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Abstract—One interpretation of breathing exercise is to enforce
mind-body harmony, when someone feels well and healthy, differ-
ent organs of our body function harmoniously. One dysfunctional
organ may disturb the resonating mechanism across multiple
organs. There are different breathing techniques, and recent
scientific evidence encourages understanding the neural correlates
of breathing. This research investigates breathing exercises at two
paces: Rapid and Deep Slow using neural signals. We collect
Electroencephalography (EEG) recordings of 14 participants per-
forming breathing tasks. EEG signals are primarily decomposed
in frequency bands that designate different cognitive functions.
We extract six primary frequency bands, including delta (1-
4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz),
high beta (21-30 Hz), and gamma (30-40 Hz). Two different
techniques are utilized to report the findings encompassing power
spectral analysis and employing machine learning classifiers to
discriminate features among different stages of inhalation and
exhalation with the significance of different frequencies bands.
Lowered beta power in Slow Deep breathing is observed compared
to Rapid Breathing, which may suggest increased relaxation,
calmness, and anxiety reduction. Differences between the two
conditions observed in the fronto-parietal cortex may be attributed
to differences in voluntary control between the two tasks. We
observed classification accuracy of 72% using low beta between
Rapid and Deep Slow breathing using Decision Tree. Several inter-
esting findings are observed in different scalp regions suggesting
future direction for further investigation. This study contributes
to the understanding of neural signatures for different breathing
practices. The implication of this research in health care is to
design personalized therapies and to design better breathing
mobile applications for daily use.

Index Terms—Machine Learning, Breathing, EEG

I. INTRODUCTION

Breathing exercises have been an integral part of yogic prac-
tices and spiritual activities in eastern cultures, such as Indo-
Tibetan and Buddhist cultures. Some examples of breathing
exercises are breathing in and out in a predetermined pace,
breathing with alternate nostrils, forced inhalation and exhala-
tion, and holding of breath for a longer duration. It was based
on the principle that mind and body are interconnected, where
breathing exercises increase oxygenation of body to improve

physical and mental well-being. Several studies have supported
the effectiveness of breathing exercises as an intervention for
mental illnesses like anxiety and depression, in reducing stress,
and in promoting performance on cognitive tasks. [1], [2].

Breathing exercises reduce the activity of sympathetic ner-
vous system and increase the activity of parasympathetic
nervous system [3]. Voluntary control of breath, with un-
derlying neural areas like cerebellum, supplementary motor
area, somatosensory and motor cortices, helps in functional
modulation of the autonomic nervous system including vagal
tone, vigilance and attention [4]–[6]. Performing breathing
exercises regularly brings about long-term changes in neural
activity. Bhatia et al. reported that beta1 and beta2 activity
increases in the left frontal, midline and occipital regions in
Sudharshan Kriya Yoga (SKY) practitioners in comparison to
non-SKY practitioners [7].

Recently, several researchers have investigated electrophys-
iological changes as a result of paced breathing. An increase
in beta-power when participants engaged in paced breathing
at a frequency of 0.2 Hz and 0.25 Hz was found by Stancák
et al [8]. They also found a drop in alpha band variability in
the right parietal and occipital regions during paced breathing
at 0.1 Hz when compared with normal breathing in the rest
phase. An increase in alpha-power and decrease in theta
power during paced breathing has also been found [9]–[11].
Satyanarayana et al. (1992) showed that the increased coherent
and synchronous activity of the alpha-band (8-10 Hz) slowly
merged into theta waves (6-8 Hz) as participants performed a
paced breathing exercise for a short duration [12]. However,
Tsuji did not find any differential activity in the aplha-band
during slow breathing and spontaneous breathing [13]. Unlike
previous studies showing a decrease in theta power, Cheng et al
found an increase in this activity at central areas in the paced
breathing group [14]. In [15], the effect of altered breathing
rate , slow breathing (bradynpea) and fast breathing (tachynpea)
and its effect on EEG was studied. Fast Breathing resulted in
increased theta power in frontal parietal and occipital areas
Slow Breathing did not result in an increase in theta power.
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Fig. 1. Several factors to be in account during breathing. Duration of inhalation
and exhaltion with certain style, for instance, closing one nostril and allowing
other to inhale. The impact of this exercise on our cognition and emotion.

Therefore, the current studies seem to be limited and more
research is required in this direction. The variations in the
frequency of breathing, cues to indicate paced breathing, par-
ticipant demographics, practice in performing these exercises,
and duration of paced breathing in these experiments could be a
source of inconsistent results. Accordingly, we investigated the
electrophysiological changes underlying paced breathing using
a within-subject design to substantiate the current literature.
We also compared the electrophysiological activity as partic-
ipants inhaled and exhaled while performing these breathing
exercises.

To the best of our knowledge, previous studies have not
studied the EEG correlates of breathing respective to variation
in the inhale: exhale ratio using spectral and machine learning
techniques. Hence this study explores the differences in EEG
spectral powers in rapid breathing of 500ms of inhale with
500ms of exhale, and Deep Slow breathing of 1s inhale with
2s exhale.

II. MOTIVATION

Personalized breathing modules may be designed for indi-
viduals with a growing scientific understanding of breathing
techniques. The rapid advancement of neurotechnology has
led to the development of consumer EEG headsets that can
provide insight into individual’s neural rhythms [16]. Breath-
ing techniques can therefore be suggested according to the
characteristics of individual neural rhythms. As shown in Fig.
1, Breathing has several variations depending on its style and
duration. A variety of breathing styles are available, including
three-part alternate nostril breathing, complete breath, post-
exhale pause, and skull shining [17]. Breathing generates
relaxation, optimal bodily function, emotional balance, self-
awareness, and cognitive modulation [18].

III. EEG DATASET AND PREPROCESSING

A. Participants

A sample of 14 healthy participants (13 males) pursuing
postgraduate or undergraduate degree programs at the Indian
Institute of Technology Gandhinagar was recruited for this
experiment in the age group of 17-27 years (mean age =

22.79 years, SD = 2.75). Neither had any known motor,
learning, or other neurophysiological deficits. Before beginning
the experiment, all the participants provided their consent.

B. Procedure

Participants performed breathing exercises at two paces. In
the first pace, participants had to breathe with an inhalation and
an exhalation time of 500 ms each, such that each breathing
cycle was 1 second long. In the second pace, they had to
maintain a breathing pattern with an inhalation time of 1 second
and an exhalation time of 2 seconds, making one breathing
cycle last for 3 seconds. Breathing exercise at each pace was
performed for a duration of 5 minutes. The order of these
two paced breathing exercises were counterbalanced across
participants. The participants were guided by visual cues to
maintain the pace of breathing. The experiment was designed
and conducted using E-prime. EEG data was recorded as the
participants performed this task.

C. EEG Data Acquisition

High density Geodesic Net of 128 channels was used to
acquire the EEG data. EEG caps are available in different
sizes therefore before beginning a experiment, we measured
the circumference of the head to identify the appropriate cap
size for each participant. The reference electrode was decided
between nasion (point in between eybrows) and inion (middle
point of skull ending at the backside) as mentioned in this
article [19]. To enhance the quality of the data, one liter of
distilled water was used to prepare the electrolyte solution,
followed by immersing the EEG cap in the solution. The
electrode impedance was set to below 50 kiloohms with a
sampling rate of 250 Hz.

D. EEG Data Processing

We performed the data processing steps and statistical anal-
ysis using EEGLAB and MATLAB [20]. Low pass and high
pass filtering at 2 and 40 Hz were applied to remove noise and
linear trends. Bad channels were removed and interpolated, and
finally data were re-referenced from Cz to the mastoid (channel
E129). We segmented the data into two groups corresponding to
the breathing paces: Slow Deep breathing and Rapid breathing.
Then the epochs for each of these segments were extracted.
For the paced breathing data, we defined the epoch from 100
milliseconds prior to the onset to 3 seconds after the onset
of the breathing cycle. Similarly, for the normal breathing
data, we defined the epoch from 100 milliseconds prior to the
onset of the breathing cycle to 1 second after its onset. Once
the epochs were extracted, the data was re-referenced to the
mastoid (channel E129). In addition, we removed all artefact
epochs from the dataset. Large fluctuations were also detected
and rejected.

IV. METHODOLOGY

The complete processing pipeline is shown in the Fig. 2
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Fig. 2. EEG recordings are pre-processed, followed by decomposition of 6 primary frequency bands, and the last stages involve spectrum analysis and
classification using machine learning.

A. Power Spectrum Analysis

We performed a two-way paired-sample t-test to compare the
difference between the mean spectral power of the following
five pairs of breathing conditions.

1) Rapid breathing Vs. Slow Deep breathing
2) Rapid breathing Vs. Slow Deep breathing [Inhale condi-

tion]
3) Rapid breathing Vs. Slow Deep breathing [Exhale con-

dition]
4) Inhale condition Vs. Exhale condition [Rapid breathing]
5) Inhale condition Vs. Exhale condition [Slow Deep

breathing]
We computed the spectral power for each frequency band

as shown in the Fig. 2, for each electrode site as well global
spectral power (Spectral power averaged over all 128 electrode
sites) and the mean spectral power averaged over particular
electrodes in a particular zone, such as fronto-parietal, left
frontal, right temporal etc. After conducting a two way paired
sample ttest, for all 128 electrodes, between the pairs of the
5 condition. The t test score was plotted on a topographical
plot of the cortex. So extremely positive values of t test
score (indicated by dark red color) indicate a statistically
significant greater spectral power in condition one compared
to condition two, similarly, extremely negative values of t test
score (indicated by dark blue color) indicate a statistically
significant lesser spectral power in condition one compared
to condition two, green indicates no statistically significant
difference in power between the two conditions.The results
stated in the results section were based upon our observations
of the t score topoplots as well as observations p values shown
by t tests of spectral power differences between the breathing
conditions at individual electrodes.

B. Machine Learning Classification of Breathing States

Machine learning classifiers were used to observe classifi-
cation accuracy in classifying breathing conditions based on
spectral power of frequency bands at different electrode sites.
Machine Learning analysis was performed in python using the
scikit-learn library [21]. Classifiers employed were K Nearest
Neighbors (KNN), Support Vector Machine (SVC), Decision
Tree Classifier, Random Forest Classifier, Multi-Layered Per-
ceptron (MLP), Ada Boost Classifier, Gaussian Naive Bayes,
and Quadratic Discriminant Analysis (QDA) classifiers and

Fig. 3. Differences between Rapid and Slow Deep breathing

these classifiers are found to be significant in various EEG
literature [22], [23]. Similar to spectral analysis, binary classifi-
cation was performed on five breathing pairs. The features used
for classification were the mean spectral powers at electrode
sites for each spectral band. Each classification between two
breathing conditions was completed using data from each band
trained separately. Hence, every classification between two
different breathing conditions used six different sample-feature
matrices. Accuracy was tested using every classifier, and the
classification with the best accuracy was considered.

Feature Selection and Cross Validation: The significance of
electrodes was determined during performing spectral analy-
sis, which provided an electrode arrangement in increasing
order of p-value. We sequentially considered the electrodes
for classification. For instance, the first iteration evaluated
the first electrode with a minimum p-value. The second next
iteration included the next electrode with the second least
minimum p-value. Similarly, all 128 electrodes were considered
for classification. The electrode data features were selected in
decreasing order of their significance (as measured by their
p-value. The permutation test score method developed in the
scikit-learn library was used to test the statistical significance
of the classification with 1000 different permutations of the
dataset [21].

V. RESULTS

A. Power Spectrum Analysis

1) Differences between Rapid and Slow Deep breathing:
Significant differences were observed in the spectral powers
between Rapid and Slow Deep breathing in the delta, alpha,
low beta and high beta bands as shown in topograph plots Fig.3.
The spectral power differences showed the greatest statistical
significance for the low beta band between the two conditions.
The low beta power was lower in the Slow Deep breathing
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Fig. 4. Differences between Rapid and Slow Deep breathing in the Inhale
condition

condition than Rapid breathing.The T-score topoplot showed
statistically significantly lower low beta power in the centro-
parietal, parietal (more to the left hemisphere than the right),
and centro-frontal (more to the right hemisphere than the left).
The eight most statistically significant (p < 0.01) electrodes
were present along the midline and immediately right and left
to it, in the left-right and centro-parietal (P1 (p = 0.00067) ,Pz
(p = 0.008) ,P2 (p = 0.0016)), centro-parietal (CP1),Central,
left and right Occi-Parietal (PO3,POz,PO4), left and right
adjacent to the midline electrode sites.

High beta power was significantly lower in the Slow Deep
compared to the Rapid breathing condition in the parietal region
(extending to the occipital-parietal and right centro-parietal
zones), the effect was also present in the frontal midline region.
five electrodes showed (p < 0.01) respective to the parietal,
occipital-parietal (around Pz), right parietal (Cp2) electrodes.
There was a statistical significant reduction in power in Slow
Deep breathing compared to Rapid breathing.

Alpha power was significantly lower in the Slow Deep
breathing than the Rapid breathing in the right frontal,right
fronto polar, midline frontal, midline central, midline centro-
parietal, right fronto-central regions. The right frontal electrode
showed the greatest statistically significant difference, (p =
0.0157) and the right fronto temporal electrode (p = 0.0167),
the other statistically significant electrodes were in the frontal
zone, such as Fp2, left frontal. There was a statistically signif-
icant reduction in power in the Slow Deep case compared to
the Rapid breathing case.The left centro-parietal (p = 0.0133)
and the left central (P3) (p = 0.01347) showed the greatest
statistically significant difference in the delta band. There was
a statistically significant increase in power in the Slow Deep
case compared to the Rapid breathing case.

2) Differences between Rapid and Slow Deep breathing
in the Inhale condition: Spectral Power in the six bands
were compared between the Slow Deep and Rapid breathing
tasks,(Slow Deep-Rapid t test) but only the inhalation period
was considered.

The topograph plots are shown in Fig. 4. In low beta power,
the right parietal region showed lower low beta power in the
Slow Deep condition than the Rapid breathing condition. Sites
in that region, to the front of P4 showed (p = 0.00028) and to
the front of P2 showed (p = 0.00076), lowering was observed
in the left centro parietal region, at site CP1 (p = 0.0026)
and the frontal midline zone AFz (p = 0.0046). The fronto
polar midline region showed significantly high beta power in

Fig. 5. Differences between Rapid and Slow Deep breathing in the Exhale
condition

Slow Deep condition than Rapid breathing. Electrode at this
site showed (p = 0.0098), and the right temporo-parietal (p =
0.0057), the right parietal to occi-parietal zone, electrode at
that site showed (p = 0.006).

There was significantly lower alpha power in the Slow Deep
case as compared to the Rapid breathing case in the right
parietal, right centro-parietal zones (p = 0.0053), occi-parietal
and left occipital zones, site at the right occi-parietal zone
showed (p = 0.006). There was significantly lower theta power
in the Slow Deep case as compared to the Rapid breathing case
in the right parietal CP6 (p = 0.0092), and occi-parietal zone ,
site to the right and between PO4 and O2 showed (p = 0.0077).

3) Differences between Rapid and Slow Deep breathing
in the Exhale condition: Spectral Power in the six bands
were compared between the Slow Deep and Rapid breathing
tasks,(Slow Deep-Rapid t test) but only the exhalation period
was considered.

Global spectral mean power (mean spectral power averaged
over all electrodes) showed differences between the two breath-
ing conditions in the low beta band (p = 0.0008), delta band
(p = 0.0327), and high beta band (p = 0.044) as shown in
Fig.5. The powers were lower in the Slow Deep condition
as compared to Rapid. The greatest statistically significant
differences between the conditions in low beta power were
observed in the left central temporal-parietal C5 (p = 0.00016)
and left temporal at T9 (p = 0.00019). Apart from these,
the left frontal, left temporo-frontal , left parietal, left centro-
parietal, and left temporo-occipital sites were also statistically
significant, ranging p-value in the range of 0.0002 to 0.0009.

As per the T-score topoplot, significantly lower high beta
power was observed in the Slow Deep condition compared
to the Rapid condition left occi-parietal zone , PO7 showed
(p = 0.00047),left parietal P3 (p = 0.00071) , fronto cen-
tral (frontal right electrode to this site p = 0.0018, FCz
p = 0.0022) and right temporo parietal (site right of TP10
showed (p = 0.003).As per the T-score topoplot, significantly
lower gamma power was observed in the left occi-parietal
zone and occi-parietal zone , O1 showed (p = 0.0034), POz
showed (p = 0.0055), PO3 showed (p = 0.0035). In alpha
power between the two conditions, the right occipital area
showed higher alpha power in the slow deep case than the
rapid breathing case with O2, which showed (p = 0.019).

Theta power between the two conditions, the right frontal
and right fronto-temporal area showed lower theta power in
the slow deep case compared to the rapid breathing case, F10
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Fig. 6. Differences between inhalation and exhalation during Rapid breathing

Fig. 7. Differences between inhalation and exhalation during Slow Deep
breathing

showed (p = 0.015). In delta power, the right temporo-parietal
showed significantly lower delta power in the Slow Deep case
compared to the Rapid breathing case, TP10 (p = 0.0047),
(site located near TP8 and TP10 (p = 0.0028).

4) Differences between inhalation and exhalation during
Rapid breathing: Spectral Power during the inhalation and
exhalation period was compared during the rapid breathing
task. (inhalation-exhalation t test). The topograph plots are
shown in Fig. 6. In the low beta band, it was observed that there
was greater power during exhalation compared to inhalation, in
the occipital region,parietal region in particular the left occipital
region, (electrode at this site showed, (p = 0.0003)), right
centro-parietal, C5 (p = 0.00055)). In the high beta band, it
was observed that there was greater power during exhalation
compared to inhalation in the right occi parietal zone, electrode
at this site showed (p = 0.00028),left temporo parietal TP7
(p = 0.00051), left parietal zones P3 (p = 0.0006), right
Temporo Parietal, electrode at this zone showed (p = 0.001). In
the gamma band, it was observed that there was greater power
during exhalation compared to inhalation in the right temporo-
occi-parietal zone electrodes at this site showed (p = 0.00017)
for PO8 and (p = 0.0014) at the right occi parietal site.

In the delta band, it was observed that there was greater
power during inhalation compared to exhalation in the right
frontal pole region, electrode in that region showed (p =
0.00589),and to a lesser degree left frontal pole region and
left occipital. In the alpha band, it was observed that there was
greater power during exhalation compared to inhalation in the
right parietal to right occi-parietal region, the electrode site at
this location showed (p = 0.012). In the theta band it was
observed that, there was greater power in the inhale condition
as compared to the exhale condition, at the central midline zone
, a site posterior and to the right of CPz showed region showed
(p=0.0076)

5) Differences between inhalation and exhalation during
Slow Deep breathing : Spectral Power during the inhalation
and exhalation period was compared during the slow deep
breathing task. (inhalation-exhalation t test)

In the delta band, greater power was observed in inhalation

Fig. 8. Accuracy of Machine Learning Classification

compared to exhalation in the frontal, fronto polar, and right
and left fronto-polar regions, right and left fronto-temporal
regions, for AFz (p = 0.0000256), site left of AFz and
below FP1 (p = 0.0000329) , FPz (p = 0.000076),right
fronto temporal (site to extreme right fronto temporal showed,
(p = 0.000090) Fz (p = 0.0002) F9 (p = 0.00023) as shown in
topograph Fig. 7. In the alpha band, greater power was observed
in exhalation compared to inhalation in the right occipital, right
occi-parietal region, O2 showed (p = 0.0072), the electrode at
the right occi-parietal temporal junction showed (p = 0.0085).

In the low and high beta bands, there was a higher power
in the exhale condition as compared to the inhale condition
in the right occi-temporo parietal zone electrode at that site
(p = 0.0091) for low beta, (p = 0.00992) for high beta.

B. Machine Learning Classification

Permutation testing was applied to evaluate the signifi-
cance of classification accuracy. Using the mean spectral delta
power of the 20 most significant electrodes, we achieved 74%
(p=0.0199) classification accuracy between Slow Deep and
Rapid breathing using Neural Network Multilayer Perceptron.
Decision tree showed 72% accuracy ( p=0.0199) using the
mean spectral low beta power of the 90 most significant
electrodes between Slow Deep and Rapid breathing. Mean
spectral high beta power of 69 most significant electrodes
classified Slow Deep and Rapid breathing in the exhale con-
dition with 71% accuracy ( p=0.0319) using Random Forest.
The classification accuracies of other bands between the other
breathing condition pairs were not significant and significant
results are shown in Table 8.

VI. DISCUSSION AND CONCLUSION

Both the Deep Slow Breathing and Rapid Breathing exercises
performed by the participants require voluntary control because
they had to maintain the necessary inhale to exhale ratio (1:2
or 1:1). This suggests that slow deep breathing inhale: exhale
ratio (1:2 ) may require more voluntary control, attention, and
alertness than the rapid (1:1) breathing task as more cognitive
effort is needed to maintain the 1:2 inhale to exhale compared
to a 1:1 ratio. Slow Deep Breathing during meditation and
otherwise is known to have a relaxing effect, increase comfort,
alertness, mindfulness, and decrease anxiety. We hypothesize
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that the differences in spectral power observed between the two
breathing tasks in this study can be explained by the effect
of voluntary and cognitive control in executing the tasks and
the impact of Slow Deep breathing on psycho-physiological
aspects such as mindfullness and alertness [18]. The effect
of any voluntary task, voluntary control over breathing speed,
and inhale: exhale ratio will involve the primary supplementary
and premotor area. And can be discussed with spectral power
differences being observed in the frontal, fronto-central, centro-
parietal and parietal zones. Previous fMRI studies confirm
the activation of frontal and parietal regions during volitional
control of breathing [24]. An Intracranial EEG study found
activation of the fronto-tempolar insular network during volun-
tary control of breathing [25]. Fronto temporal regions showed
differences in activation in this study between the two breathing
conditions considered in this study as well. Lowering of beta
powers in the Slow Deep breathing conditions as compared
to the Rapid breathing case can be explained by the fact that
lower beta power results in increased relaxation, calmness, and
reduction of anxiety [26]. The increase in delta power may be
a predictor of increased relaxation.

VII. LIMITATION

In this study, we did not have a normal, natural breathing
control condition performed by the participants. Therefore,
the state during the two breathing conditions could not be
compared to a control, the default mode of normal breathing.
We also filtered the data at 40 Hz, which limited the analysis of
gamma band. Further investigation needs to be done with more
participants to make stronger inferences with measurement of
respiratory activity. However, this study presents a detailed
analysis of two breathing techniques and suggests further
investigation.
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