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Abstract: Machine learning can be effectively applied in control loops to make optimal control
decisions robustly. There is increasing interest in using spiking neural networks (SNNs) as the
apparatus for machine learning in control engineering because SNNs can potentially offer high
energy efficiency, and new SNN-enabling neuromorphic hardware is being rapidly developed. A
defining characteristic of control problems is that environmental reactions and delayed rewards
must be considered. Although reinforcement learning (RL) provides the fundamental mechanisms to
address such problems, implementing these mechanisms in SNN learning has been underexplored.
Previously, spike-timing-dependent plasticity learning schemes (STDP) modulated by factors of
temporal difference (TD-STDP) or reward (R-STDP) have been proposed for RL with SNN. Here,
we designed and implemented an SNN controller to explore and compare these two schemes by
considering cart-pole balancing as a representative example. Although the TD-based learning rules
are very general, the resulting model exhibits rather slow convergence, producing noisy and imperfect
results even after prolonged training. We show that by integrating the understanding of the dynamics
of the environment into the reward function of R-STDP, a robust SNN-based controller can be learned
much more efficiently than TD-STDP.

Keywords: spiking neural network; reinforcement learning; control

1. Introduction

A traditional control loop can be conceptualized into several essential blocks [1],
including the internal and external observation blocks, the control block, and the (optional)
dynamic model block. The internal and external observation blocks describe the (past and)
current states of the system and the environment. These states are used by the control
block to determine which future states the system should reach to achieve certain control
goals and what actions should be taken to bring the system into these future states. In
model-based control [2], the decision making of the control block is assisted by the dynamic
model block that predicts the system’s behavior (e.g., through simulations of the physical
system). In contras, in model-free control [3], no dynamic model of the system is required.

For many control systems, blocks that perform one or more of the above functions
can be advantageously implemented with machine learning (ML). This field has experi-
enced rapid developments in recent decades and is having substantial impact in various
disciplines of science and engineering [4]. In control engineering, ML approaches have
been extensively investigated for tasks, such as industrial process control [5], autonomous
vehicle maneuvering [6], and robotics operation [7].

ML can be applied to preprocess complex sensory data before these data are used to
make control decisions [8]. Moreover, supervised learning (one type of ML) [9,10] can be
applied to produce a dynamic model [11], which can be used in place of a physics-based
model if the physics model is overly simplified, difficult to derive, or too time-consuming
to simulate. At the control loop’s core, ML can achieve robust nonlinear mapping from
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high-dimensional state variables to optimal control decisions. Reinforcement learning
(RL) [12], a subfield of machine learning, has been widely recognized as targeting tasks
that generally fall within the scope of control engineering [13].

Most commonly, the ML approaches used for control tasks have been based on ar-
tificial neural networks (ANNs), especially deep ANNs (i.e., ANNs with many hidden
layers) [14,15]. To a large extent, the versatility and effectiveness of ANNs can be attributed
to their hierarchical organization of relatively simple computational units into dedicated
network structures, which gained inspiration from intricately connected neuron networks
in biological brains [16]. However, despite such a structural similarity between ANNs
and biological neural networks, the computations performed by the nodes of ANNs (the
artificial “neurons”) are fundamentally different from the “computations” performed by
the biological neurons. While the nodes in ANNs usually use numerical values as inputs
and outputs, biological neurons use time-dependent signal series (i.e., spike trains) as
inputs and outputs [17].

A typical neuron cell has many dendrites and an axon connected to neurons upstream
and downstream through microstructures called synapses [18]. Interconnected neurons use
spikes to communicate with each other [17]. Over a while, a series of spikes (a spike train)
generated by a pre-synaptic neuron can modulate the voltage level of a postsynaptic neuron.
When the latter voltage is above a threshold value, the postsynaptic neuron generates its
spike (that is, it is firing), and its voltage level drops. In a spiking neuron network (SNN),
each neuron will receive spike trains from the upstream neurons connecting to its input
synapses, produce its spike train, and pass its spike train to the downstream neurons
connected with its output synapses [19].

Vreeken et al. proposed that computational neural networks can be divided into
three generations [20]: the first and second generations use artificial neurons that accept
real-valued inputs and generate outputs of binary (first generation) or continuous (second
generation) values, while the third generation uses neurons that consider time-dependent
signal series (i.e., spike trains) as input and output, mimicking the signaling between actual
neuron cells in biological brains [17].

One of the most attractive characteristics of SNNs is that they can potentially offer
much higher energy efficiency than conventional ANNs [21]. The neural activity in an SNN
is event-driven because a neuron is only active when it receives or fires a spike, while it
can be idle when there is no event. This is different from an artificial neuron in an ANN,
which must always be active. Energy-efficient SNN computations are actively pursued
through the development of SNN-based ML algorithms [22] and neuromorphic hardware
that allows on-chip SNNs [23,24].

This paper investigates the use of SNN instead of ANN in control problems. In partic-
ular, we are interested in designing SNNs to carry out the task of making optimal control
decisions. Since the most widely used ML approach for such tasks is reinforcement learning
(RL), in what follows, we will first present a brief introduction to the basic techniques of
RL, followed by an overview of existing learning methods for SNN.

Using the classical cart-pole game as an example, we constructed a simple yet effective
SNN to solve this control problem with delayed rewards. We examine the performance
of two learning methods adapted from spike-timing-dependent plasticity (STDP). The
learning method that introduces the temporal difference signal into the training process
presents a general framework for tackling various control problems. The other method
that employs the reward signal in the training process exploits our prior knowledge of a
specific control problem and therefore trades its generality for the efficiency of solving that
specific control problem.

2. Preliminary
2.1. A Brief Introduction to Reinforcement Learning (RL)

In a typical RL scheme, an agent (a learner is often noted as an agent in RL) is in one
of a range of possible states, noted as s ∈ S, where S is the state space. In each state, the
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agent can take an action a from a predefined set A, which denotes the action space. The
agent’s action can potentially change the agent’s current state. At each state, the agent may
receive a certain amount of reward. The agent’s goal is to choose a proper action at each
given state so that the total reward the agent receives from the states it goes through will
eventually be maximized.

The rule by which the agent chooses its action can be noted as the policy π. For
example, π can correspond to the probability that the agent will take action a when in state
s, that is, π(s, a) = P(a|s) for s ∈ S and a ∈ A. The goal of RL is to find the optimal policy
for every state.

Assuming that the environment evolves in consecutive steps during learning, at a
certain step n, the agent detects that the environment is at a state sn and chooses an action
an (according to its current policy). We define the Q value function as the averaged future
total reward the agent can receive by following the policy π at all future states, namely,

Qπ(sn, an) = Eπ(G|s = sn, a = an), (1)

where G represents the total future rewards or gains, and Eπ represents averaging over all
possible evolutionary trajectories of future state sequences given the policy π.

Now, we consider the Q value function that corresponds to the optimal policy πopt
(i.e., the policy that maximizes the Q values) and note this function as Qopt. Because the
total future reward of step n is the sum of the reward for the state at step n + 1 and the
total future reward of step n + 1, and also because the optimal policy at step n + 1 would
be to take action with the maximum future gain after step n + 1, Qopt should satisfy the
following Bellman optimal equations, which Bellman proposed as the basis for solving the
RL problem via a dynamic programming algorithm [25],

Qopt(s, a) = R(s) + Σs′∈SPa
ss′maxa′∈AQopt(s′, a′), (2)

where Pa
ss′ refers to the transition probability P(sn+1 = s′|sn = s, an = a).

To solve the Bellman equations, one can start with some initial Q value functions and
update iteratively. In this process, we can define the deviations of the current Q value
function from the Bellman equations as temporal differences, that is,

TDQ = R(s) + Σs′∈SPa
ss′maxa′∈AQ(s′, a′)−Q(s, a) (3)

The optimal Q value function can be obtained by iteratively using the temporal
differences to update the Q value function,

Qnew(s, a) = Qold(s, a) + γTDQ, (4)

in which γ is the learning rate.
The RL algorithm that derives the optimal policy by learning the Q value function

is known as Q-Learning. When the state space and the action space are discrete, the Q
value function is a table (i.e., Q-table) of Q values for all state–action pairs. Guided by the
Q-table, the agent can choose the appropriate action based on its state. Its inventor Watkins
proved that the Q learning algorithm based on Equation (4) can converge if the Q values
are represented in a lookup table [26].

2.2. An Overview of Learning Methods for SNN

While the temporal dynamics of spiking neurons can be well-simulated by models
such as the Leaky Integrate and Fire (LIF) Model [27–29], it is not immediately clear how to
train networks composed of such neurons for diverse ML tasks [30], including RL. Unlike
ANNs that use differentiable real-valued signals and can thus be trained with the well-
known backpropagation algorithm [31], SNNs use discrete and nondifferentiable spike
train signals, making training based on straightforward backpropagation unfeasible.
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It is an active field of research to develop appropriate algorithms to train SNNs for
different applications [19,32]. One way to train an SNN is first to train an ANN with the
desired functionality and then convert the ANN into an SNN. This is also known as shadow
training [19]. The rules for the conversion or replacement of ANN neurons by spiking
neurons are to match the activation functions of the ANN nodes with the firing rates of
the spiking neurons [33] or the timing of the spikes emitted by the spiking neurons [34].
Although the conversion approach has been shown to produce SNNs with an accuracy
comparable to deep ANNs for certain image recognition tasks, the approach has several
drawbacks. Training a complex ANN is time-consuming and converting an ANN to an
SNN requires a rather long simulation time. Moreover, the approach usually leads to large
and deep SNNs, with performances worse than the source ANNs since the conversion
processes lead to no exact replications of but only approximations to the original ANNs [32].

Another type of SNN training algorithm enables backpropagation or gradient descent
training by using differentiable approximations of the spike function for derivative estima-
tion [35,36]. The Back Propagation Through Time or BPTT method [35] converts the neural
network to an equivalent sequence of computations and applies the backpropagation frame-
work to it. The SpikeProp method uses the fact that time is continuous and calculates the
derivative of the spike timing concerning the weight [36]. Backpropagation-based training
has produced SNNs that can solve small-scale image recognition problems well.

The above learning algorithms for SNN echo the learning methods for ANN. They do
not correspond to how learning occurs in a biological brain. Neuroscience studies have
long revealed synaptic plasticity, i.e., changes in the connection strengths of synapses, as a
fundamental mechanism underlying biological learning. A highly interesting SNN learning
algorithm uses a biological learning mechanism called spike-timing-dependent plasticity
(STDP) of synapses [37].

STDP is a form of Hebbian plasticity that follows the rule first postulated by Hebb as
“cells that fire together wire together” [38]. In other words, it is based on the correlated firing
activity of presynaptic and postsynaptic neurons to decide whether to change the strength
of connectivity of a synapse. The core idea behind these learning rules is to build synaptic
connections to represent causal relationships. As exhibited by its name, STDP has precisely
defined relationships between spike timing and changes in connection strengths [39,40].
Biologically, STDP is supported by the experimental finding that the co-activation of the
pre-and post-synaptic neurons can lead to two types of plasticity or synaptic changes: long-
term potentiation (LTP) and long-term depression (LTD) [41]. LTP refers to strengthening
the synaptic connection when the pre-synaptic neuron fires within a short period before
the firing of the post-synaptic neuron. In contrast, LTD refers to weakening the connection
when firing events occur in reverse order. Equation (5) presents a simple mathematical
model for STDP with LTP and LTD,

∆w =

{
A+exp(− s

τ+
), s > 0

A−exp( s
τ−
), s <= 0,

(5)

where ∆w is the change in the strength of connection or synaptic weight, s is the time
difference between postsynaptic and presynaptic spikes, and A+ and A− are, respectively,
the coefficients for potentiation (weight increase) and depression (weight decrease). The
time windows for LTP and LTD are given by τ+ and τ−, respectively [42].

The STDP learning mechanism provides a possible basis for training SNNs to make
control decisions in a control loop. This can be achieved by introducing an additional
modulating factor for the SNN synaptic plasticity process [43,44]. The modulating factor
can be determined from the environment’s reactions to the control decisions made according
to the output of the SNN so that the finally trained SNN can produce control decisions
that lead to optimal outcomes. Neuroscience studies have shown that in biological brains,
dopamine is one of the most important neuromodulators in such feedback- or reward-
based learning processes [45]. That is, the dopamine level represents the amount of rewards
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that guide the learning process by modulating STDP [46]. This biological phenomenon
can be simulated by extending the STDP model in formula 5 to the following modulated
STDP formula,

∆w = M ∗ weligibility, (6)

where M represents the effects of neuromodulators, while weligibility selects synapses for
reward-modulated plasticity according to conventional STDP rules [43].

Several previous studies have investigated the application of the above idea of mod-
ulated STDP learning rules to various ML problems, including the making of control
decisions [44,47]. Florian et al. introduced the reward-modulated STDP, or R-STDP al-
gorithm [44], in which the modulating factor came from the deviations of the actual and
expected SNN output. In that study, the algorithm’s effectiveness was illustrated with the
example of using SNN to solve the XOR problem and to output predefined spike trains.
We note that these examples were essentially regression problems. The so-called “rewards”
were derived from the regression errors, but not from a reaction of an environment im-
pacted by a control decision (determined from the outcome of the SNN). In other words,
the rewards for these problems were instantaneous but not delayed, as in typical control
problems.

Frémaux et al. proposed using temporal difference (TD) in reinforcement learning (RL)
as the modulating factor for STDP [47]. This TD-STDP learning rule was applied to train
actor-critic-type reinforcement learning (RL) controllers [12,13]. In such a controller, an SNN
subnetwork serving as the critic provides estimations of the “values” of the environmental
states. During training, the temporal change of the values estimated by the critic was used
to derive the modulating factor for STDP. The analysis in [47] illustrated the potential of
using SNN to implement general RL strategies for control tasks.

Despite these previous studies, STDP-based SNN learning for control tasks remains
an underexplored research problem. As mentioned above, the examples did not include
typical control tasks with delayed rewards in the original study that examined R-STDP [44].
Moreover, there is a lack of studies that compare the relative advantages and drawbacks of
different schemes, such as R-STDP and TD-STDP, for the same specific control task. In this
paper, we explore SNN with STDP learning modulated with the reward factor for control
tasks by considering the cart-pole balancing problem [48] as a representative example.
We have designed and implemented a novel SNN controller trained by the TD-STDP
rules similar to those proposed in ref. [47]. Based on the RL Q learning strategy [26], the
SNN presented here has a much simpler general network architecture than the actor–critic
architecture of ref. [47]. Although the TD-STDP learning rule is very general and does not
require any specific assumption about the dynamics of the environment (i.e., the target to be
controlled), it leads to rather slow convergence, producing somewhat imperfect controllers
even after prolonged training. We have also examined R-STDP learning. We show that by
integrating the understanding of the specific dynamics of the environment into the design
of the reward function, a more robust SNN-based controller can be learned much more
efficiently by R-STDP than by TD-STDP.

2.3. The Cart-Pole Environment

The cart-pole environment is one of the classic control problems that has been widely
applied for the performance evaluation of control algorithms. Several studies on SNN have
also chosen the cart-pole control problem as their test bench [49–51]. This problem could
be stated as the following: given a cart with a pole attached to it through a fixed joint (i.e.,
the pole can only rotate in a plane perpendicular to the horizontal surface), the cart can
move on a flat surface with no friction. At each step of the game, the control agent should
choose one of two actions, pull right or pull left. The action will affect the state of the cart
pole. The controller’s goal is to keep the pole in approximately upright positions without
falling for as long as possible. The values that the agent can observe are:

• The position of the cart: x,
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• The velocity of the cart: v = dx
dt ,

• The pole angle: θ,
• The angular velocity of the pole: ω = dθ

dt .

Here, right is defined as the positive direction for these values.
In this paper, the cart-pole model environment implemented in the gym library [52] is

applied. This environment terminates its simulation if one of these three situations occurs:

• The pole drops when the absolute value of the angle of the pole is greater than 12◦.
• The cart slides out of the edge of the animation display (i.e., the cart position is out of

the range between −2.4 to 2.4).
• The simulation steps are larger than 200 (or other customized values).

By definition, the first two termination conditions correspond to the reach of some
failure states of the environment, while the third termination condition indicates the
successful completion of the task.

3. The TD-STDP SNN
3.1. The Overall Workflow of the Program

The overall framework of our program that uses TD-STDP learning to solve the cart-
pole control problem is presented in Figure 1. The entire program can be divided into two
main parts; one is the cart-pole environment and the other is the SNN-based controller.
Each training epoch comprises a consecutive simulation of the cart-pole steps from the
start until one of the finishing conditions is met. At each cart-pole step, the environment
simulator and the SNN simulator are run sequentially. After a cart-pole simulation step,
the SNN simulator takes the current state of the cart pole as its input (see below), runs for a
fixed period, and produces its output, based on which an action to be applied to the cart-
pole environment will be chosen. After taking action, the cart-pole environment evolves to
the next step. The whole process is iterated until the simulation of the environment ends.
Then, the cart-pole environment is reset and started from a new initial state to perform the
next training epoch.

Figure 1. A general workflow of the training process using TD-STDP.

3.2. The Architecture of the SNN

The overall structure of the SNN is illustrated in Figure 2. There are only two layers
of neurons. The first is the input layer, which comprises some input neurons. The second
is the output layer, which comprises two groups of neurons, each corresponding to one
possible choice of action. Every input neuron is connected to every output neuron through
a synapse.
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Figure 2. The overall structure of the SNN using TD-STDP.

3.3. The Input Neurons

The spikes generated by the input neurons code the observed state of the cart pole.
First, an observed variable of the cart pole is mapped to an integer index using the following
formulae.

idobs =


0, obs ≤ obsmin

f loor( x−xmin
∆x ), obsmin < obs < obsmax

Nstates,obs − 1, obs ≥ obsmax

(7)

Nstates,obs = ceil(
xmax − xmin

∆x
), (8)

where the variable obs corresponds to one of the observed variables x, v, θ, or ω;
[obsmin, obsmax] defines the region of values for evenly divided bins; ∆x is the width of the
bins; and Nstates,obs is the total number of bins or discrete states for the variable obs.

Any possible state of the cart pole is described by a unique combination of the four
integers (idx, idv, idθ , idω). The total number of possible states is Nstates,total = Nstates,x ∗
Nstates,v ∗ Nstates,θ ∗ Nstates,ω.

The total number of SNN input neurons is defined to be Nstates,total ∗ ninput, so that a
group of ninput neurons represents each possible state. When a given state of the cart pole
is passed to the SNN, only the ninput neurons representing that particular state will fire
spikes. Meanwhile, all other input neurons will remain inactive. This encoding technique
is inspired by methods for encoding categorical variables for ML problems and is generally
known as one-hot encoding [53].

3.4. The Output Neurons

An LIF model describes the dynamics of each output neuron with adaptation in
Equation (9) [54].

τm
dV
dt

= ge(Ee −V) + El −V, (9)

in which V is the membrane potential, El is the resting potential, Ee is a high value voltage,
τm is a time constant for the membrane potential, and ge is a dimensionless quantity repre-
senting the effects of the upstream spikes received through the input synapses. Without
receiving spikes from the input synapses, the dynamics of ge is described by

τg
dge

dt
= −ge, (10)

in which τe is a time constant for the lasting effect of the input spikes. When an input spike
from a synapse i connects to the neuron, ge changes instantly according to the number
of parameters.

ge = ge + wi, (11)

in which wi is the weight of the synapse i. The effects of spikes received by different
synapses are simply accumulated.
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3.5. Q-Learning by SNN

The output of the SNN is interpreted as the (scaled) Q values of corresponding actions
given the particular input state, namely,

Q(s, a) = scale ∗ nspikes(s, a), (12)

in which nspikes(s, a) refers to the number of spikes fired by neurons in the output group
associated with action a when only the input neurons that encode the state s have been
firing during a period of SNN simulation.

Note that this definition of the output of the SNN as the (scaled) Q value that depends
both on the state and the action is somewhat different from the SNN value network of
ref. [47]. There, the output from a single group of neurons provided the values of only the
states without further discrimination of different actions.

Using separated groups of output neurons for different actions, we do not need an
extra actor module as in ref. [47] to evaluate the actions. Instead, the action is determined
by the same groups of neurons that estimate the Q values.

To determine the TD error of the current SNN for the cart-pole step n, we run the
SNN with the input state sn for a while, obtain the values of Q(sn, a), choose and carry out
the action an, and obtain the next state of the cart pole sn+1. We then run the SNN with
the input state sn+1 to obtain Q(sn+1, a). Following Equation (3), the TD error for step n is
computed as

TDn = TD(sn, an) = γmaxaQ(sn+1, a) + Rn+1 −Q(sn, an). (13)

Here, we have included a “discount factor” γ so that the rewards of only a finite
number of future steps effectively contribute to the current Q value.

The formula above with Rn+1 = 1 is applied only when the state at step n + 1 does
not correspond to a failure state of the cart pole. When sn+1 corresponds to a failure state
(and the simulation of the environment will terminate), both Q(sn+1, a) and Rn+1 should
be zero (because there will be no current or future reward). Then, the TD error for step n is
computed as

TDn = −Q(sn, an). (14)

As shown in Figure 1, the TD error is used to update the weights of the synapses
connecting the input state neurons to the output neurons.

3.6. Determining Eligibility of the Synapses

Given the current state of the cart pole, the SNN is simulated for a fixed number
of SNN time steps (note that these are not the cart-pole steps). The SNN simulation
produces two outcomes. The first is the estimated Q values described above. The second
outcome includes the eligibility traces of the synapses for updating the synapses’ weights.
To determine the eligibility for each synapse (for simplicity, we will omit the index of
the synapse from the following formulations) based on the relative timing of pre-and
post-synaptic spikes, we first define the following pre-synaptic activity and post-synaptic
activity traces,

Apre(t) = ∑
k∈input spikes

ξ(t− tk)e
− t−tk

τpre , (15)

Apost(t) = ∑
k∈output spikes

ξ(t− tk)e
− t−tk

τpost , (16)
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in which tk represents the time of spike k, and the Heaviside step function ξ(t − tk)
is applied to select spikes that were received (for Apre) or fired (for Apost) before the
time t, i.e.,

ξ(t− tk) =

{
1, t− tk ≥ 0
0, otherwise.

(17)

Apre is not negligible only for a short time (compared to the time constant tpre) after
receiving a presynaptic spike. Similarly, Apost is not negligible, only not long after the firing
of a post-synaptic spike. Then, the eligibility of the synapse according to the STDP rule can
be determined as

wtrace = ∆pre

∫
O(t)Apre(t)dt− ∆post

∫
I(t)Apost(t)dt, (18)

where ∆pre and ∆post are parameters that affect learning rates. In the above equation, the
function I(t) represents the time series of input spikes on that synapse, while the function
O(t) represents the time series of the output spikes, that is,

I(t) = ∑
k∈input spikes

δ(t− tk), (19)

O(t) = ∑
k∈output spikes

δ(t− tk). (20)

In Equation (18), the first term corresponds to long-term potentiation (LTP) of the
synapses because it makes a positive contribution to wtrace only when an output spike
is generated shortly after receiving a presynaptic spike (thus Apre is non-negligible); the
second term corresponds to long-term depression (LTD), as it makes a negative contribution
to wtrace if an input spike is received at the synapses shortly after the post-synaptic neuron
has fired (thus Apost is not negligible).

3.7. Learning the Synaptic Weights by TD-STDP

After the determination of TDn, the weights of the synapses that connect to the output
groups corresponding to an action an are updated using

wnew = wold + β ∗ TDn ∗ wtrace,n, (21)

where β is a constant that adjusts the rate of the weight change, and wtrace,n is the eligibility
trace calculated using Equation (18) at the nth cart-pole step.

3.8. Exploration and Exploitation in Training

For the agent to accumulate experience in various cart-pole states, the agent should be
encouraged to explore various possible states during the initial training phase of the SNN.
This is achieved by adding a stochastic mechanism to choose the action. Specifically, for the
first 100 epochs, the agent chooses an action randomly at every cart-pole step. After that,
the agent randomly chooses an action with a probability of Pexplore, the value of which starts
from 1.0 and is scaled down at the beginning of each new epoch by a factor of α = 0.99.
With a probability of 1− Pexplore, the agent chooses the action according to

P(an = a) ∝ e(Qa/δQ0 ). (22)

With the above definition, the agent’s action would be deterministic only when the
difference between the Q values of the two actions provided by the SNN is significant
(relative to δQ0 , which is chosen to be 0.1).
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4. The R-STDP SNN
4.1. The Differences between the R-STDP and the TD-STDP Programs

The overall framework of the R-STDP program shown in Figure 3 is similar to the
overall framework of the TD-STDP program. The main differences between the two
programs come from the different interpretations of the output of the SNN (i.e., the number
of spikes fired by each of the two groups of neurons in the output layer). In the TD-STDP
SNN, the output represents the scaled Q values for different actions of the corresponding
input state. Thus, the relative output changes upon changes in the input state have meaning.
In the R-STDP SNN, the output is (by definition) interpreted or used as simple numerical
metrics for choosing the action (here, the action associated with the output group that
fires the most spikes is preferred). Thus, when there are changes in the input state, the
corresponding changes in the output of the R-STDP-trained SNN are not concerned. This
leads to a different weight-updating scheme in the R-STDP program.

Figure 3. A general workflow of the training process using R-STDP.

4.2. Updating Synapse Weights with Delayed Reward

After the action (chosen on the basis of the output of the SNN) has been taken, a new
state of the cart pole is returned. A reward value of R is calculated from both the previous
state and the new state of the cart pole (see below). The weights of the SNN synapses are
updated using the reward and eligibility factors computed from the previous SNN run.
When the action leads to a positive reward, the synapses connections that would increase
the probability of the SNN output of the action taken should be strengthened. In contrast,
the synapse connections that would increase the probability of the SNN producing the
opposite action should be weakened. The opposite should apply when the action taken
leads to a negative reward. This reasoning leads to the following updating rules. For every
synapse connected to the output neuron associated with the action taken, the weights
increase according to the action.

wnew = wold + R(sn, sn+1) ∗ wtrace,n, (23)

while for every synapse connected to the output neuron associated with the opposite of the
taken action,

wnew = wold − R(sn, sn+1) ∗ wtrace,n. (24)

4.3. Reward Function Designs

Intuitively, the reward function should reflect the objective of the control task, which
is to keep the pole in the upward direction. As this goal should be realized by the actions
that are chosen according to and carried out upon the given states of the cart pole, an
action should be rewarded positively if it causes the state of the cart pole to change towards
a new state that favors achieving the control goal. Based on this intuition, we designed
and tested the three reward functions of the SNN controller. From Reward Function 1
to Reward Function 3, more sensory information is encoded into the reward function;
therefore, the agent’s actual tendency to keep the pole upright is more accurately pictured.
In the following formulations, the subscript old corresponds to the cart-pole step n in
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Equations (23) and (24), while the subscript new denotes the cart-pole step n + 1 in the
same equations.

Reward Function 1: This reward function is defined to return one when the angle of
the pole is in the range where the pole does not fall, and the cart is still within the range of
the animation display and otherwise returns zero. That is,

R1 =

{
1, The simulation is not terminated
0, otherwise.

(25)

Reward Function 2: This reward function is defined as

R2(ωold, ωnew) =


1, ωold ∗ωnew < 0 or

|ωold| > |ωnew|
−1, otherwise.

(26)

As shown in Figure 4a, this reward is determined by comparing the current angular
velocity ωnew with the angular velocity observed in the previous cart-pole step ωold. If
a significant change in angular velocity has been detected, the action has reversed the
previous moving trend of the pole, and thus a reward of one is assigned to this kind of
action. Suppose that there is no significant change in angular velocity. In that case, the
shrinking of the absolute value of the angular velocity itself also indicates that the pole
is slowing down its rotation. Therefore, the action is also encouraged with a reward of
one. In other situations, the reward value of −1 is used to punish the action taken for not
contributing to reverse or reduce the rotation of the pole.

Reward Function 3: This reward function is defined as

R3(ωold, ωnew, θold, θnew) =
R2(ωold, ωnew), θnew ∗ωold > 0
1, θnew ∗ωold ≤ 0 and θnew ∗ωnew < 0
−1, otherwise.

(27)

Compared to Reward Function 2, Reward Function 3 considers not only the angular
velocity but also the angular position of the pole. In Reward Function 3, Reward Function
2 is only used when ωold and θnew are of the same sign. This is based on the following
reasoning. If ωold and θnew are not of the same sign but of opposite signs, θold must be of
the same sign as θnew because

θold = θnew −ωold ∗ ∆t. (28)

Then, θold and ωold must be of opposite signs. This means that ωold causes a reduction
in the angle of tilt of the pole. Therefore, Reward Function 2, which rewards the reversal or
reduction of ωold, is no longer suitable. In this case, a comparison of the sign of θnew with
that of ωnew remains to be further considered. If the signs are opposite, the new state has
retained the desired direction of ωnew to correct the tilting angle θnew. A positive value then
rewards the action taken. Otherwise, the action is punished with a negative value of −1.
This reward function is illustrated by Figure 4b.
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(a) (b)
Figure 4. Different reward function designs: (a) Reward Function 2 employs the angular velocity
of the pole; (b) Reward Function 3 employs the angular velocity of the pole as well as the angle of
the pole.

4.4. Exploitation and Exploration

With the above R-STDP learning rules and the cart-pole state encoding scheme, the
SNN will only be able to learn to choose a good action for states that the agent has
already visited. It would not provide a good policy for the states it has not seen yet. To
encourage the exploration of various possible states during the initial training phase, we
define a probability Pexplore for the agent to randomly take one of the two possible actions
(exploration) instead of taking action determined from the SNN’s outputs (exploitation).
The value of Pexplore is set to one at the beginning of the learning. It is downscaled by a value
of γexplore = 0.9 at the beginning of each new epoch so that as the training process progresses,
fewer random actions will be taken, and the learning process can eventually converge.

5. The SNN Simulator

This work uses the highly flexible and easily extensible SNN simulator Brian2 devel-
oped by the computational neuroscience community. Brian2 is a clock-driven simulator
(also supports event-driven simulation mode) implemented purely in Python and supports
a range of different platforms [55]. It provides a variety of libraries to generate spike sig-
nals, create neuron groups, define connecting synapses, monitor spike signals, and control
overall simulations. In this study, the input neurons have been defined using the Brian2
function SpikeGeneratorGroup(), and the output neuron groups have been defined using
the Brian2 function NeuronGroup(). Synapses have been created using the Brian2 function
Synapses() and connected using the function Synapse.connect(). For the TD-STDP SNN,
noutput=10. For the SD-STDP SNN, noutput=1. The counting of spikes generated by output
neuron groups has been monitored with the Brian2 function SpikeMonitor().

6. Results
6.1. TD-STDP Learning

During one training session, the duration starting from the initializing/resetting of the
gym cart-pole environment to the termination of the cart-pole environment is considered
as one epoch. As the goal of the cart-pole problem is to keep the pole upright as long
as possible, we define a trial of the cart-pole balancing problem to be successful if the
number of time steps by which the pole does not fall is more significant than a threshold of
nThreshold = 200 time steps. At a particular training stage, we estimate the performance of
the SNN at that training stage by considering the success rate over 20 consecutive epochs
centered around that stage. Figure 5a shows the success rates as functions of the number of
training epochs in three independent runs.
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(a) (b)
Figure 5. The training results of the SNN using TD-STDP, where the three differently colored lines
indicate the three independent trials: (a) the success rate of the SNN controller changes over the
training epochs using TD-STDP learning; (b) the root mean square change of the SNN-produced Q
values between two consecutive training epochs during TD-STDP training. In this and the subsequent
figures, different colors indicate independent training runs.

As the training process evolves, the success rate of the SNN controller generally
increases, but with several drops. These drops could result from the agent encountering
states for which it does not yet have enough experience to form a good policy. This
change in success rate indicates that the training process is indeed converging, although
somewhat noisy. This phenomenon can also be seen in Figure 5b, which plots the root
mean square change of the Q values between two consecutive training epochs against the
number of training epochs. The curves exhibit fluctuations within a specific range even
after prolonged training.

6.2. R-STDP Learning

We tested the three different reward functions described above. We only show the
results for Reward Function 3, in which the rewards depend jointly on angular position
and velocity changes. This function led to much higher success rates after training than the
other two reward functions.

Using the success rate over 20 epochs as the metric for the performance of the SNN at
different training stages, the results of R-STDP are plotted in Figure 6a. Figure 6a, compared
with Figure 5a, shows a more satisfactory result for the use of R-STDP. As the training
progresses, the success rate increases relatively smoothly. They gradually reached the value
of 1 with only tiny fluctuations in less than 50 epochs. In comparison, the TD-STDP training
did not show a trend to convergence until more than 300 epochs and remained imperfect
and noisy until more than 400 epochs.

The accumulated reward in each training epoch is shown in Figure 6b. As intended,
the R-STDP learning process led to a gradual increase in the total rewards.
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(a) (b)
Figure 6. The training results of the SNN using R-STDP and Reward Function 3: (a) the success rate
of the SNN controller changes over the training epochs using R-STDP learning; (b) the total reward
accumulated in one epoch versus the number of training epochs.

7. Discussion

TD-STDP is built on the theoretical basis of classical reinforcement learning algorithms.
Although for the problem examined here, the TD-STDP approach exhibits lower learning
efficiency than R-STDP (R-STDP produces consistently good results after less than 50
epochs, while TD-STDP still delivers noisy results after 300 training epochs), TD-STDP
does not use any assumption about the dynamics of the cart-pole system for learning. Thus,
it provides a more general solution for RL problems using SNN. The shared basic concepts
between traditional RL and TD-STDP-based SNNs also imply that future optimization of
SNN for RL may benefit from ideas developed in previous studies on RL.

The interaction between the agent and the environment in which it roams is often
crucial in RL control applications. Due to the nature of this application, the reward received
by the agent for taking action is usually delayed relative to the timing of the action because
the feedback of the environment is obtainable, as the sensory data are usually reactions to
previously taken actions. The R-STDP learning rule employed in the cart-pole controller
training successfully used the delayed reward signals to extract useful information to help
the SNN generate a stable policy. This was achieved by storing the eligibility traces of the
synapses and using a reward function jointly determined by current and past observations.

The solutions we presented here for the cart-pole example employ a rather simple
but effective SNN structure at the expense of using discrete variables to represent the
states of the cart pole. The network has only two layers without using any hidden layers.
However, the goal of balancing the pole is still efficiently achieved after a reasonable
amount of training. That said, we note that the success of the R-STDP SNN critically relied
on the definition of a reward function (here, Reward Function 3) that utilized substantial
preestablished knowledge or understanding of the dynamics of the problem. This restricts
the model’s applicability to general control problems for which learning has to be based
on experiences, not on assumptions about the actual dynamics of the system to be the
controller. In this sense, TD-STDP presents a more general framework for the SNN to solve
control problems, as no pre-established knowledge about the dynamics of the problem is
needed. However, for particular problems, such generality may come with the expenses of
lower performance relative to R-STDP learning with problem-specific rewards.

The one-hot coding of the state space also proves its usefulness in this application.
However, the resolution for discretizing the state space may affect the control system’s
performance. Moreover, as the dimension of the state space increases, the required number
of discretized states (and thus the number of input neurons to cover the state space) will
increase exponentially. Implementing other coding schemes for input states will be an
interesting problem for future investigations.
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This work has only provided a glimpse into the feasibility of using SNN to solve RL
problems. The cart-pole game acts as a good starting point for more complicated control
problems that could be solved using RL techniques, where SNN has shown its interesting
properties that the formation of the synapse connection is heavily affected by the reward
function and coding scheme design. These properties could be better explained by a more
in-depth study of the observations of neuroscience experiments.

Although RL has been a well-studied field, as a wide range of RL algorithm-based
applications have shown their power in various fields, the training and application of
SNN in solving RL problems still remain an active field for ML researchers to explore,
since these two techniques share the methodology inspired from the learning process of
a biological neural system. The long-term goal of this project is to help develop control
software in neuromorphic computational units. The current implementation uses an SNN
software simulator. Thus, the computational cost of the current implementation cannot
reflect the gain in energy efficiency of the SNN. An important follow-up work would be to
implement similar SNNs on physical hardware beyond software simulators. The potential
of implementing SNN at the hardware level to exploit its power efficiency and biological
precision of SNN compared to former ANNs also makes SNN a promising approach to
further enhance the overall performance of neural network models.
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