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Abstract —The ability of a fully polarimetric radar to 
discriminate between payloads carried by UAVs is demonstrated. 
A novel approach has been employed in the feature extraction 
algorithm, where features from individual and combined 
polarimetric channels are extracted for classification. Decision and 
ensemble fusions on the respective extracted features proved to 
enhance the classification performance. The method is validated 
on experimental radar data acquired in scenarios where the UAVs 
carrying payloads (a quadcopter and a hexacopter) are hovering, 
flying back and forth, and flying along rectangular waypoints. 
Initial results for the fusion methods provide 90%-95% 
classification accuracy. 

Keywords — polarimetry, radar, UAVs, payloads, feature 
extraction, classification. 

I. INTRODUCTION 
With recent advancements in technology, the number of 

Unmanned Aerial Vehicles (UAVs), commonly referred to as 
drones, have massively increased, and they are now accessible 
to everyone. UAVs are used in multiple scenarios, ranging from 
defence purpose to commercial use, like photography, delivery 
of goods, inspections, agriculture and so on. The initial 
commercial application of UAVs can be dated back to the early 
1980s for the purpose of spraying pesticides over rice fields, 
where remotely piloted helicopters rendered as a promising 
route of augmenting manned helicopters. In the domain of 
transportation, drones have become an integral component in e-
commerce and many industries like Amazon and Domino’s 
have launched the testing phase in the logistics of their goods. 
However, drones carrying payloads also pose threats, such as 
flying around prohibited areas, interfering with larger aircraft, 
and are more often than not used for illegal activities, such as 
smuggling of weapons or contrabands. Drones can be used for 
unintentional dangerous activities, or even enable criminal 
actions, hence there is a growing necessity to monitor them [1]. 

Radars with high resolution are increasingly used for drone 
detection and classification, thanks to their long-range, all-
weather monitoring capabilities. Several techniques for binary 
classification of drone vs no drone, drone vs birds, and different 
models of drones, have been proposed based on relevant 
features extracted from the micro-Doppler signatures or from 
tracks’ information [2].  

Features related to the flight profile (maximum height, 
acceleration, jerk) for discrimination of the presence of 
hexacopters have been extracted from holographic L-band radar 
data [3], resulting in a classification accuracy of 88% with 

decision tree. Polarimetric features for distinguishing between 
birds and drones have been extracted from the BirdRad radar 
data [4], showing an optimal accuracy of 100% incorporating 
the Nearest Neighbour classifier. The classification of different 
types of drones has been carried out in literature, for example 
in [5-6] using a CW radar, where unique features were derived 
via spectrogram (blade flashes, body velocity), and cepstrogram 
(periodicity). Furthermore, neural network and deep learning, 
specifically adversarial auto-encoders, were used for denoising 
of spectrograms, producing an accuracy of 97% [6]. Properties 
of the linear micro-Doppler spectrum have been used for drone 
classification in [13].  

Recently, more research is focused on the problem of 
classifying drone(s) carrying payloads. A novel micro-Doppler 
feature extraction technique, largely dependent on spectral 
kurtosis (SK) has been suggested in [7]. The idea is to use this 
4th order statistical parameter to characterise the different 
rotation regimes of the blades of the drones depending on the 
payload mass. SK is determined both on the narrowband and 
wideband spectrograms yielding an accuracy of 82%-97% for a 
k-nearest neighbour classifier. The same dataset with data 
collected at University College London is analysed in [8] using 
features based on SVD (Singular Value Decomposition) and 
centroid and bandwidth of spectrograms, with good accuracy 
reported. The effect of payload weights carried by drones on the 
micro-Doppler signature is presented in [9], which states that 
the flattening of the blade flashes in a spectrogram is the result 
of faster blade rotation in order to create adequate lift when the 
drone is carrying a payload of increasing weight.  

In this paper, the problem of classifying drones carrying 
payloads is approached by combining polarimetric features and 
micro-Doppler signatures as the input to supervised machine 
learning classifiers. Initial results are presented based on 
experimental data collected using the TU Delft S-band 
polarimetric radar PARSAX for two different models of drones. 
Approaches using decision fusion and ensemble of classifiers 
to combine the polarimetric information are explored, and their 
effect on the performances are investigated.  

The remainder of the paper is organized as follows. In 
Section II, the experimental setup, data collection based on the 
movements of the drone, FMCW data and signal processing for 
drone detection are presented. The proposed classification 
methods are shown in Section III and the subsequent results and 
conclusions are discussed in Section IV and Section V, 
respectively. 
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Fig. 1.  Micro-Doppler signature of M200 quadcopter and M600 hexacopter (shown on the left) flying back and forth carrying no payload in (a) VV polarization; 
(b) VH polarization; (c) HV polarization; (d) HH polarization. 

II. EXPERIMENTAL SETUP AND DATA ANALYSIS 

A. Measurement 
The data was collected employing PARSAX, which is S-

Band polarimetric FMCW Doppler radar, where both the 
transceiver and receiver have two independent polarimetric RF 
channels, enabling to collect full polarimetric information 
simultaneously [12]. The bandwidth was 50 MHz with a Pulse 
Repetition Frequency (PRF) of approximately 4 kHz (240 s).  

The data was collected in an open ground at the TU Delft 
campus, located at approximately 575m from the radar. Two 
types of drones were used, namely DJI M200 quadcopter and 
DJI M600 hexacopter, which were carrying 0kg/1kg and 
0kg/2.35 kg, respectively (0kg means no payload present). 

The data was recorded for approximately 30s for the 
scenarios where the drones M200 and M600 were (a) hovering 
in the same place, (b) flying back and forth in a 50m linear path, 
and (c) waypoints along a rectangular trajectory of dimensions 
60m x 20m. Measurements were repeated for both cases of with 
and without payloads. The subsequent investigation also 
considered together the combined scenario of flying back and 
forth and rectangular waypoints in the feature extraction level. 

B. Data Pre-processing 
The FMCW data were processed to generate range-time 

maps, which were used to identify the range-bins containing the 
signature of the drones in the different recordings. After 
identifying the range bins containing the drones and extracting 
them, a Short-Time Fourier Transform (STFT) of 0.1s 
Hamming window and an overlap of 95% between adjacent 
windows is applied. An example of a spectrogram for the 
individual polarimetric channels for the M600 hexacopter 
flying is shown in Fig.1. Similar micro-Doppler signatures were 
obtained for the other scenarios of procured data. The blade 
flashes are distinct in HH polarization; however, they are also 
fairly significant in the cross-polarizations VH and HV as well. 
It was also noted visually that, for the same polarization, the 
extent of blade flashes in Doppler was larger when a payload is 
present, as expected from literature [7-9].  

III. PROPOSED CLASSIFICATION APPROACHES 

A. Decision Fusion of Separate Polarimetric Channels 
In order to enhance the classification performance, different 

approaches for combining the data from the 4 channels of the 
polarimetric radar are investigated.  

The first method is decision fusion that combines the 4 
polarimetric channels independently, as if they were 4 separate 
simultaneous measurements. For this type of hard fusion, a 
specific model of classifier is imposed on all the polarization 
channels [11]. Then, the final performance metric is calculated 
by combining the confusion matrices of individual polarimetric 
channels. The classifiers used in this paper are Linear 
Discriminant Analysis (LDA), Naïve Bayes (NB), Decision 
Tree, and linear Support Vector Machine (SVM). The choice of 
these classifiers for this type of data is that they produce higher 
accuracy with lesser computational load in most scenarios, and 
in principle, they do not require a large dataset compared to 
deep learning approaches.  

Suitable features are extracted by using SVD, centroid and 
bandwidth on the spectrograms, followed by the calculation of 
statistics such as the mean, standard deviation, skewness and 
kurtosis. These features are chosen as they can be linked to the 
significant components (notably the periodicity, vibrations, 
velocity) of the micro-drones’ signatures [5,7-8]. The generated 
feature samples are split into training and testing sets of 80% 
and 20%. The classification algorithms are applied to the 
training data with a 5-fold cross-validation for assessing the 
effectiveness of the model, which helps in mitigating overfitting 
of the data. The performance metrics are Accuracy, Precision, 
Recall and F1 score. 

The spectrograms are then split into 30 blocks for feature 
extraction, each spanning 1s duration. As the drone signature 
is not continuous in the spectrograms because of the drone 
leaving the beam of the radar, only the spectrogram segments 
containing target signatures are considered in the classification 
process.  
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B. Classification based on Polarimetric Features 
In [4] polarimetric features contribute positively in 

improving accuracy for drone vs birds classification. 
Polarimetric features can be retrieved either in time-frequency 
domain (e.g., from spectrograms) or in time domain, and the 
latter is discussed in this section with an idea to analyse if 
meaningful features can be derived with a very short dwell time, 
shorter than the possible spectrogram window. The advantage 
of this approach would be overcoming the necessity to generate 
spectrograms for feature extraction. 

Table 1.  List of polarimetric features extracted, inspired by [4, 10] 

Feature Relation to matrix S Explanation 

δ  /  Linear 
depolarization ratio 

γ  /  Differential 
polarization ratio 

ρ  

Co-polarized 
correlation 
coefficients 

 

β  Cross-polarized 
correlation 
coefficients ε  

The polarimetric features in Table 1 are known as 
polarimetric inter-correlation parameters, which are applied on 
the range bins where the drone is present from the range-time 
plots. The operator <*> represents the spatial or temporal 
ensemble averaging considering the uniformity of random 
medium [10]. The bins where the drone is present in the range-
time plot are split in this case into smaller segments of varying 
dwell time of 0.05s, 0.10s, 0.25s, 0.50s and 1s and the 
polarimetric features are extracted. In this scenario, an 
ensemble classifier is employed to enhance the classification 
performance, since the features from all polarimetric channels 
are combined as a single block. By fusing through ensemble of 
classifiers, the confusion matrices of the independent classifiers 
(LDA, NB, Decision Tree, Linear SVM) are multiplied 
elementwise to attain a greater classification performance. 

IV. RESULTS 

A. Decision Fusion on Individual Polarimetric Channels  
The results for measured polarimetric data were subjected 

to different parametric analyses such as varying dwell time, 
spectrogram window length, and SNR (by adding Gaussian 
noise to the original data), as depicted in Fig. 2. The results 
shown are only for the Linear Discriminant Analysis Classifier 
(LDA) and combined data for flying back and forth and along 
rectangular waypoints. A similar trend in variation was also 
seen with the other considered classifiers and flying scenarios.  

The HH polarization produced the highest classification 
accuracy in all the parametric analyses and also the individual 
instance of each analysis. As for the case of varying the duration 
of the spectrogram split (i.e., dwell time), 1s has a better 
accuracy, indicating a comparatively faster dwell time is 
preferred for classification. Also, theoretically, as the dwell 
time is increased, the number of samples in each of the classes 
reduces proportionally as the dataset has a limited size. Thus, 
the number of training samples decreases, making it difficult for 
the classifier to get well trained, and hence resulting in poorer 
classification. Accuracy of ~87% is obtained for HH 
polarization at 1s. By fusing the information from the individual 
channels, a significant improvement in performance is achieved. 

As the spectrogram window size is increased, the resolution 
in time becomes worse, and significant components in feature 
extraction may become spread out in different spectrogram 
splits. Though the number of samples in the dataset remains the 
same, the classifier gives a lesser accuracy by increasing the 
window size. So, in this scenario, the ideal window size is 
obtained to be 0.1s. Again, with fusion an optimum accuracy of 
~100% is obtained at 0.1s and an overall accuracy increase is 
found at each instance of varying spectrogram window.   

Fig. 2 (right-hand side) shows the result of classification 
performance when noise is added to the spectrograms. The 
decision fusion of LDA classifier of each polarimetric channel 
outperforms the individual channel’s accuracy. As the SNR is 
decreased, the classification performance also worsens as 
expected, about 20% below the optimal situation of high SNR.  

 
Fig. 2.  Classification performance for the combined scenarios of drone moving along rectangular waypoints and flying back and forth. Individual polarimetric 
channels and their decision fusion compared for varying Dwell time (left-hand side); Spectrogram window (centre); and SNR (right-hand side)  
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B. Polarimetric Features 
In this case, the polarimetric channels (VV, VH, HV, HH) 

are combined together into single polarimetric features. The 
dwell time, intended as the duration of the segment of data used 
for feature extraction, was varied from 0.05s, 0.10s, 0.25s, 0.5s 
and 1.0s. It was observed that for a faster dwell time, the 
classifier performs efficiently. A faster dwell time is often 
desirable as it proves the efficiency of the classifier’s ability to 
distinguish between classes in the shortest time possible. 

The classifiers in this case are able to attain a classification 
performance equivalent to that in Section IV (A), as also seen 
in Table 2. Moreover, at a shorter dwell time of 0.05s, an 
improved accuracy is obtained for the classification based on 
polarimetric features, whereas in Section IV (A) for features 
extracted from independent polarimetric channels, the ideal 
dwell time was 1s, which is comparatively longer. 

In [8-9] it was shown how the presence of a payload would 
be visible in the faster rotation rate of the UAVs blades in the 
spectrograms, and this was exploited for classification. Similar 
separation for the payload vs no-payload classes can be seen in 
Fig. 3 for two examples of polarimetric features related to the 
hovering quadcopter. Unlike the easier kinematic interpretation 
of blade velocity in spectrograms, the EM interpretation of this 
separation seen in the polarimetric feature domain is still under 
investigation. 

Table 2.  Classification accuracy for polarimetric features (dwell time = 0.05s) 

Classifier Hovering Flying Rectangle 
Waypoints 

Flying + 
Rectangle 
Waypoints 

LDA 86.5% 52.8% 57.4% 48.4% 

Naïve Bayes 79.1% 45.3% 34.2% 42.0% 

Decision 
Tree 89.6% 66.0% 76.1% 67.2% 

Linear SVM 87.7% 61.2% 60.0% 50.9% 

Ensemble 
Fusion 99.9% 90.5% 95.9% 75.8% 

 

 
(a)                                       (b) 

Fig. 3.  Feature samples for the case of Quadcopter M200 hovering for (a) 
Feature β; (b) Feature ρ, dwell time = 0.05s. Red (payload); blue (no payload) 

V. CONCLUSION 
In this paper, two approaches for classification of UAVs 

with payloads using polarimetric radar information are 
investigated. These are demonstrated on experimental data at S-
band with two types of drones, a quadcopter and a hexacopter. 
It was shown that feature extraction from independent 
polarimetric channels produced higher classification for HH 
polarisation for different combinations of dwell time, 
spectrogram windows and SNR. Both decision fusion and 
ensemble fusion generate promising outcomes. With the former, 
an accuracy of 95%-100% is reached, at least 20%-30% above 
over only using one of the polarimetric channels. The latter 
achieved about 90%-95% accuracy. A hard decision fusion 
between the 4 channels significantly improved the classification 
performance. For polarimetric features extracted combining the 
raw data from the four channels, performances were nominally 
lower but could be enhanced to over 90% via ensemble of four 
different classifiers.   
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