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ABSTRACT
The Kirkwood–Buff theory is a cornerstone of the statistical mechanics of liquids and solutions. It relates volume integrals over the radial
distribution function, so-called Kirkwood–Buff integrals (KBIs), to particle number fluctuations and thereby to various macroscopic ther-
modynamic quantities such as the isothermal compressibility and partial molar volumes. Recently, the field has seen a strong revival with
breakthroughs in the numerical computation of KBIs and applications to complex systems such as bio-molecules. One of the main emer-
gent results is the possibility to use the finite volume KBIs as a tool to access finite volume thermodynamic quantities. The purpose of this
Perspective is to shed new light on the latest developments and discuss future avenues.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106162

I. INTRODUCTION

In the context of the statistical description of liquid solutions,
Kirkwood and Buff (KB) proposed in the 1950s1 a rigorous statistical
approach that makes the link between structure, thermodynamics,
and density fluctuations.2,3 In this context, we can say that the struc-
ture provides access to thermodynamic properties and the inverse
is also true (thermodynamics provides insight in structure), the
key function to operate being the so-called Kirkwood–Buff integral
(KBI). KB theory is an exact theory, valid for any isotropic solu-
tion in thermodynamic equilibrium, and it is widely used in physical
chemistry and biochemistry.3 Until recently, however, for systems
of great structural complexity and/or long–range correlations, KBIs
could not be obtained accurately from molecular simulation because
of severe finite-size effects. Efficient solutions for this have been pro-
posed in the past few years,4–11 and KB theories have been applied to
biological molecules,12 force field development,13 multicomponent
fluids14 and oligomeric blends,15 and ionic solutions.16 There are

numerous other recent applications of KB theory, including hydra-
tion shell,17 self-aggregation,18 and protein stability.19–21 Our list of
applications is not exhaustive, and we have focused on applications
related to the concept of finite volume KB theory, exposed in the first
part of this article. Since this concept has considerably enlarged the
scope of the KB theory, it is expected to stimulate more interesting
applications in the future.

As below the thermodynamic limit, the KB theory is exact, it
opens the question of the link with thermodynamics and beyond,
with the type of thermodynamics that applies to small systems.
Evidence has now accumulated to support the idea of a scaling
method, called the Small System Method (SSM), first proposed by
Schnell et al.,7 and extended by Bedeaux et al.,22 based on the
thermodynamics of small systems by Hill.23,24

The present work is motivated by our interest in optimizing
the computation of KBIs and improving the physical understand-
ing at different length scales. The perspective is divided into three
parts: the first one presents KBIs and the methods to calculate them,
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the second is dedicated to the thermodynamic interpretation of the
size-dependence of the KBIs, and the last one is focused on new
applications and perspectives.

II. FINITE VOLUME KIRKWOOD–BUFF INTEGRALS
After some general considerations on KBIs, the focus is put

on the methodology to compute them from molecular simula-
tion while knowing the radial distribution function (RDF). In the
last part, recent developments in the calculation of the RDF are
added.

A. Basics
As first realized by Kirkwood and Buff,1 particle num-

ber fluctuations can be computed from volume integrals over
the pair-distribution function (PDF), this defines the so-called
Kirkwood–Buff integral,

GV
ab =

V
⟨Na⟩⟨Nb⟩

∫
V

dr1∫
V

dr2ρa(r1)ρb(r2)(gab(r1, r2) − 1)

= V
⟨NaNb⟩ − ⟨Na⟩⟨Nb⟩

⟨Na⟩⟨Nb⟩
−

δab

ρa
, (1)

where a, b . . . denote the particle species, N i is the number of
i-particles in volume V, ρi(r) is the ensemble averaged local density
of i-particles at position r, and ρi = ⟨N i⟩/V is the average density in
V. The gab(r1, r2) is the PDF and ⟨⋅ ⋅ ⋅⟩ denotes the ensemble average.
By definition of gab, Eq. (1) holds in any system.

We consider an open subvolume V of an infinite isotropic fluid.
Then, ρi(r) is constant and gab depends only on the particle distance
r12 = ∣r1 − r2∣. In this situation, the PDF has no privileged orientation
and it reduces to the radial distribution function. We can rewrite
Eq. (1) as

GV
ab ≡

1
V ∫V

dr1∫
V

dr2(gab(r12) − 1). (2)

In the limit V →∞, we have

G∞ab = ∫

∞

0
(gab(r) − 1)4πr2dr, (3)

which is the expression introduced by Kirkwood and Buff.1 In prac-
tice, the integral of Eq. (3) must be truncated at some upper bound L,

G̃L
ab = ∫

L

0
(gab(r) − 1)4πr2dr, (4)

which is called the “running KBI” (RKBI). In the past, the RKBI was
used in most calculations,3 but convergence to the thermodynamic
limit (TL) is difficult for two reasons. First, the RDF is often obtained
from molecular simulations in closed systems. This canonical RDF
does not tend exactly to 1 for large r, but to 1 − c/V0, where c is a con-
stant and V0 is the simulation box size.3 This small, but systematic
difference makes the KBIs diverge as L3. Second, even with an exact,
grand-canonical RDF, the RKBI strongly oscillates as a function of
L, and so extrapolation to L→∞ can be very difficult.

B. Practical computation of KBIs
1. RDF calculation

In molecular simulation software, pair distribution functions
are nearly always computed by “counting” the number of molecules
at distances between r and r + Δr from a central molecule.25

Although this is correct, it is not efficient as the number of molecules
per bin can be small, resulting in poor statistics and noisy radial dis-
tribution functions, especially for small bin sizes Δr. Recently, Borgis
et al. have derived a much more efficient way of obtaining RDFs
from molecular dynamics simulations26 using the forces between
particles and molecules,

gab(r) =
V

4πNaNbkBT
⟨ ∑

i∈a<j∈b

H(r − rij)(Fi − Fj)rij

r3
ij

⟩, (5)

where T and kB are, respectively, the temperature and the Boltzmann
constant. In this equation, Fi is the net force of particle i and H(r) is
the step function [i.e., H(r) = 1 if r > 0 and H(r) = 0 otherwise].

In Refs. 26 and 27, it is shown that RDFs obtained using
Eq. (5) are much smoother than those by the traditional “counting”
approach. For the computation of Kirkwood–Buff integrals, having a
smooth RDF is less relevant as integrals are usually much smoother
than the integrand, as fluctuations in the integrand are integrated
out.28

2. From closed to open ensembles
The RDF is usually obtained from molecular simulations in the

canonical ensemble, i.e., with a constant number of particles and
constant volume. As mentioned above, the canonical RDF has a
systematic finite-size error. As a consequence, RDFs obtained from
canonical ensemble simulations must be corrected before being used
in KBI calculations. Without correction, KBIs diverge as L3

= V .
Several correction schemes have been proposed in the literature.
A simple method consists in calculating gab(r) for two different
box sizes V0 and extrapolating to V0 →∞ according to the 1/V0
dependence of the error.3,9 The drawback of this method is that two
independent simulations must be performed and the choice of the
two system sizes may affect the accuracy of the result. A more ele-
gant method was proposed by Ganguly and van der Vegt,29 which
renormalizes the RDF by correcting the particle densities in the finite
reservoir. The corrected RDF is

gab(r) = g̃ab(r)
Nb(1 − V/V0)

Nb(1 − V/V0) − ΔNab(r) − δab
, (6)

where g̃ab(r) is the canonical RDF obtained with a simulation box
of volume V0 containing N i particles of type i and V = 4πr3

/3.
ΔNab(L) is the excess of particles b in a sphere of radius L around
a particle a, given by

ΔNab(L) = ∫
L

0
dr4πr2

[g̃ab(r) − 1]. (7)

Ben-Naim3 has proposed a simpler, r-independent correction
given by

g∞ab (r) = g̃ab(r) +
1

V0
(

δab

ρa
+G∞ab). (8)
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Dawass et al.,30 have compared the various schemes and found that
the correction of Eq. (6) by Ganguly and van der Vegt29 generally
leads to the best results for KBIs. Before ending this section, it is
worth to mention the extension method of the RDFs to large scales
that Verlet proposed in 1968.31 Despite the complexity of its numer-
ical application, it was successfully used to obtain accurate KBIs; see
Ref. 32.

3. Convergence of the KBI to the thermodynamic limit
The second finite-size problem of KBIs is that, even with the

exact RDF, the RKBI, Eq. (4), converges badly with size L, because
the oscillations of g(r) become strongly amplified by the r2 factor
in the integrand. This problem can be avoided by using finite
volume KBI, developed by the present authors.9,30,33,34 First, we
note that for V <∞, GV

ab in Eq. (2) cannot be written in terms of
a RKBI (4). Indeed, the RKBI does not give the particle number
fluctuations, but the excess particle number ΔNab(L), see Eq. (7),
which strongly oscillates with L because of the shell structure in
the fluid. In sharp contrast, the finite volume KBI in Eq. (2) oscil-
lates only weakly and converges smoothly for L→∞. While Eq. (2)
is exact, it is numerically cumbersome, since it involves a double
volume integral. Krüger and co-workers9,30,33–35 have shown that
this six-dimensional integral can be reduced to the simple radial
integral as

GV
ab = ∫

L

0
(gab(r) − 1)w(r)dr. (9)

Here,

w(r) =
1
V ∫V

dr1∫
V

dr2δ(r − ∣r1 − r2∣), (10)

is a purely geometrical weight-function, which is zero for r > Lmax,
where Lmax is the largest distance in V. Analytic expressions of w(r)
have been derived for hyperspheres9,36,37 and cuboids.34 For vol-
umes of arbitrary shape, w(r) can easily be obtained by numerical
integration.33 For a sphere of diameter L, we have9

w(r, L) = 4πr2
(1 − 3x/2 + x3

/2), x ≡ r/L. (11)

The finite volume KBI, GV
ab in Eq. (9), converges to G∞ab as 1/L, where

L is the linear dimension of the volume V, conveniently defined as
L = V/(6A), where A is the surface area of V. For large L, we can
expand in 1/L as

GV
ab ≡ Gab(L) = G∞ab + F∞ab /L +O(L

−2
), (12)

where

F∞ab = −
3
2∫

∞

0
r(gab(r) − 1)4πr2dr (13)

is an exact expression of the surface term, which holds for volumes
of any shape.34

By plotting Gab(L) as a function of 1/L, Eq. (12), one can
obtain the thermodynamic limit G∞ab by linear regression. From the
knowledge of the size-dependence of thermodynamic quantities, the

thermodynamic limit can be found by extrapolation, which is linear
here. This is what we called Small System Method7,8 (SSM). We will
come back to this approach in more details in Sec. III. An alternative
scaling approach was proposed by Cortes-Huerto et al.10 It is based
on an approximate expression of the finite size KBI, which depends
both on the subdivision volume V and the simulation box volume
V0. From this, the infinite volume KBI G∞ab is obtained by non-
linear regression. The finite size error of the RDF is corrected using
Eq. (8).

The SSM is illustrated for a Lennard-Jones (LJ) liquid system in
Fig. 1(a) where the quantity GV

(L)/σ3 is plotted as a function of σ/L
using different expressions for KBI, the RKBI Eq. (4), the exact finite
volume KBI, Eq. (9), and the fluctuation expression from Eq. (1)
(for spherical volumes). σ is the diameter of the LJ particle. The
results show excellent agreement between the fluctuation approach
and Eq. (9), despite the small noise for fluctuations. The trends are
linear in the range 0.25 and 0.45 (for σ/L) where G∞ can be linearly
extrapolated using Eq. (13) to ∼−1.2. Below σ/L = 0.25, the trend is
not linear due to the small size effects of the simulation box, this
point has been discussed previously, see Ref. 35. The RKBI shows
large oscillation that attenuates with length but not enough to obtain
reliable results, i.e., a constant plateau. The statistical efficiency
can be improved using larger simulations boxes but the results
clearly show that the SSM is accurate enough to obtain reliable
results while the usual approaches based on RKBI, find here their
limit.

An equivalent method consists of plotting L ×Gab(L) as a func-
tion of L and extracting the linear slope at large L, which tends

FIG. 1. For a Lennard-Jones (LJ) system, the functions (a) GV (upper panel) and
(b) L × GV (lower panel), using Eq. (4), the RKBI, and Eq. (9), the exact KBI,
respectively, as a function of the reduced values of L. These values are compared
with the ones calculated from the fluctuation expression, the rhs of Eq. (1). The sets
of data are the same in the two figures. The system was composed of 10 000 argon
particles, the reduced density, i.e., the number of molecules per σ3 where σ is the
LJ parameter, was 0.551 and the reduced temperature, i.e., temperature divided
by ϵ/kB where ϵ and kB are the other LJ parameter and the Boltzmann constant,
respectively, was 1.40. A cut-off radius of 2.5σ was used for the LJ potential.
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to G∞ab . This is presented in Fig. 1(b) using the same set of data
as in (a). Here, we find G∞ab ≈ −1.2 in agreement with the result
from Fig. 1(a). This type of representation reduces the statistical
noise and enlarges the useful linear range for the regressions both
for the KBI and RKBI. The two linear procedures are simple and
safe.8,30 However, it should be pointed that the choice of the linear
regime for the interval of regression may affect the accuracy of the
extrapolation.30

Alternatively, one can use one of the extrapolation expressions
that have been proposed for G∞ab .9,34 These are of the form,

G∞ab ≈ ∫

∞

0
[g(r) − 1]uk(r)dr, (14)

with some finite-range weight-function uk(r), in which k is the level
of approximation. The most simple form is u0(r) = 4πr2, which
corresponds to the “running” KBI used in most of the literature
before 2013. It is obtained by simply truncating the infinite KBI at
r = L, and it is identical to G̃V

ab in Eq. (4) for a sphere. However,
as explained above, G̃V

ab is not related to number fluctuations in V.
In practice, the running KBI with u0(r) converges poorly with L,
because it hugely amplifies the oscillations of gab(r). A better choice
is u1(r) = 4πr2

[1 − (r/L)3
], which was obtained by a Taylor expan-

sion in 1/L of the exact KBI for a finite sphere, Eqs. (9) and (11).9
Using Eq. (14) with u1(r) affords fast and stable convergence of the
KBI.9 Another extrapolation was developed based on Eq. (12) and
a similar expansion applied to F∞ab .34 The corresponding weight-
function is u2(r, L) = 4πr2

[1 + (−23x3
+ 6x4

+ 9x5
)/8], where x =

r/L. This extrapolation was found to converge even faster than u1(r)
in tests with a model RDF.34 In applications with realistic, mate-
rial specific RDFs,38 both u1(r) and u2(r) have been found to be
equally useful and far superior to u0(r). These new approximations
for the infinite KBI, obtained by extrapolating the exact finite volume
KBI—either numerically or using the functions u1 and u2—have led
to a considerable improvement of the reliability and accuracy of KBI
calculations in recent years.14,30,39

III. THERMODYNAMIC FORMULATION
OF THE SIZE-DEPENDENCE OF KBI
AND FLUCTUATIONS

One of the main interest in KBIs and fluctuations is to relate
them to thermodynamic quantities.1–3 This has been exploited at
the thermodynamic limit where G∞ab is known. The KBI, like fluc-
tuations, has a statistical basis, which is the same regardless of
the size and shape of the volume, area, or the three-phase con-
tact line of the system. This provides a direct path between any
small system property and its KBI. This procedure has not yet been
exploited in any systematic manner. We explain this possibility to
find thermodynamic properties for small systems and point at some
perspectives. The material in this section is a modified version of
Ref. 22.

The finite volume KBI is provided by Eq. (1). It is first obtained
from the density fluctuations as a function of T, V , the chemical
potentials of all the species μ, and the size and the shape of the
volume V. In the grand-canonical ensemble, we can rewrite Eq. (1),

GV
ab(T, V , μ, shape) = V

⟨NaNb⟩ − ⟨Na⟩⟨Nb⟩

⟨Na⟩⟨Nb⟩
−

δab

ρGC
a

, (15)

where ρGC
a (T, V , μ, shape) = NGC

a (T, V , μ, shape)/V ≡ ⟨Na⟩/V is
the average number density of component a. The brackets ⟨. . .⟩
denote the ensemble average in the grand-canonical ensemble.
Equation (15), as well as its formulation for the grand-canonical
ensemble, is the same for small and large volumes. Equation (15) and
further equations in this section are completely general. In particu-
lar, they do not include any assumptions about the pair correlation
function. In this section, we restrict most of the discussion to systems
controlled in the grand-canonical ensemble.

Following Kirkwood and Buff, we introduce an auxiliary
matrix, which is equal to the particle number correlation matrix BGC

ab .
In the grand-canonical ensemble, the matrix elements are defined by

BGC
ab (T, V , μ, shape) ≡

1
V
[⟨NaNb⟩ − ⟨Na⟩⟨Nb⟩]

= ρGC
a ρGC

b GV
ab(T, V , μ, shape) + ρGC

a δab. (16)

This results in

BGC
ab (T, V , μ, shape) =

kBT
V

∂⟨Na⟩

∂μb
= kBT

∂ρGC
a

∂μb
. (17)

All elements BGC
ab are functions of (T, V , μ) and system shape.

Both matrices GV
ab and BGC

ab are symmetric. The equation applies to
small systems, also those that are not isotropic.

Kirkwood and Buff1 next defined the auxiliary matrix AGC
ab . For

environmental variables (T, V , NGC
) and given shape, we obtain

AGC
ab (T, V , NGC, shape) = βV(

∂μb

∂NGC
a
)

T,V ,NGC
a

= β(
∂μb

∂ρGC
a
)

T,V ,ρGC
a

, (18)

where

NGC
a ≡ (N1, . . . , Na−1, Na+1, . . . , Nk)

GC

≡ V(ρ1, . . . , ρa−1, ρa+1, . . . , ρk)
GC
≡ VρGC

a . (19)

The A and B matrices are each other’s inverse, meaning that

∑
b

BGC
ab AGC

bk = δak. (20)

From the symmetry of BGC, we conclude that also AGC is symmetric.
The so-called matrix of thermodynamic factors ΓGC can now be
obtained from AGC by

ΓGC
ab (T, V , NGC, shape) ≡ ρGC

a AGC
ab (T, V , NGC, shape)

= βNGC
a (

∂μb

∂NGC
a
)

T,V ,NGC
a

= βρGC
a (

∂μb

∂ρGC
a
)

T,V ,ρGC
a

. (21)

We have thus obtained the thermodynamic factors as functions
of (T, V , NGC, shape) in a few steps directly from particle fluctu-
ations. Other thermodynamic properties can be found likewise.3,22

The formulas above reduce for a pure component to Ref. 3,
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B11 = ρ2
1G11 + ρ1, (22)

κT =
1 + ρ1G11

kBTρ1
, (23)

(
∂μ1

∂N1
)

T,V
=

kBTN1

1 + ρ1G11
. (24)

Here, κT is the isothermal compressibility and ρ1 is the density of the
component. Ben-Naim3 provides these relations for the thermody-
namic limit only, but it is important to note that these relations are
also valid for any finite volume.

For a binary mixture, the corresponding information is
obtained from the following equations:

η = ρ1 + ρ2 + ρ1ρ2(G11 +G22 − 2G12), (25)

ζ = 1 + ρ1G11 + ρ2G22 + ρ1ρ2(G11G22 −G2
12). (26)

In terms of these quantities, we have

Bab = ρaρbGab − δabρa, (27)

κT =
ζ

kBTη
, (28)

V1 =
1 + ρ2(G22 −G12)

η
, (29)

V2 =
1 + ρ1(G11 −G12)

η
, (30)

where Vi = (∂V/∂Ni)T,p,Ni
is the partial molar volume of compo-

nent i at constant pressure, p. These relations also apply to a small
system with a finite volume. Ben-Naim also provides the inverse
relations.3 Thermodynamic properties can be, thus, computed from
KBIs, but KBIs can also be computed from thermodynamic prop-
erties both for large and small systems. In summary, we have
explained how thermodynamic properties, also for small systems,
can be computed from KBIs, and how KBIs can be computed from
thermodynamic properties.

From the symmetry of the AGC-matrix, it follows that
ΓGC

ab ρGC
b = ΓGC

ba ρGC
a . The thermodynamic factors can be used to

understand solute and solvent properties of small volumes of
arbitrary shape, i.e., fluid mixtures in confinement.

For completeness, we also provide the corresponding results
for the microcanonical (MC), and the canonical ensembles (C), to
indicate that they are different,

ΓMC
ab (U, V , N, shape) ≡ ρaAMC

ab (U, V , N, shape)

=
Na

kBTMC (
∂μMC

b
∂Na
)

U,V ,Na

=
ρa

kBTMC (
∂μMC

b
∂ρa
)

U,V ,ρa

(31)

and

ΓC
ab(T, V , N, shape) ≡ ρaAC

ab(T, V , N, shape)

= βNa(
∂μC

b
∂Na
)

T,V ,Na

= βρa(
∂μC

b
∂ρa
)

T,V ,ρa

. (32)

Inversions of the AMC and the AC matrices provide the BMC

(U, V , μMC, shape) and the BC
(T, V , μC, shape)matrices. The above

procedure is required, as these matrices are not directly obtain-
able from the fluctuations in particle numbers, unlike in the
grand-canonical ensemble, cf. Eq. (16).

We are finally in a position to explain how the Small System
Method7,8 can further be applied, in practice, to find system prop-
erties at any scale, away from the thermodynamic limit. For this, we
expand the property in question in the inverse characteristic length
L ≡ 3
√

V of the system, as explained by Schnell et al.7,8 From the par-
ticle number fluctuations, cf. Eq. (16), we obtain the matrix BGC,
which is expanded as follows:

BGC
(T, V , μ, shape) = B∞ + Bs 1

L
+ Bse 1

L2 + Bsc 1
L3 + ⋅ ⋅ ⋅ . (33)

All expansion coefficients depend on (T, V , μ) and the shape of
the volume as well. The number of terms needed in the expan-
sion depends on the system considered,22 the B exponents s, se, sc
stand for surface, edge, and corner contributions, respectively. The
reason to use the expansion of BGC in 1/L is that particle num-
ber fluctuations are additive. This improves the convergence in the
thermodynamic limit. The thermodynamic limit values of the KBIs,
G∞ab and B∞ab , are obtained from this expansion in 1/L. They depend
on the environmental variables (T, V , μ), but no longer on the shape.
The A∞- matrix and the corresponding thermodynamic factors
Γ∞ are found by inversion of the B∞ matrix. Kirkwood and Buff1

explained how we can find all thermodynamic properties of a mix-
ture in the large system limit. In this limit (only), we can change
from one to another set of environmental variables using Legen-
dre transforms. Away from this limit, Legendre-Fenchel transforms
have shown to be useful.40

In this section, we have shown how the formulas central to KB
theory also can be used to obtain thermodynamic data for small sys-
tems. The procedure presented has to a large extent not yet been
applied. Several systematic investigations may be worth while pursu-
ing. For pure systems, one may consider the effect of shape variation
on various properties, while for mixtures, the inverse size of the
volume is expected to influence thermodynamic properties.

IV. APPLICATIONS AND PERSPECTIVES
The analysis of molecule fluctuations in a system in terms of

thermodynamic properties and its link with the structural proper-
ties through KBIs, and RDF, is one of the first and major results
of statistical mechanics. The possibility to simulate, explore, vali-
date, and use these properties has been proposed since emergence
of classical molecular simulations. A lot has been done to obtain
access to the RDFs in an infinite range with good accuracy, as sum-
marized in previous sections. Since ten years, it has been shown
that the approach of KBIs to thermodynamic limit follows a well-
defined size-dependence. The use of this dependence offers an effi-
cient method, the SSM, to extrapolate small system thermodynamic

J. Chem. Phys. 157, 130901 (2022); doi: 10.1063/5.0106162 157, 130901-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

properties to the thermodynamic limit. Furthermore, it gives the
possibility to investigate the physical interpretation of the KBI and
related properties whatever the size range. Beyond the number
of particle fluctuations (KBI), energy fluctuations also show this
dependence and were used to get access to partial molar energies
and enthalpies.41 It offers new statistical tools that can be used to
investigate challenging systems and phenomena.

KBI was built by Kirkwood and Buff as a solution theory that
can be applied to pure systems and to mixtures. It is well adapted
to analyze liquid systems and, in particular, to get access to the
properties of both the whole system and individual species. In the
context of solution theory, the applications are very broad and
we will restrict ourselves to underline its importance in the con-
text of transport properties for the determination of the diffusion
coefficients. A review of other applications of KBI is provided in
Ref. 35.

As was shown in Sec. III, the KB theory has a strong statistical
basis and the question of applying KBIs to other type of systems,
such as heterogeneous ones, is well opened. For example, in the
case of hydrophobic drugs, Shimizu and Nagai Kanasaki in 201918

investigated the solute-hydrotrope affinity and its consequences on
the balance between self-aggregation and solubilization. Different
authors19–21 discussed the effect of the cosolvent on the protein
stability using KBIs as efficient tools. Tripathy et al. in 202017 studied
the water density fluctuations around a generic hydrophobic poly-
mer chain hydration shell and were able to compute the hydration
shell compressibility using the SSM approach. Each type of systems
has specificities that need to be taken into account in order to apply
properly KB theory. In the following, we will restrict to give some
insights and perspectives on the concept of finite volume KB the-
ory, we will illustrate and discuss the use of KBIs on confined and
adsorbed systems and on solids.

A. Self and collective diffusion coefficients
in fluids and their finite-size effects

An important application of Kirkwood–Buff integrals is their
use in computing transport diffusion coefficients from Molecular
Dynamics (MD) simulations.39,42–44 Transport diffusion coefficients
are used to describe the transport of species due to a gradient in
concentration or chemical potential. The thermodynamic driving
force for such mass transfer is the gradient in chemical potential,
but in experiments and MD simulations one only has direct access
to concentration gradients. Converting gradients in concentration to
gradients in chemical potential requires partial derivatives of activity
coefficients, which can be computed directly from Kirkwood–Buff
integrals.

1. Finite-size effect for self-diffusion
In the limit of very low concentrations, the process of trans-

port diffusion reduces to self-diffusion.45 Self-diffusion describes the
motion of individual molecules in a system as a function of time.25 It
is well known that computed self-diffusivities have finite-size effects,
i.e., for the same thermodynamic state the value of the computed
self-diffusivity changes with system size.46–49 In 1993, Dünweg and
Kremer47 and later in 2004, Ye and Hummer derived the following
equation for the finite-size-dependence of self-diffusivities in three-
dimensional cubic systems with periodic boundary conditions based
on hydrodynamic arguments,48

D∞self,a = DL
self,a +

kBTξ
6πηL

= DL
self,a +DYH, (34)

in which D∞self,a is the self-diffusivity of species a in the ther-
modynamic limit, DL

self,a is the computed self-diffusivity of a
system with simulation box length L (and volume L3), and η
is the viscosity of the system (which does not depend on L).
The constant ξ has the dimensionless value of 2.837 298 for peri-
odic cubic simulation boxes. Expressions for finite-size effects of
self-diffusivities in confinement and rotational diffusion are also
available.50–52

2. Collective diffusion
Collective diffusion (or transport diffusion) describes the trans-

port of a large collection of molecules due to a driving force, e.g.,
a gradient in concentration or chemical potential.45,53,54 The most
well-known approach for transport diffusion is generalized Fick’s
law. For an n-component system in a molar reference frame, the
diffusion flux Ja for component a equals45

Ja = −ct

n−1

∑
b=1

Dab∇xb, (35)

in which ct is the total molar concentration, xb is the mole fraction of
component b, and Dab are the Fick diffusion coefficients. In a binary
system (n = 2), there is a single Fick diffusion coefficient D that
does not depend on the choice of the reference frame. We refer to
Refs. 53 and 55 for other reference frames.

An alternative formulation for multicomponent diffusion is
the Maxwell–Stefan (MS) approach, in which gradients in chemical
potentials are considered as driving forces (instead of concentration
gradients),45

−
1

RT
∇T,Pμa =

n

∑
b=1,b≠a

xb(ua − ub)

–Dab
, (36)

in which R is the universal gas constant, ∇T,Pμa is the gradient in
chemical potential of component a at constant temperature and
pressure, and ua is the average molar velocity of component a. For
an n-component system, there are n(n − 1)/2 Maxwell–Stefan dif-
fusion coefficients, which (unlike the Fick diffusivities Dab) are sym-
metric, i.e., –Dab = –Dba. MS diffusion coefficients can be computed
from both equilibrium and non-equilibrium Molecular Dynamics
simulations.42 The Fick and Maxwell–Stefan approaches describe
the same physical phenomena, so their diffusion coefficients Dab and
−Dab are related. The Fick diffusivities in a molar reference frame are
obtained from45

[D] = [Δ][Γ], (37)

in which the matrix [Γ] is the so-called matrix of thermodynamic
factors for diffusion56 and [Δ] is a matrix function of MS diffusion
coefficients.

The matrix [B] is defined by the inverse of matrix [Δ], so
[B] = [Δ]−1. MS diffusion coefficients are related by the elements of
the matrix [B] according to

J. Chem. Phys. 157, 130901 (2022); doi: 10.1063/5.0106162 157, 130901-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

Baa =
xa

–Dan
+

n

∑
j=1,b≠a

xb

–Dab
, (38)

for a = 1, 2, . . . , (n − 1) and

Bab = −xa(
1

–Dab
−

1
–Dan
), (39)

for a, b = 1, 2, . . . , (n − 1) and b ≠ a. The resulting expressions for
MS diffusion coefficients of binary, ternary, and quaternary systems
can be found in Refs. 42, 43, and 57.

The elements of matrix of thermodynamic factor for diffusion,
[Γ], are53

Γab = δab + xa(
∂ ln γa

∂xb
)

T,p,Σ
, (40)

in which γa is the activity coefficient of component a. The symbol
Σ is used to point out that the partial derivative of the logarithm of
the activity coefficient is performed at constant mole fractions of all
other component in the system, except for the n-th component. It
is important to note that the thermodynamic factor for diffusion,
Eq. (40), is defined differently than the thermodynamic factor as
defined in Eq. (21). The main difference is that the quantities that
are kept constant in the differentiation are different. Both defini-
tions are widely used in the literature, so it is important to make a
clear distinction. It is important to note that for binary and multi-
component systems, the derivatives of Eq. (40) follow directly from
Kirkwood–Buff coefficients.3 For various activity coefficient models
(i.e., ln γa as a function of composition), expressions for Γab are avail-
able from Ref. 56. For a binary system, the thermodynamic factor for
diffusion equals

Γ = 1 + x1(
∂ ln γ1

∂x1
)

T,p
= 1 + x2(

∂ ln γ2

∂x2
)

T,p
. (41)

The thermodynamic factor for the diffusion of binary systems fol-
lows directly from the Kirkwood–Buff integrals according to Ref. 3,

Γ = 1 −
ρ1ρ2Ω12

ρ1 + ρ2 + ρ1ρ2Ω12
, (42)

in which ρa = Na/L3 is the number density of species a and the
auxiliary quantity Ω12 is defined as

Ω12 = G11 +G22 − 2G12, (43)

and Gab is the Kirkwood–Buff integral in the thermodynamic limit.
Explicit expressions for Γab for ternary and quaternary systems can
be found in Refs. 14 and 43. The value of the thermodynamic fac-
tor for diffusion describes how much molecules of species 1 and 2
like each-other, compared with the 1 − 1 and 2 − 2 interactions. A
condition for thermodynamic stability of binary systems is Γ > 0.45

Close to the value Γ = 0, the system will demix in the individual
components.

3. Finite-size effects for collective diffusion
in binary systems

In binary systems, there is only a single Fick diffusion coef-
ficients D and a single MS diffusion coefficient −D12. The Fick
diffusivity D equals

D = Γ–D12. (44)

Jamali et al. have developed a phenomenological finite-size correc-
tion for MS diffusivities in binary systems,58

–D∞12 = –DL
12 +

1
Γ

kBTξ
6πηL

= –DL
12 +

DYH

Γ
, (45)

in which DYH is the YH correction [Eq. (34)]. From Eq. (44), the
finite-size correction for binary Fick diffusivities equals

D∞ = DL
+DYH. (46)

This means that the YH correction should be directly applied to
Fick diffusivities (as is done for self-diffusivities), and the corre-
sponding finite-size effect for the MS diffusivity differs by a factor
1/Γ. Therefore, finite-size effects of computed MS diffusivities can
be very large if Γ is small, i.e., close to demixing conditions. For
binary systems, the thermodynamic factor for diffusion can be cal-
culated by computing finite-size effects of transport properties: the
viscosity of the system follows from the finite-size-dependence of the
self-diffusivities, and the thermodynamic factor for diffusion follows
from the finite-size-dependence of the computed MS diffusivities.
This could serve as an independent check for Γ computed from KBIs.
The finite-size-dependence of diffusion coefficients for systems with
three or more components is discussed in Refs. 49 and 59.

B. Application of nanothermodynamics
to confined fluids

The expansion expressed by Eq. (33) originates in the nano-
thermodynamic theory of Hill.23 It derives from the way Hill
includes shape and size as a variables in the thermodynamic descrip-
tion of small systems.24 Such systems are not extensive in Gibbs
sense, but extensivity in the description can be restored by taking
an ensemble of small systems into account. By doing this, Bedeaux
et al.22 were able to find scaling laws, characteristic for the ensemble
in question. For instance, in the description of porous media, a scal-
ing law was derived from the grand potential, giving the difference
of the so-called integral pressure and the normal (differential) pres-
sure times the volume in terms of the subdivision potential of the
ensemble.60–62 The difference between the integral and differential
pressures is related to the disjoining pressure.61 The law was studied
for slit pores and cylindrical pores and a first example of a simple
porous medium. While Legendre transforms apply to ensembles of
large systems only, it was found that Legendre-Fenchel transforms
were useful in two cases.40 Whether or not they are generally valid
remains to be investigated.

Clearly, there are new tools becoming available and “new
thermodynamics” at the nanoscale waiting to be explored. This
applies to ensembles of varying sets of control variables, to particu-
lar shapes and sizes, as well as to other small scale phenomena, where
classical approaches find their limits.

J. Chem. Phys. 157, 130901 (2022); doi: 10.1063/5.0106162 157, 130901-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

C. Application to surfaces
An important class of phenomena that relates directly to con-

finement is adsorption on a surface. For molecules adsorbed on a flat
surface, a two dimensional (2D) KBI can be easily determined using
the 2D number fluctuations of a surface or simply knowing the 2D
surface RDF. In such a case, the weight-function w has a different
expression9 than Eq. (10), for a circular surface we have

w(r, L) = 4r(arccos(x) − x(1 − x2
)

1/2
), x ≡ r/L. (47)

It should also be pointed out that for the specific case of an
adsorbed layer on a surface, which is in chemical equilibrium with its
environment, grand-canonical conditions apply, and canonical con-
dition corrections should not be used. As was illustrated in Ref. 63,
such an approach provides a direct way to estimate the chemical
activity of adsorbed molecules on flat surfaces. Using a 3D approach,
it has also been possible to get access to the adsorption properties
of molecules adsorbed in zeolites.8,64 The case of curved surfaces
should, however, be dealt with using finite surface KBI.65

D. Extension of KBI theory to solids
The KB theory is a major theory of solutions and has been used

extensively in liquid solutions. As the theory relies only on general
statistical mechanical relations, it should also be valid and useful
for the study of solid solutions. However, the KB theory was not
applied to solids until very recently, probably because RKBI diverges
in solids. This is related to the fact that in a crystal, the oscillations
of the RDF decay very slowly with interatomic distance, because the
crystal is periodic and so the atomic positions are correlated with
arbitrary distance. The divergence of the RKBI is unphysical as can
be seen by considering the compressibility equation,

1 + ρG∞ = ρkBTκT , (48)

which relates the KBI G∞ to the isothermal compressibility κT ,
where ρ is the number density. Since compressibility of solids is
finite, G∞ is also finite, so KBIs should converge in the limit V →∞.
This is indeed the case, if the finite-volume KBI is used instead of
the RKBI, as was recently shown by Miyaji et al.38 and Krüger.66

Figure 2 shows the convergence properties of the running KBI and
the finite-volume KBI for a perfect fcc crystal at zero temperature.
The RDF is shown in (a). The running KBI (b) has huge oscilla-
tions whose amplitude increases linearly and the integral diverges.
In sharp contrast, the finite volume KBI (c) converges to −1/ρ,
which is the correct theoretical value at T = 0, as can be seen from
Eq. (48).

The KB theory exploits the fact that a fluid is homogeneous and
isotropic, which implies that the PDF depends only on the particle
distance and reduces to the radial distribution function (RDF). A
crystalline solid is neither homogeneous nor isotropic, so the PDF
and RDF are, in principle, different. An obvious solution to this
problem consists in going back to Eq. (1), which is valid in any
system. However, this would make the KBI method numerically
much more demanding. Under certain assumptions, KB theory can
be applied to solids in the same way as in liquids.38,66,67 This is the
case of polycrystal, which has the same symmetry as a fluid, i.e., it is

FIG. 2. (a) RDF of a perfect fcc lattice with nearest neighbor distance 1, as a
histogram plot with bin size Δr = 0.05. The blue line indicates the uncorrelated
limit, g = 1. (b) Running KBI G̃ L. The blue dotted lines are a guide to the eye
(y = ±10L). (c) Finite volume KBI GV for a sphere of diameter L. The blue line
is the exact, infinite volume value G∞ = −1/ρ with ρ =

√

2. In the inset, GV is
plotted over 1/L. The red line is a linear fit, y = G∞ + α/L with α = ρ/3.

homogeneous and isotropic. Krüger66 has applied the KB theory to a
monoatomic, harmonic crystal. The obtained isothermal compress-
ibility agrees perfectly with continuum theory (Newton–Laplace
equation). This proves that the compressibility equation [Eq. (48)]
is exactly valid in harmonic solids with isotropic, linear phonon
dispersion, provided that G∞ is calculated using finite-volume KBI.

Miyaji et al.38 have presented the first numerical application
of KBIs to solids with a realistic model, namely, fcc argon with a
Lennard-Jones potential. While RKBI strongly diverged, the finite-
volume KBI converged for all temperatures. Compared with the
liquid state, however, the convergence is very slow, which makes
extrapolation to the thermodynamic limit difficult. To solve this
problem, Miyaji et al.38 introduced a convolution of the RDF, which
leaves the infinite volume integral (G∞) unchanged. The point-like
particles in the usual definition of the RDF are replaced by spheres
of finite diameter σ and constant density 6/(πσ3

). The parameter σ
can be chosen arbitrarily, without changing the value of G∞. The
corresponding RDF can be written as a convolution,

g̃(r) = ∫
r+σ

max(0,r−σ)
g(r′)χ(r′, r)dr′, (49)

where g(r) is the original RDF and the convolution function χ(r′, r)
has a simple analytic form.38 When choosing the value of σ in the
order of the average particle distance, the convoluted RDF g̃(r) is
extremely smooth, and the convergence of the KBI is dramatically
improved. This method was applied to solid argon for temperatures
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between 15 and 75 K. KBIs could be computed with good accuracy
and G∞ was converged to better than 1%. The computed isother-
mal compressibility from KBIs was somewhat underestimated but
its temperature dependence agreed very well with the experiment.
Recently, Miyaji et al.68 presented the first application of the KB the-
ory to a solid solution, namely, ArxXe1−x for x < 0.1 at temperatures
around 80 K. The isothermal compressibility of the mixture, the par-
tial molar volumes of Ar and Xe, and the thermodynamic factor
Γ were obtained from KBIs using Monte Carlo simulations. Addi-
tionally, the activity coefficients of each species were computed by
integrating Γ. The analysis of the thermodynamic results evidenced
the emergence of a liquid state around x ≈ 0.1.

In summary, it was shown that the KB theory can be applied
to solids, but only if the finite-volume KBIs are used instead of the
RKBI. Both single atom crystals and solid solutions were studied suc-
cessfully, but a few problems remain to be solved. The systematic
deviation in the isothermal compressibility needs to be understood
and corrected in a non-empirical way. The difference might be
induced by a small shift of the simulated RDF, which converges very
slowly in crystals. In addition, the assumption that solids can be
described by a homogeneous, isotropic statistical ensemble should
be critically reexamined. It is hoped that the possibility to compute
KBIs in solids will open up many opportunities for thermodynamic
studies of solid condensed materials.

V. CONCLUSIONS
This paper presents a perspective of our contribution to the

KB theory. It emphasizes the finite volume dependence of KBIs and
sheds light on its physical meaning. The linear 1/L size-dependence
of KBIs is an important property that has been used to extrapo-
late KBIs to the thermodynamic limit without knowing the RDF
to infinite size, the so-called small system method. In this limit,
the KB theory provides a direct access to thermodynamic quantities
such as the thermodynamic factor, Γ, which can be understood as a
measure of non-ideality. This quantity is crucial to compute accu-
rate mutual diffusion coefficients. We presented new applications
and perspectives for surfaces, confined systems, and solids. This last
is particularly promising since it offers an efficient route to com-
pute partial molar quantities of solid mixtures that are difficult to
access otherwise. Below the thermodynamic limit, the thermody-
namic relations have to be rewritten by introducing new concepts
such as those originated from nanothermodynamics. KBIs can be
considered as a key function for this purpose because they relate to
clear thermodynamic quantities whatever the size and shape of finite
volume.

To conclude, it is important to underline that KB theories pro-
vide a rigorous thermodynamic background that can be applied to
complex systems both at the small and large scales. The recent devel-
opments enlarge its domain of application to more complex ones
and give new useful statistical tools to better understand dynamic
phenomena such as nucleation or confinement.
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