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Abstract. This chapter summarizes the presentations of speakers addressing such
issues during the Automated Vehicles Symposium 2020 (AVS20) held virtually
on July 27–30, 2020. These speakers participated in the break-out session titled
“Artificial Intelligence for Automated Vehicle Control and Traffic Operations:
Challenges and Opportunities”. The corresponding discussion and recommen-
dations are presented in terms of the lessons learned and the future research
directions to be adopted to benefit from AI in order to develop safer and more
efficient connected and automated vehicles (CAV). This session was organized by
the Transportation Research Board (TRB) Committee on Traffic Flow Theory and
Characteristics (ACP50) and the TRB Committee on Artificial Intelligence and
Advanced Computing Applications (AED50).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Meyer and S. Beiker (Eds.): AVS 2020, LNMOB, pp. 60–72, 2022.
https://doi.org/10.1007/978-3-030-80063-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80063-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-80063-5_6


Artificial Intelligence for Automated Vehicle Control and Traffic Operations 61

Keywords: Traffic flow modeling · Traffic operations · Control · Automated
vehicles · Artificial intelligence

1 Introduction

Artificial Intelligence (AI) models are being utilized extensively in different scientific
and engineering domains for both analysis and predictive purposes. In particular, AI
models are leveraged for processing sensor data, controlling automated vehicles (AV)
and operating traffic control devices. However, there are still many challenges in those
AI applications, including how to choose, build, and train AI models to avoid issues
such as overfitting; translate AI models trained on synthetic (e.g., simulated) data to
real-world applications; and teach AI controlled AVs how to collaborate (instead of
solelymaximizing their own benefits) with each other, human-driven vehicles, and traffic
control devices at both local and network levels so that the overall transportation system’s
safety and mobility are maximized.

Among the scientific and engineering domains using AI models, automotive makers
are adopting AI techniques in order to automate the movement of driver-less cars thus
creating safer and more reliable automated vehicles (AV). On the other hand, traffic
engineers are adopting AI to predict congestion and collision formation on our road-
way networks offering real-time information for users to make better travel decisions.
However, simply adopting AI instead of standard traffic flow models may lead to the
lack of understanding of physical processes and dynamics leading to poor roadway per-
formance and may produce false predictions in traffic states especially given the need
of extensive data for AI training, calibration and validation purposes. Accordingly, the
suitable use of AI in traffic operations and AVmodels requires studying two dimensions:
1) the type of AI models being adopted and their corresponding characteristics; and 2)
the gap between the data available for transportation professionals and the data needed
to train AI models.

Towards studying the AI model characteristics and the corresponding data needs,
the Transportation Research Board (TRB) Committee on Traffic Flow Theory and Char-
acteristics (ACP50) and the TRB Committee on Artificial Intelligence and Advanced
Computing Applications (AED50) organized a breakout session at the Automated Vehi-
cles Symposium 2020 (AVS20) - held virtually on July 27–30, 2020. The breakout
session titled “Artificial Intelligence for Automated Vehicle Control and Traffic Opera-
tions: Challenges and Opportunities” brought together six scholars from academia and
the industry. These scholars presented their latest work in AI as related to the traffic
engineering and AV field. Following the presentations, a panel consisting of five of the
invited speakers had extensive discussion with the audience. This chapter summarizes
these presentations while identifying the key challenges in adopting AI for traffic andAV
modeling and the corresponding efforts made to adapt data for training and calibration
purposes. In particular, the objectives of the session are to:

• Identify the opportunities and challenges associatedwithAI applications inAVcontrol
and traffic operations
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• Propose solutions for addressing the challenges
• Identify innovative applications made possible by AI and AV
• Explore howAI can enable collaborative behaviors and their impacts on transportation

Towards realizing the aforementioned objectives, the remaining sections of this chapter
are organized as follows: Sect. 2 presents a summary of the 6 invited talks and Sect. 3
introduces the key results from the panel discussion.

2 Research on Utilizing Artificial Intelligence (AI) for Traffic
Operations and Automated Vehicle (AV) Modeling

This section presents a summary of the six invited talks, which addressed the research
challenges, opportunities and existing efforts in adapting AI to design better Automated
Vehicles (AV) and to capture their impact on traffic flow. The summary includes themoti-
vation and contributions associated with the presented research, the main conclusions,
and future research directions.

2.1 The Value of Good Old-Fashioned Parametric Models for AV Control1

Adopting artificial intelligence (AI) and self-learning algorithms (SLAs) have had a
significant modelling impact on the development of vehicle automation systems. Despite
having great potential, such adoption has some limitations. AI and SLAs are usually
data hungry and do not behave well in new situations without proper training. This
can lead to major safety issues when deploying Automated Vehicles (AV). As long as
no extensive data repositories are provided to AV developers covering a wide range of
traffic conditions, there will be misalignments between vehicle dynamics/movements
controlled by SLAs and human driving behavioural adaptations. Such misalignments
might be caused by (1) AI anomalies leading to unpredictable “harmful” movements;
and (2) interactions between human and AV systems/interfaces due to lack of training
and communication. As parametric models tend to capture the underlying human driving
behaviour with specific modelling and theoretical constructs, they can play a role to
mitigate such misalignments. A three-pronged approach (Melman et al. 2020) might be
suggested to address this problem: i) mitigating misalignments by modelling realistic
driving behaviour; ii) including parameterized models of driver behaviour adaptation
into interaction design; and iii) offering human-centred interaction design.

i)Modelling realistic driving behaviour:Driver behavioural understanding is essen-
tial to modelling realistic driving behaviour. Recently a quantification of Gibson’s safe
field of travel has been proposed (Kolekar et al. 2020a) as the underlying principle for
a generalizable driver model. In order to compute a perceived risk, this theory evaluates
the consequences/utilities of events occurring in the driving scene and the driver’s sub-
jective belief related to the probability of an event to occur. Combined with an assigned
weight, the model quantifies the perceived risk and is able to describe and predict dif-
ferent naturalistic driving behaviours in various traffic scenarios (Kolekar et al., 2020b).

1 By David A. Abbink, Delft University of Technology, Netherlands.
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One major benefit of this model is that it can perform well in unobserved situations
with no readily available data. Accordingly, this modelling approach can contribute to
mitigating one of the major problems associated with AI based autonomy.

ii) Including models of driver behaviour adaptation into interaction design: Drivers
might adopt undesirable or risk seeking behaviour when using SAV (Semi-Automated
Vehicles) or AV. Melman et al. (2017) showed in their study that drivers trend to drive
faster with the haptic lane keeping assistance system. To mitigate such type of emergent
behaviour, in-depth human factor and behavioural adaptation studies are necessary.

iii)Offering human-centred interaction design: researchers may offer breakthroughs
associated with AV development and deployment; however, even when the proposed AV
systems do offer a perfect safety record and a significant efficiency improvement, there
will always be need for human-automation interaction. Human-automation interaction
can be categorized into two categories: traded control and shared control. In traded con-
trol, at any specific time during the driving event, either the algorithm or the human
controls the vehicle. This approach is comparably easy to implement and computation-
ally less complex. In shared control, human and algorithm can both control the vehicle
at any given time. Abbink et al. (2012) demonstrated one such system in which torques
on the steering wheel is used for the interaction between the human driver and the algo-
rithm. This torque is used to inform human driver about the disagreement between the
trajectories produced by the algorithm and human. In the aforementioned study, the time
to lane crossing (TLC) is measured for a human controlled vehicle, a shared controlled
vehicle and a traded controlled (automated) vehicle through a simulator environment and
it is found that the shared controlled vehicle always performs better. Moreover, in the
case of automated system failure, the shared controlled system performs better because
it takes less time for humans to take over the control of the vehicle and to react to the
situation at hand (if compared to the traded controlled system).

In conclusion, the “old-fashioned” parametric models can play a critical role in
solving misalignments between self-driving algorithms and humans, while adapting the
human decision-making process to the automation technology and increasing AV safety.

2.2 Deep Learning Based Eco-driving for Connected and Automated Vehicles2

Human and freight transportation is one of the most energy-consuming sectors in the
United States (US). According to a survey by the Energy Information Administration
(EIA), about 28%of the total US energy consumptionwas associatedwith the transporta-
tion sector in 2019. To develop a more energy efficient and sustainable transportation
system, the Connected and Automated Vehicle (CAV) technology emerges as one of
the transformative solution approaches to such an environmental problem. Connected
eco-driving refers to the connected and automated driving system that seeks to minimize
the expected total vehicle energy consumption by taking optimal and valid actions. This
system also takes into consideration other factors such as maximum travel time, fuel and
battery cost. Current research in energy efficient vehicles modelling can be divided into
three categories based on themethods used: rule-basedmodels, optimization-basedmod-
els, and deep-learning models. Usually, the rule-based models are simple to implement,

2 By Peng Hao, University of California Riverside, U.S.A.
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computationally efficient and suitable for real-time use. However, they are designed
based on the assumptions and the experience of the researchers and cannot guarantee
that the solution is the best (optimal) strategy among all possible alternative strategies.
The optimization-based models can define objectives and search and find the best (local
or global) alternative strategy. However, these models are computationally complex
and most of them are not suitable for real-time and real-world implementation. More-
over, optimization-based models often underestimate the impact of exogenous aspects
of the driving environment (i.e., not considered in the formulation either in the objective
function or in the constraints).

To address the limitations of the optimization-based models, a graph based modular
hybrid model is introduced by Hao et al. (2015) which uses graph theory models and
learning-based modules. This model adopts a different approach (including machine
learning algorithms) for each of the modules to archive the optimal speed and trajectory
plan for energy efficient driving. It includes long short-term memory (LSTM) based
signal timing prediction, radial basis function neural-network-based speed forecasting,
machine learning based trajectory planning algorithms (MLTPA), etc. for real-time and
effective execution of the model.

Deep learning-based modules utilize different deep learning algorithms for con-
nected eco-driving. There are three different logical tasks associated with such modules:
i) energy efficiency, ii) interaction with other traffic units, and iii) interaction with infras-
tructure. One of the challenges encountered is the implementation of these three different
logical tasks in the same deep-learning construct. Hao et al. (2020) introduce a hybrid
reinforced learning-based approach for eco-driving at a signalized intersection. Markov
Decision Process (MDP) is used in their study to address the challenge of implementing
three logical tasks in one problem. MDP is a mathematical framework that can be used
to model decision making based on the interaction between the learning agent and its
environment.

Dueling Deep QNetwork (DDQN) is found to be the best among all neural networks
studied by Hao et al. (2020). The agent vehicle has on-board sensors for knowing its
current state as well as the surrounding traffic environment. It receives V2I (vehicle
to infrastructure) information using Dedicated Short-Range Communication (DSRC)
system or 5G cellular data. An on-board computer equipped with the decision manager
algorithm calculates the long short-term reward of an action (to maximize an objective
function over the whole trip instead of the immediate next few steps). The neural net-
work model proposed by Hao et al. (2020) has two main components: a hidden feature
extraction component and a policy network which is based on the DDQN architecture.
Unity 3D is used to create a virtual reality environment for testing the proposed system.
Three types of vehicle agents (governed by three models) are implemented in the vir-
tual reality simulation: an intelligent driver model vehicle, a fast-speed model vehicle
(always seeking to maximize the speed) and the eco-driving model vehicle based on
DDQN. Results from the study show that the DDQN deep learning model vehicle per-
forms better in terms of energy efficiency. The vehicle also has a smoother acceleration
and deceleration pattern and an improved lane-changing performance if compared to the
other two vehicles.
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In conclusion, the deep learning-based model shows great potential in developing
eco-driving strategies for CAV.CAV in eco-drivingmode can significantly reduce energy
consumption in the transportation sector and help move towards a more sustainable
transportation system.

2.3 Machine Learning Methods – Beware: There is Nothing to Learn About
Congested Urban Networks3

Congested urban networks have long been considered to behave chaotically and to be
very unpredictable. This apparent complexity has led to the development of numerous
signal control algorithms,mathematical programs and learning-based controlmethods to
optimize network performance. Most of the research shows some operational improve-
ments but they mostly correspond to light traffic conditions or very specific small net-
works. The recent empirical verification of the existence of a network-levelMacroscopic
Fundamental Diagram (MFD) suggests a different result when studying congested net-
works. The network MFD is a way of describing the traffic flow of urban networks at an
aggregate level which is used for displaying network simulation output in a concise way.
Though the turning probability at intersections is also a key variable that significantly
affects the MFD, it is not well understood in the research. Moreover, there is a gap
in the deep reinforcement learning (DRL) literature associated with the analysis of the
different aspects of large traffic flow networks that influence the performance of DRL
methods. It is not clear if and how network congestion levels affect the learning process,
nor if other machine learning methods are effective, nor if current findings also apply to
large networks.

Laval and Zhou (2020) provide additional evidence for the congested network prop-
erty of the MFD and analyze how these properties affect the performance of machine
learning methods applied to signal control. The traffic flow model used in this study is a
cellular automaton (CA) implementation of the kinematic wave model with a triangular
flow-density fundamental diagram, which is the simplest model able to predict the main
features of traffic flow. A grid network of bidirectional streets with one lane per direction
and with a traffic light at all intersections is used as the simulation network. To attain
spatial homogeneity, the network is defined on a torus where each street can be thought
of as a ring road where all intersections have 4 incoming and 4 outgoing approaches.
Vehicle routing is set to random. A driver reaching the stop line, will choose to turn
with probability p or keep going straight with probability 1 – p. Traffic signals in the
simulation operate under the simplest possible setting with only red and green phases
(no lost time, all-red, yellow nor turning phases). All the control policies considered
are incremental in the sense that decisions are taken every g time steps, which can be
interpreted as a minimum green time: After the completion of each green time of length
g, the controller decides whether to prolong the current phase or to switch light colors.

The baseline experiment shows that urban networks are more predictable than previ-
ously thought with respect to signal control and the network throughput is independent
of traffic signal control even for inhomogeneous networks. To analyze the performance
of AI methods, three methods are used for training the signal control policy: random

3 By Jorge Laval, Georgia Institute of Technology, U.S.A.
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search, supervised learning and DRL. The random search method shows that all poli-
cies, nomatter how inefficient, are optimal when the density exceeds approximately 75%
indicating that the network throughput is independent of traffic signal control. Super-
vised learning training the policy with only two examples yields a near-optimal policy.
The simulations indicate that DRL policies are only competitive and lose their ability
to learn a sensible policy as the training density increases. Such a finding also indicates
that the more the congestion is, the less the policy affects intersection throughput.

The main takeaway from the study is that, on congested urban networks, intersection
throughput tends to be independent of signal control. It can be conjectured that this
prevents DRL methods from finding sensible policies under congested conditions. In
other words, all the DRL methods proposed in the literature to date may be unable to
learn sensible policies andmay deteriorate as soon as congestion appears on the network.

2.4 On the Challenges of Building a Camera-Only, Complete, Self-driving
System4

Current technologies have either sophisticated technologies with low accuracy require-
ment or simple technologies with high accuracy requirements. Automated Vehicle (AV)
is both a sophisticated technology and requires extremely high accuracy detection. For
human drivers, the accidents that involve injuries and/or fatalities occur approximately
every 104 h and 106 h respectively. Accordingly, to improve safety, AV should have a
mean time between failures (MTBF) to be at least 107 h. The challenge is then to achieve
such a high accuracy AV system and to validate such a systemwith appropriate data. The
AV system has three phases: sensing, planning and acting. In the sensing phase, the AV
system, with the help of different sensors, builds a three-dimension (3D) environment
surrounding the corresponding vehicular space. In the planning phase, it analyzes such
environment and finds the optimal driving strategy. In the acting phase, it executes the
actions identified in the planning phase.

AVs need very high accuracy sensing for the required largeMTBF (needed for safety
considerations). In order to tackle such sensing challenge, the concept of redundancy is
used. The approach is to build two fully independent subsystems, one with only cameras
and another with radars and lidar. These two independent sub-systems should aim to
reach a MTBF of 104 h each. If the two sub-systems are truly independent, even in the
worst-case scenario (with a MTBF of 103.5 h), the sensing technology can achieve the
safety standards of 107 h MTBF. The objective becomes building an only camera-based
subsystem that can reach aMTBFof 104 h. Themain challenges in camera-based sensing
come from the fact that cameras are inherently two-dimension (2D) systems and yet we
need a 3D understanding of the surrounding environment with high accuracy even in
edge cases (where visibility is very low). There are several methods to produce 3D data
from 2D camera like prediction of object dimension, visual lidar (VIDAR)/structure
fromMotion, etc. VIDAR uses deep learning to generate a 3Dmodel of the environment
from the camera feed. Another approach is to project the 3D map information into a
2D image plane and then use the 2D data from the camera for the planning phase. The

4 By Shai Shalev-Shwartz, Mobileye.
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redundancy approach uses multiple detection methods like VIDAR, scene segmentation
3DVD, etc. and multiple measurement techniques.

The planning phase involves decision making to find optimum actions to avoid
accidents. However, to find actions avoiding accidents at all cost may not be an ideal
solution for this phase.There should be abalancebetweenbeing aperfect driver andbeing
a driver who blends in. This also raises some ethical questions. The usefulness/safety
tradeoff adopted by humans requires a sense of caution. The duty of care (Tort Law) states
that a legal obligation is imposed to an individual rewiring adherence to a standard of
reasonable care while performing any act that could foreseeably harm others. Human has
common sense to interpret such standard/law. The challenge is to interpret the law for the
AV systems. Rigorous mathematical modeling is required to formalize an interpretation
of any law which is applicable to AVs. The resulting models should be sound, useful and
applicable to machines. Soundness implies that the interpretation by the model should
comply with the common sense of human driving. The interpretation should lead to
zero accidents in a utopic world. Usefulness ensures that AVs don’t block traffic being
over-cautious and non-agile. Efficiency of AV models should be verified for machine
applicability. This is not trivial due to potential of butterfly effect. Mobileye proposes
a system called Responsibility Sensitive Safety (RSS) model, which is a mathematical
model to formalize a commonsense interpretation of the duty of care. RSS should provide
mathematical guarantees for AV to never cause an accident, to be relevant to human
drivers and to be efficiently verifiable.

In summary, to tackle the challenges of achieving AV safety standards, Mobileye
focuses on 1) redundancy for 3D sensing, and 2) formal safety modeling during planning
(i.e., planning phase) while considering human judgement considerations.

2.5 Mixed Autonomy Traffic: A Reinforcement Learning Perspective5

We imagine that the future of the transportation sector relies on fully automated and
highly efficient transportation systems. It is predicted that by the year 2050 we will
achieve full autonomy for surface vehicles. We have multiple billion-dollar corporations
racing for the creation of the first fully automated vehicle (AV) and they are improv-
ing year after year towards reaching such a goal. There are many tools available for
analyzing a single AV with full autonomy while adopting deterministic models with no
uncertainty/error. The operation of a single AV depends however on other vehicles in the
system and there is a need for additional studies on its impact on the whole mixed (i.e.,
with the existence of both automated and human driven vehicles) system. In other words,
there exists a significant challenge represented by the understanding of andmodeling the
mixed autonomy state of the transportation system. This challenge is due to the existence
of many sources of uncertainty including partial observation, limited communication,
data collection challenges, etc.

Mixed autonomy can take different forms like advanced driver assistance systems.
The impact of such mixed autonomy on safety, reliability efficiency, fairness should be
analyzed. Understanding the impact of mixed autonomy on broader societal system is
also necessary. All of these issues require more analysis tools. To analyze the problem

5 By Cathy Wu, Massachusetts Institute of Technology, U.S.A.



68 D. A. Abbink et al.

at hand, deep reinforcement learning (DRL) is used. In this modeling approach, agents
are the vehicles that are automated and everything else is considered as the exogenous
environment. The agents will make decisions such as when to accelerate or decelerate
according to a learned policy in order to maximize reward. The average velocity, energy
consumption, travel time, safety and comfort should be considered in the global reward
function. Ultimately the goal is to study large urban networks where a fraction of the
vehicles is automated. Wu et al. (2017) explores the potential of DRL methods when
training the algorithm from scratch. This study designs a representative set of scenarios
that exhibits a variety of different traffic phenomena including intersection, bottleneck
and on/off ramp scenarios. By using DRL with 5–10% of AVs, the simulations show
from 30% to 142% increase in average velocity across the scenarios. Some of the learned
policies match the performance and behavior of the control strategies devised by experts
over the years. These findings provide validation of the methodology to analyze the
impact of mixed autonomy in urban environments. A critical challenge of analyzing
these systems in large-scale contexts comes from the fact that no two cities’ traffic
networks are the same; even the traffic network in a single city varies from block to block.
There is a combinatorial number of environments that exists when it comes to traffic
networks. Accordingly, the approach of training for each scenario will not be practical
moving forward.A potential solution to this challenge is to use transfer learning. Transfer
learning is the use of knowledge gained from a source task to bias the learning process
on a target task while forming a set of good hypotheses. A zero-shot transfer is where no
learning is done on the target task and is analogous to out-of-distribution generalization in
supervised learning. Kreidieh et al. (2018) investigates the transferability of knowledge
from a circular source environment to an open street network environment and shows
that knowledge transfer is possible between these two sources using zero-shot transfer.
Ongoing research is looking into the possibility of learning from a single policy and
applying the findings on many different scenarios.

Ultimately, the goal is to develop a set of techniques that can help analyze the mixed
autonomy in the existing surface transportation system. This requires rigorous studying
of mixed autonomy systems; DRL is a promising technique for the resulting modeling
toolkit. However, there is a longway to go to build a toolkit for analyzing thewhole urban
system and translating the modeling results based on simulation to support real-world
urban planning decision in different network architectures.

2.6 Traffic State Estimation with Physics Regularized Machine Learning: A New
Insight into Machine Learning Applications in Traffic Flow Modeling6

Traffic state estimation (TSE) is the precursor of a variety of advanced traffic opera-
tional tasks. As the traffic sensors on freeway networks can only cover a limited range of
areas, TSE is a useful tool to provide full-field traffic information. TSE models estimate
flow rates and speeds over the whole network. Most TSE models in the literature are
derived from macroscopic traffic flow models. In the early research stages, macroscopic
traffic dynamics are found to be similar to hydrodynamics. The associated models are
formulated for ideal conditions and significant effort is needed for their calibrations.

6 By Terry Yang, University of Utah, U.S.A.
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It is also difficult to work with the noisy and fluctuated data collected by traffic sensors.
To deal with the noise and fluctuations, stochastic traffic flow models are used. These
modelsmay be divided into two types: stochastic extensions and stochastic formulations.
Stochastic extensionmodels addGaussian noise to themodel expression in order to quan-
tify the noise from the sensor data. However, they can produce mean dynamics that do
not coincide with the original deterministic dynamics due to non-linearity. Stochastic
formulation models do not have this inconsistency problem; however, they might lose
the ability to obtain a mathematical solution due to the lack of a closed form expres-
sion/methodology. With the increase in data availability, researchers in recent years
started to look into more data-driven machine learning (ML) approaches. In general,
the data-driven ML models can outperform the classical traffic flow models; however,
the performance of these models still heavily relies on the quality and the quantity of
available data. In order to mitigate such limitation, Physics Regularized Machine Learn-
ing (PRML) is introduced. PRLM is a novel modelling framework which encodes the
classical traffic models (“physics models”) into the ML framework: output from the
physics models is used to later train the regularized ML model to improve the model
performance. If compared to classical traffic flowmodels, PRML can effectively capture
data uncertainty and reduce the efforts associated with model calibration. If compared
to ML models, PRML is more robust as it better handles noisy training data (through a
Gaussian process – GP) and is more explainable in terms of model performance.

Yuan et al. (2020) develop a stochastic physics regularized Gaussian process (PRGP)
which uses a Bayesian inference algorithm to estimate the mean and the kernel of the
PRGP. A physical “regulator” based on macroscopic traffic flow models is also devel-
oped to augment the estimates via a shadow GP and an enhanced latent force model
is used to encode physical knowledge into stochastic processes. Based on the poste-
rior regularization inference framework, an efficient stochastic optimization algorithm
is developed to maximize the evidence lower bound of the system likelihood. The model
is evaluated using four detector data sets from I-15 in Utah, US. The results from the
case study show that all four PRGPmodels perform better than some standard MLmod-
els in terms of flow estimation and produce comparable and acceptable results in terms
of speed and travel time estimation. Moreover, the findings show that encoding a bad
physics model into the PRGP can downgrade the model performance. PRGP models
also produce better estimates than the physics models. To study the robustness of the
proposed PRGP model, artificial noise is added to the training dataset while keeping
the test dataset constant. With noisy data, PRGP models produce acceptable estimates
of flow, speed and travel time and the errors from this type models are less than the
other ML and physics models. Adding more sensor data into the training dataset further
improves the models’ performance.

The PRGP can greatly outperform physics models in capturing the data uncertainty
and fluctuations.When the training dataset is sufficient and accurate, PRMLonly slightly
outperforms standardMLmodels in terms of speed, flow and travel time estimation.With
noisy data, PRML is more robust than the ML and physics models. It can be noted that
encoding a more advanced physics model can help the PRGP produce better estimates,
while encoding an inapplicable physics model can downgrade the model performance.
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3 Discussion

Advancements in the sensing and computational technologies have made the collection
and the utilization of big data to solve real-world transportation problemsmore practical.
In recent years, numerous research efforts have been seen in utilizing data-driven and AI
methods for automated vehicles modelling and traffic operations. Such research efforts
have led to the following question: what will be the role of core traffic scientists in the
transportation sector and are traditional traffic flow and traffic operations models still
relevant? Though applying AI approaches doesn’t need the fundamental understanding
of traffic science, traffic researchers need to well define the problems at hand. Defining
the problems’ characteristics and boundaries is a key to develop efficient and reliable AI
models to solve traffic problems. The fundamental understanding of the mixed traffic
flow dynamics and network infrastructure and control specifications is needed to adopt
AI models especially when modeling AV systems and estimating traffic states. Complex
neural network models are not always required and do not always perform better. In fact,
in some cases (e.g., when developing network level optimum signal control strategy)
simple supervised machine learning algorithms perform better.

The ultimate goal for the future transportation system is to make the whole trans-
portation system fully automated with an increased level of safety, reliability, efficiency,
and sustainability. Towards achieving such a goal, present researchers focus on individ-
ual autonomy, connected and automated systems and their network level performance.
In line with such research directions, this breakout session presents six research efforts.

The keys findings from the presentations and the subsequent discussion were:

• Human interaction with AVs might play a significant role in AV system performance
in the future and it should be incorporated in the AV system design.

• The transportation sector is one of the major energy consuming sectors in the US and
connected AV systems can play a significant role to increase the energy efficiency and
thus decrease energy consumption.

• Supervised learning can have great potential for AV control and traffic operations.
Particularly, the traffic domain expertise can be used to design the problems faced,
choose the proper AI or ML techniques to be adopted, evaluate the performance of
the proposed methods, and interpret the corresponding results.

• Safety has been the upmost important factor in AV regulations and product develop-
ments. However, there needs to be a balance between safety and other performance
aspects (e.g., congestion, energy consumption, fairness). Currently, safety remains the
primary concern of the AV industry and the focus may be expanded to address other
metrics/dimensions in the next 5 to10 years.

• There is a lack of available toolkits to analyze the impact of mixed autonomy. Under-
standing mixed autonomy can help make better policy to smoothen the transition
process from manually operated traffic components to fully automated transportation
system.

The aforementioned findings motivate the following research needs/outcomes and may
guide future research associated with adopting AI in AV modeling/development and
traffic operations:
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• It is important to devise regulations/policies to guide the development and the adop-
tion of AV and AI technologies (e.g., those related to safety and ethics). This is a
challenging but a very important task with direct impact on the humanity.

• Twoquestionswere raised regarding the role of data in adoptingAI: (1) howmuch data
is needed to evaluate theperformanceof amodel? (2)Howmuchdata is needed/enough
for AI training? The first question has been well studied. Although it is generally
agreed that more data is beneficial for AI models’ training/learning, the “enough”
part of the second question has not been well addressed. Overall, more data collection
and sharing efforts are needed.

• More collaborations are needed among government, academia, the AV industry, etc.
For example, if researchers do not understand how AVs function, they will find diffi-
culties in thoroughly evaluating the AVs’ impacts on surface roadway network perfor-
mance. Similarly,AI experts and transportation engineers shouldwork closely to better
address practical problems encountered on a daily basis in complex environments.

• Experts form academia and the industry need to connect with the policy makers to
make informed decisions.

• Joint research between the government and the AV industry is needed to develop stan-
dards associated with insurance, security and communication strategies (e.g., vehicle
to infrastructure -V2I- and vehicle to vehicle -V2V- communication standards).
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