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Correction Factor on Dynamic Force in a Marsh Funnel Test
for Tunneling

Dongzhu Zheng1; Adam Bezuijen2; and Arno Talmon3

Abstract: This paper presents an improvement on a previous model for predicting the Marsh funnel (MF) test that is used in slurry shield
tunneling for evaluating the rheological properties of bentonite slurries. The improvement focuses on the prediction of the dynamic part for
fluids with small MF times. The velocity profile of the Herschel–Bulkley fluid in a laminar pipe flow condition is first investigated and a
correction factor is introduced in the improved model. Comparisons of results from experiments and calculations with the previous
model confirm the improved performance over the existing model. The rheological parameters obtained from the improved model show
good resemblance to those obtained from a laboratory viscometer. The work also provides a reference to similar applications such as
fluid transportation through pipelines where dynamic pressure dominates and therefore should be correctly predicted considering its velocity
profile in a laminar condition. DOI: 10.1061/(ASCE)GM.1943-5622.0002439. © 2022 American Society of Civil Engineers.

Author keywords: Correction factor; Marsh funnel test; Bentonite slurry; Rheology; Field use.

Introduction

The Marsh funnel (MF) is an inexpensive testing device for field
use that avoids complex testing equipment and tedious lab work.
It is applied in tunneling for evaluation of the bentonite slurries
that are used for face support in slurry shield tunneling and has re-
cently been interpreted by model studies (Schoesser and Thewes
2015; Zheng et al. 2021). The expected MF viscosity for slurries
used in tunneling is relatively small for the American Petroleum In-
stitute (API RP 13B-1, API 2009) recommended funnel geometry
[Fig. 1(a)]. In this test, the funnel is filled with 1,500 mL of fluid
and the time it takes for one quart (946 mL) of that fluid to drain
is recorded as the MF viscosity.

Balhoff et al. (2011) developed a new calculation model
describing non-Newtonian fluid flow through a Marsh funnel. Rhe-
ological parameters can be obtained by fitting the measured volume
against time data to the model. However, for fluids with a small MF
viscosity, the dynamic pressure becomes dominant and should
be included in model studies. Based on the Herschel–Bulkley
model, Zheng et al. (2021) established a new model, using the
flow description from Skelland (1967), and also considering the
pressure drop in the conical section of the funnel due to the pres-
ence of the yield stress and the dynamic pressure in the capillary
tube which is the pressure drop necessary to accelerate the fluid
from hardly any velocity in the funnel to the outflow velocity.
Results suggest the feasibility of the Zheng et al. (2021) model,
especially for low viscosity fluids in tunneling applications.

The rheological properties such as yield stress and viscosity
could influence the infiltration behavior of bentonite slurries into
saturated sand due to the stress–strain behaviors of different mate-
rials (Xu and Bezuijen 2019; Xiao et al. 2020; Zheng 2021). As an
inexpensive device frequently used in field testing, the potential of
using the MF test to obtain more information on the slurries is of
great interest.

For bentonite slurries, the rheological behavior can be described
by the Herschel–Bulkley model (API 2009), which consists of three
parameters: yield stress (τ0), consistency index (C ), and flow index
(n). The Herschel–Bulkley model can describe a lot of fluid models
(Newtonian, Power law, and Bingham, and so on, see Schoesser
and Thewes 2015) and it is described as follows:

τ = τ0 + Cγ̇n (1)

where τ = shear stress; τ0 = yield stress; and γ̇ = shear rate.
The major advantage of the Zheng et al. (2021) model compared

with the Balhoff et al. (2011) model is the inclusion of the dynamic
pressure as well as the squeezing pressure in the conical section of
the funnel. The relation between the dynamic part and the mean ve-
locity in Zheng et al. (2021) is

p =
1

2
ρ�v2 (2)

where p = dynamic pressure; ρ = density of the fluid; and �v =mean
velocity.

Since there will be shearing behavior among the streamlines of
the flow, the velocity in the cross section of the tube will be a func-
tion of the radial distance from the center to the walls. This uneven
distribution will make a difference when a mean velocity is consid-
ered in Eq. (2) for the calculation of the dynamic part because the
square of the mean velocity is different from the integral of the
square of its components under such conditions.

This paper presents an improvement on the previous model by
Zheng et al. (2021). The improvement focuses on the treatment of
the square value of the velocity in the capillary tube. The velocity pro-
file of the Herschel–Bulkley fluid in a fully developed pipe flow con-
dition is first investigated. A correction factor in relation to the square
value of the velocity is included in the improved model for the dy-
namic part. Sensitivity analysis is performed to investigate the
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influence of the rheological parameters of the fluids. Comparisons
with experimental and previous model results are conducted.

Flow Condition in the Tube of the Marsh Funnel

In the previous model (Zheng et al. 2021), the flow in the capillary
tube is assumed to be a laminar flow, because the discharge rate can
be explicitly derived under such conditions. While it is necessary to
show that the fluid in the capillary tube during the MF test is a lam-
inar flow. To start with, the Reynolds number (Re) is

Re =
QDρ

μA
(3)

where Q = discharge rate; D = diameter of the pipe; μ = viscosity;
and A = cross-sectional area of the pipe.

The discharge rate in the first few seconds of such a test can be
estimated to be a linear discharge as suggested by the measurement
data in Zheng et al. (2021). Since the discharge rate will slowly

decrease with elapsed time, there will be a decreasing trend in
the Reynolds number. Therefore, it will be a laminar flow condition
if the calculated Reynolds number in the beginning of the test is
smaller than 2,300.

Fig. 2 shows the linear fit of the measured discharge in the first 4 s
for water. The average value of the slope is taken to be the discharge
rate and the Reynolds number can be calculated to be about 9,906.
However, since it is an acceleration flow, the critical Reynolds num-
ber could be much higher than 2,300 (Knisely et al. 2010).

For other tested fluids, the viscosity is calculated with the model
by Pitt (1999).

μ =
ρ

106
(t − 25) (4)

where t = measured MF time.
The discharge rate can be estimated with the measured MF time

assuming a discharge of 946 mL of liquid at a constant drainage
rate, which is a reasonable assumption as shown by the measure-
ment curves in Zheng et al. (2021) for low viscosity fluids.

Adding Eq. (4) into Eq. (3), we obtain

Re =
106VD

At(t − 25)
(5)

where V = drainage volume of 946 mL.
It can be found with Eq. (5) that the Reynolds number is smaller

than 2,300 when t≥ 29 s, suggesting a laminar condition for the
tested bentonite slurries as shown in Zheng et al. (2021). Since
the focus of the study is on testing bentonite slurries with an MF
time larger than 30 s, the laminar condition should be investigated
based on the above analysis.

Velocity Profile in a Herschel–Bulkley Pipe Flow

For a fully developed flow condition in the capillary tube, the pres-
sure drop due to viscous force along the flow direction will be lin-
early distributed. It will be an axisymmetric flow along the
centerline of the pipe.

Fig. 3 shows a schematic view of a portion of the fluid flow from
the center of the pipe. For laminar conditions, there is the following

Fig. 2. Measurement data for water during the first 4 s of the test and
the average discharge rate.

Fig. 4. 2D velocity profile of a Hershel–Bulkley fluid in a fully devel-
oped pipe flow.

(a) (b)

Fig. 1. Marsh funnel: (a) dimensions according to API (2009); and
(b) the testing system. (Reprinted from Zheng et al. 2021, © ASCE.)

Fig. 3. Herschel–Bulkley fluid in a pipe flow.

© ASCE 04022147-2 Int. J. Geomech.

 Int. J. Geomech., 2022, 22(9): 04022147 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
01

/0
9/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



relation:

πr2dP = 2πrτdL (6)

where r = radius of the portion of the fluid; P = fluid pressure (cor-
rected for height here in the MF test); and L = length of the fluid.

The following relation can be obtained:

τ =
r

2

dP

dL
(7)

When τ≤ τ0, there will be no shearing among the fluid, thus
there is an unsheared zone in the fluid, with the previous equation
the radius of the unsheared zone (r0) is

r0 = 2τ0
dP

dL

( )−1

(8)

To initiate the flow, there should be such a relation r0≤R. The
minimum pressure gradient is

dP

dL
=
2τ0
R

(9)

where R = radius of the pipe.
For pipe flow, the shear rate (γ̇) can be described as follows:

γ̇ = −
dv

dr
(10)

where v = fluid velocity.
Combining Eqs. (1), (7), and (10), the following yields:

−
dv

dr
=

1

C(1/n)

r

2

dP

dL
− τ0

( )(1/n)

(11)

By integration, the following is obtained:

v = −
1

C(1/n)

∫
r

2

dP

dL
− τ0

( )(1/n)

dr (12)

Note that there is boundary condition when r=R, v= 0 and
when r≤ r0, v= v (r= r0), the the following velocity profile is
obtained:

v =

2

C(1/n)((1/n) + 1)
dP

dL

( ) R

2

dP

dL

( )
− τ0

( )(1/n)+1

−
r

2

dP

dL

( )
− τ0

( )(1/n)+1
[ ]

r0 ≤ r ≤ R

2

C(1/n)((1/n) + 1)
dP

dL

( ) R

2

dP

dL

( )
− τ0

( )(1/n)+1

−
r0
2

dP

dL

( )
− τ0

( )(1/n)+1
[ ]

0 ≤ r ≤ r0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Fig. 4 shows the 2D velocity profile according to Eq. (13). In
general, the velocity is zero at the edges of the pipe and increases
toward the center. There is an unsheared zone around the centerline
of the pipe. Outside this unsheared zone, the velocity profile is non-
linearly distributed.

The discharge rate of the pipe flow is of interest since the dy-
namic part in the MF test is directly related to it, as shown in
Eq. (2). With Eq. (13), it is possible to get the discharge rate.

Fig. 3 also shows the schematic view of a sleeve of the fluid in
the pipe flow from the center of the pipe. The discharge rate of the
sleeve is

dQ = 2πrvdr (14)

Integration from 0 to R and add it into Eq. (13), the discharge
rate across the entire pipe is

Q =
πR3 R

2

dP

dL

( )
− τ0

( )(1/n)+1

C(1/n)
R

2

dP

dL

( )
− τ0

( )3

×

R

2

dP

dL

( )
− τ0

( )2

(1/n) + 3
+
2τ0

R

2

dP

dL

( )
− τ0

( )
(1/n) + 2

+
τ20

(1/n) + 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦
(15)

Note that when r=R, the shear stress becomes the wall shear
stress (τw):

Q =
πR3(τw − τ0)

(1/n)+1

C(1/n)τ3w

(τw − τ0)
2

(1/n) + 3
+
2τ0(τw − τ0)

(1/n) + 2
+

τ20
(1/n) + 1

[ ]
(16)

Which is the same to that shown by Skelland (1967).

Fig. 5. Relation between the correction factor and the ratio of yield
stress and wall shear stress for fluids with different fluid index (n).
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The following mean velocity can be obtained with Eq. (16):

v =
R(τw − τ0)

(1/n)+1

C(1/n)τ3w

(τw − τ0)
2

(1/n) + 3
+
2τ0(τw − τ0)

(1/n) + 2
+

τ20
(1/n) + 1

[ ]
(17)

Correction Factor for the Dynamic Part

In the work of Zheng et al. (2021), Eq. (7) was extended to include
the dynamic part, resulting in the wall shear stress described as

follows:

τw = 0.5
R

L
ΔPtot −

1

2
ρ

Q

πR2

( )2
[ ]

(18)

The discharge rate and the wall shear stress in the capillary tube
in their study were obtained through iteration due to the implicit re-
lation between Eqs. (16) and (18). However, in the dynamic part
[the second term on the right-hand side of Eq. (18)], the square
of the mean velocity is not equal to the integral of the square of
its components.

The square of the mean velocity can be obtained with Eq. (17):

v2 =
R2(τw − τ0)

(2/n)+2

C(2/n)τ2w

1

((1/n) + 3)2
+

4λ

((1/n) + 2)((1/n) + 3)2
+

4((2/n) + 3)λ2

((1/n) + 1)((1/n) + 2)2((1/n) + 3)2

+
8λ3

((1/n) + 1)((1/n) + 2)2((1/n) + 3)2
+

4λ4

((1/n) + 1)2((1/n) + 2)2((1/n) + 3)2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (19)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Volume versus time data for: (a) water; (b) white mineral oil; (c) Renoil 500-W; (d) Sludge 1,110 kg/m3; (e) Sludge 1,085 kg/m3; (f) Sludge
1,060 kg/m3; (g) multiswellable bentonite; (h) natural gel bentonite; and (i) polymer-modified bentonite compared with model results. [Data for (a–c;
g–i) from Zheng et al. 2021.]
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where λ = ratio between the yield stress (τ0) and the wall shear stress (τw).
While the integral of the square of the velocity should be derived based on the velocity profile,

v2 =
1

πR2

∫R
0
v22πrdr (20)

Combine Eq. (13) with Eq. (20),

v2 =
R2(τw − τ0)

(2/n)+2

C(2/n)τ2w((1/n) + 2)((1/n) + 3)
1 +

6λ

((2/n) + 3)
+

((7/n) + 9)λ2

((2/n) + 3)((1/n) + 1)2

[ ]
(21)

A correction factor is therefore needed to correct the dynamic part in Eq. (18). In this study, the correction factor will be the ratio between
Eqs. (21) and (19):

v2

v2
=

1

((1/n) + 2)((1/n) + 3)
+

6λ

((1/n) + 2)((1/n) + 3)((2/n) + 3)

+
((7/n) + 9)λ2

((1/n) + 2)((1/n) + 3)((2/n) + 3)((1/n) + 1)2

⎡
⎢⎢⎣

⎤
⎥⎥⎦

1

((1/n) + 3)2
+

4λ

((1/n) + 2)((1/n) + 3)2
+

4((2/n) + 3)λ2

((1/n) + 1)((1/n) + 2)2((1/n) + 3)2

+
8λ3

((1/n) + 1)((1/n) + 2)2((1/n) + 3)2
+

4λ4

((1/n) + 1)2((1/n) + 2)2((1/n) + 3)2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(22)

Table 1. Parameters used in model predictions

Fluid τ0 (Pa) τw (Pa) n (—) Range for λ (—) Range for correction factor Correction factor

Water 0 — 1 0 1.33 1.33
White mineral oila 0 — 1 0 1.33 1.33
Renoil 500-Wa 0 — 1 0 1.33 1.33
Sludge 1,110 kg/m3a 6 15–31 1 0.19–0.4 1.23–1.29 1.26
Sludge 1,085 kg/m3 3.5 13–26 1 0.13–0.27 1.27–1.31 1.29
Sludge 1,060 kg/m3 2.5 16–22 1 0.11–0.16 1.30–1.31 1.30
Multiswellable bentonite 0.26 14–26 0.88 0.01–0.02 1.32 1.32
Natural gel bentonitea 1.72 15–26 0.7 0.07–0.11 1.27–1.28 1.28
Polymer modified bentonitea 1.51 22–50 0.6 0.03–0.07 1.26–1.27 1.27

aSource: Data from Zheng et al. (2021).

Fig. 7. Comparison between dynamic force and friction force.
(Reprinted from Zheng et al. 2021, © ASCE.)

Fig. 8. Prediction ratio as a function of the measured MF time.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Consistency plots for: (a) white mineral oil; (b) Renoil 500-W; (c) Sludge 1110 kg/m3; (d) Sludge 1085 kg/m3; (e) Sludge 1060 kg/m3;
(f) multiswellable bentonite; (g) natural gel bentonite; and (h) polymer-modified bentonite compared with model results. [Data for (a and b; f–h) from
Zheng et al. 2021.]
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Eq. (22) suggests that the correction factor depends on the pa-
rameters of n and λ. Note that the yield stress (τ0) should not exceed
the wall shear stress (τw), suggesting 0≤ λ ≤ 1.

Fig. 5 shows the correction factor as a function of the ratio be-
tween yield stress and wall shear stress for different fluids. It indi-
cates that the correction factor is smaller with a larger λ. The
correction factor reduces to 1 when yield stress equals wall shear
stress. That makes sense since there will be no shearing among
the fluid in that condition, meaning the velocity is the same every-
where in the cross section and it becomes a total plug flow.

The correction factor is smaller in the case of a shear-thinning
fluid such as bentonite slurry. However, the yield stress of a benton-
ite slurry with a small MF viscosity is also small, which makes the
correction factor falls within the left part of Fig. 5 where the larger
values reside.

The correction factor should be combined with Eq. (18) in order
to improve the model prediction, which results as follows:

τw = 0.5
R

L
ΔPtot −

1

2

v2

v2
ρ

Q

πR2

( )2
[ ]

(23)

Results and Discussion

Using the same calculation scheme described by Zheng et al.
(2021) and Eq. (23), the improved model prediction can be com-
pared with experimental and previous model results. However,
the correction factor should be chosen properly for the non-Newto-
nian fluids since the wall shear stress is not an explicit value. In this
study, the wall shear stress was first determined with the previous
model. With the flow index and the ratio between yield stress
and wall shear stress, it is possible to get a range of the correction
factor using Eq. (22). The average value was taken to be the correc-
tion factor for the improved model simulation. The experiments
with several Bingham liquids (sludge with different densities)
were conducted with the testing system described by Zheng et al.
(2021), as shown in Fig. 1(b).

Table 1 shows the parameters found for different fluids. It shows
that λ is close to 0 for the considered bentonite slurries due to the
small yield stress values. In general, λ is increasing with a larger
yield stress. Table 1 shows that the resulting correction factor is
located on the left part of Fig. 5, hence it should be taken into
consideration.

Fig. 6 shows the results from experiments and model predic-
tions. It shows that the model results are even closer to that of
experiments with the correction factor. However, this improvement
is barely seen in the results with Renoil 500-W, which is caused by
the negligible dynamic force compared with the friction force in the
test with the material as indicated by Zheng et al. (2021). As shown
in Fig. 7, the dynamic force only dominates in case the MF time is
smaller than 50 s. While for those with a larger MF viscosity, the
friction force dominates and therefore the improvements on the
prediction of the dynamic part will be less significant with an
increasing MF value, as shown in Fig. 6.

Although the laminar condition for water could not be determined
due to the Reynolds number limitation in this study, the improved
model seems to work well when compared with experimental results.

Fig. 8 shows the predicted MF times normalized with the mea-
sured MF times for different fluids. It indicates that the improve-
ment on the previous model for the low MF viscosity fluids can
be much more effective than for the high MF viscosity fluids.
This improvement will decrease as the MF viscosity increases,
which is in good compliance with that shown in Fig. 7. Because

the improvement will be negligible when the dynamic force is neg-
ligible (such as Renoil 500-W), while it will be significant when dy-
namic force is dominating (such as water).

Fig. 8 also indicates that the prediction ratio of the improved
model on Newtonian fluids as well as Bingham fluids used in the
study presents a decreasing trend as MF viscosity increases. The
prediction ratio for Renoil is around 90%, suggesting an error
within 10% for smaller MF viscosity fluids. For shear-thinning flu-
ids (bentonite slurries) used in this study, the prediction ratio also
presents a decreasing trend with increasing MF viscosity. It is
smaller than the prediction ratio of the fluids with flow index 1.
The most probable reason for the large deviations in the shear-
thinning fluids (n< 1) is the notorious thixotropic property of ben-
tonites slurries for which the shear stress depends on both the shear
rate and the shear history (Barnes 1997). For bentonite slurries, the
consistency plot will be different when it is obtained by different
types of rheometers (Schoesser and Thewes 2015).

By making use of the measured MF time and the total drainage
time (which only requires one more testing point for field use), it is
possible to get the rheological parameters of the fluid with the pre-
vious model. The procedure was also conducted with the improved
model.

Fig. 9 shows the consistency plots of different fluids obtained
from the model best-fit procedure. The results from the previous
model are also included in the figure. It shows that the resulting
consistency plots are even closer to the Fann viscometer measure-
ments by introducing the correction factor. Fig. 9 also shows that
the improvement is significant for small MF viscosity fluids
(such as natural gel bentonite) while negligible for high MF viscos-
ity fluids (such as Renoil 500-W).

Conclusions

This paper introduces an improvement on the previous model that
is especially practical for bentonite slurries with small MF values
used in tunneling. The velocity profile of the Herschel–Bulkley
fluid in a pipe flow suggests that a correction factor should be incor-
porated owing to the integral value of velocity being unequal to the
square value of mean velocity in the previous model. The correc-
tion factor is an improvement in the predictions over the dynamic
part. Results show that the improvement is significant for fluids
with small MF values while negligible for fluids with large MF val-
ues. The better performance also shows the advantage of the im-
proved model in the predictions over the rheology parameters of
the bentonite slurries. More reliable rheological parameters can
be obtained from the improved model with the MF test than from
the previous model.

Data Availability Statement

All data, models, and code generated or used during the study ap-
pear in the published article.

Notation

The following symbols are used in this paper:
A = cross-sectional area of the pipe;
C = consistency index;
D = diameter of the pipe;
L = length of the fluid;
n = flow index;
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P = fluid pressure (corrected for height here in the MF test);
p = dynamic pressure;
Q = discharge;
R = radius of the tube;

Re = Reynolds number;
r = radius of the portion of the fluid;
r0 = unsheared zone in the flow;
t = measured MF time;
V = drainage volume of 946 mL;
v = fluid velocity;
�v = mean velocity of the fluid;
γ̇ = shear rate;
λ = ratio between the yield stress (τ0) and the wall shear stress

(τw);
μ = viscosity of the fluid;
ρ = density of the fluid;
ρ0 = density of water;
τ = shear stress;
τ0 = yield stress; and
τw = wall shear stress.
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