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Battle of the Leakage Detection and Isolation Methods
Stelios G. Vrachimis1; Demetrios G. Eliades2; Riccardo Taormina3; Zoran Kapelan4;
Avi Ostfeld, F.ASCE5; Shuming Liu, Aff.M.ASCE6; Marios Kyriakou7; Pavlos Pavlou8;

Mengning Qiu9; and Marios M. Polycarpou10

Abstract: A key challenge in designing algorithms for leakage detection and isolation in drinking water distribution systems is the
performance evaluation and comparison between methodologies using benchmarks. For this purpose, the Battle of the Leakage Detection
and Isolation Methods (BattLeDIM) competition was organized in 2020 with the aim to objectively compare the performance of methods for
the detection and localization of leakage events, relying on supervisory control and data acquisition (SCADA) measurements of flow and
pressure sensors installed within a virtual water distribution system. Several teams from academia and the industry submitted their solutions
using various techniques including time series analysis, statistical methods, machine learning, mathematical programming, met-heuristics,
and engineering judgment, and were evaluated using realistic economic criteria. This paper summarizes the results of the competition and
conducts an analysis of the different leakage detection and isolation methods used by the teams. The competition results highlight the need for
further development of methods for leakage detection and isolation, and also the need to develop additional open benchmark problems for this
purpose. DOI: 10.1061/(ASCE)WR.1943-5452.0001601. © 2022 American Society of Civil Engineers.

Introduction

Drinking water distribution networks (DWDNs) are susceptible to
infrastructure failures, which may lead to water losses. The global
average nonrevenue water (NRW) is 30%, with an estimated annual
cost of USD 39 billion (Liemberger and Wyatt 2019). A significant
part of NRW is due to background leakages and pipe bursts, which

may occur anywhere within the distribution network. Background
leakages are typically difficult to detect because of their small
size, whereas pipe bursts are easier to locate because they are
of larger size and may appear on the surface. The early detection
and localization of any leakage event is crucial because this re-
duces the time required for addressing the event and therefore
reducing the risk of further infrastructure degradation, contamina-
tion events, and consumer complaints. Leakage diagnosis in water
distribution systems has attracted a great deal of attention from
both practitioners and researchers over the past years (Chan et al.
2018). The process of leakage diagnosis can be separated into
leakage detection, which focuses on identifying the existence of
a leak in the network; and leakage localization, which aims to
provide an approximate location of leakages given the available
measurements. A recent review paper (Chan et al. 2018) classifies
leakage detection methodologies into passive and active methods.
Passive methods (also referred to as equipment-based, hardware,
or external methods) require the deployment of specialized equip-
ment, such as acoustic sensors or ground-penetrating radars, at
areas that are suspected of leakage. Active methods (also referred
to as internal or software methods) are methods that are based on
the presence of permanently installed sensors that continuously
monitor the system for leakages. The latest developments in hy-
draulic sensor technology and online data acquisition systems
have enabled water companies to deploy a larger number of more
accurate pressure and flow devices with less cost. These data can
be used to monitor the system in real time and develop method-
ologies that use the data to detect and prelocalize leaks using ac-
tive methods. Prelocalization is the process of defining an area in
which the leak exists instead of pinpointing exactly its location.
This research area has witnessed a significant interest, as indicated
in recent review papers (Li et al. 2015; Chan et al. 2018; Zaman
et al. 2019).

The term model-based leakage diagnosis is used to describe
methodologies that utilize a model of the DWDN (also referred
to as a numerical model) and sensor measurements to estimate
the steady-state hydraulic conditions in the network (Vrachimis
et al. 2018b). The operating principle behind model-based leakage
detection, as suggested by Pudar and Liggett (1992), is to find
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discrepancies of measurements to their estimates obtained by the
network model, which would indicate the existence of a leakage.
Typically, model-based methods utilize a larger number of pres-
sure sensors than flow sensors because they are cheaper and easier
to install and maintain (Pérez et al. 2011). However, DWDNs are
large-scale systems and the number of sensors used in practice is
still small compared to the system size. Moreover, to enhance
leakage diagnosis, methodologies for optimal placement of pres-
sure sensors are used (Farley et al. 2010; Casillas et al. 2013;
Cuguero-Escofet et al. 2017). Finally, the consideration of meas-
urement and model uncertainties is important when using these
methods to determine if the network is operating in a normal state
(Vrachimis et al. 2019) and should be taken into account before
making a decision about the occurrence of a leakage in the net-
work (Vrachimis et al. 2018a).

Leakage localization methods are typically model based be-
cause of the limited information provided by the small number of
sensors; one of the first representative examples is the work in Wu
et al. (2009), where the authors developed a model-based ap-
proach for leak localization that was applied to a large real system.
Another interesting model-based approach applied on real systems
is found in Sophocleous et al. (2019), where the authors formu-
lated an optimization problem to perform leakage diagnosis and
deal with the dimentionality of the problem using search space
reduction to reduce decision variables. Some approaches relate
the acquired measurements with the simulated output from many
simulated leakage scenarios on different locations of the network
(Farley et al. 2010; Goulet et al. 2013); the geographical mapping
of each model component can then be used to indicate the prob-
ability that a zone contains a leakage (Perez et al. 2014). Research-
ers have also used pressure residual analysis by creating a system
pressure sensitivity matrix to identify the location of leaks based
on the assumption of a single leakage occurring in the system
(Pérez et al. 2011; Cuguero-Escofet et al. 2017). A more recent
approach considers modeling uncertainties to create a set-bounded
model of the system and then incorporates sensor measurements
in an optimization-based framework to detect and prelocalize leak-
ages using the concept of model invalidation (Vrachimis et al.
2021).

Data-driven methods (also referred to as nonnumerical model
methods) do not require a model to perform detection. Leakage
detection methodologies typically follow a data-driven approach;
Wu and He (2021) provided the latest review on this topic, and
presented a practical approach for anomaly event detection
(including but not limited to leaks), classification, and evaluation.
Some approaches may require large amounts of reliable training
data where the events are labeled by the operators or experts and
they may perform poorly when data are not available (Li et al.
2015). An example of a data-driven approach is found in Mounce
et al. (2002), where the authors introduced artificial neural net-
works (ANNs) for burst detection and continued to extend their
work in the following years (Mounce et al. 2010). Another ap-
proach is found in Eliades and Polycarpou (2012), where the au-
thors proposed an algorithm that analyzes the discrete inflow
signal of a district metered area (DMA) by using an adaptive
approximation methodology for updating the coefficients of a
Fourier series and detects leakages by utilizing the cumulative
sum (CUSUM) algorithm. Soldevila et al. (2016) used a mixed
model-based and data-driven approach to improve performance.
The study in Wu and Liu (2017) provides a review of data-driven
approaches for burst detection. The study concludes that these ap-
proaches are promising for use in real-life burst detection; how-
ever, reducing false alarms is still an important issue. Moreover, a

comprehensive performance evaluation procedure, especially
under different network configurations, might be necessary.

Leakage diagnosis methods are commonly evaluated on pri-
vate commercial data sets (Chan et al. 2018), and as a result it
is not possible to objectively compare different methods in their
ability to detect and isolate leaks. Moreover, data from real sys-
tems may not be readily available, while many aspects of the
system operation are unknown. For example, information about
the exact location, magnitude, and time profile of leakages is typ-
ically unknown, but is crucial when evaluating leakage diagnosis
methodologies. The middle ground between evaluating algorithms
on real systems and having all the available information about the
system is the development of a realistic simulation benchmark
built on the expertise of practitioners, of which the operation re-
sembles that of a real system. Recently, a benchmark leakage de-
tection data set named LeakDB has been developed (Vrachimis
et al. 2018c); it was created using the Water Network Tool for
Resilience (WNTR) tool (Klise et al. 2017). The data set comprises
data generated from benchmark networks and uses pressure-
driven demands and realistic leakage modeling (van Zyl et al.
2017). In this work, a realistic open benchmark for leakage detec-
tion and localization is developed and used in a “battle” (Taormina
et al. 2018) to allow different teams to evaluate their methods in a
unified way.

The Battle of Leakage Detection and Isolation Methods
(BattLeDIM) was initially organized in 2020 as part of the Com-
puting and Control for the Water Industry and Water Distribution
Systems Analysis (CCWI/WDSA 2020) conference (which was
postponed due to the COVID-19 pandemic). The competition
aimed to objectively compare the performance of methods for the
detection and localization of leakage events, relying on supervisory
control and data acquisition (SCADA) measurements of flow and
pressure sensors generated using a realistic virtual city, which was
based on a real water distribution network in Cyprus. The overall
objective was to detect as many leakages as possible, as fast as pos-
sible, and as close to the source as possible, while avoiding false
alarms. Participants could use different types of tools and methods,
including (but not limited to) engineering judgment, machine learn-
ing, statistical methods, signal processing, and model-based fault
diagnosis approaches. In total, 18 teams from universities and
industry around the world submitted their solutions to the compe-
tition, and the results were presented on an online workshop organ-
ized on September 3, 2020.

The main contributions of this work are (1) to introduce a new
benchmark network named L-Town, developed for the purposes of
the competition, along with a benchmark SCADA data set; (2) to
provide an overview of the different leakage and isolation method-
ologies presented at the BattLeDIM competition; and (3) to analyze
their results with respect to different objectives by proposing a
comprehensive evaluation procedure.

L-Town Benchmark Network

In this section, we introduce a new benchmark water distribution
network, which we refer to as L-Town. This is a city-scale model
inspired by a coastal city in Cyprus that can be used for research
purposes. The network was suitably modified and redesigned for
security purposes. L-Town is part of the KIOS Virtual City Testbed,
an open software platform for simulating the SCADA operation of
different critical infrastructures, including water, power, telecom-
munications, and transportation systems.

© ASCE 04022068-2 J. Water Resour. Plann. Manage.
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Topology and Structure

The L-Town model, depicted in Fig. 1, is represented using the
EPANET version 2.2 (Rossman et al. 2020) input file format. It
has 782 junctions and 905 pipe segments of approximately
50 m length each and delivers drinking water to around 10,000 con-
sumers and industries. It comprises a network of steel pipes with a
total length of 42.6 km and roughness coefficients (C values) be-
tween 120 and 140. The L-Town network has a loop ratio of 25%, a
measure of complexity when solving the hydraulics of the network;
it indicates that 25% of the pipes have to be removed to eliminate
all loops from the network (Vrachimis et al. 2019). The node el-
evations range between 1.5 and 75 m above the sea level.

The water distribution network of L-Town receives water from
two reservoirs, and it was designed to provide pressure head of at
least 20 m to all of its consumers. The normal operating pressure in
the network ranges between 20 and 30 m. A pressure reduction
valve (PRV) was installed at the lower part of the town (Area B)
to help reduce background leakages. The network has different
pressure areas, and therefore exhibits different sensitivity to leak-
ages. PRVs were also installed downstream of the two main reser-
voirs to help regulate the pressure. A pump and a water tank were
installed in the higher part of the town (Area C) to provide suffi-
cient pressure to the consumers of that area. The tank has a diameter
of 16 m with a cylindrical shape. The pump was programmed so the
tank refills during the night and empties to Area C during the day.

The design decision to include pipes of 50 m length was based
on the following considerations: First, it is common for a real net-
work to have consumer demand locations at a 50-m interval; thus,
in this sense, the provided benchmark can be considered a detailed
version of a real network. Moreover, for the purposes of this com-
petition, it is more efficient to allow participants to define a labeled
pipe segment when localizing a leak instead of defining a long pipe

and the position of the leak on that pipe. Finally, the participating
teams can apply model reduction techniques to reduce the com-
plexity of the model and computational cost. This approach has
the benefit of allowing teams to showcase the ability of their meth-
odology to deal with complex network models. This would not
have been possible if a reduced model of the benchmark network
was already provided.

Water Demand Modeling

L-Town is assumed to be located in the northern hemisphere; thus,
higher water usage is expected around July and August, and lower
in December and January. No significant variations of water con-
sumption were observed during holidays or other special days.
During workdays (Monday to Friday), water consumption follows
a similar pattern, whereas during the weekend (Saturday and
Sunday), there is higher consumption during late hours as the result
of night life. Areas with industrial users do not follow the same
pattern of consumption.

For constructing the benchmark model, open geospatial data
were considered corresponding to the buildings of the actual
location. A clustering algorithm was implemented in Open Source
Geographic Information System (QGIS) to assign each building to
a network node, and the node population was assigned to be pro-
portional to the building area. This was computed using

dbi ¼
Xn
j¼1

ðαj
iβ

j
i Þγi ð1Þ

where dbi = base demand of node i; n = number of consumer types;
αj
i = percentage of the jth consumer type at the ith node; βj

i =
average amount of water consumed in m3=h for each m2 of a

Fig. 1. L-Town benchmark network.
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building; and γi = total building area corresponding to node i. In
this benchmark, three types of consumers (n ¼ 3) were considered:
residential, commercial, and industrial.

Each node has a unique demand pattern for each consumer
type based on the statistical characteristics of real metered data
from the area. Specifically, a Fourier series model was used to
approximate the demands (Vrachimis et al. 2018c), capturing sea-
sonality (weekly, yearly) as well as the uncertainties on demand
patterns (Fig. 2). The overall water consumption is the linear com-
bination of the base demands with the corresponding patterns.

The demand peaking factor, which is the ratio of the maximum
daily demand (MDD) to the average daily demand (ADD) in a
water system, was also considered in the design of demand pat-
terns. The ratio, based on observations from real systems, typically
ranges from 1.2 for very large water systems to 3.0 or even higher
for specific small systems. The demand peaking factor in L-Town
ranges between 1.5 and 2.0, given it is an average size system.

BattLeDIM Challenge Scenario

As part of the Battle of the Leakage Detection and Isolation
Methods, all participating teams were given the following artificial
scenario to establish the challenge:

In previous years, the utility of L-Town was experiencing a
large number of pipe breaks and water losses, affecting its
service quality. During 2018, a number of leakage events oc-
curred, which were detected and fixed by the water utility.
However, it is believed that a number of smaller leakages oc-
curred but not revealed. It is also assumed that some leakages
occurred abruptly, whereas others developed gradually, as
incipient events, from background leaks into pipe bursts.

To assist the L-Town water utility decision-making process, the
utility developed an EPANET-based nominal model of the distri-
bution network, in which base demands were assigned to nodes,
following historical billing data of proximity consumers. Moreover,
two nominal demand patterns were identified for residential and
commercial consumer types (with some discrepancies). The utility
believes that there might be some inaccuracies in the model,
e.g., with respect to the pipe roughness and pipe diameters.

In addition, the utility was not able to confirm the status of all the
valves in the network (i.e., whether they are open or closed).

The L-Town water utility is searching for a solution to help
them analyze the SCADA dataset, and detect leakage events as
fast as possible. In addition, it is crucial for the utility to have
an indication where approximately the leakage occurs, so that
the field workers can inspect those potential leaks using their
equipment.

The L-Town utility has created an open call for teams to dem-
onstrate their ability in detecting and localizing leakage events.
The teams are given a historical SCADA dataset along with infor-
mation related with the leakages detected and fixed by the utility
throughout 2018, to use for training purposes and for calibrating
their models. It is possible that more leakage events occurred
during 2018, however the utility was not able to detect and local-
ize them.

Throughout 2019, the utility conducted periodic surveys using
additional sensing equipment, pipe inspections and other methods,
and was able to detect and isolate all the leakage events that oc-
curred within that period. The most critical of these events were
repaired, however it was not possible to repair some of these leak-
ages due to financial reasons.

The overall goal of this competition, is to identify methods
which are able to detect and localize the leakage events that oc-
curred in L-Town in 2019, as fast as possible (with respect to time)
and as accurately as possible (with respect to their location), in or-
der to minimize their overall financial costs, both in water losses, as
well as due to the hours spent in isolating the leakage by the utility
staff. The L-Town utility will compare the different solutions and
select the best one based on that objective.

Scenario Generation and Available Data

To replicate the conditions of a real system, a SCADA data set was
synthetically generated using simulation to correspond to sensor
measurements from 2 years of system “operation.” For the gener-
ation of this SCADA data set, a virtual test-bed engine was de-
signed in Python, released under the European Union Public
License (EUPL) Open Source license. This test bed uses the
L-Town EPANET benchmark and incorporates a number of as-
sumptions with respect to the hydraulic solving, the leakage
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Fig. 2. Demand signal decomposition using Fourier series: (a) weekly periodic component; (b) yearly seasonal component; and (c) random
component.
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modeling, and the modeling of uncertainty as well as the modeling
of sensors.

Simulation and Data Set Generation Engine

The data set generation engine takes as input a structured file data-
set_configuration.yalm, which includes the start and end time of the
simulation, the leakages (including the start and end time, the leak
diameter, the type of the leakage, and its peak time), and the loca-
tions of the sensors [flow, pressure, automated metered readings
(AMRs), and level sensors].

The hydraulic simulations were executed using WNTR, a
Python package that supports pressure-driven demand simulations
and leakage modeling (Klise et al. 2017). Specifically, for the
pressure-driven demands, we computed a new demand for the
ith node DiðkÞ using the function fPDD, such that DiðkÞ ¼
fPDDðpiðkÞ; diðkÞÞ, where piðkÞ is the pressure and diðkÞ is the re-
quested demand at node i: If the computed pressure is piðkÞ < P0

then the demand is zero, i.e., DiðkÞ ¼ 0. If the pressure is piðkÞ >
Pf, then the demand equals the requested demand, i.e., DiðkÞ ¼
diðkÞ. Finally, in the case where the pressure is P0 ≤ piðkÞ ≤ Pf,
then the demand is calculated as DiðkÞ ¼ diðkÞððpiðkÞ − P0Þ=
ðPf − P0ÞÞδ. In BattLeDIM, we consider the following parameters:
P0 ¼ 7, Pf ¼ 25, and δ ¼ 0.5. The values for Pf and δ are the
default values used in WNTR, while the minimum pressure value
P0 ¼ 7 was increased from 3.5 to 7 m because this minimum
value was never observed in the L-Town network during the con-
sidered scenarios.

Using the pressure-dependent demand simulation, the node de-
mand DiðkÞ starts to decrease compared to the requested demand
diðkÞwhen the pressure is below Pf and goes to zero when pressure
is below P0.

Nominal and Real Models

In practice, it is difficult to have an accurate model of the real
system. For this reason, a nominal EPANET L-Town model
was provided to the BattLeDIM participants; however, a real
model (which was unknown to the competitors) was used to gen-
erate the SCADA data set. In general, the nominal model approx-
imates the real, with some uncertainties. The nominal model was
generated by randomizing parameters of the real L-Town network
using the EPANET-MATLAB Toolkit (Eliades et al. 2016), as
follows:
• Base demands: Base demands for each consumer type at each

node are randomized uniformly between�10% compared to the
real value.

• Demand patterns: Nominal residential and commercial patterns
are available; however, industrial patterns are not available. The
patterns used in the real model are unique for each node and may
differ significantly from the nominal patterns, while they also
include a significant noise component.

• Pipe parameter uncertainty: All pipe parameters (roughness,
length, and diameter) are randomized uniformly between
�10% of their real value. This randomization aims to represent
the uncertainty of hydraulic resistance, which is a function of all
the aforementioned pipe parameters. In reality, parameter uncer-
tainties may have different magnitudes. Typically, the most
uncertain parameter is pipe roughness, while pipe length and
diameter are less uncertain.

• Topological uncertainty: Two pipes (p37 and p251) were ran-
domly selected to be closed in the real network, whereas in
the nominal model they appeared to be open. The term topologi-
cal uncertainty is used here to describe the variability of the

topological graph of the network due to a pipe valve with un-
known status (open/closed). This can also be considered as op-
erational uncertainty because, typically, valves change status
during operations, such as repairs, that have taken place in
the network.

Sensors and Telemetry

We assume that there is one tank water level sensor, a total of three
flow sensors, one at the pump and one at each of the DMA entran-
ces, and 33 pressure sensors, all transmitting their measurements
every 5 min to the utility’s SCADA system. There are no time de-
lays in the data transmission and no lost packages. Pressure sensors
give an average value of the last 5 min, which mitigates the uncer-
tainty due to pressure transients in the system. In addition, 82
AMRs were installed in Area C for delivering water consumption
data directly to the SCADA system. Each AMR gives the aggre-
gated consumption of many users in the AMR area.

The locations of the pressure sensors are depicted in Fig. 3, and
the AMRs in Fig. 4. Sensor readings do not have errors nor time
delays. The simulated sensor readings are rounded to two decimal
points; in practice this reduces the amount of data sent over the
telecommunications network.

Leakage Modeling

We assume that the only faults affecting the system during the
2-year operation are background leakages and pipe bursts. Any
preexisting leakages in the network are assumed to be small rel-
ative to individual node demands and have been incorporated into
the pressure-dependent demands of the network. To model the
leakage outflow in the ith node, we assume the following general
model (Lambert 2001; Greyvenstein and van Zyl 2007; Cassa
et al. 2010):

liðkÞ ¼ LðkÞ½piðkÞ�ζ ð2Þ

where LðkÞ ¼ CAðkÞ ffiffiffi
2

p
ρζ , for which the discharge coefficient for

turbulent flow is C ¼ 0.75; AðkÞ = area of the leak hole which
may change in time; and ρ = fluid density (for water we assume
that ρ ¼ 1,000 kg=m3). For simplicity, we assume that the pipes
in L-Town are made of steel, with roughness coefficients ranging
between 120 and 140 (Hazen-Williams). Therefore, the exponent
related to the characteristics of the leak is assumed to be ζ ¼ 0.5.

A key aspect is the leakage magnitude and the time profile of the
leakages. There are three types of leaks in the system, categorized
depending on their magnitude:
1. Background leaks: Small leaks with size of 0%–5% of the

average inflow.
2. Medium pipe bursts: Pipe breaks with flow size of 5%–10% of

the average inflow.
3. Large pipe bursts: Pipe breaks with flow size above 10% of the

average inflow.
In general, the average system inflow for the benchmark is around

180 m3=h. The concept of background leaks is based on the
categorization presented in Lambert (1994); these are leakages that
may exist in the system undetected for a long period of time. In the
proposed benchmark, the smallest background leak was constrained
at 2.5% of the average inflow to enable their detection. The distinc-
tion between medium and large pipe bursts is made assuming the
latter are made visible and fixed more quickly by the water utility.

Moreover, the leak hole area AðkÞ can be time-varying. In the
case of abrupt leakage, the hole area is zero before the leakage start
time T0, and becomes A after that time
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AðkÞ ¼
�
0 k < T0

A k ≥ T0

ð3Þ

In the case of incipient leak, we assume that the leak hole area
AðkÞ gradually increases after T0 until it reaches A at time Tp

AðkÞ ¼

8>>>><
>>>>:

0 k < T0

A

�
k − T0

Tp − T0

�
T0 ≤ k < Tp

A k ≥ Tp

ð4Þ

Regarding the leak time profile, the following assumptions were
made: (1) background leaks can exist from the beginning of the
data set and continue until the end, or they can start at any given
time; (2) there are no large pipe bursts that started before the sim-
ulation time; and (3) background leaks can evolve into bursts
(incipient leaks), e.g., a background leak that may have started
as a small crack on a pipe may evolve into a large burst due to
the stress applied on the pipe by pressure transients.

Leakage Reporting

In practice, large leakages are easier to identify and fix because they
will be reported at some point by consumers or the utility staff. For
the data set leakages, we assume that large pipe bursts are detected
and fixed by the water utility if they reach a flow magnitude larger
than lj at time Tl. The time of detection Td is a time instance se-
lected randomly during a maximum period of 1 week after Tl. The
repair time Tr is also defined as a time instance defined randomly,
within 1 week after Td. After the leak is fixed, the area of the leak
hole becomes zero, i.e., AðkÞ ¼ 0; t > Tr. Specifically, large and
some medium-size leakages (above 15 m3=h) are fixed by the
water utility after a reasonable time selected at random, with
maximum delay of 2 months.

Fig. 3. Locations of pressure sensors in the L-Town network.

Fig. 4. Location of AMRs in Area C of the L-Town network.
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Leakage Event Simulation

All the leakage characteristics were selected randomly, with certain
constraints and assumptions:
• Based on the size of the network, statistically around 15 leakage

(background and burst) events should appear each year in the
network, with a maximum of 20 events. Eventually, we assume
14 events in the year 2018 and 2019 events in the year 2019. Four
background leaks in the year 2018 continued in the year 2019.
Only large pipe bursts are detected and fixed by the water utility.

• We assume that at most two pipe bursts can coexist in the net-
work during the examined periods. This is to enforce a wider
spreading of the leaks during the year.

• We assume that a leakage can be detected by an L-Town staff
member using acoustic loggers within 300 m radius of its loca-
tion. This is used in the evaluation of leakage isolation and is
based on actual feedback received by water utility operators
from the original city considered for the L-Town benchmark.

• We assume that in case leakages exist with overlapping
detecting radii, there is a minimum 2-week difference between
their start times. This is to ensure separability of the alerts during
the evaluation phase.
The final leakage locations for year 2018 and 2019 are found in

the Figs. 5 and 6, respectively. The time profile of the leakages in
2019 is depicted in Fig. 7.

BattLeDIM Data Sets

The BattLeDIM data sets are composed of the following files,
which are openly accessible via the Zenodo platform under the
FAIR principles:

• Configuration files: The data set configuration file indicates
the simulation period as well as the characteristics of the 33 si-
mulated leakages as part of BattLeDIM. It also specifies the sen-
sors to be included in the SCADA data sets. The file format
is YAML.

• SCADA data sets: These correspond to the SCADA measure-
ments during the 2-year period between January 1, 2018, at
00:00 and December 31, 2019, at 23:55, at 5-min time steps.
The SCADA data sets are comprised of the water tank level,
the flow sensors, the AMR measurements, and the pressure sen-
sors. The file format is CSV.

• Leakages: Table of times with respect to the leakage events of
BattLeDIM, indicating their outflows in m3=h. The file format
is CSV.

• Fixed leakages reports: This includes the repair times of pipe
bursts that were fixed in 2018 by the water utlity. The file format
is TXT.

• Network models: Two network models are provided: The real
model is the one used to generate the 2-year data sets, along with
all the demand patterns. It contains the real network parameters
and consumer demands. It does not contain any leakages. The
real network should be considered as “unknown.” The nominal
model should be used as the “known” model. This network is
provided with nominal parameters for all the system elements.
The nominal base demands for each node are based on average
historical metered consumption. Weekly demand profiles for
three consumer types (residential, commercial, and industrial)
are also provided; however, they do not capture the yearly sea-
sonality. Furthermore, the EPANET model parameters may be
different from the actual network parameters (e.g., diameters,

Fig. 5. Location of leakages in 2018 data set.
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Fig. 6. Location of leakages in 2019 data set.

Fig. 7. Evolution of leakages in 2019 data set.
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roughness coefficients), and this difference is no greater than
10% of the nominal values. The file format is INP.

Limitations

The main challenge in developing effective leakage diagnosis
algorithms is for them to be applicable in real systems and be able
to deal with the problems arising from the scarcity and reliability
of the data collected from the field. The aim of the proposed
benchmark is to offer a realistic simulation scenario built on the
expertise of practitioners that closely resembles real conditions. It
has the advantage that all the parameters and aspects of the system
operation are known, and thus it can be used to compare and
evaluate different methodologies. However, it has limitations and
differences from real systems, which are stated in this section to
advise caution to researchers and practitioners when using the
benchmark.

The realistic demands included in this benchmark were gener-
ated by analyzing demands from real networks into their compo-
nents and reproducing them by randomizing the components as
described in Vrachimis et al. (2018c). Real network demands
may vary compared to the proposed approximations. Moreover,
pressure-driven analysis is used to make the demands more realis-
tic; however, more research may be needed in selecting appropriate
values for the pressure-driven analysis parameters.

A realistic leakage modeling approach was followed in this
work by modeling pressure-dependent leakages on pipes, while
the leakage function is constructed such as to exhibit time vari-
ability with respect to the orifice size. However, the function de-
scribing leakage flow may vary in practice because data collection
about the size of leaks found in the field is a challenging task.
More realistic leakage functions than the one used in Eq. (2) have
been proposed in recent literature (van Zyl et al. 2017; Kabaasha
et al. 2020) and may be considered in future versions of this
benchmark.

A decision was made in the creation of this benchmark to not
include sensor time delays and errors. This was taken consciously
to avoid an extra dimension of complexity to a difficult competition
problem that includes large model uncertainties and small number
of sensors compared to the system size. Moreover, we wanted the
participants to focus on leakage diagnosis methodologies and not
on methodologies for data validation. However, data acquired from
real sensors may include significant errors and a number of mea-
surements may need to be discarded and reconstructed. The real-
time processing of data may be impeded by measurements arriving
at later time steps or never arriving at all.

This benchmark does not take into account events that may hap-
pen during and after repair works. Typically, repairs require the iso-
lation of network sections by closing valves, an action that may
cause pressure increase in the network. A typically observed phe-
nomenon is the increase of leakage flows in other parts of the net-
work during repairs or, in the worst cases, new pipe bursts. The risk
of causing new leakages during repairs was not taken into account
and should be considered when using this benchmark to test leak-
age diagnosis methodologies designed for application on real
systems.

The reward for detecting leakages is based only on the value of
water lost. However, the reward could be higher if indirect costs due
to water losses were taken into account. The indirect costs include
the acceleration of pipe deterioration, as well as third-party dam-
ages. Such effects are usually accounted for in the cost of water;
however, they are difficult to quantify and were not considered in
the benchmark.

Competing Leakage Detection and Isolation
Methods

In the following paragraphs, we provide a short overview of the
methodologies proposed by the competing teams.

The Cheng00 team (Cheng et al. 2020) resorted to a three-stage
approach involving simulation, ensemble multivariate change point
detection (EMCPD), and statistical analysis. Pressure and flow
residual time series were first obtained by comparing the SCADA
data sets with those of simulated normal operation, produced with
the provided benchmark model. The residuals were then analyzed
with EMCPD to obtain a rough estimate of the occurrence of leak
events in space and time. The final localization was performed after
interpolating nodal pressures around likely candidate positions
and by isolating the most likely sites with a two-sample one-sided
Student’s t-test.

The DandW team (Huang et al. 2020, 2022) proposed a
methodology that treats each area of the L-Town network in Fig. 1
separately. This method exploited the provided benchmark model
to estimate expected sensor readings during normal operations
and compute the residuals with respect to the provided SCADA
data. Sensitivity vectors were then computed for each pipe as
the Jacobian matrix of nodal pressures to pipe flows. The angle
method, which involves calculating the angle between the residual
vectors and the sensitivity vectors, was then used to isolate leaky
pipes. These are characterized by having the smallest angles.

The Leakbusters team (Daniel et al. 2020, 2022) tackled the
challenge with a high-resolution pressure-driven method for leak-
age identification and localization composed of two sequential
modules. In the first module, linear regression models were cali-
brated using data with no leaks to predict pairwise sensor pressure
readings. When fed with new SCADA data, the reconstruction error
between predicted and observed readings was tracked to identify
the start time of a potential leak and the location of its nearest sen-
sor. The second module used the start time and most affected sen-
sors reported by the first module to pinpoint leaky pipes relying on
an initial set of candidate pipes and the application of a simulation-
based optimization framework with iterative linear and mixed-
integer linear programming.

The CIACUA team (Saldarriaga et al. 2020) approached the
BattLeDIM problem by resorting to anomaly detection analysis
and a simulation-optimization framework involving EPANET and
genetic algorithms (GAs). Anomaly detection analysis was first
carried out by comparing SCADA data and the output of EPANET
models. If the error between any observed and predicted signals
passed a certain threshold, simulation-based optimization with GA
was used to find which location would best explain such discrep-
ancy, thus identifying the leaking pipe. Emitter equations were used
to simulate leaks in the EPANET model.

The Tsinghua team (Wang et al. 2020, 2022) employed a hybrid
approach where statistical methods were used in combination with
hydraulic modeling. Their scheme comprised three stages. In the es-
timation stage, empirical model decomposition (EMD) and vector
autoregressive models were used to estimate expected flow and pres-
sure in normal conditions. The residuals between these expected val-
ues and observed SCADA data were further processed in the
identification stage to place leaks in time and infer their size. In
the final localization stage, leaking pipes were isolated by a double
comparison between observed and simulated (EPANET) pressure
data for the week with the suspected leak and the one preceding it.

The Under Pressure team (Steffelbauer et al. 2020, 2022) also
employed a hierarchical approach made of three stages. Similar to
the Tsinghua team, in the first stage demand calibration for the en-
tire network was inferred from AMR data on Zone C using EMD.
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They also performed a calibration of the roughness coefficient
using a weighted least-squares problem with bounded constraints.
The second stage of Under Pressure’s approach entailed the crea-
tion of a dual hydraulic model for leak detection. In this dual model,
the pressure drops due to a leak translate into additional outflows to
virtual reservoirs connected to the pressure measurement nodes.
These time series, and the derived residuals, have a much better
signal-to-noise ratio, which facilitates detection and localization.
This is done in the third stage, where leaks were first identified
in time with the help of change detection methods (CUSUM, like-
lihood-ratio) and GA. The leaking pipe was then isolated based
on the computation of Pearson correlation between residuals of vir-
tual leak flows and pipe sensitivities, similar to what done by the
DandW team.

Fuzzy methods were at the core of the Zhiyun Shuiwu team
(Zhang et al. 2020). In the first stage, deep fuzzy mapping was used
to calibrate model demands from observations. Second, leaks were
identified in time based on anomalies between observed and mod-
eled pressure values and an analysis of the most affected nodes.
Localization was finally performed based on fuzzy similarity be-
tween real bursts characteristics and pipe network characteristics.

The IRI team (Romero et al. 2020; Romero-Ben et al. 2022)
devised a data-driven approach for Area A of L-Town due to the
high density of pressure sensors. On the other hand, a model-based
approach was used for both Areas B and C to respectively over-
come the lack of pressure sensors and exploit the availability of
AMRs. In the data-driven approach, graph-based interpolation was
first performed to estimate the state of the entire network from
available data of leaky and nonleaky scenarios. The selection of
candidate leak location was then performed by nodal pressure com-
parison between these estimated states. In the model-based ap-
proach, EPANET simulations were carried out after inferring
the demands for Areas B and C. The results of the simulations with
leaks added at different locations were compared against the
SCADA data to find the most likely placement for the leak.

The KU Hydrosystems team (Min et al. 2020) proposed a two-
stage method where leak identification in time and space was
tackled separately using a data-driven and a model-based approach.
After preprocessing the data and performing feature selection, the
detection of the leak in time was performed jointly by resorting to
k-means clustering. Leak locations were then identified via a com-
parison between real data and the output of multiple simulations
using a calibrated EPANET model accounting for leaks (with emit-
ter coefficients). The initial calibration was performed with the
Harmony Search algorithm in order to find optimal values of rough-
ness coefficients and nodal demands.

InfraSense Labs (Blocher et al. 2020) devised a method involv-
ing three main steps. First, the daily demand profiles were parti-
tioned into clusters using the k-means algorithm. The clusters
correspond to days with similar flow patterns so that variations in
the derived clusters can be used to identify changes in demand that
may be attributed to leaks. Leaks were then detected by comparing
the difference between expected demands (derived from flow pro-
files of five preceding days based on cluster membership) and ob-
served flows. If the residuals indicate the presence of a leak, hot
spots were localized by solving a regularized inverse problem that
includes a pressure-driven model for the leak flow.

DHI China (Liu et al. 2020) proposed a method that relies on
genetic algorithms and machine learning (ML) techniques. GAwas
used to calibrate the provided nominal model, whose demand pat-
terns were defined based on the analysis of the provided AMR data.
Leak detection in time was done with the use of both deep learning
methods (a long short-term memory neural network) and gradient-
boosted trees (LightGBM). GA-based simulation optimization

(with EPANET) was employed to localize the leaky pipe, similar
to what was done by other teams.

The Multiple Leaks Detection and Isolation Framework
(MLDIF) proposed by the Tongji team (Li and Xin 2020) consists
of three stages: calibration, identification, and localization. First, a
model calibration stage was performed to get a calibrated hydraulic
model using a time period where little or no leakages were assumed
to exist. Any preexisting leakages in the selected time period were
incorporated into the calibrated model, which was then used to
estimate the overall yearly leakage flows and to predict nodal
pressures under a leak-free scenario. Then, the pressure residuals
between observed and predicted pressure were processed by inte-
grating the seasonal and trend decomposition using Loess decom-
position method and the k-means clustering method to identify
different leak scenarios during the analysis period. Finally, by add-
ing not repaired but identified leaks to the calibrated hydraulic
model in the localization stage, a new and simple leakage scenario
was reconstructed to facilitate leakage localization. Therefore, the
pipe with the highest probability of leakage can be isolated by a
stepwise method based on matching degrees between the actual
leakage feature and the simulated leakage features.

The Wu BSY team (Wu and He 2020) presented an integrated
data analysis with a hydraulics-based modeling approach consist-
ing of three main steps: (1) data preprocessing to prepare for analy-
sis, where flow and pressure time series are decomposed to get
rid of trend and seasonality using the Seasonal-Trend decomposi-
tion procedure; (2) data analysis for leakage event detection, where
the decomposed time series are analyzed using statistical process
control methods; and (3) model analysis, where simulation-based
optimization in BentleyWaterGEMS, a hydraulic model calibration
tool, is used to localize the leaky pipes using a pressure-driven ap-
proach where the emitter coefficients and locations are the param-
eters to be optimized.

The CUBALYTICS team (Bhowmick and Seifert 2020) also de-
vised an approach combining data-driven methods with hydraulic
simulations. This method was based on the computation of an
anomaly matrix (AM) for leak detection and localization. This ma-
trix was created by first applying statistical methods to identify
anomalies in the master data set, i.e., the overall table having time
stamps as indexes and sensor readings as columns. The AM is a
binary matrix (1 = anomaly detected) obtained from the previous
operation after keeping only the rows for which there is at least an
anomaly. Leaks were identified in time by analyzing contiguous
rows in the AM having multiple anomalies. The list of nodes,
i.e., the headers of all columns with nonzero entries, was checked
to find valid node combinations identifying potential leaky pipes.
The isolated pipe for each leak was selected after comparison with
pressure-driven simulations.

Decision trees were at the core of the methodology of the
Artesia team (Adanza Dopazo 2020). The approach consists of
three main steps. In the first step, data normalization and feature
engineering was performed to extract minimum and maximum
daily peaks as well as averages for different parts of the day for
all pressure, water level, and flow sensors. Decision trees were then
trained on this refined data set to predict the mean night pressure
values expected for each pressure sensor. The mean pressure during
the night was chosen as the target to predict because pressure
during this time of the day is more steady and less affected by ran-
domness. In the last stage, the differences between predicted and
observed mean night pressure values in the test data set were used
to identify leaks in time, while comparison of results across neigh-
boring pressure sensors was used to improve localization.

The DHI Singapore team (Tan et al. 2020) employed WNTR, a
Python wrapper of EPANET, to generate extra data for training a
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deep neural network (DNN) using Tensorflow. Before generating
the leak events, the team calibrated the provided nominal model to
find optimal values of pipe diameters and roughness coefficient, as
well as determining optimal seasonality of residential and commer-
cial demands. Calibration was performed using GA and the 2018
pressure readings. The DNN development data set was generated
from 400 simulations with random leaks at different locations, with
different start times and durations. A five-hidden-layer DNN was
trained on these data to isolate the leaky location having as inputs
the readings from the 33 pressure sensors. After its validation, the
DNN was tested on the competition data set.

The UNIFE team (Marzola et al. 2020, 2022) adopted a prag-
matic approach to detect and localize leakage events based on the
analysis of the SCADA data and the use of the provided hydraulic
model of the network. After inferring demand patterns for the entire
network based on the provided AMR data, the hydraulic model was
calibrated (roughness and diameters) to realistically represent the
hydraulic behavior of the network. The observed inflows and water
demands were then analyzed to identify leakage number, entity, and
time of occurrence with engineering judgment. Each identified
leakage was then spatially localized through an enumerative pro-
cedure. This is done by (1) performing simulation after assigning
the leakage to each pipe of the network in turn, (2) assessing the
error in terms of differences between observed and simulated pres-
sures, and (3) selecting the pipe characterized by the lowest error.

The FluIng team (Barros et al. 2020) resorted to a mixed
approach using signal processing for leak identification and
simulation-based optimization for leak localization. The first phase
of leak identification entailed the use of blind source separation to
decompose each measured flow time series into a main signal,
primarily related to water consumption, and a noisy signal in which
leak events are more visible. Change detection was then performed
on this noisy component to detect leaks in time. Localization
of leaky pipes was then carried out with a two-step approach based
on particle swarm optimization where (1) the provided nominal
model was first calibrated in an offline fashion, and (2) leak
locations were inferred via iterative online fine tuning of nodal
demands.

Analysis of Methodologies

Table 1 summarizes the key elements of each method, highlighting
similarities and differences. The general features listed in Table 1
and their use as part of the different methodological approaches are
described in Table 2.

In general, the solutions proposed may be composed of one or
more of the following parts: the detection procedure, the localiza-
tion approach, and the calibration method. Each methodology uti-
lized various tools to solve each problem. For example, some
model-based approaches relied on the use of nominal water net-
work models provided (such as the EPANET L-Town model).
To accommodate the differences between the measurements and
the nominal model, calibration methods were used to design a more
accurate representation by updating the demands and certain pipe
parameters. The calibrated model can be used to create data sets
describing the operation of the system under normal and faulty op-
eration conditions, e.g., using the EPANET libraries. This can allow
the comparison of the computed pressure residuals with the ob-
served pressure sensor measurements.

Another approach is to consider the mathematical model of the
system, to create a pressure sensitivity matrix, through a linearization
of the hydraulic equations. Using the matrix, residuals can be com-
puted using model-based approaches that compare simulation-based

estimations and SCADA measurements, as well as by using model-
free approaches. The residuals, as well as other relevant time series,
can be analyzed using change detection techniques (e.g., CUSUM,
angle method), time series analysis and signal processing, empirical
method decomposition, regression analysis, hypothesis testing, and
other statistical approaches. More advanced statistical approaches,
such as machine learning and computational intelligence methods
based on fuzzy systems, have also been proposed.

A subset of methodologies considers optimization formulations,
which may rely on simulations to evaluate the objective functions
or on explicit mathematical formulations that can be solved using
integer, dynamic, or mixed-integer programming. Where this is not
possible due to the complexity of the optimization formulation,
metaheuristics (such as genetic algorithms or particle swarm opti-
mization) can be used. Finally, some approaches analyzed the
AMR area in a different way, by creating a model of the water de-
mands in the area, to exploit the additional information provided
due to the significant penetration of the smart meters.

Evaluation Procedure

Participants were required to submit their results in the format
specified in a template file, which includes the location and start
time of each detected leakage event. The start time of a leakage is
specified in the ISO 8601 time format YYYY-MM-DD hh:mm.
The location of the leakage is specified by the link ID, as defined
in the EPANET model of the network L-Town.inp. Participants
were allowed to specify any number of leaks.

Competition Evaluation Criteria

Evaluation of participant results followed a pure economic ap-
proach. The water utility of L-Town calculated the profit from water
saved in a single year from successful detections. The utility also
considered the cost of the repair crew every time it was sent to
search for a leakage.

A correct detection is one that points at a link ID that is inside a
predefined pipe length radius around the leak location, and the
given leakage start time is during the lifetime of the same leakage.
The predefined pipe radius is defined by the capability of the close-
range equipment used by the repair crew (e.g., acoustic sensors) to
exactly pinpoint the location of the leakage in a single workday.

The scoring methodology is described here in detail. Given a
user-defined set of detections D and the set of leakages L (2019
BattLeDIM data set), the total score S is calculated using the
following rules:
1. True detection (true positive): A given detection i ∈ D is con-

sidered a true detection of a leakage j ∈ L if the detection time
tid and the distance xij ≥ 0 from the center of the isolated link to
the leak location satisfy the following conditions:

tjst ≤ tid ≤ tjend ð5aÞ

xij ≤ xmax ð5bÞ
where tjst and tjend = start and end times of leakage j, respec-
tively; and xmax = predefined pipe length radius around the leak
location.

2. False detection [false positive (FP)]: False detections are the
detections that do not satisfy the true detection condition.

3. Missed detection (false negative): Missed detections are the set
of leakages in L that have not been detected by any detection in
D (includes four leakages starting in 2018 and 2019 leakages
starting in 2019).

© ASCE 04022068-11 J. Water Resour. Plann. Manage.
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Table 1. Summary of the different approaches used by the competing teams at each stage of their proposed leakage diagnosis methodologies

Feature Cheng00 DandW Leakbusters CIACUA Tsinghua
Under
pressure

Zhiyun
Shuiwu IRI

KU
hydrosystems

InfraSense
labs

DHI
China Tongji

Wu
BSY Cubalytics Artesia

DHI
Singapore UNIFE FluIng

Use nominal model D D — D D DL DL L L — — L — L — D CDL CL
Model calibration — — — — Y Y — Y Y — — Y — — — Y Y Y
AMR-based demands — — — — C C — C — — Y Y — — — — Y —
Normal operation data set
and/or dual model

D D — D D DL — — — — Y Y — — — — D —

Areas treated differently Y Y — — — — — Y — — — Y — — — — Y —
Pressure sensitivity matrix — DL — — — L — — — — — — — — — — — —
Pressure reconstruction/
comparison

L — — — — — — DL — — — — — — L — — —

Residuals, model-based D DL — D DL — DL — L L — DL — — — — D —
Residuals, model-free — — D — — — — DL — D — — — — D — — —
Change detection D L D D DL D D L — — — — D — — — D D
Time series analysis/signal
processing/EMD

— — — — DL DL — — — — — D D — — — — D

Statistical methods L — D — — — — — — — — — — D — — — D
Machine learning and soft
computing

— — — — D — — — — — D — — — D DL — —

Simulation-based
optimization

— — L L L — — L — — L — L — — C CL CL

Simulating leaks — — L L L — L L L — — L L L — C — —
Mathematical programming — — L — — — — — — L — C — — — — — —
Metaheuristics — — — L — D DL — C — CL — — — — C — CL
Ad hoc/Engineering
judgment

— — — — — — — — — — — — — DL D — DL —

Note: D = used during detection; L = used during localization; C = used for calibration; and Y = used in general.
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4. Order of evaluation: Detections in D are evaluated in chrono-
logical order, i.e., from the earliest detection to the latest detec-
tion, against all leakages in L. Detections given by participants
that are outside the year 2019 are ignored.

5. Repeated detections: Once a leak is detected, it is added to the
list . Successful detections of leaks in are given a score of zero,
i.e., repeated detections of the same leakage are ignored.

6. Multiple detections: A single detection may detect only one
leakage, even if more than one leakage is in the detection area.
Detection of multiple leakages is limited due to the leakage
placement algorithm used to create the data set. In the case
of the existence of multiple leakages in the detection radius
of detection i, e.g., leakage j ∈ f1; : : : ;mg, only the leakage
closest to the detected link is considered to be discovered.
The discovered leakage l ∈ L in the case of multiple true
detections is given by

l ¼ fj∶ xij ¼ minðxij; j ∈ f1; : : : ;mgÞg ð6Þ
7. Profit from water saved: The profit pi

w (euro) from water saved
by detection i for a detected leakage j is calculated as follows:

pi
w ¼

0
@Xtjend

k¼tid

qjðkÞΔt

1
Acw ð7Þ

where by detection i, qjðkÞ = flow rate of leakage j at each
discrete time step k; Δt = duration of the discrete time step;
and cw = cost (euro) of water per cubic meter.

8. Repair crew cost: All detections inD are associated with a utility
repair crew cost. The repair crew checks for leakages only
within a predefined radius of xmax from the given location.
The repair crew cost for a given detection i is assumed to be
proportional to the distance xij from the leakage j and is calcu-
lated as follows:

cir ¼

8><
>:

−
�

xij
xmax

�
cr; xij < xmax

−cr; xij ≥ xmax

ð8Þ

where cir = repair crew cost for detection i; and cr = maximum
repair crew cost for a given leakage search assignment.

9. Total score: The total score S for a given set of detections D is
given by

S ¼
X
i∈D

si ¼
X
i∈D

ðpi
w þ cirÞ ð9Þ

where si = score per given detection i.
The parameters of maximum detection radius xmax, cost of water

per cubic meter in euro cw, and the maximum repair crew cost cr
are given in Table 3. The cost of water was selected assuming a
water utility that operates in Cyprus. The maximum repair crew
cost was calculated assuming a three-person repair crew searching
for the leakage location for a whole 8-h workday, with an hourly
rate of approximately 20 euro. The maximum detection radius was
selected assuming the repair crew is able to search using acoustic
sensors a maximum pipe length of 1 km in a single workday. For
this distance to be translated into a radius, an average of three pipe
branches emerging around any given location is assumed. The
maximum score in this problem, given the parameters of Table 3
and the leakages existing in the data set, was achieved when all
leakages were detected at their exact start time and location, while
no false detections were given. The “perfect” score of the compe-
tition was calculated using Eq. (9) to be €523,124.

For illustration purposes, an example of the evaluation function
is shown in Fig. 8, where all possible values of the detection score
are plotted for detecting a leakage with constant flow of qðkÞ ¼
100 m3=h. The evaluation parameters were arbitrarily chosen as
follows: cost of water cw ¼ €1=m3, maximum crew cost cr ¼
€500=detection and maximum detection distance xmax ¼ 50 m.

Table 3. Parameters used in the evaluation procedure

Parameter Value Description

xmax 300 m Maximum detection radius
cw €0.80 Cost of water per m3

cr €500 Maximum repair crew cost

Table 2. Explanation of features included in the methodologies of the competing teams

Feature Description

Use nominal model Making use of the provided EPANET model for L-Town
Model calibration Nominal model calibration of demands and/or pipe parameters
AMR-based demands Use of AMR data to model demand patterns
Normal operation data set and/or dual model Use of a (calibrated) EPANET model to create data set under normal operations (no leak) and/or a normal

operation model
Areas treated differently Whether the algorithms treat different areas of the network separately
Pressure sensitivity matrix Linearization of hydraulic equations
Pressure reconstruction/comparison Reconstruction/comparison of pressure of neighboring nodes
Residuals, model-based Residuals computed between simulated readings from available nominal model simulations and observed

SCADA
Residuals, model-free Residuals computed between predicted readings from model-free approach and observed SCADA
Change detection Technique to identify abrupt change in residuals/observations in time (CUSUM, angle method)
Time series analysis/signal processing/EMD Methods pertaining to time-series analysis/signal processing (TSA/SP) such as empirical model

decomposition, spectral methods used at different stages of the algorithm
Statistical methods Methods based on comparison with statistical distribution of the observed data, hypothesis testing, linear

regression, and so on
Machine learning and soft computing Includes supervised/unsupervised machine learning (also feature engineering), fuzzy methods
Simulation-based optimization Use of an optimization method with objective function based on simulation via hydraulic model
Simulating leaks Use of an EPANET model to simulate leaks
Mathematical programming Methods including integer programming, dynamic programming, mixed-integer programming
Metaheuristics Global optimization methods such as genetic algorithms, Harmony Search, and particle swarm optimization
Ad hoc/engineering judgment Techniques that cannot be framed in the preceding methods or methods based on engineering common sense

© ASCE 04022068-13 J. Water Resour. Plann. Manage.
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Alternative Evaluation Criteria

The evaluation methodology used in this competition has some
disadvantages that arise from using a score that is proportional
to the amount of water saved from each successfully detected leak-
age. Specifically, the current methodology favors the detection of
large and abrupt leakages as well as leakages that start early in the
data set.

To avoid this issue, an alternative evaluation approach is dem-
onstrated that takes into account the total volume of water lost from
each leakage, given in Fig. 9. The volumes were derived by calcu-
lating the area under the leakage flow curves of Fig. 7. It can be
observed from Fig. 9 that each leakage will be rewarded differently

because the reward for each detection directly relates to the water
volume loss of each leakage.

This alternative evaluation approach alters the reward function
of Eq. (7), which calculates the profit from each detected leakage,
by normalizing the profit by the volume of the corresponding leak-
age. Specifically, given detection i that successfully detects leakage
j, the profit from water saved (euro) is calculated as follows:

pi
w ¼ vjs

vj
vmcw ð10Þ

where vjs = volume of water saved given detection i; vj = total vol-
ume of water loss from leakage j; and vm = mean volume of water
loss of all leakages in the data set. The mean leakage volume vm is
calculated for this dataset to be vm ¼ 28,432 m3.

Using the normalized reward function, the maximum reward for
each detected leakage is vmcw. The most obvious drawback of this
alternative evaluation approach is that the economic score loses its
literal meaning.

Competition Results and Discussion

Team rankings are defined by calculating the economic score of the
results submitted by each team. The economic score of each team is
given in Fig. 10(a), where the names of the teams have been sub-
stituted by generic labels, the letters A–R. The economic score does
not necessarily reflect the ranking when the true positive rate (TPR)
and FPs of each submitted result is considered. The TPR and FP of
each team are illustrated in Figs. 10(b and c), respectively.

The winning teams of the BattLeDIM competition were the six
teams with the highest economic score and with the highest true
positive rate. The names of these teams are provided in Table 4,
along with their Pareto ranking when the multiparameter score,
illustrated in Fig. 11, is considered. For instance, Tongji team
and Under Pressure are nondominated solutions and are ranked
to the first Pareto front with an economic score of €264,873
and €260,562, and a true positive rate of 56.52% and 65.22%,

Fig. 8. Example of the scoring function for a true detection: qðkÞ ¼
100 m3=h (leakage flow), cw ¼ €1=m3 (water cost), and cr ¼ €500=
detection (maximum crew cost).
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Fig. 9. Total volume of water lost from each leakage in the BattLeDIM problem, sorted chronologically and identified by the corresponding link ID.
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respectively. The “perfect” score of the competition was €523,124
(no time delay in detection, no false positives, exact position),
which implies that the best solutions in BattLeDIM achieved a
score around 50%.

Evaluation Parameter Sensitivity Analysis and
Alternative Criteria Results

The sensitivity of the total score to the cost of water per cubic
meter in euro cw is evaluated here to analyze the effect different

assumptions on cost may have on the ranking of solutions provided.
The cost of water affects the economic score the most because this is
proportional to the amount of water lost from leakages, while it does
not affect the number of true positives or false positives achieved by
each team. Five different water prices were used to reevaluate the
competition results ranging from €0.40=m3 to €1.20=m3.

The sensitivity analysis results are illustrated in Fig. 12. The
results indicate that the increasing water price favors teams that
had a larger number of false positives and for which the economic
score was affected because of the cost of sending out repair crews.

(c)

0 2 3 1 6 4 4
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2 6
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2 3
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Fig. 10. Final scores of the BattLeDIM competition: (a) team rankings based only on the economic score (the “perfect” score is the theoretical upper
bound); (b) team scores with respect to the true positive rate metric; and (c) team scores with respect to the number of false positives.
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This result draws the conclusion that, given a difficult challenge
such as the BattLeDIM problem, the cost of water should be taken
into account when deciding how conservative a leakage diagnosis
methodology should be. Another interesting observation is that the
first five teams do not change rank with the increasing water price
because they outperform the rest of the methodologies in the TPR
metric.

Moreover, the results using the alternative evaluation criteria de-
scribed in “Alternative Evaluation Criteria” section are shown in
Fig. 13. It can be observed that the normalized score rankings fol-
low more closely the rankings of the true positive rates, except in
the cases where the corresponding teams have a high number of
false positive detections.

Discussion

The BattLeDIM competition provides valuable insights on the state
of the art in leakage detection and isolation methods and their lim-
itations as well the different ways the results should be evaluated.
For instance, by analyzing the methodological approaches followed
by the top teams, as shown in Table 1, it is apparent that different
approaches were used by the teams and the robustness of each
approach to different evaluation functions may vary. Some of the
observations are discussed in the following:
• Most top-scoring teams made use of a nominal model, of which

the parameters were calibrated in some form using sensor data,
to construct a water distribution model that describes the normal
operation of the system (such as Tsinghua, Under Pressure,

IRI, and UNIFE) by incorporating existing leakages into the
calibrated node demands. This allows the computation of the
expected flows and pressures at different locations in the net-
work. Moreover, they also consider the AMR measurements
separately from the rest of the network and use them to estimate
and calibrate demands.

• For the detection of events, model-based residuals along with
some form of change detection algorithm (e.g., Leakbusters,
UNIFE, Under Pressure) or time series and signal processing
(e.g., Tongji) analysis was preferred by most of the top-scoring
teams. Some of these residuals were also utilized for localization
purposes (e.g., IRI, Tsinghua).

• For the leak isolation, top-scoring teams used some form of op-
timization framework to identify the most likely leakage point
(e.g., Leakbusters, Tsinghua, IRI, and Tongji).

• Some solutions had a high true positive rate, but with a signifi-
cantly higher number of false positives (210) with respect to
the other participants (such as Team E in Fig. 10). Based on the
BattLeDIM assumptions for the cost of water and staff cost,
this solution received a low score. However, sensitivity analy-
sis of the result indicates that, for a higher cost of water, this
solution could have received a higher rank. This indicates it
may be beneficial to accept a higher number of false positives
if the cost of water lost is significantly higher than the staff
cost.

Conclusions and Open Challenges

In this paper we presented the results from BattLeDIM, an open
competition that aimed to objectively compare different methodol-
ogies in their ability of detecting and isolating leakage events within
a virtual water distribution system. For the purposes of this work,
a new benchmark network was introduced, L-Town, based on a
realistic water distribution system. Moreover, a synthetic 2-year
SCADA benchmark data set was generated with leakages of various
types and magnitudes, which can be used by the research commu-
nity to develop leakage diagnosis methodologies, keeping in mind
the limitations of this benchmark mentioned in “Limitations” sec-
tion. An economic objective metric was defined to evaluate the
different solutions, considering realistic operational costs. In total,
18 teams from academia and industry participated in the BattLeDIM
competition. The teams used various methodologies, including
model-based and model-free approaches, simulation and optimiza-
tion tools, machine learning, and others; these techniques are sum-
marized in Table 2. We presented the evaluation methodology and
discussed its limitations.

Overall, the competition demonstrated that multiple technolo-
gies could be used for solving the problem and that there is poten-
tial for significant improvement because the top solutions achieved
50% of the maximum possible score. However, it is important to
make a distinction between the maximum possible score and the
maximum feasible score in this problem: the former is the score
achieved when all leakages are detected perfectly without false pos-
itives, while the latter is the maximum score that can be achieved by
any methodology given the limited information provided about the
problem. The methodology to calculate the maximum feasible
score for the BattLeDIM benchmark is an open research question.
Because the goal of this benchmark is to recreate, as realistically as
possible, a real-world problem, the development of such method-
ology will be useful in determining the conditions that should exist
in real systems to make it at least theoretically feasible to achieve a
certain performance in leakage diagnosis. Many factors are in play
that affect the maximum feasible score, such as the selected water
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Fig. 11. Multiparameter score (economic score and true positive rate)
of the submitted results. The best scores are in the upper-right corner of
the graph.

Table 4. BattLeDIM competition results and ranking of top six
participating teams

Team name
(label)

Pareto
rank

True
positive rate

(%)

False
positives
count

Economic
score
(euro)

Tongji team (L) 1 56.52 3 264,873
Under pressure (O) 1 65.22 4 260,562
IRI (H) 2 43.47 1 210,772
Leakbusters (K) 2 47.83 7 195,490
Tsinghua (M) 3 47.83 5 167,981
UNIFE (N) 4 43.47 4 127,626
Perfect — 100 0 523,154
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Fig. 12. Sensitivity analysis of the economic score with respect to the price of water: (a) 0.40; (b) 0.60; (c) 0.80; (d) 1.00; and (e) 1.20 Euro. The TPRs
and number of FPs remain the same in these scenarios.
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network, the size of leakages, and the magnitude of the considered
uncertainty. Moreover, it is safe to say that the maximum feasible
score will change by varying some parameters of the BattLeDIM
problem to make it even more realistic; for example, including sen-
sor noise and missing measurements in the data set.

In closing, the BattLeDIM competition demonstrated the need
for open benchmarks, which can assist the research community to-
ward reproducibility and open science.

Data Availability Statement

All data, models, or code generated or used during the study are
available in a repository online in accordance with the FAIR data
retention policies, under the European Union Public License (EUPL)
v1.2: data set generation and scoring algorithm: Vrachimis and
Kyriakou (2022); SCADA data set: Vrachimis et al. (2020b); and
reproducible code: Vrachimis et al. (2020a).

Reproducible Results

David Watkins ran the code to reproduce the benchmark results
used in the competition.
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