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Abstract. We explore how data modification can enhance privacy by
examining the connection between data modification and machine learn-
ing. Specifically, machine learning “meets” data modification in two
ways. First, data modification can protect the data that is used to train
machine learning models focusing it on the intended use and inhibit-
ing unwanted inference. Second, machine learning can provide new ways
of creating modified data. In this chapter, we discuss data modification
approaches, applied during data pre-processing, that are suited for online
data sharing scenarios. Specifically, we define two scenarios “User data
sharing” and “Data set sharing” and describe the threat models associ-
ated with each scenario and related privacy threats. We then survey the
landscape of privacy-enhancing data modification techniques that can be
used to counter these threats. The picture that emerges is that data mod-
ification approaches hold promise to enhance privacy, and can be used
alongside of conventional cryptographic approaches. We close with an
outlook on future directions focusing on new types of data, the relation-
ship among privacy, and the importance of taking an interdisciplinary
approach to data modification for privacy enhancement.

1 Introduction

The importance of data in for gaining insight and supporting decision making
has long been appreciated. However, recently recognition has grown of other
aspects of data, both positive and negative. On the positive side, data are useful
for training machine learning (ML) models that guide the development of new
products and enable new services. ML has lead to a growing demand for data
by businesses and other organizations looking to create value, to reduce costs or
to boost profits. On the negative side, data can be dangerous. Large, centralized
collections are susceptible to breaches and give rise to privacy and security risks.
Moreover, ML algorithms introduce novel attack surfaces, opening the door to
function creep by service providers and putting privacy at risk.
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It has become apparent that we need to understand how to derive benefit
from data without running serious risks. Conventional approaches use encryp-
tion, or multiple layers of system security, to protect data. Such approaches
are effective, but also have specific drawbacks. They are technically complex
to implement and must be continuously monitored for breaches. Approaches to
protecting privacy that do not suffer these drawbacks would clearly be advanta-
geous.

In this chapter, we take a look at a set of less conventional approaches that
involve an alternative process: data modification. Data modification is the prac-
tice of changing raw data into a transformed form for the purpose of protection.
One commonality between conventional approaches to data protection, is that
they assume that data must be maintained in its original form in order to be
useful. Although, this might be the case for some applications, with the rise of
machine learning there are an increasing number of cases for which the original
data is not necessarily. Approaches like machine learning that work probabilisti-
cally can tolerate variation in the data, especially in cases where that variation
does not impact aspects of the data most important for the task at hand.

When data modification is integrated into a data pipeline, it is usually
integrated as a pre-processing step. In contrast, conventional data protection
approaches can be applied multiple places along the pipeline. We use the term
“pre-processing” to refer to a transformation applied to raw data, possibly during
the phases of cleaning or feature extraction. Data modification at the beginning
of the pipeline can be combined with other forms of encryption or security any-
where along the pipeline to add extra protection. In this chapter, however, we
focuses specifically on data modification.

The result of data modification is a data set that can be shared and further
used without needing to reverse the modification, as opposed to encryption,
where generally only decrypted data can be used in a meaningful way. After
modification, data no longer offer a viable opportunity to threaten privacy or
attack security. The overhead of managing encryption keys or of monitoring
system level security can be spared. Data modification can protect against data
misuse by an internal party and can limit the damage done by a breach.

This chapter discusses how ML and data modification are related, and how
the modification of data is growing in importance as a method for privacy
enhancement. The chapter follows two major themes, corresponding to two ways
in which machine learning can be said to “meet” data modification. First, data
modification protects the data fed into ML algorithms. Second, ML can be used
to data in order to create protection. Our chapter provides a literature survey
that covers work on data modification techniques that fit into these two themes.
We argue that the relationship between ML and data modification is not static,
but can be anticipated to evolve in the future. Specifically, interest in data modi-
fication is driven by the growth of ML, due to both the risks associated with ML
as well as the specific opportunities that it presents. Next, we turn to further
discuss this effect, in order to provide important background and motivation for
the use of data modification for privacy enhancement.
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1.1 Risks and Opportunities of Machine Learning

Growth and Uncertainty: Machine learning applications are trained using large
amounts of data. The data are often collected from people, and contain detailed
information reflecting those people’s identities, attributes, activities, and habits.
As ML becomes central to the way that businesses produce value, more and more
data are collected. More data means not only more private information, but also
greater challenges in data management and storage. Data must be transferred,
stored remotely, and processed using cloud services, increasing the opportunities
for privacy violations. It starts becoming uncertain how data can be found in the
future from the moment the data are collected. Furthermore, Machine-learning-
as-a-service (MLaaS) has recently emerged, making results generated by complex
models available to a wide public. MLaaS interfaces are easy and cheap. However,
widely exposing models increases the risk of inference of properties of the data
used to train those models.

Conventional ways of protecting data often assume top-down planning of
data management rather than organic expansion, or careful control over the use
of the products of data. Data modification becomes increasingly interesting as a
means of privacy enhancement in conditions that cannot be fully anticipated or
controlled.

Shifting Incentive Structures: Data have long been valuable, but the rise of
machine learning has seen a further increase in that value. This value changes
the incentive structures surrounding data that have been collected by companies.
Specifically, the temptation arises to use data in ways that were not intended
when the data were collected. It is not always the case that the change that
triggers data to be used for an unexpected new purpose is a sudden change. It
may be that the purpose for which the data are used slowly evolves away from
the original purpose, a process commonly referred to as function creep. These
issues are described by an honest-but-curious party. This party has the right to
use the data, but is driven by an incentive structure to use it in ways inconsistent
with the original purpose. The concept of curiosity should be understood with a
broad interpretation that covers both the situation of greed (because data can
be used to create value) and the situation of neglect (because it is easier and
less expensive than to take care of data properly).

The incentive is strong to cut corners when managing or processing data, as
illustrated by recent high-profile scandals. The Cambridge Analytica scandal is
an example of a failure of data control [52]. It serves to illustrate that complex
data environments can give rise to new ways in which data can end up where they
should not be, serving a purpose that they should not serve. Another issue is that
the task remains the same, but the way that the data are processed suddenly
changes. A recent inquiry showed how Amazon employees were instructed to
perform manual inspection and transcription of voice signals [78].

The Purpose of Data: The rise of machine learning has seen a focus on the
purpose of data. Companies that collect data have a business model and train
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machine learning models that help them to create value within that model.
Moving forward, we expect that the collection of data will be more tightly linked
to purpose. In Europe, the General Data Protection Regulations (GDPR) tackles
the dangers of data by enforcing the data minimization principle: only data that
are useful for the task to be carried out can be obtained, upon consent by the
user, and for a limited time.

The rise of data sets with a purpose opens the door for a new kind of data
modification: purpose-aware modification. Purpose-aware modification changes
the data so that it is still useful for some purpose (training a particular type
of model) but contains minimal privacy-sensitive information. Such data mod-
ification has the potential to be particularly effective by introducing changes
along any dimensions that is (nearly) orthogonal to the relevant features. Fur-
thermore, data minimization does not always imply removing data. Data mini-
mization should also focus on reducing the information that the data contains.
Understanding purpose-aware data modification will help us understand how to
more effectively minimize data.

1.2 Scope and Outline

The data modification techniques that we cover in this chapter fulfill two pre-
requisites. First, they do not use cryptography. In other words, Fully Homomor-
phic Encryption (FHE) and Secure Multi-Party Computation (MPC) are out of
scope. We refer to [86] for a thorough discussion of the crypto-oriented landscape
of privacy-preserving ML.

Avoiding cryptography cuts computational requirements drastically, and
avoids issues such as key management.

Second, we assume a centralized scenario. In other words, it is not possible
to avoid that the modified data are at some point held by a single entity. Thus,
we exclude scenarios of distributed training, also known as distributed machine
learning (DML). An example is federated learning which consists of random
nodes being assigned a small training task to be carried out locally. They will
optimize the global model and send the gradient update to the central node for
aggregation. Secure parameter aggregation, involving differential privacy (DP)
and MPC, protects against the privacy leakage resulting from the loss of the
model. [86] gives an overview of the privacy-preserving DML techniques in this
area.

The next section in this chapter provides a characterization of two important
scenarios in which data are used, “user data sharing” and “data set sharing”.
These scenarios are chosen because they illustrate the types of privacy risks
that can be addressed by data modification. After describing the scenarios, we
then provide threat models that capture the nature of the privacy risks. Then, we
give an overview of the state of the art of data modification techniques that have
been proposed to enhance privacy. The techniques have two distinct relations to
machine learning: first, machine learning can be used to create data modification,
and, second, the modified data can be used by machine learning algorithms.
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Fig. 1. Scenario 1: user data sharing.

These relations are highlighted in our overview. The chapter finishes with a
discussion of challenges and open directions.

2 Scenarios and Requirements

Our data sharing scenarios are inspired by the growing interest in cloud com-
puting technologies [15]. As data becomes cheap, both for centralized entities
to collect and edge devices to share, novel business models are popping up that
take advantage of this abundance. Considering this relationship between the user
(at the edge) and the service provider (at the centre), we obtain abstractions
of two scenarios for sharing data. Making reference to these two sharing scenar-
ios allows us to focus on the specific challenges posed by the collection of data
for ML pipelines in the context of existing regulatory frameworks [44], and the
potential for pre-processing data prior to their release.

In the first scenario, a user shares sensitive data with a service provider (SP)
to train a ML model, receive a prediction, or carry out an analysis. In the second
scenario, a data-collector has received sensitive data and wants to enable third-
parties to perform data analysis. We cannot assume that the channel by which
data is shared is reliable. These scenarios allow for a more in-depth discussion
on the threats and defenses covered throughout the chapter.

2.1 Scenario 1: User Data Sharing

In this scenario, the user sharing the data is the person who produced the data.
The user shares the data in order to receive a certain output, but at the same
time does not want the data to be used for a purpose that they do not approve
of. The sharing of data serves to feed a ML model or to perform statistical data
analysis. This scenario is important due to the rise of cloud-based computer
vision APIs, which make it possible for any business/user to build a state-of-
the-art model merely by sharing data [2]. This scenario allows a user to benefit
from the model while controlling privacy risks. For example, a user can share an
image on a social media platform, and agree that platform analyzes that image
for the purpose of producing recommendations, but not agree that the platform
uses it for other purposes, e.g., training a facial recognition system.
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The ML pipeline that we identify as a final goal of this scenario is conven-
tionally divided into modules, which are shown in Fig. 1. Data are first collected
and pre-processed by the users themselves, then Data modification is performed.
Performing modification right after collection is important for several reasons,
including cleaning data and minimising storing and network requirements. Tech-
nically, modification could also be performed after sharing. However, we focus on
applications that apply modification before sharing for privacy-preserving pur-
poses. Next, a Data processing module carries out pre-processing and, if needed,
extracts relevant features from the data. Feature extraction might be directly
integrated into the machine learner, or be carried out as a separate step. For
example, the machine learner might be a classifier that uses the data to learn
how to label images of animals as cat or dog. The phase in which data is pre-
sented to the classifier for the purpose of learning is called “training”. The phase
in which a new, yet-unseen data sample is presented to the classifier to obtain a
label and/or score is called “inference”.

Combing the ML pipeline just described with the data sharing steps, we
arrive at a scenario that describes how a User and a Service provider (SP)
interact in a data-value exchange protocol. We divide the procedure in four
main steps illustrated in Fig. 1:

i Data are generated/captured and processed to obtain a sample.
ii The sample is shared with the SP, typicality through an unreliable channel

(the internet).
iii The sample is further (optionally) processed and fed to the ML model.
iv The SP returns an answer to the user.

In general, the two communicating parties have competing needs: one the
one hand, the user wants to be protected; on the other hand, the SP aims to
maximize utility. In line with the data quality principles of the GDPR (Art. 5),
we define the following requirements:

1. Data confidentiality: by protecting data, we minimize the risks of sharing
sensitive information with, generally untrustworthy, third-parties.

2. Data minimization: only data that is needed for the primary learning task is
sent via the communication channel.

3. Purpose limitation: data collection and data processing are limited to used
in a clearly defined ML task.

4. Usefulness: the ML process preserves the primary utility of the service and
the value for the users.

2.2 Scenario 2: Data Set sharing

In this scenario, a pool of people, i.e., the Data subjects, have already shared sen-
sitive data with a central node, i.e., the Data collector. This might be a hospital
who collects the digital clinical diary of their patients [28]. The central node is
trusted to be the only entity that is allowed to manage sensitive information,
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Fig. 2. Scenario 2: Data set sharing.

hence no other party is granted direct access permissions. An external entity,
i.e., the Requester, performs an access request to obtain a modified version of
the data set. The Requester might be a benign organization such as a research
institute that aims to performs in-depth analysis or train a ML model.

The interaction between a requester and a data collector can be divided into
four steps (Fig. 2):

i The Requester forwards a request to the data collector.
ii The data set is processed by the Data collector.
iii The modified version of the data set is shared to the Requester.
iv The Requester performs some defined tasks, e.g., statistical analysis, inference

on the received data set.

In this scenario, the data collector manages highly sensitive data that must
not be leaked to untrusted parties. Nonetheless, benign requesters can greatly
benefit from the sharing of this asset. The main requirements that arise from
this scenario include:

1. Data confidentiality: the original data can only be accessed by the Data col-
lector.

2. Data privacy: the released data set has to remain anonymous for the Requestor
and/or suppress sensitive attributes.

3. Usefulness: the usefulness of the released data set is preserved for the infer-
ential task carried out by the Requester.

We can observe that two scenarios are similar in that they represent a rela-
tionship between a sharer and a receiver. However, they differ with respect to
the information that is sent through the unreliable communication channel. In
Scenario 1, the data are relevant to an individual, and in Scenario 2, they are
relevant for an entire group. Additionally, in Scenario 1, the data is shared with
a particular model with a particular function as the target. In Scenario 2, the
use of the data is not necessarily limited to a single purpose. Keeping these dif-
ferences in mind will make it easier to understand the structure of the landscape
of threats and countermeasures.
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Fig. 3. Privacy threats specific to the contexts of data sharing and machine learning.

3 Threat Model

We define our threat actors based on a standard scheme used in the literature
[70]. An attacker has a clear goal to carry out, the extent to which the goal
is pursued, however, depends on the attacker’s resources. The resources might
include prior knowledge about the target as well as technological and economic
resources. The resources deployed are dependent on the risks an attacker is
willing to take and countermeasures used by the target. Based on this scheme, in
this section, we model adversaries by presenting threat models that are related to
our scenarios. The presentation of the threat models is followed by a description
of the main privacy threats linked to our malicious users (Fig. 3).

3.1 Scenario 1 Threat Model

In Scenario 1, “User data sharing”, we have two interacting entities: the Service
provider (SP) and the User. Both stakeholders can act maliciously in order to
maximize their value at the expense of other actors. Hence, we describe two
malicious actors that are directly derived from the previous ones: the honest-
but-curious service provider, and the malicious user.

The honest-but-curious service provider is the coordinator of the communication,
i.e., the SP of Fig. 1. Its primary intent is to run the service smoothly while
behaving honestly by following the protocol as expected. Accordingly, it receives
requests (Fig. 1(ii)) and produces rightful answers (Fig. 1(iv.b)). However, it is
curious in the sense that it aims at gathering as much information as possible
about its users. Specifically, it can modify step (iii) of Fig. 1 to gain out-of-context
knowledge that the User does not intend the SP to gain. As the SP can be a big
corporation, we assume they have the power and resources to obtain additional
knowledge about their customers, train large networks, and coordinate an attack
between many subsidiaries if needed. In this context, data re-purposing poses a
severe threat to the user. The SP performs a task beyond the original one agreed
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with the users and, potentially, sells these data to third-parties without explicit
consent.

The malicious user follows the protocol but might try to get additional informa-
tion about other users. Malicious users have black-box access to the ML model
trained by the SP: they can query the system (Fig. 2(ii)) and observe the output
(Fig. 2(iv.b)), but no access is given to the internal parameters or data used to
train the model. An possible extension of the malicious user is a group of users
acting in a coordinated fashion (e.g., other companies) that makes use of their
greater computation capabilities to carry out larger campaigns. These capabili-
ties can be used, for example, to learn sensitive information about data subjects,
which leads to discriminative and abusive behaviours, or to steal the intellectual
property of the SP (e.g., the ML model internals).

3.2 Scenario 2 Threat Model

Like Scenario 1, Scenario 2, “Data set sharing”, is characterized by a two-party
interactive exchange. The two main attackers, as before, are adversarial versions
of the attackers participating in the exchange: the malicious requester and the
honest-but-curious data collector.

The malicious requester aims to de-anonymize, de-obfuscate or carry out
unwanted inference on the received data set. As a requester, it requests access
to a data set (Fig. 2(i)) acting as a trustworthy party and obtains a modified
version of the target data set (Fig. 2(iii)). At this point, it carries out the infer-
ence step (Fig. 2(iv)) targeting users’ private attributes, having full access to the
original data set. In the worst case, the malicious requester can be a powerful
entity capable of obtaining further data about the victims – like the powerful
malicious user of Scenario 1 – which enhances its knowledge about the target
data distribution. Anonymization techniques could protect users’ privacy in this
setting. Unfortunately, data are easy to de-anonymize by harnessing correlations
between variables and linking different data sources [60].

The honest-but-curious data collector is a Data collector (Fig. 2) that works on
behalf of its data subjects. It may attempt to infer sensitive information about
its customers based on the collected data combined with additional background
knowledge. This actor partially overlaps with the honest-but-curious SP of Sce-
nario 1 in that it behaves honestly but leverages its position to maximize its
profits, e.g., by collecting and/or retaining data more than necessary. In order
to avoid redundancy, we consider the data collector as a trustworthy entity that
is required to protect the data before being released to third-parties (i.e., the
requester).
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3.3 Privacy Threats in the Context of ML

Next, we discuss the privacy threats that are related directly to the machine
learning model (Fig. 3, right side). These can be understood as mainly related
to Scenario 1, “User data sharing”, in which we are concerned about the path
traveled by the data of an individual user. These threats are related to data
modification because data modification can be used to counter them. The gravity
of the threat depends on the sensitivity of the data and the threat model of the
attacker. We mention the following set of threats [8,19]:

Data Reconstruction [7,8,72]. Several methods aim at reconstructing private
data from a processed version of the data. For example, trying to reconstruct
private information after the original data has been transformed into feature
vectors. In data reconstruction, the attacker can exploit various levels of knowl-
edge. A malicious user is constrained by the output returned by the SP and
the information they know about other users. In contrast, an SP attempting
to reconstruct data is constrained by the modification performed locally by the
user, but has access to the internals of their own models. Assuming that data
samples undergo a modification, the knowledge about the procedure represents
an additional tool. The trade-off between the amount of distortion is the data
and the usefulness that is preserved determines the amount of protection for
both the user and the SP.

Model Inversion [27]. A ML model can undercover statistical correlations
between publicly known variables and sensitive attributes. Model inversion
allows malicious users to query the system in order to infer sensitive attributes
about a target user if they know something about the target user from another
source. For example, given a picture of the target, which is usually available
on social media, the attacker (a malicious user) requests the SP to output the
probability that the target has of developing skin cancer. At the same time,
the SP can abuse its power to sell sensitive data or the access to the model to
third-parties interested in these valuable information.

Membership Inference [10,26,73]. The attacker seeks to infer whether an individ-
ual was a member of the training set used to build the ML model. In Scenario 1,
the membership inference threat is the threat that malicious user aims to learn
whether a target user’s data was used in building SP’s model. The malicious
user queries the system and uses the received output to carry out an inferential
analysis.

3.4 Privacy Threats in the Context of Data Sharing

Now, we move to discuss the privacy threats that are related directly to data
disclosure (Fig. 3, left side). Again, these threats are related to data modifica-
tion because data modification can be use to counter them. In the context of
data set publishing, which falls under Scenario 2, a major threat is represented
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by the disclosure of sensitive information. However, data disclosure is also a
threat for the user in Scenario 1. Generally, we distinguish three major types of
disclosure [77,80]:

Identity Disclosure. Identity disclosure occurs when a malicious requester suc-
cessfully links their target with data obtained from the Data collector. The
linkage can be made using a small set of variables. If successful, the adversary
has access to sensitive attributes in the shared data. An example of identity
disclosure was the case of the Netflix Prize competition, where an anonymized
data set was released where each record was a tuple containing an anonymous
user ID, a movie, the rating given by the user to the movie and the date of
the grade [12]. Using the Internet Movie Database as the source of background
knowledge, this data set was successfully de-anonymized and Netflix records of
known users were identified [60].

Attribute Disclosure. Attribute disclosure if some key variables about the user
are already known, and a malicious requester is able to infer additional char-
acteristics (attributes) of the targets from a data set leveraging these variables.
In [77], authors used an example where every person with “race = black”, “aged
50–60”, “living in region ZIP = 1234” in the data set has the same sensitive
variable “religion = roman/catholic”. Therefore, if the adversary knows that
an individual has the characteristics “race = black”, “aged 50–60” and “ZIP =
1234”, the sensitive variable “religion” is easily inferred.

Inference Disclosure. Sensitive information disclosure occurs when an malicious
requester is able to determine characteristics of the target more accurately by
making use of the released data [77] and the process of inference. With inference
disclosure, individuals are threatened not merely due to the information in their
records, but by statistical properties of the entire database [32]. An example
would be when you are one of the two richest people in a country. The aggregated
information on a survey regarding the income of everyone in the country has
been released. You can now easily estimate the wealth of the other rich person
by using the published information.

4 Overview of Data Modification Techniques

In this section, we provide an overview of the relevant techniques relevant to the
scenarios in Sect. 2 and of use for countering the privacy threats presented in
Sect. 3. We provide a categorization in Fig. 4, which summarizes the approaches
covered throughout the section and indicates their relation to the scenarios.
Many techniques are applicable to both reference scenarios some are more closely
connected to Scenario 2, “Data set sharing”.

Techniques to pre-process data before sharing can be divided into non-
perturbative, perturbative, and synthetic data generation. Non-perturbative
techniques achieve privacy protection by applying masks or generalizing given
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Privacy-enhancing Data Modification

k-anonymity 
techniques 

Non-perturbative 
methods 

Perturbative 
methods 

Purpose-unaware Purpose-aware 

Game theoretic  
methods 

Scenario 1: User data sharing

Scenario 2: Data set sharingAdditive  
perturbation 

Synthetic data 
generation 

Generative  
methods 

Statistical Disclosure 
Control (SDC) 

Data-driven 
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Fig. 4. Taxonomy of the landscape of privacy-enhancing data modification techniques.
The boxes designating the methods are shaded to link them to our two scenarios.

attributes. Perturbative methods apply a transformation as a means to
hide/obfuscate the sensitive attributes. A further division separates perturbative
methods into techniques that apply indiscriminate noise, i.e., purpose-unaware,
and techniques that incorporate some knowledge about what the data is to be
used for, i.e., purpose-aware. Lastly, it is possible to generate synthetic data
that preserve statistical properties of the target distribution while protecting
the privacy of users whose data was in the original data set.

There are further differences related to the techniques that we present here
that depend on the kind of data that is given as input. In the rest of the chapter,
we differentiate between techniques appropriate for structured and for unstruc-
tured data. A structured data set corresponds to a set of records (rows) composed
of well-defined attributes (columns). This data typically resides in a relational
database. By contrast, an unstructured data set is not organized in a way that
directly encodes meaningful relationships between data points. Unstructured
data includes many forms of text, images, and audio. A semi-structured data
set falls between the two. It defines hierarchies/groups of samples without being
fundamentally tabular in nature, essentially adding semantic categorization on
top of an unstructured data set.

4.1 Non-perturbative Techniques

Non-perturbative techniques adjust the original data so that it is less pre-
cise, but do not otherwise change the data [21]. Traditional indistinguishability
approaches modify the data so as to prevent identification of individuals within
a data set. By generalizing or suppressing specific attributes within a data set,
we can achieve properties such as k-anonymization, t-closeness and l-diversity.

However, these approaches suffer from several shortcomings: First, they are
not always suitable for releasing large data sets since they may allow the inference
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of sensitive attributes on the basis of attributes that are publicly available [12].
Second, despite being applied to unstructured or semi-structured data – such as
face images [34] – these techniques are mostly confined to structured data set
release. Third, the privacy protection is bounded to the number of attributes
present in the data set and their uniqueness.

In the context of images and videos, a non-perturbative technique that has
been improving over the years is K-same [35,53,66]. K-same (in addition to
pixelation or blurring) aims to obfuscate some parts in the images. It protects the
privacy of individuals by de-identifying faces such that some facial appearances
remain but the face cannot be recognized [61]. The basis of privacy protection
of K-same is a non-perturbative k-anonymity algorithm proposed by Sweeney et
al. in [76].

K-Same-Net [53] and K-Same-Siamese-GAN [66] are different privacy protec-
tion amelioration of K-same against face de-identification. K-Same-Net is a com-
bination of recent generative neural networks (GNN) with k-anonymity mecha-
nisms. It generates synthetic surrogate face images by combining the character-
istics of the identities used to form the model. K-Same-Siamese-GAN combines
the power of K-same anonymity mechanism with generative adversarial network
and hyperparameter tuning. We can consider K-Same-Siamese-GAN to combine
non-perturbative methods and synthetic data generation.

4.2 Pertubative Techniques

Perturbative techniques introduce distortions into the data [21] and can be either
purpose-unaware or purpose-aware. Purpose-unaware techniques aim to modify
the data in a way that contributes to protecting privacy, while at the same
time maintaining the usefulness of the data for general purposes. Purpose-aware
techniques make use of advance knowledge of the function that the modified
data is intended to serve, and modify the data the data in a way that maintains
the usefulness of the data for that function.

Purpose-Unaware Techniques. Among traditional pertubative techniques,
data swapping and rank swapping exchange confidential attributes between dif-
ferent records [21], data shuffling shuffles the values of the confidential variables
among observations [59]. The perturbations are constrained such that the use-
fulness of the data is maintained. However, while these techniques are sufficient
for simple, structured, data sets, they are not suited to address the limitations of
large collections of unstructured data. In the following, we delve into recent work
on additive and multiplicative perturbation as purpose-unaware techniques.

In the domain of additive perturbation, differential privacy (DP) is the de-
facto standard for anonymization and attribute hiding [20]. DP, in its most basic
form [25], defines formal privacy guarantees that a set of algorithms usually
implement via noise addition. These are guarantees on the amount of sensi-
tive information leaked by publishing two ‘close’ data sets. The privacy loss is
measured by ε. DP has several advantages w.r.t. previous techniques. First, it
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makes it possible to quantify the privacy loss via ε and tune the utility-privacy
trade-off accordingly. Second, it models a worst-case adversary whose aim is to
learn a target variable of the target user. Third, because it is not property of
the data set, like k-anonymity, but rather a property of the process [20], DP
can be combined with several techniques and can be applied at different stages.
In its local configuration, for example, DP permits the local processing of data
before sharing with an untrusted party. Random noise addition, however, is a
double-edged sword. It protects against reconstruction attacks but does not offer
the possibility to balance privacy and usefulness in a satisfactory manner.

Within the ML landscape, DP can be applied at different stages of the
pipeline: beyond the protection of input and output, several techniques target
the training of a model. The goal is to train a model on sensitive data while
guaranteeing DP. Abadi et al. [3] introduced a variation on the stochastic gra-
dient descent (SGD) algorithm, commonly used to train deep neural networks.
In particular, they propose to modify the gradient computation by clipping and
adding noise. This method is also referred to as Moments Accountant since its
formal guarantees originate from privacy loss being accounted for at each step of
the training procedure. This randomization can be moved to users’ devices, as
proposed by Arachchige et al. [9]. We can achieve DP training of a deep learning
model without trusting a central node, i.e., no sensitive data leave the device.

A second form of noise addition is based on random projections, i.e., mul-
tiplicative perturbation. Multi-dimensional projections can be used on struc-
tured input to preserve the distance between the samples in a lower-dimensional
space [6]. This technique makes it possible to run analytics as well as train a
regression or classification model on the modified data. Differently from DP-like
techniques, projections are prone to reconstruction attacks and sensitive leak-
age. Recently, Jiang et al. [42] proposed a method to apply individual Gaussian
random projections locally that also protect against common attacks. In con-
trast to previous techniques, they harness the capabilities of deep learning to
learn complex patterns and find a projection that better suits semi-structured
or unstructured data.

Purpose-Aware Techniques. Next we turn to discuss perturbative techniques
that protect data, while maintaining usefulness for a particular function. This
function (i.e., “purpose”) is known before data modification is applied, and the
process used to modify the data is specifically designed so that the modified data
can still fulfill this function.

We start with an example that is well suited to illustrate the basic principle of
purpose-aware techniques. The example is drawn from the area of recommender
systems and is a close fit with Scenario 2 “Data set sharing”. In this example,
a company (acting as a Data collector) shares data with an external researcher
(acting as a Requester), who is carrying out recommender system research (the
Task). In this case, the data consists of a so-called user-item matrix in which
each row corresponds to a user and contains information on the interactions
that the user has had with a set of items, corresponding to the columns. Slokom
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Fig. 5. The split between feature extraction and training in a user data sharing sce-
nario [65]. The feature extractor can be trained with the utility of the classifier, i.e.,
purpose-aware, or being decoupled from the classifier, i.e., purpose-unaware, depending
on the task at hand.

et al. [74] introduced a data masking approach called Shuffling Non-Nearest-
Neighbors (Shuffle-NNN) that modifies the data so that it no longer contains
precise information about which user has interacted with which item. At the
same time, Shuffle-NNN aims to maintain the usefulness of the data for the pur-
pose of training and testing recommender systems, which is necessary to carry
out research. Shuffle-NNN generates a masked data set by changing a large por-
tion of values of the preferences in a user’s profile. Shuffle-NNN can be considered
a Data-driven method used to create purpose-aware data modification, because
it uses patterns in the data in order to decide which changes to make. Specifi-
cally, Shuffle-NNN aims to preserve item-item similarity information, based on
the assumption that this information is the most important pattern that needs
to be present in the data in order to train and test a recommender system algo-
rithm and move forward recommender system research. Shuffle-NNN applies a
data shuffling technique hides (i.e., changes) preferences of users for individ-
ual items. Shuffle-NNN occurs in two steps: neighborhood selection and value
swapping. Neighborhood selection determines the neighborhoods of every item
based on the K-nearest neighbor algorithm and then joins these neighborhoods
in order to find a set of critical items. All items not in this set are considered
“non-nearest neighbors” and are shuffled. The protection level is judged by the
number of ratings that were hid.

Other purpose-aware approaches differ from this basic example along a
number of different dimensions. First, they can modify feature representations
extracted from the data, rather than the original data itself. Second, they can
use machine learning to determine how to modify the data and/or how to pre-
serve patterns in the data needed to maintain usefulness. Third, they can seek
to provide privacy guarantees, whereby it is important to keep in mind that
whether or not a guarantee holds depends on the threat model. We will now go
on to cover series of more sophisticated purpose-aware techniques that exhibit
these various dimensions.
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Among approaches that use machine learning, techniques based on multi-
objective optimization are important. Here, we discuss two examples of work
that has investigated the possibility to perform data-driven data modification
at the edge. Liu et al. [49] combine deep networks and noise to obtain the best
trade-off between privacy and utility. They find a candidate subset of features for
noise addition by harnessing a deep auto-encoder: an architecture comprising a
compressing part (i.e., the encoder) and a reconstructing part (i.e., the decoder).
On top of it, DP-noise is added to obtain measurable privacy guarantees.

Osia et al. [65] propose a hybrid framework in which a feature extractor
is trained by a provider with privacy guarantees and shared with the user (cf.
Fig. 5). The user can then derive a private representation that is shared with
the provider, hence moving the privacy-preserving modification to the edge. The
extracted features, or private vector, is designed to only contain relevant informa-
tion for the primary learning task, thus adaptable on the learning task and the
given privacy objective. The framework [65] makes use of a fine-tuning strategy.
A cloud provider fine-tunes a pre-trained model with two objectives: the primary
classification loss function and a contrastive loss. While the first term accounts
for the utility of the process, the second one is directly applied to an intermediate
layer, such that two samples with the same label end up being close in the feature
space and two samples with different labels are separated as much as possible.
After training, the classification block is discarded and the feature extractor is
shared with the users. In this specific case, data are not shared by the user to
perform training, rather for carrying out inference on a trained model.

Also among approaches using machine learning, an increasing among of work
makes use of generative adversarial networks [33] (GANs). A GAN models a
minmax game between a generator G and a discriminator D: while G is being
trained to approximate a target data distribution, D tries to distinguish between
a real sample and a generated one. Because a GAN realizes a minmax game, we
refer to GAN-based data modification approaches as “Game theoretic methods”.
Normally, G and D are implemented using two deep neural networks that are
trained adversarially. The output is a generator that (1) provides realistic data
samples and (2) is able to deceive the discriminator. Adversarial learning over-
comes the difficulty of modelling an underlying distribution. For this reason, it
can be particularly useful when we cannot formally define our privacy objective,
because it provides a data-driven way to characterize the private and the target
variable distributions.

An ambitious line of work has considered the possibility of bridging the
gap between generative networks, adversarial learning, and privacy guarantees.
Huang et al. first proposed GAP [38]: a framework to achieve an optimal privacy
mechanism inspired by GANs. Here, the generator becomes a privatizer that
protects against attribute leakage, and the discriminator becomes the adversary
competing with the latter by trying to infer the protected attribute. The learn-
ing strategy is defined as a constrained minmax optimization process that infers
the distribution from the data set. This greatly improves the practicality of the
approach compared to information-theoretic strategies based on Mutual Infor-
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mation (MI) – a measure of the dependence between two random variables –
that is often deemed as an intractable problem.

The seminal work on GAN-based methods had been adapted to different
domains in recent years. Different data distributions and different requirements
on the private attributes that must be protected require different approaches,
both from an architectural and an optimization perspective. Biometric data rep-
resent a tough challenge. Applications using biometric data require that the
modified data is useful for a specify purpose, e.g., identifying a user. At the
same time, sensitive attributes must be protected. The challenge arises because
cues of identity and cues related to sensitive attributes are tightly tangled in the
data. The information that must be maintained in the data, and the information
that must be protected differs from use-case to use case, but the challenge arising
from entanglement remains.

In the area of biometric data, some work has tackled the data anonymization
problem [30,40,47,51,58,67] and other focused more on the selective compres-
sion of data to retain pre-determined attributes [16,31,56,63]. However, tech-
niques working in image domain present substantial differences w.r.t. techniques
applied to motion data from inertial sensors. Ren at al. [67] introduce a model
trained with an adversarial regularizer and an action recognition network. This
data-driven strategy aims at finding the right perturbation that preserves action
recognition performance in videos. Li et al. [47] take a different approach by
using a conditional generative networks (CGANs). The face is first identified
and blurred. A CGAN then generates a new face image by fixing key features
– such as the head pose. A similar approach based on GANs and swapping is
presented in [40] where the head pose and the background are the only preserved
attributes. Beyond identity obfuscation (or anonymization), Chhabra et al. [16]
tackle the soft biometric privacy problem. Their proposed algorithm searches for
a sub-optimal perturbation that preserves one attributes but hides multiple sen-
sitive attributes. Similarly, PrivacyNet [57] uses a GAN-like training procedure
to achieve controllable privacy w.r.t. several sensitive attributes – such as gen-
der and age. In the context of motion sensor data, a few approaches have been
proposed that tackle the anonymization of the input trace [51] or the selective
hiding of private attributes [31].

Another application domain is online image sharing. Here, the goal is to
maintain the usefulness of the images from the point of view of people looking
at the images. Images should retain their quality after data modification. At
the same time, modified images should offer privacy protection. Oh et al. [62]
investigate person recognition, and propose a framework formulated as a game
between a social media user and a recognizer. The user attempts to perturbs the
image to protect the identity of the person it depicts and the recognizer attempts
to break the protection using a countermeasure. Larson et al., [45] formulate
a benchmarking task to encourage work on techniques that protect sensitive
information in images going beyond faces in people, starting with protecting
sensitive scene information in images. Whereas in [62], the assumption is made
that the adversarial techniques will preserve the quality of the images, in [45],



Machine Learning Meets Data Modification 147

preserving image usefulness for sharing is specified explicitly as a goal of the
data modification.

Zhao et al. [85] is an example of an approach that maintains quality and
can be used to protect against unwanted inference of a classifier. Alternation
between enlarging perturbations informed by the classification loss and mini-
mizing perturbations informed by perceptual color distance is shown to result
in efficient and effective adversarial examples. Shan et al. [71] propose Fawkes,
which applies a cloak to images to protect users against unwanted face recog-
nition. Fawkes attempts to move the latent representation of a user towards a
second user. More work is needed on broadening the threat model under which
such approaches offer protection, especially to include countermeasures deployed
by the attacker. More information on adversarial examples can be found in [87].

Our main emphasis is on techniques that enhance privacy by striving to limit
the information that can be derived from modified data. For completeness we
mention another goal, namely, protecting data from being used in an unwanted
fashion. Huang et al. [39] proposed a method for making user data unusable for
training machine learning models. Whereas standard strategies seek to maxi-
mize error inducing noise, [39] pursues the strategy of finding small noise that
minimizes the model’s error via a min-min optimization process.

4.3 Synthetic Data Generation

Synthetic data preserves specific statistical properties or relationships between
attributes in the original space, without exposing users. Synthetic data genera-
tion methods work by first constructing a model of the target data distribution
and then generating synthetic surrogates. In this section, we discuss synthetic
data generation going from statistical disclosure control [21,79] to deep learn-
ing [4,81,83].

Synthetic data is first proposed for the Statistical Disclosure Control (SDC),
or inference control methods. SDC seeks to protect the users’ data from being
disclosed/linked to a specific user [22,41]. The main purpose of SDC is to release
protected data to minimize disclosure risk, i.e., the risk that a malicious user
uses data to determine sensitive variables of a victim user. To retain data utility,
the statistical analysis on protected data and original data must yield similar
results [41]. Synthetic data generation is one of the methods which can be used
for SDC. Several approaches have been proposed in the literature for gener-
ating synthetic data for SDC, such as data distortion by probability distribu-
tion [48], synthetic data by multiple imputation [68] and synthetic data by Latin
Hypercube Sampling [18]. Recent techniques for generating synthetic data fall
into three basic categories [22,24]: fully synthetic, partially synthetic and hybrid
techniques.

Fully synthetic data sets keep the original data private since they are obtained
as a replacement set created entirely anew. [22]. We note the disclosure risk for
fully synthetic data sets is low, as all values are synthetic. Differently, partially
synthetic data sets contain a mix of original and synthetic values [22]. Techniques
to achieve partial synthesis replace only observed values for variables that bear
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a high risk of disclosure (i.e., key variables) [23]. The disclosure risk for par-
tially synthetic data sets is higher than for fully synthetic data sets, since some
true values remain in the data set. The disclosure risk significantly increases if
the adversary knows which records are present in the data. However, partially
synthetic data sets typically have a higher data utility compared to the fully
synthetic data sets. Third, hybrid masking techniques generate masked data as
a combination of original and synthetic data sets [18]. The value in the original
data set is linearly matched with the value in the synthetic data set and are then
added together or multiplied to create the published value [84]. This combination
allows for better control over individual characteristics [18].

The difference between partially synthetic data sets and hybrid masking is
the following: with partially synthetic data sets, an individual variable is either
replaced by a synthetic record or the record is kept original, while in hybrid
masking the values in each record are added or multiplied with the corresponding
value in the synthetic data set.

The domain of synthetic data generation has been evolving over the years. A
more recent line of research focuses on deep learning-based synthetic data gener-
ation. The generated data retains the same statistical properties as the original
data while being private for the users. In [4], Abay et al. propose a generative
deep learning technique that produces synthetic data from an original data while
preserving the utility. An auto-encoder is used to partition the original data into
groups. For each group, they build a private generative auto-encoder called DP-
SYN. The auto-encoder first learns the latent representation for each group, and
then uses the expectation maximization algorithm to simulate them. In [46], a
variational auto-encoder (VAE) is used as a generative model. The first step is to
feed the encoder with the original data and the model outputs a reconstructed
data. The second step is to feed the decoder with Gaussian random data. Then,
it generates new data from the Gaussian distribution. They showed that VAE
succeeds to generate an artificial data that closely mimics the original data while
maintaining good accuracy. In addition to auto-encoders and variational auto-
encoders, generative adversarial network [33] (GAN) has been widely used for
generating synthetic data [5,17,50,81,83]. As discussed above, GANs are com-
posed of two networks: a generator and a discriminator. The generator attempts
to produce a realistic looking data based on the learned data distribution and
the discriminator seeks to differentiate between the real data from the original
data and the synthetic data from the generator. Bindschaedler et al. [13] pro-
pose a new approach for releasing privacy preserving synthetic through plausible
deniability data while maintaining statistical properties of the data. It is based
on the fact that there are at least k (k > 0) input records that could have gener-
ated the observed output with similar probability. Plausible deniability has two
main steps [13]: First, the generative step consists of constructing a utility pre-
serving data model. Second, the privacy test step aims to protect the privacy of
users whose data records are in the input data set. It ensures that every released
output can be plausibly deniable.
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5 Summary and Future Directions

In this chapter, we have provided an overview of data modification for privacy
enhancement based on two main scenarios: user data sharing (Sect. 2.1) and data
set sharing (Sect. 2.2). We discussed the related threat models, which describe
risks and sources of privacy leakages. We then provided an overview of different
approaches for privacy-enhancing data modification (Sect. 4). In the following,
we point out important discussions and sketch directions for future work.

5.1 New Types of Data

Data are at the center of research on approaches to privacy enhancement. While
structured data lend themselves to the use of traditional techniques based on k-
anonymity or DP, semi-structured and unstructured data need a different set of
approaches. Moving to new types of data requires careful attention to both the
potential and the challenges that are related to the use of machine learning for
data modification. Specifically, approaches that extract privacy representations
are promising (cf. Sect. 4), but present a future challenge since machine learning
research does not study feature extraction to the same depth across different
types of data. Extracting features using a neural network is common for face
images. However, for sensor data for activity recognition or fingerprint authenti-
cation it is generally necessary to rely on manual feature engineering for feature
extraction [69]. In some contexts, static features provide a level of interpretabil-
ity that is currently lacking when using dynamic features. This is important
when outsourcing the feature extraction process (Fig. 5), since dynamic fea-
tures can introduce a new attack surface. For example, it is non-trivial to define
the relationship between 128 features extracted from a deep learning model for
face recognition as it is to exactly define 64 statistical attributes derived from
a motion trace. As a consequence, hand-crafted feature engineering aid the san-
itation of data – by imposing constraints on the validity of the features – and
can leverage human intelligence in a human-in-the-loop learning process [37].
Nonetheless, deep learning has been demonstrated to be a great ally in solving
problems in which traditional ML falls short due to unstructured and compli-
cated data [55], and model explanations can provide an adversary with additional
information that hinder the privacy-preserving mechanisms [72].

5.2 Privacy and Fairness

Harmful social bias in machine learning can originate from data sets, algorithms,
and processes. Recently, increasing amounts of research have been devoted to
the analyses of discrimination and the embedding of fairness into the automatic
decision making process [54]. In many cases, the attributes that are deemed
sensitive for the user are the ones which drive the unwanted discrimination.
Suppressing them, however, is not enough to obtain a fair representation. As with
sensitive attribute disclosure, the correlation among variables retains the source
of bias within our target data distribution, even after attribute suppression.
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There is a substantial overlap between work investigating algorithmic fair-
ness and private data modification. Beyond the overlap of sensitive attributes,
techniques are applied at similar steps of the pipeline: prior to feeding the algo-
rithm (pre-processing) [14,43], during processing [14] and post-processing [54].
Often, the obfuscation targets the membership in a protected group while pre-
serving the utility, which can be modelled as the minmax optimization process
seen with purpose-aware data modification. Recent efforts towards the realiza-
tion of a framework for controllable and measurable fairness include open source
libraries that implement the proposed techniques [11].

5.3 Interdisciplinarity

Currently, the domain of privacy-preserving techniques is fragmented across dif-
ferent research communities. Machine learning researchers might approach the
problem from a learning perspective, focusing on the model and its optimization.
By contrast, the privacy community relies on well-established formal definitions
and thoroughly studied solutions. Privacy is a broad field encompassing objec-
tive metrics and legal requirements that are often either detached or incompati-
ble [82]. This separation widens further if we consider that the formal techniques
are applied in a multitude of systems and that specific domains, e.g., image clas-
sification vs. recommender systems, require domain-targeted solutions.

In order to advance research on data modification for privacy enhancement,
it is important to bring different disciplines together. Examples of successful
collaboration in related areas includes bridging the gap between science and
society [64], ethics and big data [29,36], privacy and data quality [1,75]. Here we
mention two reasons why we find interdiscplinary approaches to be particularly
important. First, machine learning technology is developing rapidly. As a result,
the ways in which machine learning meets data modification are constantly
changing. Machine learning experts and privacy experts must work together
to identify how data modification can address new threats of machine learning
and also how machine learning can enable new methods for data modification.
Second, data modification is often well-suited for general privacy enhancement,
but not for well-defined guarantees of privacy protection in real-world use sce-
narios. Tackling this challenge will require development of threat models that
help to define where data modification could be most helpful, and how it could
be combined with other approaches. A benefit of data modification is that it can
be used in a decentralized way, in other words, applied at the edge, i.e., on a
user’s personal device before the user shares the data. Such scenarios must also
be incorporated into threat models. Research dedicated to developing the threat
models must involve experts in machine learning, distributed systems, human
factors, privacy, and the law.
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