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A B S T R A C T   

It has been shown that the roots of guided waves in laminate plates produced by the ordinary differential 
equations (ODE) approach may not hold under to some computational conditions. A particular drawback of the 
2D formulation of the ODE approach is the lack of reliability in the case of unidirectional laminates due to the 
decoupling properties between the SH and Lamb wave modes, which is caused by the unified matrix of roots. Due 
to this problem, the SH modes disappear from the unified roots of guided modes, then re-emerge with a separate 
computation of the SH and Lamb wave modes. Initially, we did not notice this computational "bug" in the event 
of a coupling between the SH and Lamb wave modes. In this context, the Legendre polynomial method is used to 
illustrate that fact. Results demonstrate how the polynomial method is pre-eminent to handle the laminate 
modelling over the ODE method for these specific requirements, however, a trade-off between these two methods 
needs to be considered to obtain stable and robust behavior of guided dispersion curves. This short study ends 
with conclusions and future perspectives.   

1. Introduction 

The advances of composite structures science continues to drive the 
structural design of aerospace technology such as aircraft and space 
vehicles. The excellent material properties of multi-layered laminates 
such as high strength, remarkable design-ability features, and many 
more capture the attention of industries due to their major role in the 
development of new advanced structures [1,2]. Some comprehensive 
assessments on the properties of multi-layered laminates have become 
available using modeling and numerical approaches. One of these ap-
proaches is the Legendre polynomial method, where the problem is 
converted into an eigenvalue and eigenvector problem [3]. In a recent 
study, Othmani et al. [4] have employed this polynomial method for 
computing the effects of elastic constants on guided fundamental modes 
in homogeneous and sandwich fiber structures. However, when pushed 
toward modelling the dissimilarities of the multilayer material proper-
ties, computations that are reliable require methods that are more ac-
curate. Some comprehensive assessments on this point have become 
available, such as the work of Yu et al. [5] and the review paper by 
Othmani et al. [6]. Specifically, Legendre polynomials can deal with 

laminate plates only when the elastic properties of multilayers do not 
change significantly [5,6]. Obviously, the higher the numbers of layers, 
the larger the errors relevant to the polynomial approach [6]. For more 
extensive background on the polynomial method we recommend 
reading references [7–12]. The present work is actually motivated by 
this increased attention to the performance of multi-layered laminates. 
These shortcomings identified were the main numerical observation, 
which prompted us to use the ordinary differential equation (ODE) [13]. 
Dispersion curves obtained from the ODE approach can be used for 
comparison as this approach is based on an exact analytical treatment 
for the multilayered structures whatever the dissimilarities of the ma-
terial properties. Using the ODE approach for a given frequency, the 
roots of the guided wave modes are calculated by resolving the deter-
minant of the corresponding matrix. Consequently, the search of roots is 
a critical task, and in this step part of the dispersion curves may be 
missed. Accordingly, it is important to decrease or remove the relevant 
errors and suggest strategies to improve the sector of nondestructive 
testing (NDT), through the trade-off between the ODE and Legendre 
polynomial methods. It will be very useful to create a well-balanced 
correlation between high precision roots and reliable results for the 
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full ultrasonic frequency range of the system. 
The objective of this short communication is to show that the roots of 

the guided waves produced by the ODE approach may not hold for some 
computational conditions. Moreover, the ODE approach cannot be used 
to derive the roots of Lamb and SH modes from the unified matrix in the 
case of decoupling properties between these both waves, where a 
separate computational process is still required. However, until recently 
we did not notice this computational "bug" in calculating the coupling 
between SH and Lamb modes. 

We will use two different structures to illustrate and establish the 
above-stated assertions. The Legendre polynomial and ODE approaches 
are first implemented on a unidirectional laminate plate. The elastic 
properties and the mass density of this composite are highlighted in 
Reference [4]. Initially, the plate is composed of an 8-ply unidirectional 
laminate (0◦/0◦/0◦/0◦/0◦/0◦/0◦/0◦). This example is shown in Fig. 1. 
Here, the SH and Lamb guided waves can be separately dealt with 
numerically ΓSH

ik &ΓLamb
ik . Here, ΓSH

ik and ΓLamb
ik are the square matrices. For 

advantageous numerical operations, particularly on the required 
computational time, the numerical unified matrix of Lamb and SH 
modes Γikis strongly recommended. Then, the ODE matrix method is 
also used to account for the quasi-isotropic laminate 
(45◦/− 45◦/0◦/45◦/90◦/− 45◦/0◦/90◦) as shown in Fig. 2. It has been 
demonstrated that if there is any misalignment between the material 
symmetry (for fiber orientation angles that are different to 0◦ and 90◦), 
guided mode coupling phenomenon is present [14]. Consequently, 
considering pure Lamb and SH modes as in a traditional symmetric plate 
is not technically or numerically applicable. Thus, the quasi-isotropic 
structure breaks the traditional symmetry of a structure, and conse-
quently "true" anti-symmetric and symmetric guided modes no longer 
exist. Numerically, the unified matrix of guided modesΓikis strongly 
required at this stage. In this context, the Legendre polynomial method 
[4,6] is used to illustrate that fact. Results demonstrated how the 
polynomial method is pre-eminent to handle the problem over the ODE 
method in the case of unidirectional laminates due to the decoupling 
properties between the SH and Lamb wave modes. 

2. Problem formulation 

General unidirectional and quasi-isotropic laminate plates have been 
depicted schematically in Figs. 1 and 2, respectively. Each layer is 
characterized by its elastic tensor (Cijkl) and mass density (ρ). These 
properties have been studied in detail by Othmani et al. [4]. The car-
tesian coordinates X, Y, and Z are chosen with X in the direction of wave 
propagation and Z perpendicular to the surface. For such an elastic 
materials, the dynamic equation is given by, 

ρ ∂2ui

∂t2 =
∂Tij

∂xj
(1)  

Here, ρis the mass density. ∂Tij
∂xj

= Cijkl
∂2ul

∂xj∂xk 
where (Tij) represents the 

mechanical stress and (ul) is the mechanical displacement. 
The mechanical displacement in Eq. (1) can be given as follows, 

ui = U(x3) × exp ( i (k1x1 − ω t)) (2)  

with, i = x1, x2, x3. ω and k1 are the angular frequency and wave-
number according x1direction, respectively. 

Based on the mechanical stress, the constitutive equation is given by, 

Tij = Cijkl
∂ul

∂xk
(3) 

However, we can express the derivatives of the mechanical 
displacement according to the Cartesian coordinate (x1, x2, x3) as, 

∂ u1

∂x1
= u1,1,

∂ u2

∂x1
= u2,1,

∂ u3

∂x1
= u3,1 (4)  

∂ u1

∂x3
= u1,3,

∂ u2

∂x3
= u2,3,

∂ u3

∂x3
= u3,3 (5)  

where ∂
∂x2

= 0. 
We proceed by putting j = 1 in Eq. (3) to get, 

T11 = C1111 u1,1 +C1112 u2,1 +C1113 u3,1 +C1131 u1,3 +C1132 u2,3 +C1133 u3,3

(6)  

T21 = C2111 u1,1 +C2112 u2,1 +C2113 u3,1 +C2131 u1,3 +C2132 u2,3 +C2133 u3,3

(7)  

T31 = C3111 u1,1 +C3112 u2,1 +C3113 u3,1 +C3131 u1,3 +C3132 u2,3 +C3133 u3,3

(8)  

and for j = 3, 

T13 = C1311 u1,1 +C1312 u2,1 +C1313 u3,1 +C1331 u1,3 +C1332 u2,3 +C1333 u3,3

(9)  

T23 = C2311 u1,1 +C2312 u2,1 +C2313 u3,1 +C2331 u1,3 +C2332 u2,3 +C2333 u3,3

(10)  

T33 = C3311 u1,1 +C3312 u2,1 +C3313 u3,1 +C3331 u1,3 +C3332 u2,3 +C3333 u3,3

(11)  

Fig. 1. A schematic configuration of a unidirectional laminate plate 0◦/0◦/0◦/0◦/0◦/0◦/0◦/0◦. The total thickness of the plate is H. The Lamb and SH wave 
propagation direction is along the x1. 
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2.1. Ordinary differential equation (ODE) 

The ODE procedure employs the so-called “state vector” to determine 
the eigenvalues and eigenvectors of the total partial waves of the 
multilayered structures [13], 

ξ =

[
U
T

]

(12)  

where, U = [ u1 u2 u3 ]
T, T = [T13 T23 T33 ]

Tand we assume that T′

= [T11 T21 T31 ]
T . Eqs. (6)–(11), can be formulated in the form of 

matrices as [13], 
[

T ′

T

]

=

[
Γ11 Γ13
Γ31 Γ33

] [
U,1
U,3

]

(13)  

where: 

Γik =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ11 =

⎡

⎢
⎢
⎣

c1111 c1121 c1131

c2111 c2121 c2131

c3111 c3121 c3131

⎤

⎥
⎥
⎦ Γ13 =

⎡

⎢
⎢
⎣

c1113 c1123 c1133

c2113 c2123 c2133

c3113 c3123 c3133

⎤

⎥
⎥
⎦

Γ31 =

⎡

⎢
⎢
⎣

c1311 c1321 c1331

c2311 c2321 c2331

c3311 c3321 c3331

⎤

⎥
⎥
⎦ Γ33 =

⎡

⎢
⎢
⎣

c1313 c1323 c1333

c2313 c2323 c2333

c3313 c3323 c3333

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14) 

Similar to the mechanical displacementui = A Pi exp ( i k3x3)×

exp( i (k1x1 − ω t)) , the “state vector” is constructed as [13], 

ξ = ξ(x3) × exp( i (k1x1 − ω t)) (15) 

The mechanical displacements A and Pi denote the unknown func-
tions of x3and polarization, respectively. The equation governing the 
state of the vector ξ is given by a system of differential equations [13]: 

∂ξ
∂ x3

= i ℜ ξ (16) 

Here, ℜis the core equation used in the ODE method, which is the so- 
called “Acoustic Fundamental Tensor”. It is worth noting that the ℜ is 
based on six partial waves, which specifically lead to three downward 
waves and three upward waves. 

At this stage, let us develop the second line of Eq. (13), with ∂
∂x1 

= i k1, 
to get this system [13]: 

∂U
∂x3

= i
[
− k1 Γ− 1

33 Γ31, − i Γ− 1
33

]
ξ (17) 

By substituting the mechanical displacement 
ui = A Pi exp ( i k3x3) × exp( i (k1x1 − ω t)) into Eq. (1), the following 
three equations can be obtained: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T13

∂x3
= − ρ ω2u1 −

∂T11

∂x1

∂T23

∂x3
= − ρ ω2u2 −

∂T21

∂x1

∂T33

∂x3
= − ρ ω2u3 −

∂T31

∂x1

(18)  

where∂2ui
∂t2 = − ω2ui. Eq. (18) can be contracted using the two vectors 

(T) and (T′) (Eq. (13)) and the mechanical displacement (U) (Eq. (12)) as 
follows [13]: 

∂T
∂x3

= − ρ ω2I′ U −
∂T ′

∂x1
(19)  

where I′ =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦. 

By substituting the second line of Eq. (13) and Eq. (17) into Eq. (19) 
the following equation is obtained [13]: 

∂T
∂x3

= i
[
− i

(
Γ11 − Γ13Γ− 1

33 Γ31
)

k2
1 + i ρ ω2 I′, − i k1 Γ13 Γ− 1

33

]
ξ (20) 

By grouping Eqs. (19) and (20), the “Acoustic Fundamental Tensor” 
is found as [13]: 

ℜ =

[
− kx Γ− 1

33 Γ31 − iΓ− 1
33

− i
(
Γ11 − Γ13 Γ− 1

33 Γ31
)

k2
x + iρω2 I′ − kx Γ13 Γ− 1

33

]

(21) 

By considering the characteristics of laminate plates (Figs. 1 and 2), 
the size of involved matrices in Eq. (21) is reduced significantly, where 
the unidirectional and quasi-isotropic laminates are considered. Barski 
and Pajak et al. [15] have pointed out that the search of dispersion 
curves using the majority of matrix methods may be a boring task, and 
some of the roots may be missed. Thus, the question remains open 
concerning the ODE numerical procedure. “Will this matrix approach 
be capable of handling the two unidirectional and quasi-isotropic 
laminates with the same potential”? Eq. (13) shows that the Lamb 
and SH wave modes coupling phenomena can potentially be adjustabed 
byΓik, instead of using the “Acoustic Fundamental Tensor”ℜ(6× 6). 

In the present work, the decoupled symmetric and anti-symmetric 
families of the SH and Lamb wave modes exist only for the unidirec-
tional laminates. Thereby, the characteristics of Lamb modes can be 
controlled with this separate matrix: 

Fig. 2. A schematic configuration of a quasi-isotropic laminate plate 45◦/− 45◦/0◦/45◦/90◦/− 45◦/0◦/90◦. The total thickness of the plate is H. The Lamb and SH 
wave propagation direction is along the x1. 
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ΓLamb
ik =

[
C1i1k C1i3k
C3i1k C3i3k

]

(22) 

Here, the size of “Acoustic Fundamental Tensor” becomesℜ(4 × 4)
and the state of the vector ξ = [ u1 u3 T13 T33 ]

T. 
A similar geometry of the SH wave modes could be stated as follow: 

ΓSH
ik = [C2i2k ] (23)  

where ℜ(2 × 2) and ξ = [ u2 T23 ]
T. Eqs. (22) and (23) presents the 

matrix inversion as the core critical limitation of the ODE method used 
in the present work. 

2.2. Legendre polynomial 

The work of Othmani et al. [4] gives a detailed observation on the 
Legendre polynomial method to compute the guided dispersion curves 
in composites. As mentioned before, the Legendre polynomial approach 
[4,6] is based on the polynomial approximation basis which automati-
cally incorporates the different boundary conditions by introducing the 
rectangular window function π0,kh(x3)[4,6]: π0,kh(x3) =
{

1, 0 ≤ x3 ≤ kH
0otherwise . 

This subsection is dedicated to the remind snapshot of the funda-
mental aspects of how guided roots can be computed using the poly-
nomial approach. 

Substituting Eq. (2) and Eqs. (6)–(11) into Eq. (1) yields,   

− ρ ×

(
ω2

k2

)

× U2 = − (C66 × U2)+ (C44 × U2
′′) + (C44 × U2

′

× (δ(q3

= − 1) − δ(q3 = 1)))
(24b)    

where (’) denotes the partial derivative with respect toq3. However, the 
Cartesian coordinates (x1, x3) have been transformed to a dimensionless 
form q1 = k x1and q3 = k x3. The Kronecker delta function δ(x − x0) is 
defined∂π0,kH

∂q3
= [δ(0) − δ(q3 − kH)]. 

Obviously, Eq. (24b) is independent of Eqs. (24a) and (24c). Actu-
ally, Eq. (24b) controls the propagating of SH modes, while Eqs. (24a) 
and (24c) represent the propagation of Lamb modes. 

The unknown Ui(q3)is given in terms of a polynomial approximation 
as follows [4,6]: 

Ui(q3) =
∑∞

m=0
pi

m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2m + 1

kH

√

Pm

(
2q3

kH
− 1

)

, i = 1, 2, 3 (25) 

where pi
m is the expansion coefficient andPm is Legendre polynomials 

of orderm. 

Substituting Eq. (25) into Eq. (24), multiplying by 
̅̅̅̅̅̅̅̅
2j+1
kH

√

P∗
j

(
2q3
kH − 1

)

and integrating over q3from (0) to (kH)gives 
(
Ω2 × p1

m

)
= − M− 1

jm

[
ℵ

jm
11p1

m +ℵ
jm
13p3

m

]
(26a)  

(
Ω2 × p2

m

)
= − M− 1

jm

[
ℵ

jm
22 p2

m

]
(26b)  

(
Ω2 × p3

m

)
= − M− 1

jm

[
ℵ

jm
31p1

m +ℵ
jm
33p3

m

]
(26c)  

where Ω =
( ω

k
)
. Then, the above block matrices can easily be solved in 

the form of eigenvalue and eigenvector problem using the Matlab 
command "eig". Moreover, it is worth noting that the same numerical 
procedure of polynomial method is found for the quasi-isotropic lami-
nate (case of coupling between SH and Lamb wave modes). 

3. Analysis of results 

In this section, our aim is to assess the efficiency of the ODE approach 
with both the coupling and decoupling properties of guided modes. A 
computer program was formulated in Matlab to calculate the dispersion 

curves. Initially, the SH and Lamb guided waves in 0◦/0◦/0◦/0◦/0◦/0◦/ 
0◦/0◦ unidirectional laminate were separately dealt with. Here, the 
purely Lamb and SH modes are applicable. However, the presence of a 
unified matrix of Lamb and SH waves can also be considered as a 
possible solution of the guided dispersion curves since this is not 
considered to prejudice the symmetry of the plate. Firstly, we will 
discuss some results that have been computed for predicting dispersion 
curves using the unified matrix Γik(Eq. (14)). Accordingly, Fig. 3 shows 
the Lamb and SH dispersion curves in the 0◦/0◦/0◦/0◦/0◦/0◦/0◦/ 

0◦ unidirectional laminate plate using ODE and Legendre polynomial 
(truncation order M = 15) methods. Here, we can observe both the lamb 
(symmetric and anti-symmetric) and SH modes.Sn(n = 0, 1, .,4), An(n =

0, 1, ., 4)and SHn(n = 0, 1, .,9) represent the symmetric Lamb modes, 
the anti-symmetric Lamb modes, and shear horizontal modes. In 
contrast to common expectations, we observe a new observation using 
the ODE approach: a lack of SH modes and the appearance of Lamb 
modes only. However, before writing down some relevant notifications, 
the ODE method was extended to take into account the SH and Lamb 
modes, separately. Thus, the both square matrices ΓSH

ik (Eq. (23)) and 
ΓLamb

ik (Eq. (22)) are considered. It is noted that the major drawback of 

− ρ ×

(
ω2

k2

)

× U1 = − (C11 × U1) + (i × (C13 + C55) × U3
′

) + (C55 × U1
′′)

+(i × C55 × U3 × (δ(q3 = − 1) − δ(q3 = 1))) + (C55 × U1
′

× (δ(q3 = − 1) − δ(q3 = 1)))

(24a)   

− ρ ×

(
ω2

k2

)

× U3 = − (C55 × U3) + (i × (C31 + C55) × U1
′

) + (C33 × U3
′′)

+(i × C31 × U1(δ(q3 = − 1) − δ(q3 = 1))) + (C33 × U3
′

× (δ(q3 = − 1) − δ(q3 = 1)))

(24c)   
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this separate strategy is that they are very time-consuming (two separate 
codes) and is a monotonous task. Numerical results demonstrate that the 
SH modes re-emergence with this separate computational of SH and 
Lamb modes, however they are not included here for brevity. Therefore, 
this numerical “bug” is closely related to the dominance of the Lamb 
modes compared to the SH wave modes. In addition, another possible 
cause for this "bug" is the presence of 2D plane-strain problem, which 
may result in "disappearing" of SH-modes for materials with certain 
classes of symmetry. It is noted that the roots of the guided waves using 
Legendre polynomial approach are retrieved with an acceptable 
discrepancy [6]. This discrepancy is attributed to the use of the contrast 
of adjacent layers [6]. From the physics point of view, it can be observed 
that the phase velocity of A0is dispersive in the lower range of kh/2π, 
however for kh/2π > 0.6, the curve displays a static motion over the 
entire range. On the other hand, the curve exhibits a decreasing 
behavior for kh/2π < 1, while the curve shows a stationary mode. 
However, the SH0 mode showed a constant behavior for the entire range 
of kh/2π. At this stage, the question becomes “will matters ever be the 
same for the 45◦/− 45◦/0◦/45◦/90◦/− 45◦/0◦/90◦ quasi-isotropic 
laminate again? “. As mentioned above, this structure breaks the con-
ventional symmetry of a laminate plate, and consequently "true" 
anti-symmetric and symmetric guided modes no longer exist, while 
guided modes still propagate in the plate. Let us denote the guided 
modes as M0, M1, M2,. Mn. Thus, the guided mode dispersion curves in 
this quasi-isotropic laminate answers this need and sets forth the 
exploration of the numerical state. Data reported in Fig. 4 clearly show 
that the guided dispersion curves obtained by the ODE approach are 

consistent with the classical observation calculated by the polynomial 
method (truncation order M = 20). Thereby, we did not notice any ODE 
computational "bug" in the event of a coupling between the SH and Lamb 
modes (quasi-isotropic laminate). 

The present polynomial and ODE methods cannot separate the 
computation of the phase velocity of each modes. Thereby, the crossings 
amongst modes remains suspect (Fig. 4). A more general validation 
method based on the mechanical displacements answers this need and 
sets forth to explore how true is the intertwining between modes (Fig. 4). 
For a more extensive background on this strategy, we recommend 
reading Reference [16]. Here, the labelled points A, B, C and D in Fig. 4 
are considered, while the ODE method is used to calculate the mode 
profiles. The "symmetry" of the displacement shapes of relevant modes is 
computed and illustrated before and after the suspected intersection (e. 
g. A-C and B-D). Fig. 5 shows the mode profiles of the mechanical dis-
placements in the 45◦/− 45◦/0◦/45◦/90◦/− 45◦/0◦/90◦ quasi-isotropic 
laminate plate at the points, which are labelled as A, B, C and D in 
Fig. 4. The mode shapes for M5 in Fig. 5(a) and (c) corresponding to the 
labelled points A (before the suspected crossing) and C (after the sus-
pected crossing) are both quasi-symmetric. Instead, the mode shapes for 
the labelled points B and D (mode M6) are both quasi-antisymmetric. 
This observation confirms that there must indeed be an intertwining 
between the M5 and M6 points and not only an approaching of both 
curves with a subsequent separation. 

Fig. 3. SH and Lamb modes in the unidirectional laminate plate 0◦/0◦/0◦/0◦/0◦/0◦/0◦/0◦ (a) the Legendre polynomial method and (b) the ODE method with 
Eq. (14). 

Fig. 4. Guided modes in the quasi-isotropic laminate plate 45◦/− 45◦/0◦/45◦/90◦/− 45◦/0◦/90◦ determined using (a) the Legendre polynomial method and (b) the 
ODE method with Eq. (14). 
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4. Conclusions 

The ordinary differential equations (ODE) approach can be used for 
finding the exact roots of guided waves in laminates with the help of 
Matlab computation. Unfortunately, there is a critical condition when a 
straightforward and formal application of the ODE approach has pro-
duced incomplete results. Accordingly, we observed a new surprising 
observation: a lack of SH modes and only the appearance of Lamb modes 
in the unidirectional laminates. Therefore, under this structure condi-
tion the use of the separate strategy is strongly recommended. Instead, 
this computational "bug" did not happen in the event of a coupling be-
tween SH and Lamb modes. It can be noted that a polynomial alternative 
approach for finding full roots in unidirectional laminates exists, but 
only when the two adjacent layers’ properties do not change signifi-
cantly. Thus, it has been demonstrated that this polynomial expansion 
can be successfully and efficiently used for solving guided roots under 
this condition. It is therefore worth noting that there is a trade-off be-
tween the ODE and Legendre polynomial methods. In the case of 
decoupling properties between SH and Lamb waves, useful results using 
a polynomial approach can be achieved. However, this approach leads 
to slight errors in phase velocities, which can increase when increasing 
the number of layers numbers. In this condition, the ODE approach is 
strongly recommended. Instead, when there are coupling properties 
between SH and Lamb modes, the lack of reliability of the ODE method 

is obvious, and then the Legendre polynomial approach is strongly 
recommended. Thus, it is interesting to consider these drawbacks in a 
trade-off. 

For numerical methods to study guided dispersion curves in com-
posite laminate, great achievements have been made regarding the ac-
curate relevant roots, as mentioned in this work. However, for better 
development and utilization of these numerical methods, there are still 
some challenges to consider. One of them is an accurate solution for the 
guided modes in the unidirectional laminates with dissimilar properties 
with a large number of layers [17–19]. Nevertheless, neither the poly-
nomial approach nor the ODE method can give a reliable roots pattern 
under this condition. Hence, an improved version of the Legendre 
polynomial method will be needed to obtain stable and reliable roots in 
the future. In addition, since the ODE "bug" is surprising, a possible way 
to gain further understanding might be following the complete 3D 
formulation of the ODE-like approach [20]. 
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Fig. 5. Mechanical displacements of guided modes in the unidirectional laminate plate 45◦/− 45◦/0◦/45◦/90◦/− 45◦/0◦/90◦: (a), for the point labeled A (kH/2π =
0.15, Vph = 9941.6 m/s); (b), for the point labeled B (kH/2π = 0.15, Vph = 1184 m/s); (c), for the point labeled C (kH/2π = 0.22, Vph = 8535.4 m/s); (d), for the point 
labeled D (kH/2π = 0.22, Vph = 7980.5 m/s). 
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