration mechanism [25] is
still under development, we first used straightforward Monte Carlo simulations. This gave us a
comparison benchmark to confirm the result of our importance sampling (IS) algorithm. By
using an EDF high-performance computer, it was feasible to conduct 1 million straightforward
MC runs in 19 seconds. On a laptop with i7-8750H CPU @ 2.2 GHz, this required about 50mn.

The SDCPN model for HT 4.III has been realized by extending the SDCPN model for
HT 4.0 that has been used in [2]. For the numerical evaluation of the differential equations
in between stopping times, a forward Euler method is used with a time step of 0.1 hour (or
less). The number of MC runs is 10 million. The number of IPS runs is 100, and the number
of particles per IPS run is 100 thousand. The MC and IPS runs have been conducted on an
ASUS RS700A-E9-RS4 with an AMD Epyc 7551 processor having 32 cores and 64 threads and
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Table 6: P-Dryout for Heated Tank version 4.III: estimated by FIGARO, PyCATSHOO, SDCPN
& MC and SDCPN & IPS (source [1])

Method
FIGARO PyCATSHOO SDCPN&MC SDCPN&IPS

Measure
Variance
reduction

No No IS No IPS

Estimated
P-Dryout
non-stop

5.6× 10−5 2.40× 10−5 2.86× 10−5 1.98× 10−5 1.99× 10−5

Confidence
interval

±1.46× 10−5

(95%)
±0.96× 10−5

(95%)
±0.28× 10−5

(95%)
±0.041× 10−5

(95%)
Simulation

effort
106 runs 106 runs 15000 runs 107 runs

100 x IPS a
100,000 part.

Table 7: Comparison of different methods in simulating spontaneous jumps in IPS based
estimation of P-Dryout non-stop for the Heated Tank version 4.III.

Method in simulating spontaneous SDCPN&IPS SDCPN&IPS SDCPN&IPS
jumps during IPS based estimation Method 0 Method 1 Method 2

Variance
reduction

IPS IPS IPS

Estimated P-Dryout non-stop 2.07× 10−5 1.99× 10−5 1.97× 10−5

Confidence interval (95%) ±0.149× 10−5 ±0.041× 10−5 ±0.039× 10−5

Simulation
effort

100 x IPS a
100,000 part.

100 x IPS a
100,000 part.

100 x IPS a
100,000 part.

Computer time 1.42 hours 2.52 hours 1.32 hours

256 GB of RAM. The 10 million MC runs asked 1.37 hour; the 100 IPS runs asked 2.52 hour.
Comparison of the estimation results of SDCPN&MC versus SDCPN&IPS shows that their
estimated P-Dryout probabilities are almost the same, though the 95% uncertainty interval of
IPS is about a factor 7 smaller than it is for MC.

The estimated P-Dryout probabilities by PyCATSHOO, SDCPN&MC and SDCPN&IPS
fall outside the 95% confidence interval of FIGARO. The likely explanation is that the former
three used a discrete event simulation method, i.e. to apply a numerical integration method in
between two successive stopping times of the process to be simulated, whereas FIGARO used
fixed time steps of 0.1 hour, which means that a stopping time of the process to be simulated
may be somewhere halfway an integration time step instead of being at the begin or end. This
difference, and also the difference between the two results obtained with the same FIGARO
model with different time steps shows that the apparently simple Heated tank benchmark is
sensitive to numerical approximation.

Table 7 presents new benchmark results obtained in 2022 using SDCPN&IPS. These novel
results show that the specific Monte Carlo simulation method that is used to generate spontaneous
jumps may have significant effect on the IPS results for the Heated Tank 4.III benchmark. In
simulating a spontaneous jump in a PDMP or GSHS, the common practice (Method 0) is to draw
a random delay sample from the probability density function of the next spontaneous jump. This
random delay sample forms a realization of the remaining time until the next spontaneous jump.

129



ARCH-COMP22 Stochastic Models Abate et. al.

During the subsequent simulation, this remaining time sample counts down in time, and upon
reaching zero remaining time, the spontaneous jump is realized in the Monte Carlo simulation.
Both [8] and [24] have shown that this common approach (Method 0) in simulating spontaneous
jumps does not work well in combination with IPS. Two general methods in mitigating this
problem are:

• Method 1: To draw a random delay sample, and to start counting the time passed since this
drawing. If the time counter equals the value of the random sample, then the spontaneous
jump is implemented in the MC simulation [8].

• Method 2: To apply the common method, i.e. draw random delay samples and discount
time until level zero has been reached, though draw new random delay samples at the
beginning of each new IPS cycle [58].

Method 1 has been used to get the results in the SDCPN&IPS column in Table 6. Table 7
shows what happens when instead of Method 1, the common Method 0 and the recent Method
2 are used. The results in Table 7 show that the common Method 0 suffers from a significant
factor less good IPS variance reduction than methods 1 and 2 do. Regarding variance reduction,
Method 1 and Method 2 perform similarly well. However, an advantage of Method 2 over
Method 1 is that its computational load is significantly lower (1.32 hours simulation time for
Method 2 versus 2.52 hours for Method 1).

5.3 Van der Pol Oscillator benchmark results

Tool SySCoRe has been applied to Problem 5. To synthesize a controller for a nonlinear system,
SySCoRe performs a piecewise-affine approximation and quantifies the additional error. This
method is discussed in detail in [76]. The total computation time on CodeOcean is 3690 seconds.

5.4 Package Delivery

Tool SySCoRe has been applied to the package delivery benchmark as described in Sec. 4.1. The
tool generates a satisfying controller in 12.93 seconds. Fig. 7 displays the obtained satisfaction
probability conditioned on the initial state.

Figure 7: Lower bound on the satisfaction prob-
ability as a function of the initial state for the
package delivery study.

Figure 8: Results SySCoRe

Run time on common CPU(sec) 12.929
Maximum reach probability 0.6632
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5.5 Minimal examples results

For the computation of results for the minimal examples, random variables X1 and X2 can
follow different distributions. We compared results for two sets of continuous distributions:

(1) X1 ∼ exp(0.1), X2 ∼ exp(0.08),

(2) X1 ∼ exp(0.1), X2 ∼ N (5, 2).

In (1), both random variables follow an exponential distribution; the time delay in location ℓ0
can hence be modeled by one random variable exp(0.1 + 0.08). This is not possible in (2), as X1

follows an exponential distribution and X2 a folded normal distribution.
Results for (1) are presented in Table 8 and for (2) in Table 9. Results for case C have not

been included, since none of the participating tools are able to deal with stochastic noise in the
evolution of continuous variables.

Each row in the table gives results for one tool with one specific method of execution. In
column Method, the different modes are indicated with keywords, which are explained seperately
for every tool. Also, the handling of the nondeterminism in the model is indicated here: “max”
and “min” refer to an optimization of the nondeterminism, i.e. probabilities are maximized
resp. minimized; and “prob” means, that the nondeterminism is resolved probabilistically.

Computation HYPEG was used to estimate the probabilities of the fully stochastic models A
and D. In the default setting, HYPEG resolves nondeterminism (contained in case B) uniformly
which is included in the first row (indicated by “SMC”). By applying Q-learning (indicated
by “Q-learn”), nonprophetic memoryless schedulers are trained to maximize or minimize the
probability of ϕ and ϕ′. We performed 20000 training runs with a discretization truncating
the continuous variables after the first decimal place which is required and used for learning
only. Afterwards, we used statistical model checking with the learned scheduler to estimate the
probability. Since cases A and D do not exhibit nondeterminism, applying Q-learning results in
the same method as indicated in the first row and hence we omitted these computation results.
In all cases, the confidence level was set to 95% with a half interval width of 0.005.

modes has been run in four modes concerning its handling of nondeterminism: Cases A and
D are fully stochastic, and thus modes needs no further configuration to handle these models.
It would by default abort upon detecting nondeterminism; as expected, it does not do so in
these cases, correctly producing estimates of the probabilities. For case B, we first resolve
the nondeterministic choice uniformly at random (i.e. as a 50/50 random choice), resulting
in an estimate of some probability between the maximum and minimum. In the tables, we
include these two configurations in the same row, marked with the “probabilistic” resolution of
nondeterminism. We then apply LSS to case B, sampling 10000 schedulers from the space of
deterministic history-dependent schedulers (rows marked with “hist” in the tables), and from
the space of all deterministic memoryless schedulers (rows marked with “ml”). While the latter
is in principle less powerful [28], reducing the sampling space may also increase the likelihood of
finding a good scheduler among the remaining ones, leading to a better probability overall. We
note that modes checks both properties of case B in one go; thus the runtime R indicated for
each is actually the total runtime for both properties (marked as “<Rs” for emphasis). The
statistical evaluation of modes was configured to perform as many runs as necessary to achieve
an absolute error of at most ±0.01 in 95% of the tool invocations. To achieve repeatable results,
however, we fixed the seeds for modes’ pseudo-random number generators.

For prohver, we applied the new automated interval refinement method to deal with the
continuous random variables. Where both are exponentially distributed, we also use two variants
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of the model: One where the variables have been merged into one with the sum of the rates
(indicated by “M” in Table 8), and one where they remain separate (indicated by “S”). We used
the following initial intervals:

• [0, 10), [10,∞) for the exponential sampling in the merged exponential variant,

• [0, 5), [5,∞) for each of the two variables in the split variant with two exponentials, and

• [0, 5), [5,∞) for the exponential and [0, 5), [5, 10), [10,∞) for the folded normal sampling
in the variant with the folded normal distribution.

For each case, we instructed prohver to refine to at most 100 intervals, using three different
splitting factors: we split the best interval in each step into 2, 4, or 8 new intervals. Like modes,
prohver checks both properties of case B in one tool invocation, so we mark the runtimes in the
same way.

RealySt is specifically designed to resolve nondeterminism prophetically in rectangular
automata with random clocks. The tool can also compute reachability probabilities in fully
stochastic models. The minimal examples are all singular automata with random clocks, where
case B exhibits discrete nondeterminism via a choice between two transition jumps. Reachable
state sets are computed exactly in convex polytope representation. Then, the dedicated
integration method via Monte Carlo Vegas is called for a predefined number of integration
samples and a fixed integration bound. A larger number of integration samples reduces the
statistical error (indicated by “stat:”). The integration bound limits the domain over which is
integrated and all probability mass after the integration bound will be cut off. The maximal cut
off probability mass is stated as a max error (indicated by “max:”). We used 100000 integration
samples and an integration bound of 100. In contrast to prohver, we do not need to further
discretise the domain of the random variables. However, the performance of RealySt highly
depends on the dimension of the underlying state-space, which is given by the sum of the
continuous and the random variables.

Platforms Computation of results have been performed with different machines. HYPEG has
been executed on a machine with an AMD Ryzen 7 PRO 5850U CPU and 32 GB of RAM. modes
and prohver ran on an Intel Core i7-1185G7 system with 32GB of RAM inside the Windows
Subsystem for Linux on 64-bit Windows 10. RealySt was executed on a machine with a 2.50GHz
Intel i5-7200U CPU and 16 GB of RAM.

Discussion As for the Modest Toolset, we see in the results that modes is effective and efficient
in the fully stochastic cases. For the nondeterministic model, LSS works well—but we caution
that this is on an extremely simple model, where it is relatively likely to randomly sample a
good scheduler. Where modes with LSS underapproximates the maximum probability, prohver
overapproximates it. By comparing with the other tools, we find that it manages to find good
approximations in most cases, albeit at a somewhat higher computational effort. The new
interval refinement technique, while conceptually simple, works very well—though again, these
are extremely simple models. In setting up the experiments, we in fact noticed that the procedure
is very sensitive to the choice of initial intervals, terminating too early for some choices and
taking a very long time to obtain any improvements for other choices.

Comparing statistical model checking (SMC, prob) with HYPEG and modes, it can be seen
that results align well and that HYPEG is faster. In case B, HYPEG maximized and minimized
the probabilities. When minimizing, overapproximations are computed, in case of maximizing,
similar to modes with LSS, underapproximations are obtained. The computed confidence
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intervals in Table 8 of HYPEG for the maximum case overlap the confidence intervals obtained
by modes with LSS and memoryless schedulers, regardless of the M or S model variant. The
same behaviour can be seen in Table 9, where again the results for the maximizing memoryless
schedulers match.

As expected, prohver overapproximates the results computed by RealySt. For all cases shown
in Table 8, the difference between the RealySt result and the best prohver result (ref-8) lies
in the order of 10−3, whereas the RealySt error is in the order of 10−4. The results shown in
Table 9 are computed for the combination of a folded normal and exponential distribution. Here,
the difference between the RealySt results and the best prohver result (ref-8) is in the order of
10−1, while the RealySt error is in 10−5. In both scenarios, RealySt is much faster. All results
have been computed in less than a second by RealySt, which is significantly faster than prohver.

When maximizing the probability that ϕ′ holds in case B, both analytical tools compute the
same values as for the probability that ϕ holds in case A. This was to be expected, as the time
bound in ϕ′ is two time units larger and hence compensates the additional delay in case B.

Comparing the results of all tools in the fully stochastic cases A and D, the results of
RealySt lie in the respective confidence intervals of modes and HYPEG and prohver provides
overapproximations which lie in Table 8 in some configurations also within the confidence
intervals which is not the case in Table 9. In case B, similar results can be obtained, even though
RealySt used prophetic schedulers and the other tools nonprophetic schedulers. This lies in the
simplicity of the models, as the additional information on the random variables does not have
an impact on the optimal decisions.
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Table 8: Results for minimal examples with random variables X1 and X2 following distributions
exp(0.1) and exp(0.08). Results contain the computed probability, error(s) or confidence interval
if available, and computation times.

Tools Case / Formula

Tool Method A / ϕ B / ϕ B / ϕ′ D / ϕ

HYPEG

SMC,

prob

0.289936
±0.005 @ 95%

0.268s

0.123475
±0.005 @ 95%

0.168s

0.146434
±0.005 @ 95%

0.213s

0.185348
±0.005 @ 95%

0.195s

Q-learn,

max

0.250857
±0.005 @ 95%

0.474s

0.289416
±0.005 @ 95%

0.547s

Q-learn,

min

0.000000
±0.005 @ 95%

0.289s

0.000000
±0.005 @ 95%

0.313s

modes

SMC,

prob, M

≈ 0.284034
±0.01 @ 95%

0.860s

≈ 0.119730
±0.01 @ 95%

< 0.91s

≈ 0.136825
±0.01 @ 95%

< 0.91s

≈ 0.188073
±0.01 @ 95%

0.91s

LSS/hist,

max, M

≈ 0.225664≤max

±0.01 @ 95%
< 1.70s

≈ 0.241987≤max

±0.01 @ 95%
< 1.70s

LSS/ml,

max, M

≈ 0.256704≤max

±0.01 @ 95%

< 1.88s

≈ 0.291650≤max

±0.01 @ 95%

< 1.88s

SMC,

prob, S

≈ 0.289604
±0.01 @ 95%

0.91s

≈ 0.122316
±0.01 @ 95%

< 0.91s

≈ 0.141631
±0.01 @ 95%

< 0.91s

≈ 0.189252
±0.01 @ 95%

0.90s

LSS/hist,

max, S

≈ 0.222256≤max

±0.01 @ 95%

< 1.60s

≈ 0.267302≤max

±0.01 @ 95%

< 1.60s

LSS/ml,

max, S

≈ 0.254877≤max

±0.01 @ 95%
< 1.81s

≈ 0.285518≤max

±0.01 @ 95%
< 1.81s

prohver

ref-2,

max, M

0.317109≥max

0.99s

0.317109≥max

< 1.35s

0.317109≥max

< 1.35s

0.206551≥max

2.33s

ref-4,

max, M

0.288125≥max

2.97s

0.256255≥max

< 6.18s

0.288125≥max

< 6.18s

0.206551≥max

1.41s

ref-8,

max, M

0.295575≥max

2.31s

0.270398≥max

< 4.71s

0.295575≥max

< 4.71s

0.187220≥max

2.33s

ref-2,

max, S

0.297317≥max

28.1s

0.265495≥max

< 61.6s

0.297317≥max

< 61.6s

0.191175≥max

29.3s

ref-4,

max, S

0.292234≥max

2603s

0.253392≥max

< 5295s

0.292234≥max

< 5295s

0.187469≥max

2341s

ref-8,

max, S

0.295300≥max

1152s

0.254787≥max

< 2297s

0.295300≥max

< 2297s

0.189655≥max

1020s

RealySt max

0.288236
stat: 4.651 · 10−4

max: 3.808 · 10−4

0.307s

0.250016
stat: 3.239 · 10−4

max: 3.808 · 10−4

0.680226s

0.288236
stat: 4.651 · 10−4

max: 3.808 · 10−4

0.362251s

0.185280
stat: 2.061 · 10−4

max: 3.808 · 10−4

0.351297s
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Table 9: Results for minimal examples with random variables X1 and X2 following distributions
exp(0.1) and N (5, 2). Results contain the computed probability, error(s) or confidence interval
if available, and computation times.

Tools Case / Formula

Tool Method A / ϕ B / ϕ B / ϕ′ D / ϕ

HYPEG

SMC,

prob

0.446308
±0.005 @ 95%

0.373s

0.153738
±0.005 @ 95%

0.195s

0.225403
±0.005 @ 95%

0.298s

0.129474
±0.005 @ 95%

0.161s

Q-learn,

max

0.308441
±0.005 @ 95%

0.586s

0.448878
±0.005 @ 95%

0.669s

Q-learn,

min

0.000000
±0.005 @ 95%

0.35s

0.000000
±0.005 @ 95%

0.334s

modes

SMC,

prob

≈ 0.445460
±0.01 @ 95%

0.90s

≈ 0.155145
±0.01 @ 95%

< 0.88s

≈ 0.222971
±0.01 @ 95%

< 0.88s

≈ 0.130161
±0.01 @ 95%

0.91s

LSS/hist,
max

≈ 0.298658≤max

±0.01 @ 95%
< 1.80s

≈ 0.402019≤max

±0.01 @ 95%
< 1.80s

LSS/ml,
max

≈ 0.299426≤max

±0.01 @ 95%

< 1.80s

≈ 0.447541≤max

±0.01 @ 95%

< 1.80s

prohver

ref-2,
max

0.734016≥max

1.01s

0.500000≥max

< 1.68s

0.734016≥max

< 1.68s

0.500000≥max

0.54s

ref-4,
max

0.655567≥max

9.12s

0.500001≥max

< 20.8s

0.655567≥max

< 20.8s

0.158979≥max

9.65s

ref-8,
max

0.655566≥max

22.38s

0.500000≥max

< 49.4s

0.655566≥max

< 49.4s

0.164365≥max

21.2s

RealySt max

0.448211
stat: 8.292 · 10−5

max: 2.061 · 10−9

0.18043s

0.308558
stat: 5.221 · 10−5

max: 2.061 · 10−9

0.115976s

0.448211
stat: 8.292 · 10−5

max: 2.061 · 10−9

0.108529s

0.130280
stat: 1.766 · 10−5

max: 2.061 · 10−9

0.792725s
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6 Conclusions

The evaluation of benchmarks this year featured six tools, among these a novel tool (RealySt).
Apart from regular operation, i.e., evaluating benchmarks, we welcome the special initiative
this year which targeted development of a set of minimal benchmarks to allow comparison of
tools and their implemented approaches. The result of this initiative feature four new minimal
benchmarks. Additionally, another novel benchmark (package delivery system) was added to
our collection.

In the following, we give the tool authors space to describe planned future developments for
their tools which we are looking forward to see in the next years as part of this subgroup.

6.1 Further tool development

AMYTISS, StocHy, and FAUST2 did not participate in this year competition due to lack of
supporting hybrid models. They will join the competition next year with further development on
verification and synthesis of stochastic hybrid systems potentially for infinite horizon properties
[73, 74].

The tool Mascot-SDS [62, 61, 60, 5, 6] is currently only handling synthesis of formally verified
controllers for almost sure satisfaction (i.e. satisfaction with probability 1) of infinite-horizon
specifications. Further work include applying Mascot-SDS to the Package Delivery benchmark,
and implementing the quantitative aspect of the synthesis problem (i.e. computing the optimal
probability of satisfying the specification for any initial state).

In the Modest Toolset, we plan to integrate the reinforcement learning-based approach that
was implemented as a prototype for [63] as a fully developed method in modes. For prohver,
the simple interval refinement approach added specifically for this competition showed some
promise, but requires a lot of refinement to become a robust method that users can rely on to
automatically deliver good approximations.

We plan to integrate in HYPEG the possibility to support failure rates depending on continuous
variables to be able to participate in the Heated Tank version 4.III benchmark.

6.1.1 Further development of SySCoRe

To increase the range of benchmarks that can be handled by SySCoRe, we want to extend
the tool to other distributions, namely distributions with a bounded support (e.g., uniform
distributions). The current implementation can only handle nonlinear systems with an affine
input. We plan to extend the tool and the underlying techniques to fully nonlinear systems. We
also plan to improve the computation time by implementing parallel computations in future
versions of the tool.

6.1.2 Further development of RealySt

RealySt is currently being developed within the DFG project 471367371 as a cooperation between
RWTH Aachen University and the University of Münster. In the coming years, we want to
add the possibility to maximize and minimize reachability probabilities for rectangular hybrid
automata with random clocks. Furthermore, we will investigate how to make the numerical
integration faster and more accurate and which other state-space representations are suitable.
Finally, we plan to include the possibility to parse models specified in the JANI specification
language [18].

136



ARCH-COMP22 Stochastic Models Abate et. al.

References

[1] Alessandro Abate, Henk Blom, Marc Bouissou, Nathalie Cauchi, Hassane Chraibi, Joanna Delicaris,
Sofie Haesaert, Arnd Hartmanns, Mahmoud Khaled, Abolfazl Lavaei, Hao Ma, Kaushik Mallik,
Mathis Niehage, Anne Remke, Stefan Schupp, Fedor Shmarov, Sadegh Soudjani, Adam Thorpe,
Vlad Turcuman, and Paolo Zuliani. Arch-comp21 category report: Stochastic models. In Goran
Frehse and Matthias Althoff, editors, 8th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH21), volume 80 of EPiC Series in Computing, pages 55–89.
EasyChair, 2021.

[2] Alessandro Abate, Henk Blom, Nathalie Cauchi, Kurt Degiorgio, Martin Fraenzle, Ernst Moritz
Hahn, Sofie Haesaert, Hao Ma, Meeko Oishi, Carina Pilch, Anne Remke, Mahmoud Salamati, Sadegh
Soudjani, Birgit van Huijgevoort, and Abraham Vinod. ARCH-COMP19 category report: Stochastic
modelling. In ARCH19. 6th International Workshop on Applied Verification of Continuous and
Hybrid Systems, volume 61 of EPiC Series in Computing, pages 62–102. EasyChair, 2019.

[3] Alessandro Abate, Henk Blom, Nathalie Cauchi, Joanna Delicaris, Arnd Hartmanns, Mahmoud
Khaled, Abolfazl Lavaei, Carina Pilch, Anne Remke, Stefan Schupp, Fedor Shmarov, Sadegh
Soudjani, Abraham Vinod, Ben Wooding, Majid Zamani, and Paolo Zuliani. Arch-comp20
category report: Stochastic models. In Goran Frehse and Matthias Althoff, editors, ARCH20. 7th
International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20),
volume 74 of EPiC Series in Computing, pages 76–106. EasyChair, 2020.

[4] Alessandro Abate, Henk Blom, Nathalie Cauchi, Sofie Haesaert, Arnd Hartmanns, Kendra Lesser,
Meeko Oishi, Vignesh Sivaramakrishnan, Sadegh Soudjani, Cristian-Ioan Vasile, and Abraham P.
Vinod. ARCH-COMP18 category report: Stochastic modelling. In ARCH18. 5th International
Workshop on Applied Verification of Continuous and Hybrid Systems, volume 54 of EPiC Series in
Computing, pages 71–103. EasyChair, 2018.

[5] Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani.
A direct symbolic algorithm for solving stochastic rabin games. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 81–98. Springer, 2022.

[6] Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani.
Fast symbolic algorithms for omega-regular games under strong transition fairness. arXiv preprint
arXiv:2202.07480, 2022.

[7] H.A.P. Blom, J. Krystul, G.J. Bakker, M.B. Klompstra, and B. Klein Obbink. Free flight collision
risk estimation by sequential mc simulation. In C.G. Cassandras and J. Lygeros, editors, Stochastic
hybrid systems, chapter 10, pages 249–281. Taylor & Francis/CRC Press, 2007.

[8] H.A.P. Blom, H. Ma, and G.J. Bakker. Interacting particle system-based estimation of reach
probability for a generalized stochastic hybrid system. In Proc. Conference Analysis and Design of
Hybrid Systems (ADHS 2018), volume 51, pages 79–84. IFAC Papers Online 51-16, Oxford, UK,
2018.

[9] J.-L. Bon and J. Collet. An algorithm in order to implement reliability exponential approximations.
Reliability Engineering & System Safety, 43(3):263–268, 1994.

[10] M. Bouissou. A simple yet efficient acceleration technique for Monte Carlo simulation. In Proceedings
of the 22nd European Safety and Reliability Conference (ESREL’13), page 27–36, 2013.

[11] M. Bouissou and J.C. Houdebine. Inconsistency detection in KB3 models. ESREL 2002, 2002.

[12] M. Bouissou, J.C. Houdebine, and Humbert S. Reference manual of the Figaro probabilistic
modelling language. 2019.

[13] M. Bouissou and S. Khan. Bridging the Dependability and Model Checking worlds. In Proc. of
Lambda-mu 23, October 2022.

[14] M. Bouissou and Y. Lefebvre. A path-based algorithm to evaluate asymptotic unavailability for
large markov models. In Proceedings of RAMS’2002, pages 32–39, 2002.

[15] Carlos E. Budde, Pedro R. D’Argenio, and Arnd Hartmanns. Automated compositional importance

137



ARCH-COMP22 Stochastic Models Abate et. al.

splitting. Sci. Comput. Program., 174:90–108, 2019.

[16] Carlos E. Budde, Pedro R. D’Argenio, Arnd Hartmanns, and Sean Sedwards. An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol. Transf., 2020. to
appear.

[17] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges,
and Andrea Turrini. JANI: Quantitative model and tool interaction. In Axel Legay and Tiziana
Margaria, editors, Tools and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II,
volume 10206 of Lecture Notes in Computer Science, pages 151–168, 2017.

[18] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges,
and Andrea Turrini. JANI: quantitative model and tool interaction. In Axel Legay and Tiziana
Margaria, editors, Tools and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II,
volume 10206 of Lecture Notes in Computer Science, pages 151–168, 2017.

[19] M. L. Bujorianu and J. Lygeros. Toward a general theory of stochastic hybrid systems. In H.A.P.
Blom and J. Lygeros, editors, Stochastic hybrid systems, pages 3–30. Springer, Berlin, 2006.

[20] Nathalie Cauchi and Alessandro Abate. Benchmarks for cyber-physical systems: A modular model
library for buildings automation. In IFAC Conference on Analysis and Design of Hybrid Systems,
2018.

[21] Nathalie Cauchi and Alessandro Abate. StocHy: automated verification and synthesis of stochastic
processes. In 25th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2019.

[22] Nathalie Cauchi, Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Marta Kwiatkowska, and
Luca Cardelli. Efficiency through uncertainty: Scalable formal synthesis for stochastic hybrid
systems. In 22nd ACM International Conference on Hybrid Systems: Computation and Control
(HSCC), 2019. arXiv: 1901.01576.

[23] F. Cérou, P. Del Moral, F. Legland, and P. Lezaud. Genetic genealogical models in rare event
analysis. Latin American J. of Probability and Mathematical Statistics, 1:181–203, 2006.

[24] H. Chraibi, A. Dutfoy, T. Galtier, and J. Garnier. Application of interacting particle system method
to piecewise deterministic markov processes used in reliability, preprint submitted to Chaos, 23rd
may 2019. arxiv:1905.09044v1.

[25] H. Chraibi, A. Dutfoy, T. Galtier, and J. Garnier. On the optimal importance process for piecewise
deterministic markov process. ESAIM: Probability and Statistics, 23:893–921, 2019.

[26] H. Chraibi, J.C. Houbedine, and A. Sibler. PyCATSHOO: Toward a new platform dedicated to
dynamic reliability assessments of hybrid systems. In 13th International Conference on Probabilistic
Safety Assessment and Management (PSAM 13), Seoul, Korea, 2016.

[27] D. Codetta-Raiteri. Modelling and simulating a benchmark on dynamic reliability as a stochastic
activity network. In 23rd European Modeling and Simulation Symposium (EMSS), pages 545–554,
2011.

[28] Pedro R. D’Argenio, Marcus Gerhold, Arnd Hartmanns, and Sean Sedwards. A hierarchy of
scheduler classes for stochastic automata. In Christel Baier and Ugo Dal Lago, editors, Foundations
of Software Science and Computation Structures - 21st International Conference, FOSSACS 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer
Science, pages 384–402. Springer, 2018.

[29] M.H.A. Davis. Markov models and optimization. Chapman and Hall, London, 1993.

[30] M.H.C. Everdij and H.A.P. Blom. Piecewise deterministic Markov processes represented by
dynamically coloured Petri nets. Stochastics, 77:1–29, 2005.

138



ARCH-COMP22 Stochastic Models Abate et. al.

[31] M.H.C. Everdij and H.A.P. Blom. Bisimulation relations between automata, stochastic differential
equations and Petri nets. In M. Bujorianu and M. Fisher, editors, Workshop on Formal Methods
for Aerospace (FMA), Electronic Proceedings in Theoretical Computer Science, EPTCS 20, page
1–15, 2010.

[32] M.H.C. Everdij and H.A.P. Blom. Hybrid state Petri nets which have the analysis power of
stochastic hybrid systems and the formal verification power of automata. In P. Pawlewski, editor,
Petri Nets, chapter 12, pages 227–252. I-Tech Education and Publishing, Vienna, 2010.

[33] M.H.C. Everdij, M.B. Klompstra, H.A.P. Blom, and B. Klein Obbink. Compositional specification
of a multi-agent system by stochastically and dynamically coloured Petri nets. In J. Lygeros
H.A.P. Blom, editor, Stochastic Hybrid Systems: Theory and safety critical applications, pages
325–350. Springer, 2006.

[34] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás Wolovick, and Lijun Zhang.
Measurability and safety verification for stochastic hybrid systems. In Marco Caccamo, Emilio
Frazzoli, and Radu Grosu, editors, Proceedings of the 14th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, USA, April 12-14, 2011,
pages 43–52. ACM, 2011.

[35] Goran Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw.
Tools Technol. Transf., 10(3):263–279, 2008.

[36] Brian Gough. Gnu Scientific Library Reference Manual. Network Theory Ltd., 2009.

[37] Marco Gribaudo and Anne Remke. Hybrid Petri nets with general one-shot transitions. Performance
Evaluation, 105:22–50, 2016.

[38] Sofie Haesaert, Petter Nilsson, and Sadegh Soudjani. Formal multi-objective synthesis of continuous-
state MDPs. IEEE Control Systems Letters, 5(5):1765–1770, 2020.

[39] Sofie Haesaert and Sadegh Soudjani. Robust dynamic programming for temporal logic control of
stochastic systems. IEEE Transactions on Automatic Control, 66(6):2496–2511, 2020.

[40] Sofie Haesaert, Sadegh Soudjani, and Alessandro Abate. Temporal logic control of general Markov
decision processes by approximate policy refinement. IFAC-PapersOnLine, 51(16):73–78, 2018.

[41] Sofie Haesaert, Sadegh Esmaeil Zadeh Soudjani, and Alessandro Abate. Verification of general
Markov decision processes by approximate similarity relations and policy refinement. SIAM Journal
on Control and Optimization, 55(4):2333–2367, 2017.

[42] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen. A compositional
modelling and analysis framework for stochastic hybrid systems. Formal Methods in System Design,
43(2):191–232, 2013.

[43] Arnd Hartmanns and Holger Hermanns. The Modest Toolset: An integrated environment for
quantitative modelling and verification. In 20th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 8413 of Lecture Notes in Computer
Science, pages 593–598. Springer, 2014.
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