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Automatic Tuning and Selection of Whole-Body Controllers

Evelyn D’Elia1,2,3, Jean-Baptiste Mouret1, Jens Kober2, Serena Ivaldi1

Abstract— Designing controllers for complex robots such as
humanoids is not an easy task. Often, researchers hand-tune
controllers, but this is a time-consuming approach that yields
a single controller which cannot generalize well to varied
tasks. This work presents a method which uses the NSGA-II
multi-objective optimization algorithm with various training
trajectories to output a diverse Pareto set of well-functioning
controller weights and gains. The best of these are shown to
also work well on the real Talos robot. The learned Pareto
front is then used in a Bayesian optimization (BO) algorithm
both as a search space and as a source of prior information in
the initial mean estimate. This combined learning approach,
leveraging the two optimization methods together, finds a
suitable parameter set for a new trajectory within 20 trials
and outperforms both BO in the continuous parameter search
space and random search along the precomputed Pareto front.
The few trials required for this formulation of BO suggest that
it could feasibly be applied on the physical robot using a Pareto
front generated in simulation.

I. INTRODUCTION

Despite recent advances in robotic control, researchers

still encounter a myriad of difficulties when controlling

humanoid robots. Ideally, a humanoid robot should have

versatile capabilities and should be able to complete manual

labor that is grueling or even unsafe for humans. However,

since humanoid robots are extremely complex and are meant

to be capable of performing vastly different trajectories such

as locomotion or manipulation, it is difficult to design a

stable, accurate controller, and it is also difficult to find

controllers that are transferable. Our approach addresses both

of these problems.

One way to solve this problem is by breaking the control

down into a set of tasks of varying importance, each with

a gain parameter to define its behavior. This is called a

task priority-based whole-body control (WBC) approach,

and can be implemented with either strict priorities [1],

[2], [3], which ensure more important tasks are completed

at the expense of less important ones, soft priorities [4],

which allow a continuum of priority level, or both [5].

The priority-based formulation streamlines controller design,

but still requires the user to choose task parameters that

perform well. One typical way to choose these parameters

is by hand-tuning them, but since this method is time-

consuming, it often yields only one controller to be used
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Fig. 1. Comparison of squat trajectory performance between hand-tuned
control parameters (top) and parameters learned using our method (bottom),
on the Talos robot.

for many trajectories. The main drawback of this method is

that a single “robust” controller compromises the quality of

individual trajectories.

Due to the inconvenience of hand-tuning WBC parame-

ters, many recent approaches utilize learning algorithms to

automatically tune them. Some such approaches leverage

programming by demonstration to learn task parameters for

manipulators [6], [7], [8]. The drawbacks of these methods

are that they require time to carry out demonstrations. Con-

versely, an imitation learning approach proposed by Silvério

et. al. [9] is implemented on the humanoid COMAN, using

simulation-generated demonstrations, but validation of this

method is limited to manipulation trajectories.

Instead of using demonstrations to guide learning, op-

timization algorithms can be used to find suitable task

parameters. In most cases of learning on a real robot, it

is beneficial to first optimize controllers in simulation. One

class of optimization algorithms, evolutionary algorithms, are

useful in robotics when the search is in continuous space and

gradient-based optimization is impossible. One well-known

and often used evolutionary method is CMA-ES [10]. The

authors of [11], [12] and [13] employ CMA-ES to search for

optimal trajectory parameters in the form of basis function

weights for simulated tasks on the child-sized humanoid iCub

[14]. The approach of [12] uses a two-step optimization, the

first of which is unconstrained CMA-ES to find a feasible

starting point for the second step. On the other hand, authors

of [11] initialize with hand-tuned parameters, while those of

[13] skip the bootstrapping step by using retargeted recorded
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human trajectories to initialize the optimization problem.

Both of these studies highlight an important weakness of

CMA-ES: it must be initialized within the feasible region to

find a solution. Also, as a single-objective method, it cannot

individually optimize multiple goals at once.

Another evolutionary algorithm, Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [15], a multi-objective

optimization (MOO) algorithm which solves the issues as-

sociated with CMA-ES, is employed by Penco et al. [16] to

create a set of simulation-trained Pareto-optimal controllers,

which are then used to decrease the number of real-robot

tests required. However, since this method trades off only two

objectives, accuracy and stability, the results lack diversity.

In this paper we aim to use NSGA-II with one objective per

training trajectory, to allow the final set of controllers to be

more varied.

Using a pre-generated set of possible solutions as the

search space, a single-objective learning algorithm can be

used to transfer Pareto solutions to new trajectories that

are not part of the MOO training set, and choosing one

that is data-efficient, as opposed to a big-data deep learning

approach, leaves open the possibility of applying the ap-

proach on the real robot. One data-efficient class of learning

algorithms, called policy search (PS) [17], [18], is very

promising in the context of real-world robot learning as a

method that learns a successful controller with as little data

as possible. In particular, the Bayesian optimization (BO)

algorithm requires fewer trials than other PS methods [18].

Prior information has the potential to speed up learn-

ing drastically. Some recent work with BO encodes prior

knowledge within the Gaussian process (GP) kernel function.

For example, the Behavior-Based Kernel (BBK) introduced

in [19] encodes information about policy closeness by cal-

culating the Kullback-Leibler divergence. Antonova et al.

[20], [21] designed two kernels: one called Determinants of

Gait (DoG), which has 16 hand-picked policy parameters

to describe a gait, and uses short simulations to evaluate

the success of a given parameter vector, and another called

trajNN, which is learned with a neural network. Learning

with these more informative kernels does improve the speed

of learning, but they also make the algorithm much more

complex.

Instead of incorporating them in the kernel, Cully et al.

[22] encode priors into the GP mean function by first pre-

computing a behavior-performance map, which is a map

in parameter space of how well the robot performs in

simulation, and then using this map as the GP mean initial

guess, which is shown to guide the real-world BO toward

likely high-performing solutions.

We propose a two-pronged solution to the aforementioned

challenges: a multi-objective optimization (MOO) step to

generate a large set of control parameter options, and a

Bayesian optimization step to narrow down these solutions

to one which works for a new, untrained trajectory or a

new robot model. The results of this approach surprisingly

show that between different simulated robot models, the

Pareto fronts generated by NSGA-II perform similarly, which

indicates that there may be no need to use BO for closing

the reality gap. This is why we focus instead on achieving

transfer to novel trajectories.

II. BACKGROUND

A. Task priority-based control

The control framework we employ is a generic whole-

body control (WBC) formulation known as task priority-

based control [1], with soft task priorities. Here a task is

defined, depending on its type, as either a Cartesian position

and/or orientation, or a set of joint angles, to track. Task

priority-based control solves the following QP optimization

problem at each time step to choose the next control input:

min
u,q̈

nt
∑

i=0

wi ‖Ai(q, q̇)q̈ − bi(q, q̇)‖
2
+ ǫ ‖u‖

2

s.t.











Ai,ineq(q, q̇)q̈ ≤ bi,ineq(q, q̇)

Ai,eq(q, q̇)q̈ = bi,eq(q, q̇)

u = M(q)q̈ + h(q, q̇)− J(q)⊤f ,

(1)

where u is the control input torque, q, q̇, and q̈ are the joint

positions, velocities, and accelerations, nt is the number of

tasks, wi is the soft priority weight (SPW), Ai is the task’s

equivalent Jacobian, bi is the reference, ǫ is a regularization

factor, and f is the external wrench. The constraints rep-

resent all control input, dynamics, environmental, and most

importantly, model constraints on the robot. The reference

bi, which depends on the desired trajectory, is defined for

both Cartesian and postural tasks as:

bi(q, q̇) = p̈d
i − Ȧi(q, q̇)q̇ + λP

i e+ λD
i ė, (2)

where superscript d refers to desired value, p̈d
i is desired task

acceleration, Ȧi is the time derivative of the task Jacobian,

e = pi−pd
i , ė = ṗi− ṗd

i are the errors between desired and

actual position pi and velocity ṗi vectors, where the goal

position and/or orientation depends on the task i, and λP
i

and λD
i = 2

√

λP
i are the proportional and derivative task

convergence gains (CG), according to [23].

B. NSGA-II

The first part of the approach outlined here employs one

of the most popular MOO algorithms, NSGA-II. NSGA-II

is part of a class of evolutionary algorithms, whose strength

lies in their ability to find a diverse set of Pareto optimal

solutions, an important characteristic for finding a robot

controller that is able to generalize to many types of tasks.

NSGA-II outperforms other evolutionary MOO methods in

terms of the diversity and accuracy of solutions found [15].

MOO is a subset within the optimization field that allows

optimization to be done over multiple objective functions,

instead of a single one. The problem is formulated as:

min
θ

{f1(θ), f2(θ), . . . , fl(θ)}

s.t. θ ∈ S,
(3)

where fn(θ) is an objective function, l is the number of

objectives and S is the feasible set to which the param-

eter vector θ must belong. Since the algorithm optimizes

12936
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Train trajectories
Multi-objective 

optimization

Bayesian 

optimization

New trajectory

Best controller

Step I Step IIoffline online

Pareto front

Fig. 2. Outline of our two-part approach. Step I uses a multi-objective optimization method, NSGA-II, to train a Pareto front of controller solutions
on various whole-body trajectories. This step is performed offline, on the simulated robot. Step II uses this Pareto front as a search space with Bayesian
optimization and chooses the best-performing controller in the front for a new trajectory. This step is performed online, on the real robot.

many objective functions at once, without aggregating them

together, there seldom exists a single solution (a point in

parameter space within the feasible set S) that optimizes

every objective function. Here, the concept of Pareto domi-

nance [24] is used: A solution θ1 dominates another solution

θ2, if and only if the following conditions are satisfied: (i)

θ1 is not worse than θ2 with respect to all objectives, and

(ii) θ1 is strictly better than θ2 with respect to at least one

objective. A Pareto optimal solution is a solution for which

no one objective function can be further optimized without

compromising the performance of another objective, i.e., it

is non-dominated. Solving a MOO problem results in a set

of Pareto optimal solutions, called the Pareto front, which

each perform differently with respect to each of the various

objective functions.

C. Bayesian optimization

The second portion of this work aims to facilitate transfer

of Pareto solutions to the real robot. For this, a surrogate-

based PS method [18], Bayesian optimization, is chosen

because this type of algorithm conforms to this particular

problem’s need for few rollouts.

BO is distinguished by the fact that it learns a surrogate

model of the expected return Ĵ(θ), most often represented

by a GP:

Ĵ(θ) ∼ GP(µ(θ), k(θ,θ′)), (4)

where µ(θ) is the GP mean function, and k(θ,θ′) is the

covariance, or kernel function. Using the set of recorded

returns from past rollouts D1:t, a distribution of the expected

return can be estimated for a new parameter set θ∗ using the

predictions of the GP:

µ(θ∗) = k⊤K−1D1:t

σ2(θ∗) = k(θ∗,θ∗)− k⊤K−1k,
(5)

where k = k(D1:t,θ∗) is a kernel vector, K is a kernel

matrix with Ki,j = k(θi,θj), µ(θ∗) is the mean prediction

of the GP and σ2(θ∗) is the GP variance prediction.

The kernel function k(θ,θ′), used to quantify the differ-

ence in expected return Ĵ(θ) between two possible parameter

sets, can be defined in various ways to shape the performance

of the optimization.

In BO, the acquisition function, a measure of how much

information will be provided by a parameter set, uses the

surrogate model Ĵ(θ) to choose which policy parameters

to test next, balancing exploration and exploitation. Upper

Confidence Bound (UCB) [25], which is found to be the best

of three common options [26], [27], optimistically judges

each prospective parameter set by the upper limit of the GP

of its expected return:

αUCB(θ;D1:t) = µ(θ) + βσ(θ), (6)

where β is a hyperparameter that balances exploitation and

exploration by specifying how high the upper confidence is.

III. METHODS

Our method has two overall steps, shown in Figure 2: op-

timize a Pareto front using the evolutionary MOO algorithm,

NSGA-II, and then use that Pareto front as prior information

to achieve solution transferability with BO.

A. Task formulation

In this work the control parameter set is composed of

task priority-based control weights and gains as described

in Section II-A. We optimize two parameters per task:

the SPW wi, which measures the importance of the task

compared to the other tasks, and the CG λP
i , which defines

the responsiveness of the controller to errors in task position

and velocity. We relate the derivative CG λD
i directly to λP

i

and thus it is not independently optimized. The parameter

set θ consists of these two parameter values, wi and λP
i , for

each task.

B. Pareto front dimensions

To generate Pareto fronts with NSGA-II, we measure the

quality of a given parameter set using objective functions.

The main aspect of our NSGA-II implementation that sets

it apart from that of [16] is the objective function setup

that is used. Penco et al. [16] use two objective functions,

where the performance of each of these is averaged out

over the training trajectories. Since different movement types

necessitate unique control parameters, we instead use a

separate objective function for each training trajectory chosen

in order to ensure diversity in the learned solutions. This

way the resultant Pareto front is l-dimensional, where l is

the number of training trajectories used.

C. Inclusion of prior information

Our implementation of Pareto-based BO uses the previ-

ously generated Pareto front as a search space, making the

parameter space finite and easily searchable. This initializa-

tion strategy is similar to that of [22], where the initialization

contained prior information in the form of a behavior-

performance map that was pre-computed in simulation. Our

BO method differs from that approach in the way that the
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TABLE I

SYMBOL, DESCRIPTION, SPW NAME AND CG TYPE FOR EACH

OPTIMIZED TASK.

Task Description SPW CG

T{rh,lh} hand pose (symmetric) wh λP
h

= σP
h

T{rf,lf} foot pose (symmetric) wf λP
f

= σP
f

TCoM CoM position wCoM λP
CoM

Tto torso orientation (roll, pitch) wto σP
to

Tp joint angles wp µP
p

map (Pareto front in this case) is generated. Since in our

case the parameter space is easily searchable, instead of

using an optimizer, an exhaustive search algorithm similar

to that used in [22] is employed. The mean function µ(θ)
of the GP, which has a significant effect on the algorithm

performance, is initialized using the average of the costs from

the NSGA-II training trajectories. We use the Matérn 5/2
kernel function to represent the GP covariance k(θ,θ′), and

the UCB acquisition function to choose the next parameter

set to test.

IV. EXPERIMENTS

In these experiments, we used the Task Space Inverse

Dynamics (TSID) library [28] on top of the Pinocchio

framework [29] in C++ to perform inverse dynamics task

priority-based control (described in Section II-A). The robot

used in this work is the 32-DoF Talos humanoid from PAL

Robotics [30], on which TSID runs at a frequency of 500 Hz.

A. NSGA-II: Experimental design

NSGA-II was parallelized on a 256-core computer using

the Sferesv2 evolutionary algorithm framework [31]. Paral-

lelization drastically reduces the amount of time required

for this computationally intensive algorithm, but nonetheless,

to complete a single NSGA-II run of 100 generations with

four objective functions and self-collision checking enabled

requires roughly 24 hours to run.

1) Tasks used: As shown in Table I, there are five tasks

used to guide the movements of the Talos. In total, the

parameter set has 10 elements. Each of these was optimized

in the range of [0, 2000], the same range used when hand-

tuning the task parameters.

2) Objective function: For our implementation, in both

the NSGA-II step and the BO step, each objective function

is a measure of the Cartesian accuracy of 3 selected tasks:

T{rh,lh}, T{rf,lf}, and TCoM . The form of each of these

objective functions is:

fb =







∑T

t=0

(

‖eCoM
t ‖+

∥

∥

∥
e
{rh,lh}
t

∥

∥

∥
+

∥

∥

∥
e
{rf,lf}
t

∥

∥

∥

)

Nt
, if no fail

1.0× 1010, if fail,
(7)

where b is the training trajectory index, Nt is the total number

of time steps, T is the final time, t is the current time, and

e is the 3-D Cartesian position (without orientation) error of

the specific task at time t. The robot can fail either by falling

over or by self-colliding. Using a separate objective function

per training trajectory ensures that the learned Pareto front

will contain a diverse set of parameters, likely to work well

on a variety of test trajectories.

However, during trials on the real robot, due to the limita-

tions of motion capture, it was not possible to accurately

record the CoM position. Instead, a modified version of

the objective function, which calculates the average tracking

error of only the hands and feet, was used to compare each

of the results:

fb,mod =
1

Nt

T
∑

t=0

(∥

∥

∥
e
{rh,lh}
t

∥

∥

∥
+

∥

∥

∥
e
{rf,lf}
t

∥

∥

∥

)

, (8)

Equation (8) was used to compute the cost of each real robot

experiment from the motion capture measurements.

3) Training trajectories: The more diverse the Pareto

front, the more likely it is to transfer well to new trajectories.

Since the trajectories used by NSGA-II to learn the Pareto

front have a significant effect on this diversity, it is essential

to choose training trajectories that use different parts of the

robot and have different goals.

In all, there are 8 training trajectories used, each of which

has a duration of 20 s. These 8 trajectories are evenly

balanced with 4 handmade trajectories (walk on spot, squat,

clap, and touch ground), for which the target positions were

chosen by hand, and 4 trajectories retargeted from human

motions recorded with the XSens MVN motion tracking suit

[32] (dance, lean and twist, right arm reach, and lift). The

result of combining these trajectories is a suitably varied and

diverse training set. The full training set was divided in half

(Set 1: walk on spot, clap, lean and twist, right arm reach,

Set 2: squat, touch ground, dance, lift) and NSGA-II was

run with 4 training trajectories at a time, for 100 generations

each. Five Pareto datasets were optimized each for Set 1 and

2. Each set contains 2 handmade and 2 recorded trajectories.

4) Modified robot models: In order to evaluate the trans-

ferability (i.e., the success in crossing the reality gap) of the

Pareto solutions from NSGA-II, 5 different mass-modified

models (URDF files) of the Talos robot were created: uni-

formly 10% heavier and 10% lighter, and with 5 kg added

to the left shoulder, right hand, and as a backpack.

5) Experiments on the real Talos: The learned parameters

we chose to test on the real Talos were the best non-

failing solutions in the Gazebo simulator, which has higher

fidelity than the simulator used for NSGA-II optimization.

The values of the hand-tuned parameters used and the chosen

NSGA-II-generated parameter sets are listed in Table II.

The 3-D hand and foot tracking data from the motion

capture system was compared to the reference positions sent

to the robot over the course of each rollout. Here, Umeyama’s

method [33] was used to estimate the proper transformation.

B. NSGA-II: Results

1) Learned parameter values: The datasets resulting from

our implementation of NSGA-II each contain roughly 100

Pareto solutions. For SPWs, Figure 3 shows that wCoM and

wp are, respectively, very high and very low for almost every
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TABLE II

HAND-TUNED AND LEARNED PARAMETER SETS USED FOR REAL ROBOT TESTING.

Trajectory Type wh wf wCoM wto wp λP
h

λP
f

λP
CoM σP

to µP
p

Squat Hand-tuned 10 1000 1000 10 1.75 30 30 30 30 10
Squat Learned 1296.6 1241.3 1871.3 248.9 26.1 1591.1 916.9 1968.6 618.0 231.5
Dance Hand-tuned 100 100 2000 1000 100.75 1000 30 1000 30 60
Dance Learned 207.9 192.1 1885.1 852.3 45.9 898.6 1074.7 1935.8 26.0 215.9

Fig. 3. Boxplot comparison of top 50 best-performing learned SPWs and CGs for each training trajectory. Data is from 5 separate Pareto fronts for each
training set.

trajectory. Interestingly, the hand weights wh for the clap,

lean and twist, and right arm reach are very close to the upper

bound of 2000, because the robot places high importance on

the position of the hands to avoid collisions.

The CG boxplots in Figure 3 show that the λP
CoM values

are universally very close to 2000, which is necessary to

allow the robot to maintain stability. On the other hand, the

torso and posture CGs are generally nearer to zero. It can

be postulated that by making these robot parts less reactive,

there are less jerky motions, lowering the risk of both self-

collision and falling.

The squat is the most stable and therefore “easy” trajectory

to find control parameters for, so for this reason it has a wider

range of successful weights and gains. Conversely, λP
f values

for each trajectory have a wide range and a relatively high

median, suggesting that the specific value of this parameter

does not have as large an influence on the possibility of

failure, but that it does play a role in stabilizing the robot.

Additionally, Figure 3 shows that the actual mean param-

eter values learned for a robust controller are very different

from those in the hand-tuned set, further illustrating the

usefulness of optimization via this method.

2) Performance on modified models: One sample Pareto

front each for training Sets 1 and 2 was tested on the

5 modified robot models described in Section IV-A.4. We

found that between different models, the best-performing

region of the Pareto front is the same, which suggests transfer

from simulation to reality is straightforward.

3) Experiments on the real robot: After evaluating the

performance of the learned Pareto fronts in simulation, the

squat and dance trajectories were validated on the real Talos

robot to compare the performance with learned vs. hand-

tuned parameters. A video comparison of the learned and

Fig. 4. Examples of the change in performance of a Pareto front between
one robot model and another, for the walk on spot trajectory. Solutions with
tracking error greater than 0.5 are labeled as failing solutions.

hand-tuned performance of these trajectories on the Talos is

attached1.

For the squat trajectory, Figure 1 shows that the hands

move much less in the world frame with learned vs. hand-

tuned parameters, which makes the whole movement more

stable and precise. For the dance trajectory, it is more difficult

to visualize the difference of the two solutions, because the

robot is moving quite fast; however, the calculated cost of

8.96 cm for the learned parameter set is about 3 cm less than

the 11.79 cm of the hand-tuned set, which is encouraging for

a single trial.

In summary, both Pareto solutions that were tested worked

well on the real robot. From these results we conclude that

in addition to producing control parameters much more effi-

ciently than hand-tuning, learning in simulation via NSGA-II

also yields parameter sets that are transferable to reality.

1Video also available at: https://youtu.be/X1iNwDKXUNQ
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Fig. 5. Performance of our method, Pareto-based BO, on hyperparameter combinations C1-4 (deterministic, run once each) from Table III, compared
to direct BO and random search (along the Pareto front) results. A cost of 0.7 is used to represent all failing costs. The different combinations perform
similarly, but uniformly better than either direct BO or random search.

TABLE III

LIST OF SETTING COMBINATIONS TESTED FOR BO.

Combination name µ0(θ) lb β

C1 mean w/ failing costs 1.0 0.5
C2 mean w/out failing costs 1.0 0.5
C3 mean w/out failing costs 5.0 0.5
C4 mean w/out failing costs 1.0 2.0

C. BO: Experimental design

BO was tested along the Pareto fronts generated from a

sample MOO dataset to allow the robot to learn to follow

new trajectories, on which the Pareto front was not trained.

For this, each Set 1 trajectory was used as a “new” trajectory

on the Set 2 Pareto front, and vice versa.

1) Algorithm settings: For Bayesian optimization, the

many possible hyperparameter settings of the algorithm

affect its performance differently. We chose to vary the initial

GP mean function, the GP kernel smoothness lb, and the

UCB exploration coefficient β. The choice of initial mean

µ0(θ) determines whether the optimizer is optimistic or

pessimistic, which influences its ability to find solutions.

Since Pareto front-based BO has access to the Pareto

solutions, an optimistic initial mean is an average of the

NSGA-II-trained fitness values over all training trajectories

for each individual, ignoring failing costs. In contrast, the

pessimistic initial mean for Pareto-based BO is the same

average, but includes failing costs, which bring down the

average significantly. Next, changing the smoothness hyper-

parameter lb affects how much the estimated expected returns

Ĵ(θ) of parameter sets near the sampled one are changed.

The last part that will be examined is the exploration

coefficient β > 0 of the UCB acquisition function, which

balances exploration and exploitation. In order to evaluate

which of these settings work best, each of the combinations

C1-4, listed in Table III, are tested.

D. BO: Results

Using BO allows us to train a Pareto front on a few

trajectories, but later have a means of adding new trajectories

to the robot’s repertoire without having to repeat the MOO.

In addition to testing this approach on each of our training

trajectories, we also perform trials with the hyperparameter

combinations given in Table III. In order to gain a better

understanding of how well this method performs, Figure

5 compares it both to direct BO, which searches in the

continuous space, and random search of the Pareto front

space, averaged out over 1000 runs. Figure 5 indicates

that in most situations, the Pareto-based BO approach finds

very good control solutions within the first few iterations,

suggesting that this approach could also be applied on a

real robot. Our approach outperforms both direct BO and

Pareto-based random search in terms of convergence time

and solution quality.

1) Pareto-based BO vs. benchmarks: One immediate

takeaway from Figure 5 is that direct BO finds conspicuously

worse solutions than either the random search along the

Pareto front or Pareto-based BO. This proves that there is a

clear benefit to using a Pareto front as a small, discrete search

space. It should be noted that for the touch ground trajectory,

none of the Pareto-based methods find a successful solution.

In fact, no successful solution exists for this trajectory on the

searched Pareto front. This points to either a lack of adequate

diversity in the trajectory group which Set 1 is trained on, or

an insufficient number of training generations with NSGA-II.

2) Comparison of different settings: C1-4 perform simi-

larly, but uniformly better than either direct BO or random

search. Notably, the filtered mean configurations outperform

the unfiltered C1 for every trajectory except the clap. In gen-

eral, the filtered mean describes the search space better than

the unfiltered mean, which is full of large error estimates.
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V. CONCLUSIONS AND FUTURE WORK

In this paper we present a solution for learning task-

priority-based control parameters for a humanoid robot in

two steps: optimizing a Pareto front of parameter sets with

NSGA-II, and searching in that Pareto front to learn suitable

parameters for new trajectories with BO. This combination

of methods saves time that would otherwise be spent hand-

tuning a controller, improves tracking accuracy on individual

trajectories, and is transferable to new, untrained trajectories.

One direction which deserves further investigation is to

design and test other objective functions. The objective

function used in this work assigns the same cost to all

failing solutions and therefore provides little information to

the optimizer about which direction in which to move in

the parameter space to avoid failure. A more descriptive

objective function, such as one that accounts for how much of

the trajectory the robot completes before failing, would speed

up the optimization. Other ways of initializing the GP mean

function could also be useful to test, such as by measuring

which NSGA-II training trajectory is most similar to the BO

trajectory via some heuristic, and then using that training

trajectory’s Pareto front performance as the initial mean for

learning the new trajectory. Another improvement consists

of using whole-body retargeting to provide more complex

behaviors, as was done in [16] for the iCub robot.

To further investigate the transferability of the approach

from simulation to reality, more tests on the real robot will

help to statistically analyze the squat and dance performance

as well as to validate performance on other trajectories.
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