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Abstract: Rapid industrialization and urbanization have accelerated land-use changes in mountain-
ous areas, with dramatic impacts on ecosystem health. In particular, the Qinling-Daba Mountains,
as China’s central water tower, ecological green lung, and biological gene bank, have rich resource
endowments and extremely high ecological value and are an important protective wall to China’s
ecological security. Therefore, understanding the level of ecosystem health and its drivers in the
research area contributes to the conservation and restoration of the mountain ecosystem. Based
on remote sensing image data and land-use data from 2000 to 2020, we explored the spatial char-
acteristics of ecosystem health, and supplemented with socio-economic data to explore its driving
factors. The results show that (1) the ecosystem health in the study area has been continuously
improved during the study period, and the regional differences in ecological organization are the
most prominent; (2) the level of ecosystem health in the Qinling-Daba Mountains has been spatially
improved from the peripheral areas to the central area, showing significant spatial autocorrelation
and local spatial aggregation; (3) the ecosystem health is influenced by a combination of natural
and anthropogenic factors, among which the negative effect of GRDP is mainly concentrated in the
eastern region, the negative effect of the proportion of built-up land gradually spreads to the western
region, and the positive effect of the proportion of forest land has a large scale. This study contributes
to a better understanding of ecosystem health in mountainous counties in China and provides useful
information for policymakers to formulate ecological and environmental management policies.

Keywords: ecosystem health; spatiotemporal characteristics; driving factors; GWR; Qinling-Daba Moun-
tains

1. Introduction

China’s massive and rapid urbanization has accelerated national economic growth at
great costs of resource use and environmental pollution, causing many ecological conse-
quences, such as farmland occupation [1], landscape fragmentation [2], energy shortages [3],
air pollution [4], and reduced biodiversity [5], which have threatened the sustainable devel-
opment of the whole country. Ecosystems are facing unprecedented shocks, and ecosystem
health issues [6] have become a serious challenge to achieve green and sustainable develop-
ment. Therefore, it is necessary to conduct a systematic assessment of ecosystem health to
provide a scientific basis for managers to formulate policies.

A healthy ecosystem provides the material foundation and ecological services for hu-
man survival [7], and it also plays a critical role in maintaining and improving urban
ecosystem function [8]. Ecosystems are large and complex, and a systematic assessment
of ecosystem health requires a comprehensive consideration of multiple aspects. Based
on the statistics of physical, ecological, and socioeconomic, pressure–state–response [9–11],
driver–pressure–state–impact [12], driver–pressure–state–impact–response [13], and other
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methods to construct a system of indicators, and the analytic hierarchy process is often used
to give weight to the indicators. These models are not good measures of land-use/land-
cover (LULC) changes and shifts in landscape patterns, which not only affect the provision
of essential ecosystem services for human health and well-being but can also misestimate
the self-mitigation capacity of ecosystems. The vigor–organization–resilience (VOR) model
is widely accepted for its simplicity of calculation and focus on LULC changes. Ecosystem
vigor, ecosystem organization, and ecosystem resilience evaluate the health level of ecosys-
tems in a comprehensive manner in terms of ecosystem primary productivity, structural
stability, and recovery ability, respectively [14–16]. In a comprehensive measure of the
natural condition of the ecosystem, we used the VOR model to quantitatively evaluate the
level of ecosystem health in the Qinling-Daba Mountains.

Exploring the factors influencing ecosystem health is also a pressing issue. Methods
such as correlation analysis, principal component analysis, regression analysis, and geo-
graphical detectors have been applied to discuss the relationship between ecosystem health
and its drivers, especially the impact of human activities on ecosystem health at the regional
scale [17–20]. However, traditional statistical and spatial analysis methods do not reflect
the spatiotemporal variability of different drivers of geographic processes, which may limit
practical decision-making for ecological environment management policies [21]. Compared
with traditional statistical analysis methods, geographically weighted regression (GWR)
models can not only analyze the relative importance of drivers but also graphically repre-
sent the spatial pattern generated under parameter estimation and represent the spatial
pattern of the intensity of each driver’s influence in the form of a map [22,23].

The Qinling-Daba Mountains are key areas for biodiversity protection and mainte-
nance of ecological function [24]. With an ecological red line area of nearly 70%, the high
forest cover provides a high-quality habitat for biodiversity [25]. As the north–south bound-
ary of China, it has a unique geographical location and ancient geological history [26].
Studies of vegetation dynamics [27,28], forest structure [29], climate [30,31], and ecosystem
services [32] in the region found an increase in vegetation coverage and significant spatial
variation in ecosystem services in the Qinling-Daba Mountains. However, there is a lack
of understanding of the study area ecosystems at the macro level, and few studies have
analyzed ecosystem health and influencing factors in the region.

This paper analyzes the ecosystem health and its influencing factors in 120 counties
in the Qinling-Daba Mountains from 2000 to 2020 using 30 m resolution remote sensing
imagery and LULC data. This study aims to explore the following: (1) spatial characteristics
of ecosystem health, mainly spatial correlation and spatial heterogeneity: (2) analysis of the
factors influencing ecosystem health at the county scale. Our study will help managers to
develop ecological conservation policies.

2. Materials and Methods
2.1. Study Area

The Qinling-Daba Mountains are in the central part of China, spanning 308,093 km2,
crossing Gansu, Shaanxi, Henan, Sichuan, Hubei, and Chongqing Municipality. It runs
across five provinces and one municipality, including 120 counties (Figure 1). The topog-
raphy of the Qinling-Daba Mountains is characterized by mountains and hills, gradually
rising from east to west, and the altitude is very different. The southern part of the study
area has a subtropical humid climate with an annual precipitation of 820 mm and an
annual average temperature of 14 ◦C, while the northern part belongs to a warm temper-
ate semi-humid climate with an annual precipitation of 520 mm and an annual average
temperature of 10 ◦C [33]. The vegetation types are diverse and the zoning characteristics
are obvious. It is a transition from warm-temperate deciduous broadleaf forests in the
north to subtropical mixed broadleaf evergreen and deciduous forests in the south, with
both northern and southern Chinese plant species. The study area is an interactive zone
between China’s humans, geography, climate, and biology, and it is also a fragile area of
the ecological environment.
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Figure 1. Geographical location map of the Qinling-Daba Mountains. (a) The location of the Qinling-
Daba Mountains in China (b) The location and elevation of 120 counties and the corresponding
six provinces.

2.2. Data Source and Preprocessing

Given the advantages of Google Earth Engine (GEE), such as free, easy data access and
fast and batch processing of a huge number of images, this study obtained the normalized
difference vegetation index (NDVI) through the rapid calculation of GEE. The data were
obtained from the Landsat dataset provided by the Google Earth Engine (GEE) platform
with a spatial resolution of 30 m. Image pre-processing needs to use GEE platform coding
to search all the images in the study area in 2000, 2010 and 2020, and then project the data
to the “WGS 84/UTM zone 48 N” coordinate system and normalize the data. Finally, the
annual data are obtained by using the maximum synthesis method. The LULC data were
derived from GlobeLand30 (http://www.globallandcover.com accessed on 9 May 2021),
with a spatial resolution of 30 m. In this study, we merged woodlands and shrublands into
forests and divided the land-use types in the Qinling-Daba Mountains into eight categories:
farmland, forest, grassland, wetland, water body, impervious surface, glacier and snow,
and bare land. Digital elevation model (DEM) data with 30 m spatial resolution come
from ASTER GDEM (https://yceo.yale.edu/aster-gdem-global-elevation-data accessed on
15 May 2021).

The statistics of gross regional domestic product (GRDP) and population size (POP) of
the research area for 2000, 2010, and 2020 are acquired from “Shaanxi Statistical Yearbook
(2000–2021)”, “Gansu Statistical Yearbook (2000–2021)”, “Sichuan Statistical Yearbook
(2000–2021)”, “Henan Statistical Yearbook (2000–2021)”, “Chongqing Mongolia Statistical
Yearbook (2000–2021)”, “Hubei Statistical Yearbook (2000–2021)” (National Bureau of
Statistics, 2000–2021), the official websites of local governments, and other statistical outlets,
with the county as a basic statistical unit. The proportion of built-up land (PBL) and the
proportion of forest land (PFL) are calculated from LULC. Given the differences in the
dimensions and magnitudes of the selected indicators, the data needed to be standardized
before analysis using the following equations:

For positive indicators:

Xij =
xij −min(xj)

max(xj)−min(xj)
(1)

For negative indicators:

Xij =
max(xj)− xij

max(xj)−min(xj)
(2)

http://www.globallandcover.com
https://yceo.yale.edu/aster-gdem-global-elevation-data
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where Xij is the normalized value of indicator j in year i, xij represents the value of indicator
j in year i; max(xj) and min(xj), respectively, denote the maximum and minimum value of
indicator j in all years. All the index values are in the range of [0, 1].

2.3. Methodology

This study assessed the ecosystem health level of the Qinling-Daba Mountains at the
county scale. The vigor–organization–resilience model and Moran’s I index were used to
comprehensively evaluate the ecosystem health level and its spatial pattern of the study
area, and the GWR model was used to analyze the impact of different factors on the
ecosystem health. The specific research process is shown in Figure 2.
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2.3.1. Vigor–Organization–Resilience Model

Ecosystem health depends on three traditional indicators: ecosystem vigor, organiza-
tion, and resilience [34]. The ecosystem health index is assessed based on the VOR model.
Ecosystem vigor refers to the metabolic capacity or primary productivity of the ecosystem.
NDVI is widely proven to be an effective indicator for evaluating vegetation primary
productivity [35,36]. NDVI is calculated using Landsat satellite images of a different time
and multispectral bands [37–39].

Ecosystem organization (O) refers to the structural stability of an ecosystem and is
related to spatial patterns. The landscape pattern index reflects landscape heterogeneity
and landscape connectivity to measure spatial patterns. Landscape heterogeneity mainly
studies spatial heterogeneity, measured by landscape diversity and landscape fractal dimen-
sion, corresponding to Shannon’s diversity index and area-weighted mean patch fractal
dimension index in this paper, respectively. Connectivity was measured by fragmentation
and patch cohesion. Landscape connectivity is quantified by the landscape fragmentation
index and landscape contagion index. As the dominant land-use type in mountainous
areas, forest connectivity is determined by the fragmentation index and patch cohesion
index of forest. It is calculated as follows:

O = 0.25× SHDI + 0.1× AMFRAC + 0.25× FN1 + 0.1× CONTAG + 0.2× FN2 + 0.1× COHESION (3)

where O represents the ecosystem organization of spatial entities, SHDI is Shannon’s
diversity index, AMFRAC is area-weighted mean patch fractal dimension index, FN1 is the
index of landscape fragmentation, CONTAG is the landscape contagion index, FN2 is the
landscape fragmentation index of forest land, and COHESION is the index of the patch
cohesion of forest land. These landscape indexes were obtained by Fragstats 4.2.



ISPRS Int. J. Geo-Inf. 2022, 11, 600 5 of 18

The ecosystem elasticity coefficient score (EC) of each LULC type in the Qinling-Daba
Mountains developed as a weighted combination of resilience and resistance, given as [40]:

EC = 0.7× resil + 0.3× resist (4)

In Table 1, The ecosystem elasticity coefficient (EC) of each land-use type in the study
area is equal to 30% of the resilience coefficient (resil) plus 70% of the resistance coefficient
(resist). The coefficients of resilience and resistance are determined according to the relevant
papers [15,16] and the actual situation of the research area. Coefficients are assigned for
the eight land-use types, with coefficients ranging from 0 to 1. Resilience refers to the
ability of the ecosystem to return to its original state after being damaged by external
disturbance factors, while resistance refers to the ability of an ecosystem to resist external
disturbances and keep its own structure and function intact. Resistance and resilience
are related, and typically, ecosystems with high resistance have low resilience. Compared
with artificial ecosystems, natural ecosystems have stronger resistance and recovery ability.
The resistance and resilience of human-dominated ecosystems are weak, and it is difficult
to resist external disturbances and restore them to an original state, so the resilience and
resistance coefficients of impervious surfaces and farmland are small. Water bodies and
wetland ecosystems are more self-regulating and have a higher resistance and resilience
capacity with larger coefficients. Bare land ecosystems are simple, and it is difficult to
resist external disturbances, but they are easy to recover. Forests with complex species,
strong biological chains, and tight ecosystems are resilient to external disturbances, while
restoration to complex ecosystem structure and function takes more time. The ecosystem
resilience (R) is defined as follows:

R = ∑m
k=1 Pk × ECk (5)

where R is the ecosystem resilience of spatial entities, Pk is the proportion of the area of the
land-use type k, ECk is the ecosystem elasticity coefficient of land-use type k, and m is the
number of the land-use types.

Table 1. Ecosystem elasticity coefficient of land-use types in the Qinling-Daba Mountains.

LULC type Resilience Resistance EC

Farmland 0.30 0.60 0.51
Forest 0.50 1.00 0.85

Grassland 0.80 0.70 0.73
Impervious surface 0.20 0.30 0.27

Water body 0.70 0.90 0.84
Wetland 0.60 0.80 0.74

Bare land 1.00 0.20 0.44
Glacier and snow 0.10 0.10 0.10

Since each indicator can be quantified by different factors, the value of each indicator
needs to be normalized. To avoid magnification when multiplying the indicators during
calculation, it is necessary to use a root sign to neutralize the order of magnitude:

EH = 3
√

V ×O× R (6)

where EH is the regional ecosystem health index of spatial entities, V is the regional ecosys-
tem vigor, O is the regional ecosystem organization, R is the regional ecosystem resilience.
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2.3.2. Moran’s I Index

Affected by spatial interaction and spatial diffusion, there is a spatial correlation
between any entities, but the nearby things are more related to each other [41]. The global
Moran’s I index is used to measuring the degree of dependence between spatial entities in
the whole region, while the local indicator of spatial association (LISA) is used to detect the
extent and location of outliers or agglomerations.

I =
n

∑n
i=1 ∑n

j=1 wij
×

∑n
i=1 ∑n

j=1 wij(yi − y)
(
yj − y

)
∑n

i=1(yi − y)2 (7)

Ii =
yi − y,

1
n ∑(yi − y)2

n

∑
j 6=1

wij
(
yj − y

)
(8)

Z =
I − E(I)√

Var(I)
(9)

E(I) =
−1

n− 1
(10)

Var(I) = E
(

I2
)
− E(I)2 (11)

where I is the global Moran’s I value; n is the number of spatial entities; yi and yj represent
the attribute values of the ith and jth space entities, respectively; y is the mean value of all
spatial entities attribute values; wij is weight between spatial entities i and j; Ii represents
the LISA value of the ith spatial entity; Z is the threshold for normalized statistics; E(I) is
expected autocorrelation; and Var(I) is variance.

2.3.3. Selection of Driving Factors

Ecosystem health is influenced by a combination of natural and anthropogenic factors,
and seven drivers were selected based on previous studies [42,43]. Natural factors include
annual mean precipitation (AMP), annual mean temperature (AMT), elevation (expressed
in DEM), and proportion of forest (PFL), which are related to climate, topography, and
vegetation and directly determine the external conditions that affect the ecosystem.

Anthropogenic factors mainly include human-led socioeconomic activities and their
altered land use, which indirectly change the corresponding ecological structure and affect
ecosystem health. Three main indicators are included: population size (POP), gross regional
domestic product (GRDP), and proportion of built-up land (PBL). POP can reflect the
intensity of human activities, GRDP can evaluate regional economic development, and PBL
can intuitively reflect the expansion of urban space. However, when the seven dependent
variables were tested for multicollinearity, it was found that the variance inflation factor
(VIF) of AMP and AMT was greater than 10, and there was strong multicollinearity with
other variables, so these two variables were excluded. In order to eliminate the influence of
units and dimensions, five independent variables were standardized.

2.3.4. Geographically Weighted Regression Model

GWR is widely used in geography and related disciplines involving spatial pattern
analysis [44,45] and can be used to quantitatively reflect spatial heterogeneity, as well as
to explore geographic variation between response and explanatory variables. The model
structure is as follows:

yi = β0(ui, vi) +
p

∑
l=1

βl(ui, vi)xil + εi (12)
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where yi is the fitted value of the ecosystem health for spatial entity i, β0(ui, vi) is the
coordinates of spatial entity i, βl(ui, vi)xil is the lth regression parameter of spatial entity i,
εi is the error correction term, and p is the number of explanatory variables.

β̂k(ui, vi) =
[

XTW(ui, vi)X
]−1

XTW(ui, vi)Y (13)

where W(ui, vi) is an n × n matrix whose diagonal Wij denotes the weight of the influence
weight of the jth entity on the ith entity, while the non-diagonal elements are all 0. Wij is
generally obtained through the kernel function based on the distance, and the Gaussian
kernel function is used in this study. The dependent variable in this study is ecosystem
health index, and the independent variable is the corresponding natural and anthropogenic
factors. R square (R2), adjusted R2, and Akaike information criterion (AICc) are used to
measure the performance of the model. In general, the higher the R2 and adjusted R2
values, and the lower the AICc values, the better the performance of the model.

3. Results
3.1. Spatiotemporal Differentiation of Land Use/Land Cover in the Qinling-Daba Mountains

Significant land-use changes have taken place in the study area (Figure A1). In the
Qinling-Daba Mountains, the forest is dominant, accounting for more than 60% of the total
area. Forest has increased by 1.9553% (6024 km2) since 2000 (Table 2), which is the land-use
type with the most growth. The impervious surface has also increased significantly, an
increase of 1.0566%, which is mainly due to the conversion of farmland to impervious
surface. The water area of Danjiangkou has significantly expanded, which is the main
source of the increase in the proportion of water body. The grassland area shrank the
most, with a decrease of 2.8928% (8913 km2), especially in the research area in Gansu
Province, which was mainly converted into farmland and forest. In 2000 (Figure A1a),
28.6544% (7266 km2) of the total area was used for agricultural activities, which dropped to
approximately 28% in 2020 (Figure A1c), mainly due to the occupation of agricultural land
by construction land. However, only slight changes have taken place in wetlands, glacier
and snow, and bare land.

Table 2. Percentage of LULC changes in the Qinling-Daba Mountains in 2000, 2010, and 2020 (Unit: km2).

LULC 2000 2010 2020 Percentage Change

Farmland 28.6544 28.5291 28.0391 −0.6153
Forest 62.3893 64.7448 64.3446 1.9553

Grassland 7.2783 4.5099 4.3855 −2.8928
Wetland 0.0677 0.0764 0.0945 0.0268

Water body 0.6182 0.7990 1.0791 0.4609
Impervious surface 0.9920 1.3407 2.0486 1.0566
Glacier and snow 0.0001 0.0001 0.0003 0.0002

Bare land 0 0 0.0083 0.0083

3.2. Spatiotemporal Changes in Ecosystem Health in the Qinling-Daba Mountains

In this study, the five levels of weak, slightly weak, ordinary, slightly well, and well
were classified in equal intervals according to the ascending order of the values. The
most pronounced changes were in ecosystem vigor levels and the changes in the level of
ecological resilience were the least (Figure 3).
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There was an overall upward trend in ecosystem vigor. In 2000, approximately 70% (83)
of the counties did not reach a relatively well level, while only one county (Langzhong)
was at a relatively weak level in 2020. Among them, Weiyuan and Xichuan crossed two
levels from weak to ordinary ecological vigor level in 2020. Compared with ecosystem
vigor and ecosystem resilience, the overall level of ecosystem organization in the Qinling-
Daba Mountains is slightly lower. The part with weak ecological organization is mainly
concentrated within the central Shaanxi and Hubei provinces, with significant regional
differences. From 2000 to 2020, the ecological resilience has changed slightly, and more
than 70% of the districts and counties have reached a slightly better or above level, but
the ecological resilience of Yexian, Wolong, Fancheng, and Xiangzhou has decreased from
weak to weak. The change in ecosystem resilience is relatively insignificant. Over 70%
of the counties reached slightly well and above levels, but Yexian, Wolong, Fancheng,
and Xiangzhou showed a decrease in ecosystem resilience, changing from slightly weak
to weak.
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The changes in ecosystem health in the central and western parts of the study area
are significantly greater than in the eastern parts, and the ecosystems in the central and
western parts are healthier (Figure 4). From 2000 to 2020, the overall ecosystem health of the
research area has improved year by year, and by 2020, 62% (72) of counties had EH values
greater than 0.6. The value of ecosystem health in Fancheng and Wolong in the eastern
part of the study area showed a significant decline, with Wolong having the lowest level
(0.27) among all counties in 2020 (Figure 4c). The ecosystem health value of Xichuan has
increased the most, with an increase of 0.18 over 20 years. In 2020, ecosystems in Shiquan,
Lushi, Yunyang_HB, and Hanbin are relatively healthier, all reaching 0.7. The ecosystem
health at the county level shows a spatial pattern of patchy distribution. The counties with
values of 0.5–0.6 in 2000 (Figure 4a) and 2010 (Figure 4b) and 0.6–0.7 in 2010 and 2020 show
a clear spatial dependence.
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3.3. Spatial Dependency of Ecosystem Health

This study uses the global Moran’s I index to quantitatively measure the spatial au-
tocorrelation of ecosystem health in the entire region. Using GeoDa software, weights
based on Rook contiguity were obtained, and the results of 999 random inspections are
shown in Appendix B. Rook contiguity refers to when only the common edges of polygons
are considered to define the adjacency relationship (common vertices are ignored). The
global Moran’s I values for 2000, 2010, and 2020 all ranged from 0.38 to 0.42 (Table A1),
which were positive and passed the significance test at the 1% level. This indicates that the
ecosystem health level of the Qinling-Daba Mountains has significant spatial autocorrela-
tion throughout the region, that is, the level of ecosystem health in each county is more
positively influenced by the neighboring counties. In terms of temporal dynamics, the
global Moran’s I index showed an inverted V-shaped increase. The value increased from
2000 to 2010, indicating that the spatial dependence of ecosystem health has increased,
and the ecological pattern tends to be aggregated. From 2010 to 2020, the value slightly
decreased, implying that the spatial aggregation of ecosystem health in the study area
weakened and the ecological layout showed a trend of diffusion, reflecting the efficacy of
promoting the regional synergistic development strategy.

To further explore the local spatial autocorrelation, this paper uses the local indicators
of spatial association (LISA) to analyze the spatial aggregation that exists in counties
(Figure 5). The High–High type is the main agglomeration type within the Qinling-Daba
Mountains and is mainly distributed in the eastern part, indicating that the eastern part
gathers counties with high levels of ecosystem health. The High–High type counties in
2000 (Figure 5a) and 2020 (Figure 5c) were distributed in a block-like pattern near the
Qinling Mountains, while in 2010 (Figure 5b) they showed a strip-like distribution along
the Qinling Mountains, indicating the increased radiation capacity of the eastern region
during this period. The Low–Low type counties are mainly distributed in the southwestern
and eastern edges of the study area, with small spatial extent variation, indicating that the
improvement of counties with poor health is not significant. Low–High and High–Low
type counties are extremely rare in the study area, existing between the High–High and
Low–Low catchment areas.
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3.4. Analysis of Driving Factors for Ecosystem Health

GWR not only reveals the effects of the five explanatory variables on ecosystem health
but also exhibits significant spatial heterogeneity (Figure 6). The regression coefficients
of the five explanatory variables for each county were obtained through GWR, and the
results showed that the five explanatory variables had both positive and negative effects
on ecosystem health. GRDP had a significant inhibitory effect on the eastern part of
the Qinling-Daba Mountains, shifting from negative in the northeast to positive in the
southwest. In 2000, the impact of GRDP on ecosystem health dominated, especially in
Shaanxi and Hubei provinces in the east-central region. However, the negative impact of
GRDP diminished over time, and by 2020, the positive and negative effects were similar
in the study area. The positive impact of POP appears to decrease from the east to the
two sides, and the southwest and northeast of research area have negative effects. It is
noteworthy that the positive impact of the central region keeps spreading to the northwest.
The negative effect of PBL on EH gradually spreads to the southwest, with a positive
effect on only five counties by 2020. The growth of anthropogenic factors (GRDP and
PBL) suggests that urbanization is accelerating, but for them, both have varying degrees of
inhibition on ecosystem health.

From 2000 to 2020, PFL promoted ecosystem health in the majority of the Qinling-Daba
Mountains, while DEM had an inhibitory effect on a wide range of research areas. The
positive effect of PFL gradually decreases from southwest to northeast, with a negative effect
especially in some counties within Shaanxi Province. The high values of PFL coefficients
spread to the northeast, indicating that PFL has an increasingly strong promoting effect on
EH. At the same time, the negative effect of PFL on some central regions is also increasing.
The high value of the PFL coefficient spread to the northeast, indicating that PFL has
become more and more effective in promoting ecosystem health. At the same time, the
negative effect of PFL on central regions is also increasing. The positive effect of DEM on
ecosystem health is mainly concentrated in the northwest and northeast of the study area
and has a negative impact on the rest of the area. The inhibitory effect of DEM on the study
area is increasing with time, especially for the southeastern part.

Overall, anthropogenic factors (GRDP and PBL) and the natural factor (DEM) had
a strong negative impact on ecosystem health in the Qinling-Daba Mountains, while the
natural factor (PFL) had a more positive effect.
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4. Discussion
4.1. Methodological Advantages of GWR

Goodness of fit tests for comparing the ordinary least square (OLS) model and GWR
model are evaluated by using AICc, R2, and adjusted R2 (Table 3). Compared with the
results of the OLS model, the R2 and adjusted R2 of the GWR model are larger than those
of the OLS model in 2000, 2010, and 2020, indicating that the GWR better explains the
spatial relationship between factors and ecosystem health. Moreover, the GWR model has
a smaller AICc than the OLS model, which indicates that the GWR model is better than the
OLS model. The adjusted R2 values were all above 0.58%, and the R2 values increased as
the years went by, indicating that the GWR model could be used to analyze the effects of
each variable on ecosystem health.

Table 3. Statistical results of GWR and OLS in 2000, 2010, and 2020 in the Qinling-Daba Mountains.

R2 Adjusted R2 AICc

OLS GWR OLS GWR OLS GWR

2000 0.3883 0.6901 0.3549 0.5802 −310.9931 −340.4735
2010 0.4742 0.7524 0.4455 0.6593 −302.9470 −337.7385
2020 0.4089 0.7830 0.3766 0.6951 −288.1240 −346.3527

The spatial variation of the local R2 of the GWR model from 2000 to 2020, reflecting
the spatial variation of the county-level fit (Figure A2). Provinces such as Henan, Hubei,
and Sichuan located in the east and southwest have a higher local R2, reaching above 0.7,
indicating that the local linear regression model performs well in this region. However, in
Gansu and Shaanxi, which are located in the north, the local R2 is relatively low. Especially
in 2000 (Figure A2a), there were 32 counties with a local R2 of less than 0.5, while Gansu
and Shaanxi provinces occupied 31 counties. In general, the local R2 of the GWR model
has improved, and the overall fitting effect tends to be good, which can explain the spatial
correlation between ecological health and GRDP, POP, PFL, PBL, and DEM.

4.2. Comparison with Previous Studies

The trends in ecosystem health are the result of a combination of natural and anthro-
pogenic factors, and different drivers play different roles at different times of ecosystem
evolution [46]. Anthropogenic factors are more active and dramatic at specific temporal
and spatial scales, especially with the increasing level of urbanization [47].

In terms of anthropogenic factors, the transformation of urban land is the main driver
of ecosystem health deterioration, which works in conjunction with rapid urbanization
to cause the degradation of ecosystem health [14]. However, this study shows that the
drivers are not absolutely positive or negative influences, and they have significant regional
differences. For example, the negative effect of PBL gradually increases and expands
westward, and eventually, its positive effect only exists in the five southern counties. Built-
up land is most affected by anthropogenic activities, and the expansion of built-up land
leads to a reduction in ecosystem services and ultimately damages ecosystem health [48].
Similar studies have shown that the expansion of urban space can lead to the degradation
of ecosystem health [49,50]. GRDP has a dual perturbative effect on ecosystems, manifested
as a positive contribution through the implementation of ecological conservation projects
and a negative inhibition by rapid urbanization [51]. In the western and eastern parts of
the study area, close to urban areas, POP has a negative effect on ecosystem health, which
is due to the concentration of population in areas close to cities and more interference from
human activities in areas close to cities. In contrast, the central part of the study area is far
away from the city, and appropriate human activities are beneficial to ecosystem health.
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In terms of natural factors, topography is the basic physical element that affects
human life patterns and landscape patterns [50]. Ecosystems at different altitudes have
different ecosystem structures [52]. In the Qinling-Daba Mountains, altitude has a negative
effect on ecosystem health in most areas. In mountainous ecosystems, where human
activities are relatively low and vegetation cover is extensive, ecosystem health degradation
is relatively low [53]. Although woodlands are less disturbed by humans, it cannot be
ignored that the reduction of vegetation cover also has a negative impact on ecosystem
health. The significant and positive effect of PFL on ecosystem health is apparent in
most areas, but its negative impact is gradually deepening and spreading. The high
vegetation cover in mountainous ecosystems and its effect on ecosystem improvement
decreases when vegetation cover reaches a certain level [54]. Similar studies have also found
that meteorological factors such as AMP and AMT have significant effects on ecosystem
health in regional ecosystem evolution [55,56]. However, meteorological factors were
not considered in this study because they failed the multiple covariance tests and were,
therefore, not considered as influencing factors, probably due to differences in study areas
and time periods.

4.3. Policy Implications

The analysis of county-level ecosystem health and its drivers contribute to the de-
velopment of ecological health at small scales from a scientific perspective and provide a
scientific basis for policymakers to develop relevant policies [57,58]. Based on the findings,
we identified regional differences in ecosystem health and its key drivers, so ecological
conservation measures taken in a specific area should be adjusted according to the ecosys-
tem health level and its drivers. (1) For some regions on the eastern and southwestern
fringes, the level of ecological health is poor, and anthropogenic factors have a negative
impact. The level of spatial expansion in these areas exceeds the local ecological carrying
level, and the population should be appropriately evacuated, the amount of construction
land exploitation should be reduced, green industries should be encouraged, and the
ecological environment should be restored. (2) For areas at moderate ecosystem health
levels, mainly attributed to low ecosystem organization and human factors (GRDP, PBL),
sustainable development needs to be maintained to balance economic growth and ecologi-
cal conservation. For example, in some marginal counties in the northwest and southeast,
it is necessary to optimize the land-use structure and avoid unreasonable reclamation and
construction to increase ecosystem organization. At the same time, it is necessary to control
the scale of urban and rural areas, implement more ecological protection and restoration
projects, focus on the layout of green low-impact industries, and carry out green industrial
development within the environmental carrying capacity. (3) For most areas with a high
level of ecosystem health in the western and central regions, high forest coverage has a
promoting effect. These counties have high ecological value and high ecological sensitivity
and need to implement strict ecological protection.

The empirical results of our study suggest that ecosystem health is influenced by
both natural and anthropogenic factors, as well as by spatial context. Ecosystem health
in a county is influenced not only by elements in that county but also by elements in
neighboring counties [59]. Areas with healthy ecosystems may promote the improvement
of areas with deteriorating ecosystems, and conversely, areas with deteriorating ecosystems
may delay the optimization of areas with healthy ecosystems, leading to a significant spatial
correlation in ecosystem health. Therefore, the formulation and implementation of policies
on regional economic layout and territorial spatial planning cannot be limited to individual
administrative units [60] but require a deeper understanding of the spatial interactions
of ecosystems.
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4.4. Limitations and Future Work

The study area is dominated by mountainous hills, which can be representative of
mountainous areas in China, but there is an insufficient explanation for other topographical
features. The ecosystem is a complex system. Ecosystem vigor, ecosystem organization,
and ecosystem resilience are its three very important aspects, but there are still some other
aspects that deserve attention, such as ecosystem services, ecosystem values, etc. Compared
to others’ studies, this study analyzed the influencing factors of ecosystem health, but the
selection of anthropogenic factors was somewhat limited due to the different statistical
indicators in each county. In the future, a detailed analysis of soils and climates could
help to elucidate the deep mechanisms of change in ecosystem health and the joint effects
of changes.

Despite the limitations, we still believe this study is meaningful. While the number of
metrics is somewhat small, the quantification of data processing is by no means arbitrary.
Geographically weighted regression models can not only study the importance of drivers
and their interactions on ecosystem health but also visualize spatial heterogeneity in the
form of maps. The results can help researchers understand the spatial pattern of changes
in ecosystem health and provide a scientific basis for ecological protection and make
comments and suggestions to the relevant government agencies.

5. Conclusions

In this paper, we analyzed the dynamics of the ecosystem health of 120 districts and
counties within the Qinling-Daba Mountains in 2000, 2010, and 2020 and analyzed the
driving factors in different regions using the GWR model. From the results, we obtained
the following conclusions.

(1) Land-use changes are obvious in the Qinling-Daba Mountains, with the largest in-
creases in forest and impervious surface and large decreases in agricultural land
and grassland. This result indicates that afforestation efforts in the study area were
effective, and the expansion of forest and urban space has taken up a large amount of
farmland and grassland.

(2) The overall ecological health of the Qinling-Daba Mountains is on the rise, with the
best ecosystem health status emerging in Shiquan, Lushi, Yunyang_HB, and Hanbin.
However, ecosystem health deteriorated in some areas, with Fancheng and Wolong
being the most obvious.

(3) There is a clear spatial correlation in ecosystem health. The High–High type coun-
ties with healthy ecosystems are mainly concentrated near the Qinling Mountains,
indicating the overall high level of ecological health in this region.

(4) Anthropogenic and natural factors have a bidirectional effect on ecosystem health
in the Qinling-Daba Mountains. The positive effect of GRDP gradually shifts to the
central region, while the negative effect of PBL spreads to the west, indicating that
the urban space in the western region is expanding. PFL has a catalytic effect on the
ecosystem health in most areas, so afforestation is an effective measure to protect
the ecology.

Research on ecosystem health can help protect the ecological environment, and identi-
fying the contribution of different factors can help decision-makers to make better develop
management plans and promote the coordination between regional development and
ecological protection.
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