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A B S T R A C T   

Regional risk analysis and management of maritime accidents is one of the fundamental tasks for maritime safety 
management. With the heavy and complicated maritime traffic in the ports and waterways, accidents, especially 
ship collision accidents, have been continuously posing threats to the maritime transportation system. To achieve 
effective and prompt identification of collision risk and to facilitate the stakeholders such as Maritime Safety 
Administration, this paper proposes an integrated approach for regional collision risk analysis and maritime 
safety management in busy ports and waterways. Firstly, regional gridding is used to link accident data and 
traffic data based on geographical location; Secondly, the risk model based on accident data is established. The 
reliability of the accident risk model is verified by data feature analysis. Finally, non-accident critical events are 
mined from historical accident data and traffic data as surrogate indicators of collision accidents. A regional real- 
time risk model is developed for integrating the accident risk model and non-accident critical events risk model 
by using random forest. A case study in Shenzhen port indicates that the proposed collision risk model can 
identify high-risk areas and facilitates maritime safety management to improve the safety level of vessel traffic in 
these areas. In this paper, the regional grid is used to overcome the shortcomings of different scales between data, 
and a real-time risk model is established by combining accidents and traffic. The 15-year maritime collision 
accidents are used for collision risk modeling, which improves the performance of the model.   

1. Introduction 

Marine transportation has been an ideal way to transport large 
amounts of cargo across the world for thousands of years. In recent 
decades, the maritime transportation system has been continuously 
contributing to world trade and the development of the global economy. 
With the expansion of shipping, the hub ports and waterways have 
witnessed tremendous growth in ship visits, and have been getting 
busier and busier. However, with the growth of vessel traffic, the risk of 
collision will rising(Mou et al., 2010). Collision accidents will cause 
severe consequence to human and economic loss, and environmental 
(Chen et al., 2019a; Li et al., 2019a; Yu et al., 2021). 

Maritime risk is an important factor in port and ship safety man-
agement. For this reason, considerable efforts have been devoted to 
developing risk models for navigation safety and maritime safety man-
agement (Goerlandt and Montewka, 2015). reviewed the risks in the 
maritime transportation system, and the definitions of risks are various. 

Maritime risk can be divided into macro risk and micro risk from 
different applicable objects. For a single ship, micro risk can provide 
support for ship collision avoidance decision-making. However, for 
maritime safety-related stakeholders such as Maritime Safety Adminis-
trations, macro risk can provide a basis for risk-based management and 
policy-making (Mou et al., 2010). 

There are many methods of maritime accident risk modeling, and the 
collision risk analysis between ships is an important aspect of maritime 
safety analysis. In maritime collision risk research, the most commonly 
used is to use the collision accident data to analyze the possibility of 
collision accidents and the possible consequences of collision accidents 
to evaluate the ship collision risk in the sea area (Montewka et al., 2012). 
With the popularization and application of the ship automatic identifi-
cation system (AIS), ship traffic flow data are used to analyze collision 
risk (Qu et al., 2011; Zhang et al., 2017). 

However, the current risk models have some limitations. For 
example, the risk model based on accident data is highly dependent on 

* Corresponding author. School of Navigation, Wuhan University of Technology, Wuhan, China. 
E-mail address: chenpf@whut.edu.cn (P. Chen).  

Contents lists available at ScienceDirect 

Ocean and Coastal Management 

journal homepage: www.elsevier.com/locate/ocecoaman 

https://doi.org/10.1016/j.ocecoaman.2022.106471 
Received 26 September 2022; Received in revised form 28 November 2022; Accepted 23 December 2022   

mailto:chenpf@whut.edu.cn
www.sciencedirect.com/science/journal/09645691
https://www.elsevier.com/locate/ocecoaman
https://doi.org/10.1016/j.ocecoaman.2022.106471
https://doi.org/10.1016/j.ocecoaman.2022.106471
https://doi.org/10.1016/j.ocecoaman.2022.106471
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocecoaman.2022.106471&domain=pdf


Ocean and Coastal Management 234 (2023) 106471

2

accident data, and its modeling accuracy is greatly affected by data 
quality. The reliability and validity of risk models obtained by different 
methods are different (Goerlandt and Kujala, 2014). For this reason, 
how to establish an objective and reliable real-time risk model for 
identifying high-risk waters is the main problem to be solved in this 
article. To this end, this paper proposes a new collision risk modeling 
method that combines historical accidents with AIS data. This paper 
extracts a multi-factor nonparametric model from historical data. 
Real-time environmental data and AIS data are used as risk model inputs 
to predict the real-time risk of water areas. This is a macro and real-time 
risk model, which can identify high-risk waters and provide risk control 
and decision support for port safety management. 

Out of this objective, the contributions of this work are as follows: 1) 
The concept of the geographical grid is introduced to associate traffic 
and collision accident data by geographical location, which overcomes 
the disadvantage of different scales between data; 2) Based on historical 
accident and AIS data, a multi-factor nonlinear nonparametric real-time 
risk model is established; 3) The ship encounter that has potential for the 
accident is identified and drawn into risk modeling to integrate the 
microscopic perspective of risk modeling into the model; 4) 15 years of 
maritime collision accidents are used in collision risk modeling to 
improve the performance of the model with long term observation. 

The contents of the paper are arranged as follows: Section 2 illus-
trates a brief review on state-of-art of methods for collision risk; Section 
3 illustrates the general methodology, followed by the design of the risk 
assessment model in Section 4; Based on the historical accident data and 
AIS data in the Shenzhen area, a risk model is established; real-time 
environment and AIS data are used for risk assessment of Shenzhen 
port as a case study in Section 5. A critical analysis of the proposed 
model and its application in the field of maritime safety management are 
presented in Section 6. Section 7 concludes the paper. 

2. Literature review 

Various research on maritime accident risk assessment has been 
conducted so far to reduce or control risk. The review research related to 
maritime risk summarizes the existing research from different perspec-
tives such as risk definition and modeling methods (Chen et al., 2019a; 
Goerlandt and Montewka, 2015; Kulkarni et al., 2020; Li et al., 2012; 
Lim et al., 2018). According to the different data of risk assessment, the 
current maritime risk assessment methods can be divided into two cat-
egories: One is the risk analysis model focusing on maritime accidents; 
the other is the risk analysis model based on non-accident critical events 
(Du et al., 2020) as surrogate indicators of collision accidents. 

The first kind of risk modeling method mainly relies on historical 
maritime accident data. Based on the accident data, the probability and 
density of the accident can be analyzed, and the factors affecting the 
accident can also be mined. There are various forms of risk based on 
accident data, such as the annual accident probability (Jin et al., 2002); 
relative accident frequency (Bye and Almklov, 2019); the combination 
of probability accident and consequence (Wu et al., 2019); density of 
accidents (Zhang et al., 2021) and so on. The number of accidents can be 
used as an indicator of risk model verification (Rawson and Brito, 2021). 
Accident statistics analysis is one of the most traditional and common 
methods (Kujala et al., 2009; Kum and Sahin, 2015; Rezaee et al., 2016). 
The regression model has also received a lot of attention in risk 
modeling. By analyzing the factors that may affect the occurrence of 
accidents, negative binomial regression (Yip, 2008) and logistic 
regression (Bye and Aalberg, 2018; Rezaee et al., 2016) models are used 
for risk modeling (Kum and Sahin, 2015). introduced Fuzzy Fault Tree 
Analysis (FFTA) to clarify the causes and prevent future incidents from 
happening. Besides (Köse et al., 1998), and (Uğurlu et al., 2013) also 
used the fault tree analysis method for risk analysis. Bayesian is an 
important tool for accident risk modeling (Hänninen and Kujala, 2012; 
Liu et al., 2021). The risk model based on the accident has been widely 
studied, which has been accepted by most researchers. The accident data 

itself contains rich information, so it can review the risk distribution of 
the water area in the past period of time. Therefore, the risk modeling 
based on accident data can accurately express history risk and is easy to 
be verified. In addition, the accident data contains rich information, 
which can identify the factors affecting the accident. However, solely 
relying on accident analysis for maritime risk modeling has the 
following problems: (1) Although there are many accident data in the 
world when focusing on a certain water area, the accident data is 
limited, and the risk model cannot truly reflect the regional risk level. 
(2) Currently, the collection and process of historical accident data are 
conducted manually, which leads to the inconsistency of data standards 
and the omission of key information; (3) The factors leading to the ac-
cident are highly coupled and nonlinear, it is difficult to use these factors 
from the accident to regress the risk. 

To alleviate some of the limitations of the risk analysis method based 
on accident data, the second kind of non-accident critical events risk 
modeling method has attracted more and more researchers’ interest (Du 
et al., 2020). Many non-accident critical events-related terminologies 
and the corresponding methods have been proposed to analyze maritime 
traffic risk (Lei, 2019; Zhang et al., 2015). Among the literature, one can 
find that non-accident critical events are often related but not limited to 
traffic conflict (Debnath, 2009; Lei, 2019), near-miss (Szłapczyński and 
Niksa-Rynkiewicz, 2018), near-collision (Watawana and Caldera, 2018; 
Zhang et al., 2015), collision candidate (Chen et al., 2018, 2019a, 
2019b) and critical encounter (Hassel et al., 2019). These key events can 
indicate the potential for collision. There are many methods to detect 
non-accident critical events. The ship domain concept is adopted to 
detect the events (Chen et al., 2018, 2019a; Li et al., 2019b; Wu et al., 
2016). The ship domain is the area around the ship that avoids the 
entrance of other obstacles for navigational safety (Li et al., 2021). When 
the ship domain is violated or will be violated by other ships within a 
certain time, a potential collision risk occurs (Kim and Jeong, 2016; 
Weng et al., 2012; Weng and Xue, 2015). Another method is to use the 
Closest Point of Approach (CPA) method to determine the conflict 
(Debnath and Chin, 2015). The collision risk is existing if the Distance at 
the Closest Point of Approach (DCPA) is less than the safe distance and 
Time to the Closest Point of Approach (TCPA) is positive, and vice versa. 
In addition, similar to the CPA method, the risk is determined by 
comparing with the set threshold, such as the relative distance between 
two ships and the time of the collision (Lei, 2019). When the relative 
distance is less than the threshold, the time of collision is positive, and it 
is also considered that there is a conflict (Li et al., 2019b). used a new 
distance definition as the risk judgment index, which combines factors 
such as length overall, distance, movement trend, and crossing angle 
(Gan et al., 2022). constructed a navigation risk model from four as-
pects: human, ship, environment, and management. When the relative 
distance is less than the threshold, there is a risk. Furthermore, the ve-
locity obstacle (VO) method is a popular risk detection method. VO is 
the conflicting velocity leading to the collision. If the own ship’s speed 
falls into this VO set, the collision risk occurs (Chen et al., 2018; Du 
et al., 2019). Differently (Zhang and Meng, 2019), proposed a proba-
bilistic ship domain to evaluate the risk of collision. The development of 
these models actually benefits from the application of big AIS data in 
maritime safety. These methods alleviate the shortcomings of poor 
quantity and quality of accident data. However, whether the process 
from non-accident critical events to risk transformation is reasonable? It 
is difficult to verify the risk model based on non-accident critical events 
(Du et al., 2020). 

To sum up, the reliability and validity of risk models obtained by 
different methods are different (Goerlandt and Kujala, 2014). To build a 
real-time and reliable risk model, this paper proposes a new risk model, 
which combines the above two methods, to make up for these limita-
tions such as lack of verification, subjectivity, and unreliable. To build a 
real-time collision risk model, one key issue should be addressed: 

How to link collision accidents with traffic to better identify and 
predict the collision risk in the interested areas? 

M. Li et al.                                                                                                                                                                                                                                       
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Therefore, this paper proposes a real-time collision risk modeling 
method based on accident and non-accident critical events. This paper 
uses the historical data as the model input of random forest to train the 
real-time risk model and then uses the real-time data as the risk model 
input to evaluate the real-time risk of the whole water area. The specific 
steps of the model establishment are as follows: Firstly, traffic and 
collision accident data are matched by geographical location through 
gridding water area; Secondly, the risk model based on accident data 
needs to be established, respectively. The reliability of the accident risk 
model is verified by data feature analysis. Finally, the risk model based 
on non-accident critical events is established, and two models are linked 
by the same historical traffic and accident data through the random 
forest method, and a new calibration risk model is trained. 

3. Methodology 

Analyzing the collision risk from a macro perspective can help the 
Maritime Safety Administration (MSA) to understand the current level of 
maritime traffic risk from a management perspective and facilitate them 
to adopt effective maritime safety supervision methods (Chen et al., 
2019a; Mou et al., 2019). Therefore, this paper aims to establish a risk 
model using historical accident data and traffic data, which provides an 
integrated risk analysis tool for the MSA and stakeholders of maritime 

safety. The risk model takes the real-time external environment infor-
mation and traffic information as the model input, and the real-time risk 
value is calculated. The technical framework of this research is shown in 
Fig. 1, which is divided into three parts. 

The first part is the basic data preparation and analysis, which is the 
blue part of the figure. This part is regional gridding. The grid can be 
used as a bridge between collision accidents and traffic data. The pur-
pose of regional gridding is to effectively associate collision accident 
data with traffic data through the geographical location. The research 
area is divided into a rectangular grid based on the document of the 
ministry of transport (China, 2015a). In the meantime, the design of the 
grid can be based on the regional regulations for management. 

The second part is the establishment of the collision risk model based 
on accidents, which is the green part in the figure. This part contains two 
important elements for the research: one is collision risk modeling, and 
the other is data feature analysis. The first is to establish an accident- 
based risk model for the collision risk assessment of each grid. The 
establishment of an accident-based risk model requires the conse-
quences and collision probability of the collision accident. The conse-
quence calculation model refers to the author’s previous research and 
uses the concept of accident hazardous degree (Li et al., 2019a). The set 
pair analysis method (Li et al., 2019a) was applied to map the conse-
quence of each accident into a determined value, defined as the 

Fig. 1. Framework of the research.  
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hazardous degree of an accident viewed from the aspects of hull loss, 
fatalities, and direct economic losses. The collision probability is the 
ratio of the frequency of collision accidents to the traffic volume. The 
second is kernel density analysis through ArcGIS software, which is to 
provide a basis for the establishment and verification of the risk model. 
Through kernel density analysis of accidents and traffic, we can find out 
the areas where accidents occur frequently and traffic flow is dense. The 
reliability of the model is verified by comparing the high accident 
incidence areas, traffic-intensive areas, and high-risk areas calculated by 
the collision risk model based on accidents. 

The third part is the establishment of the real-time collision risk 
model, which is the orange part in the figure. Firstly, we need to identify 
and extract the critical factors related to the collision risk from the data. 
Combined with the research (Li et al., 2019a) and expert experience, six 
factors are selected from the traffic and collision accidents data. In 
addition to the collision candidate set, the other factors of each grid can 
be obtained by statistical methods. The collision candidate set factors 
can be calculated by Non-linear Velocity Obstacle (NLVO) method 
(Chen et al., 2018). Secondly, the same historical accident and traffic are 
used in those two risk models, then the two models are linked by the 
random forest algorithm, and the accident-based risk model is used to 
calibrate the risk model based on non-accident critical events. Finally, 
the real-time collision risk model is obtained by training the random 
forest algorithm. 

4. Risk modeling 

4.1. Regional gridding 

Grid management has a wide range of applications in various fields 
(Zheng et al., 2005). The purpose of gridding in maritime safety man-
agement is to divide the research area into geographical grids, which is 
efficient for MSA to manage regional safety. Besides, it also enables 
collision data and traffic data to be linked by geographical location. The 
size and shape of the grid is the key to gridding. In order to make the 
results of risk assessment can be directly applied to maritime grid 
management. The grid division standard in this research refers to the 
documents of the Ministry of transport (China, 2015a). The water area is 
divided into small squares, each of which takes 1 min in longitude and 
latitude as the length. To facilitate the fast location and search of the 
grid, this paper will adopt the encoding rules in Table 1 to code the grid. 
The grid number consists of a letter and four-digit numbers. The letter 
numbers of the grid are A, B, and C, which represent the global grid, 
local grid, and unit grid, respectively. The grid digit number refers to the 
longitude and latitude in the lower-left corner of the grid, with the 
latitude number in the front and the longitude number in the back. 
Longitude and latitude consist of degrees and minutes. The four-digit 
numbers of the global grid are composed of the tens and ones of de-
grees in the position coordinates of the lower-left corner. The four-digit 
numbers of the local grid are composed of units digit of degrees and tens 
digit of minutes in the position coordinates of the lower-left corner. The 
four-digit numbers of the unit grid are composed of tens and ones in the 
position coordinates of the lower-left corner. The unit grid is the smallest 
grid, and the local grid is composed of 100 unit grids. The global grid 
consists of 3600 unit grids. 

4.2. Risk assessment model based on accident 

4.2.1. Risk modeling based on accident 
Risk takes on many forms but is broadly accepted as the likelihood of 

danger (loss) together with an indication of how serious that danger 
(loss) could be (Aven, 2012; Goerlandt and Montewka, 2015; Li et al., 
2021). Different definitions of risk make the scope of risk application 
different. In this paper, the risk is the combined value of collision acci-
dent probability and collision accident consequence, and its formula is 
shown in Eq. (1). 

rj
acc =

∑n

i
Pi×Cij (1)  

where: rj
acc represents the risk value based on collision accident in 

thej − th grid; Pi represents the collision probability of ith year; Cij rep-
resents the consequences of the collision accident in year i − th in 
thej − th grid. 

The probability of ship collision is calculated as follows: 

Pi =
Ni

acc

Ni
traff

(2)  

where: Ni
acc represents the number of collision accidents in year ith; Ni

traff 

represents the vessel traffic volume of i − th year. 
As for the accident consequence model, there are various forms of 

accident consequences, such as the losses caused by accidents, the 
number of accidents, and so on. The loss caused by each accident is 
different. Only depending on the number of accidents to express the 
consequences of accidents may not be a good way to quantify the con-
sequences of accidents. Therefore, the accident hazard degree based on 
the set pair analysis method is introduced to express the accident 
consequence in this paper. The accident hazard degree model is a 
composite severity rating system to include fatalities, injuries, property 
damages, hull loss, and time loss to evaluate the overall impact of an 
accident, which can better represent the consequences of the accident. 
Because the dimensions of each indicator are different, each indicator 
will be converted into the same type of data according to Table 3. Ac-
cording to the criteria for the classification of accidents (China, 2015b), 
10 serious injuries are normally equal to 3 deaths. In this context, a case 
of severe injury is converted to 0.3 deaths, thus the indicator of fatality 
in Table 3 is not an integer (Li et al., 2019a). The purpose of conversion 
is to convert all casualty accidents to a comparable and measurable 
value. Therefore, the fatality here is not the death toll caused by the 
actual accident. 

After data conversion, the accident consequence can be estimated 
following the equations as follows (Li et al., 2019a). 

Cij =
∑n

k

(
whlhkrhk +wf lfkrfk +wdldkrdk

)
(3)  

where: l = {lhk, lfk, ldk} is each evaluation indicator grade of the k − th 
accident in i − th year in the j − th grid; 

w = {wh,wf ,wd} is the weight of the evaluation indicator; 
r = {rhk, rfk, rdk} is the degree of contact corresponding to level l and 
can be expressed as 

rk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

1 −
pk − La

Lb − La

1

, pi ≤ La
,La ≤ pi ≤ Lb
, pi ≥ Lb

(4)  

where. 

Table 1 
Encoding rule.  

Grid type code Rule 

Global 
grid 

A code + The tens and units digit of the degrees in the latitude 
and longitude coordinates of the lower-left corner of the grid 

Local grid B code + The ones of the degree and the tens of the minutes in the 
latitude and longitude coordinates of the lower-left corner of 
the grid 

Unit grid C code + The tens and ones of the minutes in the latitude and 
longitude coordinates of the lower-left corner of the grid  
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pi = {phk, pfk, pdk} is the value of each evaluation indicators grade of 
the k − th accident; 
La and Lb are the standard values of evaluating indicator pi at a and b 
levels. 

To discriminate between the importance of the indicators, the ex-
pert’s opinions are adopted. The weight of each indicator can be ob-
tained as: w = [hull loss, fatality, direct economic losses] = [wh,wf ,wd] =

[0.25, 0.41, 0.34]. 

4.2.2. Feature analysis for accident-based risk model validation 
Feature analysis refers to analyzing the characteristics of collision 

accidents and vessel traffic data in the time and space domain. In this 
paper, spatial autocorrelation analysis and Kernel Density analysis are 
mainly used. Spatial autocorrelation analysis can determine whether 
there is a spatial similarity between collision accidents. Kernel density 
analysis can be used to determine the hot spots of collision accidents and 
traffic. This feature analysis can determine the qualitative relationship 
between accident and traffic, as well as the high-risk area of water area, 
and provide a reference for the validation of the risk modeling. 

4.2.2.1. Spatial autocorrelation analysis. Spatial autocorrelation is a 
method used to analyze whether the observed value of a point is 
correlated with its adjacent points. Spatial autocorrelation is charac-
terized by a correlation in a signal among nearby locations in space. 
Spatial autocorrelation of collision accidents means that the closer two 
accident points are in spatial position, the more similar they are. This 
paper uses Moran’s I for correlation analysis. 

In statistics, Moran’s I index is a measure of spatial autocorrelation 
developed by Patrick Alfred Pierce Moran (1950). Moran’s I is a widely 
used global index that measures the similarity for values in neighboring 
places from an overall mean value and reflects a spatially weighted form 
of Pearson’s correlation coefficient. Spatial autocorrelation has been 
applied in maritime field (Shahrabi, 2004; Zhang et al., 2019). The 
Moran’s I spatial autocorrelation methods are used to determine 
whether near collisions show spatial clustering from global perspectives 
(Rong et al., 2021). 

Moran’s I index is defined as: 

I=
N
W

∑

i

∑

j
wi,j(xi − x)

(
xj − x

)

∑

i
(xi − x)2 (5)  

where N is the number of spatial unit grids indexed by i and j ; x is the 
variable of interest; x is the mean of x; wi,j is a matrix of spatial weights 
with zeroes on the diagonal (i.e., wi,i = 0); and W is the sum of all wi,j. 

The global Moran’s I index is within [− 1, 1] and indicates the spatial 
distribution pattern. Positive values of Moran’s I are associated with 
strong geographic patterns of spatial clustering, negative values of 
Moran’s I are associated with a regular pattern, and Moran’s I value 
close to zero represents complete spatial randomness (Jackson et al., 
2010). If I > 0, the collision accidents are positively correlated in space, 
and the values approaching 1 indicate a strong clustering. If I < 0, the 
collision accidents have negative correlation in space, which means the 
collision accidents are distributed dispersedly. If I = 0, the collision 
accidents are truly randomly dispersed (perfect randomness). 

In order to realize spatial autocorrelation analysis, data projection 
needs to be transformed into WGS_1984_UTM_Zone_50N. Then the data 
format is transformed from point to Polygon (where the Polygon size is 
the same as the unit grid size). Finally, the autocorrelation toolbox 
(Moran’s I) of ArcGIS software is used to analyze, a spatial autocorre-
lation report is formed. 

In the output report, in addition to Moran’s I, two indicators p and z 
are added. the p-value represents the probability that the observed 
spatial pattern is created by a random process. z scores indicate the 
standard deviation multiple. The standard deviation can reflect the 

dispersion degree of a data set. According to Table 2, the confidence of 
Moran’s I can be determined by p values and z scores. 

4.2.2.2. Kernel density analysis. Spatial distribution characteristics can 
reveal the degree of data aggregation in space. Kernel density analysis is 
a tool for mining spatial distribution characteristics. This paper will use 
kernel density to deeply analyze the spatial distribution characteristics 
of traffic and collision accident data, and find their spatial hot spots. 

Kernel Density calculates the density of point features around each 
grid. Conceptually, a smoothly curved surface is fitted over each point. 
The surface value is highest at the location of the point and diminishes 
with increasing distance from the point, reaching zero at the Search 
radius distance from the point. The density at each grid is calculated by 
adding the values of all the kernel surfaces where they overlay the raster 
cell center. The kernel function is based on the quartic kernel function 
described in Silverman (Dehnad, 2012; Luter and Silverman, 2010). So, 
the search radius is an important parameter in kernel density analysis. 
The search radius can be calculated by Eq. (6). 

SearchRadius= 0.9 ∗ min

(

SD,

̅̅̅̅̅̅̅̅̅̅
1

ln(2)

√

∗ Dm

)

∗ n− 0.2 (6)  

where: SD is the standard distance of points;Dm is the median distance of 
points; n is the number of points if no population field is used, or if a 
population field is supplied, n is the sum of the population field values. 

In this study, Kernel Density analysis was carried out with the tools 
included in ArcGIS software. The population is set to NONE, the output 
pixel is set to the default value, the search radius is 0.01, the output 
value is DENSITIES, and the method is selected as PLANAR. Finally, the 
Kernel Density analysis chart is formed, and a good visualization effect is 
achieved by adjusting image attributes. 

Finally, by comparing the areas with high accident incidence waters, 
high traffic density waters and high-risk waters, when the areas match, 
this collision risk model based on accident can be laterally verified to be 
effective. 

4.3. Real-time risk modeling based on accident and non-accident critical 
events 

According to Section 3, the real-time risk model will integrate the 
accident-based risk model and the non-accident critical events-based 
risk model by using historical collision accident and traffic data. This 
section is divided into two parts: the risk model based on non-accident 
critical events, the combination method. 

4.3.1. Risk assessment modeling based on non-accident critical events 
In the previous research by the authors(Li et al., 2019a), the traffic 

volume, heading variance, and speed in the traffic are identified as 
positively correlated with the occurrence of accidents. Therefore, in this 
research, such factors are analyzed and further integrated into the 
collision risk analysis model. The collision candidate set refers to the 
collision candidate set factor refers to the number of possible collisions 
in each grid, which is also closely related to the occurrence of accidents 
(Chen et al., 2018). And external environmental factors such as time and 
sea state also play a certain role in promoting the occurrence of colli-
sions (Rezaee et al., 2016). Therefore, combined with the previous 
research and expert experience, the factors that affect the collision risk 
are identified, which are as follows: time, sea state, traffic volume, speed 

Table 2 
P values and Z scores table.  

Z score (standard deviation) p-value (probability) Confidence level 

< − 1.65, > +1.65 <0.10 90% 
< − 1.96, > +1.96 <0.05 95% 
< − 2.58, > +2.58 <0.01 99%  
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variance, heading variance, collision candidate set, and so on. 
Based on the non-accident critical events, the non-accident critical 

events risk can be obtained through Eq. (7). However, there is a highly 
nonlinear coupling relationship between these factors, which is difficult 
to calibrate with a simple function. Therefore, this paper will use the 
random forest to model and establish this risk model. See the next sec-
tion for specific methods. 

rj
non− acc = f(Fj

1, Fj
2, Fj

3, Fj
4, Fj

5, Fj
6
)

(7)  

Where: rj
non− acc represents the risk value based non-accident critical 

events in the j − th grid; Fj
i represents the i − th factor that affects the 

risk. 
In order to facilitate calculation and understanding, these factors are 

transformed into a value in the grid through certain transformation 
methods. The specific transformation methods of each factor are as 
follows. 

4.3.1.1. Factor1 (F1): Time. Time factor refers to time. The probability 
of accident occurrence is different at different times of the day. This is 
because the navigational competency levels of crews and the environ-
ment are different at different times. Therefore, through the statistical 
analysis of the time of historical accident data, the frequency of acci-
dents in different periods is calculated. Then according to the frequency 
of the accident, each time period is classified. In the time period of the 
high incidence of accidents, the grade is high; In the time period of the 
low incidence of accidents, the grade is low. According to the statistical 
results of accident data, the classification standard adopts the method of 
uniform distribution, which is generally divided into six levels. 

4.3.1.2. Factor2 (F2): Sea state. Similar to the time factor, the sea state 
factor is also one of the factors leading to the accident. 

Sea state is to estimate the roughness of the sea for navigation. The 
sea state estimation will use the Douglas Sea scale, also known as the 
“international sea and swell scale”, which was designed by Captain H.P. 
Douglas (Owens, 1984). In this paper, the sea conditions will be classi-
fied according to the Douglas Sea scale, and the classification standards 
can be referred to Table 4. The sea state can be determined by wave 
height. 

4.3.1.3. Factor3 (F3): speed variance/Factor4 (F4): Volume/(F5):Heading 
variance. Traffic is closely related to the occurrence of accidents. Traffic 
volume, speed variance, heading variance are positively correlated with 
the occurrence of accidents. These three factors are defined as follows: 
Speed variance is the standard deviation of the speeds of all ships in a 
grid. Volume is the number of all ships in a grid. Heading variance is the 
standard deviation of the course of all ships in a grid. These factors need 
to be extracted from AIS data. 

4.3.1.4. Factor6 (F6): Collision candidate set. Collision candidate is the 
pair of ships in an encounter process where their Spatio-temporal re-
lationships satisfy certain criteria that have the potential for collision 
(Chen et al., 2018). The criterion of collision candidate detection can be 
determined by Velocity Obstacle (VO) method. Velocity Obstacle sets 
refer to a set of velocities that can lead to a collision between two objects 
in the future. The specific criteria are as follows: if the velocity of one 
ship falls into its own VO sets induced by the other ship during the 
encounter process, this pair of ships will be deemed as collision candi-
dates. This paper adopts a Non-linear Velocity Obstacle (NLVO) to detect 
collision candidates. The NLVO sets of Ship i induced by Ship j are 
denoted as NLVOi|j. After NLVOi|j is calculated, the next step is to 
determine whether the velocity of the Ship i at any time falls into this set. 
If so, it is considered that there is a potential collision between the two 
ships. These potential collision locations are considered as collision 
candidate sets. 

The specific calculation steps of the collision candidate set are as 
follows: 

Step 1. set up the initial parameters i = 1, j = 1; establish AIS database, 
and number all the ship trajectory, and record the total number of ship 
trajectory n; 

Step 2. extract the ith trajectory data of the Ship i from the AIS data-
base and record it as ShipTi[Li,Pi,Vi]; 

Step 3. judge if i ≤ n?, If so, go to next step; otherwise, go to Step 8; 

Step 4. extract the jth trajectory data from the AIS database and record 
it as ShipTj[Lj,Pj,Vj]; 

Step 5. judge if j ≤ n?, If so, go to next step; Otherwise i = i +1, and 
return to step 2; 

Step 6. calculate NLVOi|j by the method proposed by (Chen et al., 
2018); 

Step7. determine whether the velocity of the Ship i at any time falls 
into this set. If so, the trajectory of two ships is output, and j = j + 1, 
return to step 4; Otherwise j = j + 1, return to step 4; 

Step 8. calculate Closest Point of Approach between two ships, and use 
all the Closest Points of Approach as collision candidate sets; 

Step 9. end. 

4.3.2. Collision risk model calibration 

4.3.2.1. Model training. The final step is to link the non-accident critical 
events to the accident-based risk measurement. In the previous sections, 
the contributing factors of the non-accident-based risk analysis model 
have been identified. However, as aforementioned, the relationship 
between the factors and their influence on the collision risk is highly 
non-linear and is of significant difficulty to be quantified with classic 
formula manner. Therefore, in this section, the random forest model is 
utilized to identify and calibrate the complicated parameters in the risk 
analysis model. 

The key to the new model lies in the risk assessment of the same 
environment and location. No matter what method is used for risk 
assessment, the characteristics of risk, such as temporal and spatial 
distribution and evolution trend, are consistent. Based on this feature, 

Table 3 
Evaluation standards.  

Accident Severity 1 2 3 4 5 

Hull Loss (Ship) <0 – – – ≥ 1 
Fatality (Number of 

people) 
0–0.4 0.4–0.8 0.8–1.2 1.2–1.6 ≥ 1.6 

Direct Economic 
Losses (Unit: Ten 
Thousand CNY/ 
EUR) 

0–10/ 
0–1.3 

10–20/ 
1.3–2.6 

20–30/ 
2.6–3.9 

30–40/ 
3.9–5.2 

≥

40/≥
5.2  

Table 4 
Sea state classification standard.  

Name of sea surface condition Wave height range Sea state grade 

CALM-GLASSY 0 FT (0 METERS) 0 
CALM-RIPPLED 0-1/3 FT (0-.1METERS) 1 
SMOOTH-WAVELET 1/3-1 2/3 FT (.1-.5 METERS) 2 
SLIGHT 1 2/3–4 FT(.5–1.25 METERS) 3 
MODERATE 4-8 FT(1.25–2.50 METERS) 4 
ROUGH 8-13 FT(2.50–4.0 METERS) 5 
VERY ROUGH 13-20 FT(4–6 METERS) 6 
HIGH 20-30 FT(6–9 METERS) 7 
VERY HIGH 30-45 FT(9–14 METERS) 8 
PHENOMENAL >45 FT (>14 METERS) 9  
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we integrate the accident and non-accident critical events, evaluate the 
risk in the same location and environment. Therefore, we will replace 
non-accident critical events-based risk value with accident-based risk 
value, as shown in Eq. (8). Fj

i as the independent variable, rj
acc as the 

dependent variable. 

rj
acc = rj

non− acc = f(Fj
1, Fj

2, Fj
3, Fj

4, Fj
5,F

j
6
)

(8) 

It is worth noting that there are multiple accident points in a grid, the 
sea condition and time of the accident need to be converted into a value, 
and Eq. (9) is as follows: 

[
Fj

1,Fj
2
]
=

⎡

⎢
⎢
⎣

∑M

m=1
Fmj

1

M
,

∑M

m=1
Fmj

2

M

⎤

⎥
⎥
⎦ (9)  

where: Fmj
1 is the collision time factor of the mth accident in the j− th 

grid; Fmj
2 is the sea condition at the time of collision of the mth accident in 

the j − th grid; M is the number of accidents in the j− th grid. 
When the input and output of the model have been obtained, the 

most important step is to obtain the risk model. To better build the risk 
model, this paper will use the machine learning method to obtain the 
risk model. This method is relatively objective and can well simulate the 
coupling between various factors. 

There are many methods of machine learning. Random forest is a 
machine learning method proposed by (Breiman, 2000). Random forest 
is a combination of multiple decision trees, each tree depends on the 
value of random vectors sampled independently, and all the trees in the 
forest have the same distribution. The generalization error tends to 
converge with the increase of trees in the forest. The steps of modeling 
and forecasting are as follows:  

① Firstly, NRF is used to represent the number of samples in the 
original training sample set, and MRF is used to represent the 
number of attributes.  

② Secondly, determine a fixed value mRF (mRF < NRF), which is used 
to determine how many attributes will be selected when making 
decisions on a node.  

③ Bootstrap resampling technology method is used to randomly 
extract KRF training data sets from the original training sample 
set, and KRF decision trees are constructed. The samples that are 
not extracted each time form out of bag data, that is, out of bag 
data, or OOB for short, which can be used to predict the accuracy 
of classification.  

④ Each training data set grows into a single decision tree. In each 
node of the tree, m attributes are randomly selected from m at-
tributes. According to the principle of minimum node impure, 
one of the M features is selected for branch growth. Let the tree 
grow sufficiently to minimize the impurity of each node, and do 
not prune in this process.  

⑤ According to the trained random forest algorithm, the risk can be 
obtained by inputting the influencing factors. 

4.3.2.2. Accuracy evaluation of collision risk model. After training the 
collision risk model with a random forest algorithm, we need to evaluate 
the accuracy of the model. The test data will be input into the trained 
collision risk model, the predicted collision risk value will be output. By 
comparing the predicted risk value with the actual test risk value, the 
smaller the difference is, the better the performance of the training 
model is. 

In this paper, the Goodness of Fit (R2), Mean Absolute Error (MAE), 
and Root Mean Square Error (RMSE) are selected to evaluate the accu-
racy of the model. 

The R2 can be used to measure whether the data not involved in 
training can be well predicted by the risk model. The R2 can be 

calculated by Eq. (10). The range of R2 is [0,1]. The larger the R2 is, the 
better the fitting between the predicted value and the actual value of the 
training risk model is. 

R2 =

∑n

i=1
(ri − r)2

−
∑n

i=1
(ri − r⌢)2

∑n

i=1
(ri − r)2

(10)  

where: ri is the predicted risk value; r⌢i is the actual risk value. 
MAE is the average value of the absolute value of the deviation be-

tween the predicted risk value and the real risk value. The MAE can be 
calculated by Eq. (11). The weights of all the differences in the average 
value are equal, which can reflect the actual situation of the difference 
between the predicted risk value and the real risk value. 

MAE=
1
n
∑n

i=1

⃒
⃒
⃒ri − r⌢i

⃒
⃒
⃒ (11) 

RMSE is the square root of the ratio of the square of the deviation 
between the predicted risk value and the real risk value and the number 
of observations. The RMSE can be calculated by Eq. (12). RMSE mea-
sures the deviation between the predicted risk value and the real risk 
value. The smaller the RMSE is, the smaller the deviation between the 
predicted value and the real value is, the higher the accuracy of the 
model prediction is. 

RMSE=

(
1
n

∑n

i=1

(
ri − r⌢i

)2
(12)  

5. Case study 

5.1. Research area gridding 

Shenzhen is located on the east bank of the estuarine of the Pearl 
River and it is adjacent to Hong Kong, China. The Port of Shenzhen is a 
collective name of a number of ports along with parts of the coastline of 
Shenzhen, Guangdong Province, China. These ports, as a whole, form 
one of the busiest and fastest-growing container ports in the world. With 
expansion of the shipping business, more and more attentions have been 
directed to the safety management of the waterways and ports. The 
Shenzhen Port can be conducted as a good case study (Fig. 2). According 
to the principle of grid division criteria, combined with the character-
istics of the waters in Shenzhen, the Shenzhen waters were divided into a 
total of 428-unit grids, as shown in Fig. 2. 

After the area is gridded, AIS and accident data need to be linked by 
geographical location. This case study needs to use historical collision 
accidents and AIS data in the research waters to establish a collision risk 
model. Working with the Shenzhen Maritime Bureau, which is the main 
authority for port management in the area, the authors gained access to 
the collision accident records for the years from 2002 to 2017. There-
fore, the collision accident data have high accuracy and can be directly 
analyzed. AIS data is provided by the traffic flow Laboratory of Wuhan 
University of technology. Due to a large amount of AIS data, one day of 
AIS data was randomly extracted from each month in 2019. After 
training the risk model, real-time AIS data and environmental data are 
needed to analyze the risk. In addition, AIS data has some abnormal 
data. Before using these data, it is necessary to detect and remove 
abnormal data. Firstly, the abnormal data are directly eliminated ac-
cording to MMSI format errors, out-of-range latitude and longitude, and 
other illegal errors. Secondly, the abnormal data are further eliminated 
based on the average speed and the average change rate of course over 
the ground between two adjacent points (Guo et al., 2021). 

In this paper, a total of 129 collision accidents occurred in Shenzhen 
waterways from 2002 to 2017. The time distribution of the collision 
accident is shown in Fig. 3. The frequency of collision accidents shows a 
downward trend on the whole. 
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The traffic volume in Shenzhen from 2002 to 2017 was selected as 
the statistical object, and the statistical results are shown in Fig. 4. From 
2002 to 2007, the total traffic volume of Shenzhen continued to grow, 
and from 2007 to 2017, the traffic volume tended to be stable, close to 
500,000 ships. 

5.2. Collision risk based on observed accidents 

5.2.1. Collision risk based on observed accidents 
The risk model based on accident data has been proposed in Section 

2.3.1. According to the model, we need to calculate the probability of an 
accident every year and the consequences of each accident in each grid 
according to Eq. (3), the results are as shown in Appendix I. Finally, we 
use Eq. (1) to calculate the risk value of each unit grid, as shown in 
Fig. 5. The four-unit grids with the highest risk are C3150, C3051, 
C2752, and C2753, and their positions are shown in Fig. 6. 

5.2.2. Data feature analysis 
Feature analysis is to better grasp the characteristics of data, which is 

to provide a basis for the establishment and verification of the risk 

model. 

5.2.2.1. Accident spatial autocorrelation analysis. The purpose of acci-
dent spatial autocorrelation analysis is to analyze whether there is a 
correlation between accidents in a space unit and accidents in other 
space units around it. In other words, whether there is interdependence 
between adjacent accidents. 

Firstly, the collision accidents are plotted on the GIS map, which can 
have a preliminary understanding of the spatial distribution of the 
collision accident, as shown in Fig. 7. The collision accidents are mainly 
concentrated in the western waters, and there are relatively few acci-
dents in the eastern waters. The collision accidents are mainly concen-
trated in the western waters (such as Shekou, Dachan Bay, Chiwan and 
Mawan, etc.). 

Moran’s I spatial autocorrelation analysis tool provided by ArcGIS is 
used to analyze spatial correlation. The Moran index is 0.66, which in-
dicates that the collision accidents have a positive spatial correlation, 
and the data set for analysis is proportional to the spatial aggregation. 
Conforming to Table 2, the p-value is less than 0.01, the z score is greater 
than 2.58, confidence is 99%. That means the probability of random 

Fig. 2. Research area.  

Fig. 3. Time distribution of collision accidents.  
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generation of this data is only 1%, which shows significant clustering 
characteristics. Moran’s I > 0 represents a positive spatial correlation. 
The collision accidents are positively correlated in space, which further 
shows the necessity of regional grid management and the reliability of 
regional grid risk assessment. 

5.2.2.2. Kernel density analysis of collision accidents. With the kernel 
density analysis of the collision accidents, one can intuitively grasp the 
spatial distribution of collision accidents in waters and explore the 
waters with a high occurrence of collision accidents. In this paper, 129 
collision accidents from 2002 to 2017 were selected. Based on the gridding 
of the water area, the kernel density of accident data is analyzed, and the 
spatial distribution of collision accidents in the water area is obtained 
and shown in Fig. 8. As shown in Figure, the accident density distribu-
tion is uneven, and the eastern waters are significantly lower than the 
western waters. 

In order to analyze the traffic spatial distribution in the water area, 
this paper selected the AIS data for one day in 2019. On the basis of the 
grid of the water area, kernel density analysis was used to analyze the 
spatial distribution of the traffic volumes in the water area, as shown in 
Fig. 9. The distribution of vessel traffic volumes density is uneven, and 
the high-density area in the eastern waters is significantly less than that 
in the western waters. 

From the above analysis of the density of accidents and traffic flow, 
we can see that the hot spots of accidents and traffic flow show a high 
level of similarity. This also shows that there is a strong correlation 
between collision accidents and traffic volume. The more intensive the 
traffic volume is, the more likely the collision accident will occur. 

Comparing Figs. 6, 8 and 9, the location with high risk is consistent 
with the location with high accident frequency and dense traffic. To 
make the risk results more reliable, we consulted the staff of the Mari-
time Safety Administration in the area, and the actual grid they focused 
on monitoring was consistent with our calculation results. Therefore, 
from this point of view, the collision risk model in this paper is relatively 
reliable. 

5.3. Real-time risk model in Shenzhen waters 

5.3.1. Risk-based on non-accident critical events 
According to the above, the non-accident critical events will be 

extracted from historical accident and AIS data, respectively. Time 
factor and sea state factor will be obtained from historical accident data, 
while the other four factors will be extracted from AIS data. However, 
since the AIS data at the time of the accident cannot be obtained, the 
pattern of vessel traffic is assumed as evenly distributed during the ac-
cident occurrences every year. So the AIS data in 2019 will be assumed 

Fig. 4. Shenzhen port traffic volume statistics.  

Fig. 5. Collision risk based on accidents in-unit grids.  

M. Li et al.                                                                                                                                                                                                                                       



Ocean and Coastal Management 234 (2023) 106471

10

to be the AIS data at the time of the accident. 
F1. Time: Firstly, the time of 129 collision accidents is counted, as 

shown in Table 5. Then, the time factor is classified according to the 
frequency of accidents at different times, which is shown in Table 6. 
Finally, the occurrence time of 129 collision accidents is converted into 
the corresponding grade. Since there are multiple accidents in a grid, the 
corresponding accident time also has multiple values, so it needs to be 
integrated into one value according to Eq. (11). 

F2. Sea state: According to Table 4 sea state classification standard, 
the sea state at the time of the accident is classified. Since the sea state 
data in a grid has multiple values as time data, a value is converted 
according to Eq. (11). 

F3. Speed variance: Speed variance is the standard deviation of 
speed in a grid. Theoretically, it should be the standard deviation of 
velocity in the grid when the accident occurred. Therefore, based on the 
12 day AIS data, the speed variance per day in each grid is calculated, 

and then the 12-day data are averaged. 
F4. Volume: Volume is the number of ships in a grid. Theoretically, it 

should be the number of ships in the grid when the accident occurred. 
Therefore, the average ship volume in each grid per day is calculated 
based on the AIS data of twelve days. To make the traffic volume closer 
to the traffic volume at the time of the accident, it is necessary to 
transform the traffic volume. The premise of traffic flow transformation 
is that the distribution of traffic flow in the waters is relatively stable. 
The paper assumes that the dense distribution of traffic flow in the study 
area is consistent during the study period. Nij

traff can be calculated by Eq. 
(16). 

Nij
traff =

Nuj
traff

Nu
straff

× Ni
straff (13)  

Fig. 6. Risk grid geography distribution map.  

Fig. 7. Spatial distribution of collision accidents indicated by blue dots.  
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where: Nuj
traff represents the traffic volume of year u in the jth grid; Ni

straff 

represents the total traffic volume of the i year; Nu
straff represents the total 

traffic volume of the u year. 
F5. Heading variance: Heading variance refers to the course stan-

dard deviation of all ships in a grid. Therefore, according to the twelve 

Fig. 8. Accident kernel density analysis.  

Fig. 9. Traffic kernel density analysis.  

Table 5 
Statistics of accident occurrence time.  

Time Frequency Time Frequency 

0:00–1:00 3 12:00–13:00 1 
1:00–2:00 3 13:00–14:00 2 
2:00–3:00 5 14:00–15:00 1 
3:00–4:00 3 15:00–16:00 2 
4:00–5:00 6 16:00–17:00 2 
5:00–6:00 4 17:00–18:00 4 
6:00–7:00 2 18:00–19:00 1 
7:00–8:00 1 19:00–20:00 3 
8:00–9:00 4 20:00–21:00 3 
9:00–10:00 2 21:00–22:00 3 
10:00–11:00 4 22:00–23:00 3 
11:00–12:00 3 23:00–24:00 6  

Table 6 
Statistics of accident occurrence time.  

Time of accident Grade 

23:00–24:00,4:00–5:00 6 
2:00–3:00 5 
5:00–6:00,8:00–9:00 10:00–11:00,17:00–18:00 4 
0:00–2:00, 3:00–4:00, 19:00–23:00, 11:00–12:00 3 
6:00–7:00,9:00–10:00, 13:00–14:00, 15:00–17:00 2 
7:00–8:00, 12:00–13:00, 14:00–15:00, 18:00–19:00 1  
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days AIS data, the heading variance in each grid of each day is calcu-
lated, and then the twelve days data is averaged. 

F6. Collision candidate set: The collision candidate set refers to the 
number of ships that may collide in each grid. Theoretically, it is also 
calculated by AIS data at the time of the accident. Therefore, according 
to the twelve days AIS data, the number of ships that may collide in each 
grid is calculated by the NLVO method, and then the number of ship 
accidents that may collide in each grid every day is calculated as the 
input of F6. 

5.3.2. Real-time risk model calibration 
After obtaining the factors and risk of each unit grid, the spatial 

location of the grid is used to associate the factors with the risk based on 
collision accidents. Random forest algorithm is used to integrate 
accident-based risk and non-accident critical events-based risk. Each 
factor calculated in section 5.3.1 and the risk value calculated in Section 
5.2.1 is taken as the input and output of the random forest model 
respectively. The real-time collision risk model can be obtained by 
training of random forest algorithm. The parameter setting of the 
random forest model is shown in Table 7. 

80% of the data is used as training data and 20% as test data. The 
training results are shown in Fig. 10. Fig. 10(1) shows the out-of-bag 
error for training result 1. It can be seen from the figure that with the 
increase of decision tree, the out of bag error becomes smaller and 
smaller, and finally stabilized at 3.07E-08. Fig. 10 (2) shows the 
importance of each factor in the risk model, F4 has the highest impor-
tance, about 0.47, and F1 has the lowest importance, about − 0.04. There 
was no significant difference in the importance of the other factors. The 
importance of F6, F3, F2 and F5 were 0.29, 0.16, 0.11 and 0.03 respec-
tively. Fig. 10 (3) shows the goodness of fit between actual train risk 
values and predicted values, the R2 is 0.78. Fig. 10 (4) shows the 
goodness of fit between actual test risk values and predicted values, R2 is 
0.65. Fig. 10 (5) and Fig. 10 (6) show the comparison between the 
training risk data and the real risk value, and the comparison between 
the test risk data and the real risk value, respectively. From the trend 
point of view, the trend is basically the same. MAE is 1.87E-04, RMSE is 
2.67E-04. In general, the fitting between the predicted value and the 
actual value of the training risk model is good. 

According to the above training result 1, F1 has the lowest contri-
bution to the risk model. Therefore, to further improve the accuracy of 
the risk model, F1 will be removed for risk model training, and the re-
sults are shown in Fig. 11. Fig. 11(1) shows out-of-bag error for training 
result 1. It can be seen from the figure that with the increase of decision 
tree, the out of bag error becomes smaller and smaller, and finally sta-
bilized at 4.76E-08. Fig. 11 (2) shows the importance of each factor in 
the risk model, F4 has the highest importance, about 0.40. The impor-
tance of F6, F3, F2, and F5 were 0.37, 0.30, 0.21 and 0.06 respectively. 
Fig. 11 (3) shows the goodness of fit between actual train risk values and 

predicted values, the R2 is 0.83. Fig. 11 (4) shows the goodness of fit 
between actual test risk values and predicted values, R2 is 0.88. Fig. 11 
(5) and Fig. 11 (6) show the comparison between the training risk data 
and the real risk value, and the comparison between the test risk data 
and the real risk value, respectively. From the trend point of view, the 
trend is basically the same. MAE is 6.56E-05, RMSE is 8.18E-05. In 
general, the fitting between the predicted value and the actual value of 
the training risk model is good. 

5.4. Real-time risk assessment result 

The real-time AIS data and environmental data of this water area 
from 10:40 to 11:40 on January 6, 2019, are selected for risk assessment 
to identify the water area with relatively high risk. According to the 
collected environmental data, the sea condition is grade 3. Input the 
environmental data and AIS data into the risk model trained in section 
5.3. The grid with the top 20 risk values is shown in Table 8, and its 
spatial distribution is shown in Fig. 12. And nineteen grids with rela-
tively high-risk areas in the western waters of Shenzhen and one in the 
eastern waters of Shenzhen. The relative risk of C3050, C2653, C2854, 
and C2752 is high. 

In order to compare the identification results of this high-risk water 
area, we collected the accident data of this water area at the same time. 
About at 12:00 on January 6, 2019, a ship collision accident occurred in 
the C2652 grid. C2652 is the high-risk grid identified in this risk 
assessment, which needs to be taken risk mitigation measures. This 
shows that the high-risk waters identified by this model have reference 
values. 

6. Discussion 

6.1. Case result discussion 

This paper proposes a real-time regional risk modeling method based 
on long-term collision accident and traffic data. The steps of real-time 
risk modeling are as follows: firstly, the research area is gridded; then 
the collision risk based on accident data is evaluated for each grid; 
secondly, the factors in different grids are extracted from the same 
collision accident and traffic data; finally, a real-time risk model is ob-
tained by correlating risk and factors with random forest. Taking 
Shenzhen port as a case study, this paper uses 129 collision accidents 
from 2002 to 2017 and AIS data from 2019 to establish a real-time risk 
model for Shenzhen port. The real-time AIS data of a day is selected to 
evaluate the collision risk of Shenzhen port. 

The results show that: (1) the historical high-risk areas of Shenzhen 
port are located in Shekou, Dachan Bay, Chiwan, and Mawan; (2) The 
factors that contribute the most to the risk of Shenzhen Port are traffic 
volume and collision candidate set; (3) There is a positive correlation 
between collision accidents and traffic; (4) These results coincided with 
the previous knowledge and experience of experts in vessel traffic 
management; (5) Risk situation of Shenzhen port on one day is evalu-
ated, and the high-risk location is matched with the accident location on 
that day. 

(1) When other parameters in the random forest model remain un-
changed, the indexes of the risk model trained before and after 
removing F1 factor are shown in Table 9. It can be seen from the 
table that after removing factor F1, Out of Bag Error is stable 
earlier, and the stable value is lower. From the contribution of 
factors to the risk model, F4, F6, F3, F2, and F5 are in the same 
order. From the perspective of data goodness of fit, the goodness 
of fit is higher after removing factor F1. From MAE and RMSE, the 
error is smaller after removing factor F1. Generally, the result of 
the training risk model is better after removing factor F1 (Nielsen 
and Jungnickel, 2003). also proposed the view that the impact of 

Table 7 
The parameter setting of random forest model.  

Parameter Value  

Method regression Method used by trees. The possible values are 
‘classification’ for classification ensembles, and 
‘regression’ for regression ensembles. 

Surrogate on A matrix of size Nvars-by-Nvars with predictive measures 
of variable association, averaged across the entire 
ensemble of grown trees. If you grew the ensemble 
setting ‘surrogate’ to ‘on’, this matrix for each tree is 
filled with predictive measures of association averaged 
over the surrogate splits. If you grew the ensemble setting 
‘surrogate’ to ‘off’ (default), SurrogateAssociation is 
diagonal. 

minleaf 5 Minimum number of observations per tree leaf. By 
default, MinLeafSize is 5 for regression. 

NumTrees 3000 Scalar value equal to the number of decision trees in the 
ensemble.  
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Fig. 10. Risk model training result 1.  
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the time factor on the accident is limited. This may be related to 
the collected accident data itself. 

From the change of contribution degree of each factor, the interac-
tion between various factors for the collision risk model is too complex 
and may not be a linear correlation model. To further confirm this point, 

we analyzed the linear correlation analysis between collision risk and 
factors, as shown in Fig. 13. It can be seen from the figure that the linear 
correlation between collision risk and each factor is low. Heading 
variance, Traffic volume, and collision candidate set are positively 
correlated with risk. With the increase of heading variance, traffic vol-
ume, or collision candidate set, the risk also increases. For the sea 

Fig. 11. Risk model training result 2.  
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conditions factors, the relationship shows that most of the accidents in 
our training data set to occur in the case of low sea state. This may be 
because when the sea state is high, the traffic volume at sea will be 
reduced, and the crew will navigate more carefully, so the accident rate 
will be less. From the performance of speed variance on risk, the value of 
speed variance is mainly concentrated between 0 and 5. The velocity in 
each grid is average and the variance is small. According to the existing 
data, the greater the speed variance, the greater the risk is not neces-
sarily. This also indicates that the speed variance may not be able to 
express the degree of traffic disorder. Heading variance can indicate the 
degree of traffic disorder.  

(2) From the case study of Shenzhen port, the two factors that 
contribute most to the risk are traffic volume and collision 
candidate set. This shows that the larger the volume is, the more 
likely accidents will occur. The collision candidate set is based on 
AIS data to predict the number of possible collisions in the grid, 
which is also the most intuitive parameter to represent the pos-
sibility of collision (Chen et al., 2018). proposed a collision 
candidate detection method, but the research did not explore the 
relationship between collision candidate set and risk. In this 
paper, the contribution value of collision candidate set to risk is 
obtained. In addition, heading variance and speed variance also 
contributes to the risk. All those factors are extracted from AIS 
data. It also proves that collision accidents are closely related to 
traffic.  

(3) According to the analysis of the characteristics of accidents and 
traffic, it is known that there is a certain spatial correlation 

between collision accidents and traffic. According to the risk 
assessment results of Shenzhen port, the high-risk area is the area 
with a high probability of accident occurrence and dense traffic. 
This directly shows that there is a correlation between collision 
accidents, traffic, and risks. 

(4) The grid with the highest risk does not necessarily have an ac-
cident. The occurrence of accidents is accidental. However, the 
water area with high risk indicates dense traffic and a high pos-
sibility of accidents, which need to provide to MSA. If MSA can 
take measures in advance, they may reduce the occurrence of 
accidents to some extent. 

6.2. Advantages of the model  

(1) The risk model proposed in this paper can not only do the real- 
time risk assessment but also assess the historical risk of a 
certain region in a certain period of time. Based on the accident 
risk model, the historical risk of the region can be evaluated, and 
the high-risk waters can be analyzed from the historical risk. 
Besides, the trained risk model can be used for real-time risk 
assessment according to the real-time input of each factor value 
in a grid. Historical risk distribution can give maritime manage-
ment agencies a risk warning, clearly focusing on high-risk wa-
ters. Real-time risks can make it possible for maritime 
management agencies to dynamically monitor maritime traffic 
safety. And the maritime management agencies can timely give 
effective risk control measures to reduce the risk.  

(2) This paper introduces the concept of grid management, which is 
consistent with the practice of maritime management. Since 
2015, maritime grid management has been implemented in the 
maritime supervision of Chinese waters. The grid generation 

Table 8 
Real-time risk value (Top 20).  

Grid Number Real-time risk Grid Number Real-time risk 

C3050 1.46E-04 C2451 1.29E-04 
C2653 1.46E-04 C2149 1.28E-04 
C2854 1.45E-04 C2652 1.28E-04 
C2754 1.44E-04 C2250 1.28E-04 
C2752 1.30E-04 C2351 1.27E-04 
C2450 1.29E-04 C1951 1.25E-04 
C2851 1.29E-04 C2248 1.25E-04 
C2450 1.29E-04 C2835 1.25E-04 
C2951 1.29E-04 C3248 1.24E-04 
C3051 1.29E-04 C2852 1.24E-04  

Fig. 12. Real-time risk result.  

Table 9 
Comparison of training models.  

Index Result Result 1 

Out of Bag Error  3.07E-08 4.76E-08 
Factor Rank  F4, F6, F3, F2, F5, F1 F4, F6, F3, F2, F5 

R2 Training dataset 0.78 0.83 
Testing dataset 0.65 0.88 

MAE  1.87E-04 6.56E-05 
RMSE  2.67E-04 8.18E-05  
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standard of this paper is consistent with that of maritime practice. 
The real-time risk calculated by this model can be directly used 
for maritime traffic safety management, which has a very 
important guiding role for regional maritime traffic management.  

(3) The risk assessment model based on non-accident critical events 
can generally obtain the weight of each factor through the expert 
experience method, and then establish the corresponding risk 
model through the comprehensive evaluation of each factor. 
However, the weight of the expert experience method is subjec-
tive. This paper combines the advantages of the accident-based 
risk model and the non-accident critical events-based risk 
model and proposes a real-time risk modeling method. Compared 
with the accident-based risk model, this model makes up for the 
defects of insufficient accident numbers and inaccurate accident 
data in the accident-based risk model. Compared with the risk 
model based on non-accident critical events, this model makes up 
for the lack of verifiability and subjectivity of the non-accident 
critical events risk model. 

6.3. Limitations of the model 

As the time span of accident data is from 2002 to 2017, the corre-
sponding AIS data collection is difficult. Although AIS data collection is 
easier at this stage than in previous years, the collection of AIS data with 
the time span of ten years ago was not so easy. Due to the characteristic 
of the low frequency of maritime accidents, the accuracy of the risk 
assessment model could be low even when with the traffic data. In order 
to improve the accuracy of risk, to make the traffic data closer to the 
traffic at the time of the accident, we converted the traffic flow data to a 
certain extent. In the meantime, we have introduced the data on near- 
miss incidents, which is collision candidates into the risk modeling. 
With such an introduction, the accuracy of the output of the risk 
assessment model can be improved to some extent, as the risk here also 
refers to the encounters that have the potential for accident, not only the 
accident. However, from the analysis of the results, there are still some 
errors. But the purpose of this paper is to provide a way, combined with 

the two models, to provide a modeling method that can be used for real- 
time risk assessment. And the same technique has also been utilized in 
the research on traffic simulations. Furthermore, the objective of the risk 
analysis model we proposed in this research is to identify the area with 
higher risk and facilitate the decision-making of the MSA. From this 
perspective, we think the relative relationships between the risk values 
of each geogrids have a higher value than its absolute numerical values. 
In the future, we will collect enough AIS data when the accident occurs 
and establish a risk model for more accurate risk modeling by analyzing 
the traffic characteristics when the accident occurs. 

When the risk model proposed in this paper is applied to different 
port waters, it needs to be trained according to the actual port data to 
make it suitable for different waters. 

From the model training results, we can see that due to the limited 
number of data, the accuracy of the model still has room to improve. In 
addition, we can get the collision risk model and the contribution of each 
factor to the collision risk model through a random forest algorithm, but 
we can’t get the complex relationship between each factor. 

On the other hand, this paper analyzes the relationship between six 
factors and collision risk. In fact, there are many factors that affect the 
collision risk. In the future, more risk-related factors can be taken into 
account, and more refined risk modeling can be provided. 

6.4. Application 

Mou et al. (2019) presented the safety index as a simple but effective 
method to evaluate and manage the safety status of vessel traffic in busy 
waterways and conducted risk analysis for vessel traffic transiting the 
western Shenzhen port as a case study. It is only based on the accident 
data with a span of 20 years to examine the actual risk level and the 
safety indexes. The indexes consist of Safety Evaluation Indexes (SEI) 
and Safety Warning Indexes (SWI). SEI work as a ruler to measure the 
safety status in last year and give the direct answer of ‘safe’ or ‘unsafe’, 
while the SWI can act as another safety threshold and provide early 
warnings for the risk control. Since 2005, the indexes have been widely 
implemented in safety management for vessel traffic control by the 

Fig. 13. Linear correlation analysis between risk and factors.  
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Maritime Safety Administration of Shenzhen (MSA). 
However, due to the inherent weakness of these indexes, they are 

only functioning after accidents but very weak to predict the real time 
collision risk inadvance or other this area. It is demanding to develop a 
real time collision risk model, which can be input to Vessel Traffic 
Services (VTS) or benefit basic situation aware for vessel traffic safety 
management in this area. The software provider of the VTS, Saab 
Technolgies (Hong Kong) Limited, welcomed to input the real time 
collision risk model to the system and financially supported the study of 
intelligent perception for ship collision risk in the Guangdong-Hong 
Kong-Macau Greater Bay Area. 

7. Conclusion 

Large hub ports and busy waterways are frequently visited by high 
densities of vessel traffic. Such a heavy and complicated maritime traffic 
situation has been continuously posing threat to the safe operation of the 
regional and global maritime transportation networks. As for one of the 
major stakeholders, it is of great significance for the maritime safety 
administrations to obtain insights on the real-time navigation risk 
characteristics in the area, to better perform navigational management 
and improve the safety level of the area. 

To facilitate the task of real-time collision risk analysis in the busy 
ports and waterways, this paper proposed a grid-based collision risk 
identification and prediction model via integrating the historical acci-
dent data and maritime traffic data. The geographical grid, which is a 
GIS-based tool is utilized here as the key element to connect the accident 
and traffic data, based on which, the spatial-temporal characteristics 
and the accident contributing factors of a maritime accident, especially 
ship collision are analyzed. By applying the random forest tree, we have 
successfully established an accident risk prediction model based on the 
analysis of the accident data and the integration of maritime traffic data 
in the model. A case study focusing on one of the busiest ports in China- 
Shenzhen port was conducted, and the results compared with the his-
torical accident data indicate that the model can effectively identify the 
region of high risk and their spatial-temporal characteristics. Such re-
sults show that the proposed method has important value in identifying 

and profiling the real-time collision risk in the regions integrating the 
historical information and also the traffic data, which can be an effective 
tool for maritime safety management in the interested areas. 

In this research we have demonstrated the feasibility of utilizing the 
historical accident data and maritime traffic data at the same time to 
identify and predict the collision risk in real-time, using a geographical 
approach. It is extended our former study for vessel traffic management 
in Shenzhen Ports and can provide explicit display of collision risk in 
real time. In the meantime, more work could be conducted, to furtherly 
strengthen the link between the big data of vessel traffic, environmental 
contributors, and human factors, as well as to establish a more inte-
grated and accurate risk model. 
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Appendix I. Collision risks 

The following table presents the collision risks based on the observed number of accidents. Consequences are determined according to Eqn. (5).  

Table a 
Collision risk  

Grid Number Year of accident Consequence Probability Collision risk 

C1449 2004 1.00 3.00E-05 3.00E-05 
C1851 2003 1.00 9.33E-05 9.33E-05 
C1951 2006 1.34 1.74E-05 2.32E-05 
C2538 2004 3.35 3.00E-05 1.11E-04 

2008 1.00 1.09E-05 
C2652 2002 2.34 1.13E-04 2.85E-04 

2011 1.67 1.21E-05 
C2653 2003 1.34 9.33E-05 2.64E-04 

2003 1.34 9.33E-05 
2010 1.00 1.46E-05 

C2739 2006 1.34 1.74 E− 05 6.33 E− 05 
2007 1.34 1.20E-05 
2007 2.01 1.20E-05 

C2752 2002 1.00 1.13E-04 8.34E-04 
2002 1.00 1.13E-04 
2002 1.00 1.13E-04 
2003 1.00 9.33E-05 
2003 1.67 9.33E-05 
2004 1.00 3.00E-05 
2004 3.35 3.00E-05 
2005 1.00 2.89E-05 

(continued on next page) 
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Table a (continued ) 

Grid Number Year of accident Consequence Probability Collision risk 

2005 1.00 2.89E-05 
2005 1.00 2.89E-05 
2006 1.00 1.74E-05 
2008 1.00 1.09E-05 

C2753 2002 1.67 1.13E-04 4.99E-04 
2002 1.00 1.13E-04 
2003 1.34 9.33E-05 
2005 1.00 2.89E-05 
2006 1.00 1.74E-05 
2010 1.82 1.46E-05 

C2754 2003 1.00 9.33E-05 9.33E-05 
C2851 2003 1.00 9.33E-05 3.82E-04 

2003 1.00 9.33E-05 
2003 1.00 9.33E-05 
2004 1.00 3.00E-05 
2004 1.00 3.00E-05 
2004 1.00 3.00E-05 
2007 1.00 1.20E-05 

C2852 2002 1.00 1.13E-04 4.27E-04 
2002 1.00 1.13E-04 
2003 1.00 9.33E-05 
2003 1.00 9.33E-05 
2010 1.00 1.46E-05 

C2855 2002 1.00 1.13E-04 1.13E-04 
C2856 2003 2.34 9.33E-05 2.42E-04 

2006 1.34 1.74E-05 
C2950 2012 2.65 9.80E-06 3.32E-05 

2014 1.00 7.27E-06 
C2951 2002 2.34 1.13E-04 3.66E-04 

2004 1.00 3.00E-05 
2004 1.00 3.00E-05 
2004 1.00 3.00E-05 
2012 1.00 9.80E-06 
2013 1.00 1.72E-06 

C3027 2003 2.65 9.33E-05 2.56E-04 
2016 2.34 3.85E-06 

C3050 2002 1.00 1.13E-04 3.10E-04 
2002 1.00 1.13E-04 
2005 1.00 2.89E-05 
2007 1.67 1.20E-05 
2007 1.00 1.20E-05 
2007 1.00 1.20E-05 
2008 1.00 1.09E-05 

C3051 2002 1.34 1.13E-04 9.29E-04 
2002 1.00 1.13E-04 
2003 1.00 9.33E-05 
2003 1.00 9.33E-05 
2003 1.00 9.33E-05 
2003 2.34 9.33E-05 
2003 1.00 9.33E-05 
2005 1.00 2.89E-05 
2010 2.01 1.46E-05 
2017 1.67 8.77E-06 

C3061 2002 1.00 1.13E-04 2.26E-04 
2002 1.00 1.13E-04 

C3146 2010 1.82 1.46E-05 2.66E-05 
C3149 2017 1.00 8.77E-06 8.77E-06 
C3150 2002 1.00 1.13E-04 1.00E-03 

2002 1.00 1.13E-04 
2002 1.00 1.13E-04 
2002 1.00 1.13E-04 
2003 1.00 9.33E-05 
2003 1.00 9.33E-05 
2003 1.00 9.33E-05 
2003 1.82 9.33E-05 
2003 1.00 9.33E-05 
2016 1.00 3.85E-06 

C3151 2002 1.00 1.13E-04 2.26E-04 
2002 1.00 1.13E-04 

C3228 2005 1.00 2.89E-05 2.89E-05 
C3246 2012 1.00 9.80E-06 9.80E-06 
C3248 2012 1.34 9.80E-06 1.31E-05 
C3249 2004 4.18 3.00E-05 1.25E-04 
C3250 2011 2.65 1.21E-05 3.22E-05 
C3252 2002 1.00 1.13E-04 2.26E-04 

2002 1.00 1.13E-04 

(continued on next page) 
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Table a (continued ) 

Grid Number Year of accident Consequence Probability Collision risk 

C3315 2002 2.34 1.13E-04 2.82E-04 
2006 1.00 1.74E-05 

C3317 2011 3.16 1.21E-05 3.84E-05 
C3327 2017 1.00 8.77E-06 8.77E-06 
C3331 2017 1.82 8.77E-06 1.60 E− 05 
C3346 2017 1.00 8.77E-06 8.77E-06 
C3348 2003 1.00 9.33E-05 9.33E-05 
C3350 2004 1.00 3.00E-05 3.00E-05 
C3415 2005 1.00 2.89E-05 5.78E-05 

2005 1.00 2.89E-05 
C3416 2014 2.01 7.27E-06 1.46E-05 
C3425 2005 3.16 2.89E-05 9.14E-05 
C3447 2014 1.00 7.27E-06 7.27E-06 
C3523 2003 1.00 9.33E-05 9.33E-05 
C3525 2005 2.49 2.89E-05 7.21E-05 
C3545 2008 2.34 1.09E-05 2.55E-05 
C3546 2006 1.34 1.74E-05 1.03E-04 

2010 1.34 1.46E-05 
2011 5.00 1.21E-05 

C3623 2008 1.00 1.09E-05 4.50E-05 
2010 2.34 1.46E-05 

C3624 2014 1.34 7.27E-06 9.71E-06 
C3645 2006 1.34 1.74E-05 5.42E-05 

2012 3.16 9.80E-06 
C3647 2002 1.00 1.13E-04 1.13E-04 
C3746 2005 1.34 2.89E-05 3.86E-05 
C3944 2011 1.00 1.21E-05 1.21E-05 
C3946 2005 1.00 2.89E-05 2.89E-05 
C4045 2011 1.82 1.21E-05 2.22E-05 
C4145 2008 1.33 1.09E-05 1.46 E− 05 
C4244 2003 1.00 9.33E-05 9.33E-05 
C4345 2003 1.00 9.33E-05 9.33E-05  
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