
 
 

Delft University of Technology

Heuristic-Based Approach for Near-Optimal Response to Water Distribution Network
Failures in Near Real Time

Nikoloudi, Eirini; Romano, Michele; Memon, Fayyaz Ali; Kapelan, Zoran

DOI
10.1061/(ASCE)WR.1943-5452.0001582
Publication date
2022
Document Version
Final published version
Published in
Journal of Water Resources Planning and Management

Citation (APA)
Nikoloudi, E., Romano, M., Memon, F. A., & Kapelan, Z. (2022). Heuristic-Based Approach for Near-Optimal
Response to Water Distribution Network Failures in Near Real Time. Journal of Water Resources Planning
and Management, 148(8), Article 04022039. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001582

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001582
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001582


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Heuristic-Based Approach for Near-Optimal Response to
Water Distribution Network Failures in Near Real Time

Eirini Nikoloudi1; Michele Romano2; Fayyaz Ali Memon3; and Zoran Kapelan4

Abstract: This paper proposes a new method to identify the near-optimal response to failures in water distribution networks in near real time.
The response method is formulated as a two-objective optimization problem with objectives being the minimization of failure impacts and
related operational costs. The new heuristics-based method is developed and used to solve this optimization problem. The method comprises
three steps. In the first step, the initial list of available interventions is identified offline. In the second step (online), the narrowed-down list of
interventions considered in the optimization is identified. Finally, in the last step (online), a novel heuristic algorithm is applied to identify
near-optimal solutions in near real time. The new optimization method was validated and demonstrated in two case studies, a semireal case
study based on a C-Town network and an assumed failure event (pipe burst), and a real UK case study involving a complex real pipe network
and event caused by shutting down the Water Treatment Works. The Pareto front of response interventions identified by the new heuristics
method approximates well the non-dominated sorting genetic algorithm II Pareto front in both cases with the largest differences measured in
terms of end-impacts (between relevant solutions for the same cost) being 4% and 9%, respectively. In addition, the new heuristics method is
able to identify near-optimal response solutions in a computationally fast manner (15 min and 1 h for the two cases). Therefore, the heuristics
method can be used in near real time in real-life situations. DOI: 10.1061/(ASCE)WR.1943-5452.0001582. © 2022 American Society of
Civil Engineers.

Author keywords: Near real-time optimization; Near real-time response; Water distribution network failures; Heuristic method; Multi-
objective optimization problem.

Introduction

Uninterrupted water supply under sufficient pressure is of major
importance. The water supply is uninterrupted only when the water
distribution system (WDS) is under normal operation, i.e., without
failure. However, nowadays, many WDSs, especially in old cities
with aging water infrastructure, face different kinds of failures, such
as leaks, bursts, pumps, or other equipment failures. In such WDSs,
rehabilitation (i.e., pipe/equipment replacement) of the whole or
part of the system is usually proposed as a long-term measure
to permanently address the issue of WDS failures. In the literature,
extensive investigation has been carried out on the best way to
apply the WDS infrastructure rehabilitation. Several optimization
techniques have been developed for this purpose (e.g., Alperovits
and Shamir 1977; Su et al. 1987; Kim and Mays 1994; Kang and
Lansey 2012; Zheng et al. 2016; Avila-Melgar et al. 2017), and
WDS optimization (for the design and rehabilitation) has seen
advancements over time.

However, in some cases, water utilities and municipalities prefer
to apply more short-term measures and respond in real-time to the

different WDS failures. In this case, extensive research is yet to
progress. Additionally, it is not straightforward that the conven-
tional optimization methods developed for the WDS design and
rehabilitation can be used for real-time response. This is because
each case covers a range of different aspects. For example, in WDS
rehabilitation, utilities and municipalities are mainly concerned
about the long-term (operational and capital) cost of their design/
rehabilitation plan. On the opposite hand, in the real-time response,
they aim to reduce the negative impact on the customers and properly
allocate the technicians based on the resource availability and times/
duration of intervention implementation.

The present work aims to address this challenge by proposing a
new optimization method. The new method proposes a novel tech-
nique to identify in near real-time near-optimal response solutions
but also solves a multiobjective optimization problem with realistic
objective functions and decision variables. The proposed optimiza-
tion method here is an extension of work found in Nikoloudi et al.
(2020) where a novel response methodology was presented and
implemented in a decision-support tool (i.e., the Interactive Response
Planning Tool, IRPT). In Nikoloudi et al. (2020), the optimization
problem was solved using the non-dominated sorting genetic algo-
rithm II (NSGA II) which took approximately 2 days to be com-
pleted (i.e., not in real time). The heuristic-based optimization
method presented here takes up to 1 h to solve the same optimi-
zation problem. The proposed novel method is regarded by the au-
thors of great importance, as it could be potentially used in water
utility practice due to its ability to identify accurately optimal so-
lutions in near real time, unlike other optimization methods found
in the literature (see the next section).

The paper is organized as follows. After the present Introduction
Section, a brief background in the field of optimal response toWDS
failures is presented. Later, the new optimization method is
described in detail, including the optimization problem and the
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new optimization method (with the heuristic approach) description.
Then, the first case study (i.e., the C-Town event) is presented, and
in the context of which, a sensitivity analysis and a comparison
with published related work are shown. Later, the second case
study (i.e., the P-Town event) is described briefly, with more details
explained in the Supplemental Materails. Finally, the conclusions
of the present work are drawn.

Background

Several studies in the past have proposed different methods/
advancements to address the optimal response to a WDS failure.
However, none of the studies in the known literature so far has
proposed a combination of these different advancements, e.g., opti-
mization methods applied to complex real-life water networks,
advanced optimization techniques (e.g., NSGA II, tailored genetic
algorithms (TGA), and heuristics), multiobjective optimization
problem formulation, and near real-time optimal response. In the
following paragraphs of this section, some representative studies
about the optimal response to failures in WDSs are reviewed.

Nikoloudi et al. (2020) developed a new interactive methodol-
ogy and an interactive tool for the response to WDS failure events
facilitating near real-time decision-making. In their method, they
used the NSGA II to solve the two-objective optimization problem.
Their method was also applied to a complex real-life network and
event. However, the multiobjective nature of the problem as well as
the application of the NSGA II to a complex network did not allow
the identification of the optimal response solution(s) in near real
time. The present paper expands on the application of Nikoloudi
et al. (2020) by proposing an advanced, heuristic-based optimi-
zation technique. The new technique is used to solve the same op-
timization problem, i.e., on the same case study with the same
objective functions (i.e., same impact indicators and cost function),
decision variables, and constraints. By using the new heuristic-
based method, the presented optimization problem is solved in near
real time (i.e., up to 1 h after event localization). It is stressed here
that event localization refers to the event management stage where
the exact location of the event has been identified in the water net-
work and precedes to the response stage (Nikoloudi et al. 2020).

Zhang et al. (2020) proposed a dynamic optimization method-
ology to improve the resilience of WDSs after the occurrence of
natural disasters (e.g., earthquakes). The resilience of the affected
WDS is improved through identifying optimal sequencing of re-
covery actions (i.e., interventions). A TGAwas developed to solve
the complex optimization problem. The proposed framework was
tested on a real-world WDS. However, the authors in their method
solve a single-objective optimization problem, with the objective
being maximizing the resilience of the affected WDS. This implies
that the optimization problem formulation is rather simple and al-
ternative objectives usually required to be minimized under disaster
scenarios (e.g., number/cost of interventions) are not considered.
Furthermore, although an advanced optimization technique, the
TGA makes use of initialization, crossover, and mutation proc-
esses, as usually/generally used in genetic algorithms. The pre-
sented processes, in contrast, require significant computational
effort, especially when applied to complex water networks. More-
over, for a potential disaster scenario, the proposed dynamic TGA
updates the number of decision variables (i.e., damaged pipes)
in order to make the optimization problem more realistic. This
process, however, increases the complexity of the optimization
problem, and hence, the optimal solution might not be identified
in near real time (as required by water utilities). The present
work addresses the aforementioned challenges by developing a

two-objective (i.e., more realistic) optimization problem. Addition-
ally, the heuristic-based optimization method developed here
enables quick (i.e., near real time) and accurate enough problem
solving, even in real-life complex water systems.

Balut et al. (2018) presented their proposition for the restoration
of a WDS that has been damaged by an earthquake in the context
of the Battle of Postdisaster Response and Restoration (BPDRR)
(see Paez et al. 2020). They developed a ranking-based prioritiza-
tion method to solve the optimization problem. Their method in-
cluded rankings of pipes, each based on some criteria. The ranking
criteria determined the importance of each pipe in the network and
were defined after a survey of different utilities. The aim of ranking
was to facilitate the planning of repair works (i.e., order of response
actions). The proposed ranking method (similarly to all ranking-
based methodologies) obtains the advantage that does not require
a calibrated model to run the hydraulic simulations. However, such
methods are rather practical/industrial in nature and do not always
guarantee the identification of an optimal, or even near-optimal sol-
ution (although the solution is feasible and is identified in near real
time). Furthermore, ranking-based solutions are based on rather
subjective criteria (i.e., each utility makes use of different criteria).
In that way, the ranking-based methods are not generic in their use.
This challenge is addressed here by proposing a method that iden-
tifies near-optimal solutions in near real time, hence making the
new optimization method generic in use for water utilities. It is
stressed that the rest of the papers/propositions of the BPDRR are
not reviewed here due to their relevance with the rest of the liter-
ature presented in this section.

Mahmoud et al. (2018) developed a methodology for near real-
time response to WDS failure events (e.g., pipe bursts or equipment
failures). The optimal combination of interventions is identified by
using a multiobjective optimization approach with objectives being
the minimization of the negative impact on the consumers and the
minimization of the corresponding number of operational interven-
tions. The NSGA II was used for the solution of the optimization
problem. Their methodology was tested on the simple, real-world
WDS of C-Town. It is observed that although the advanced opti-
mization method of NSGA II was used, the methodology proposed
by Mahmoud et al. (2018) might be inappropriate to propose an
optimal response solution under real-life circumstances in near real
time due to the following inadequacies: (1) The second objective
of the optimization problem is minimizing the number of recovery
interventions, which acts as a surrogate to the more realistic ob-
jective of minimizing the operational cost of the recovery interven-
tions; (2) During the offline process of the proposed methodology,
hydraulic simulations are conducted to identify the affected district
metered areas (DMAs) (required to the following online process).
However, when offline (i.e., before the event occurs), operators are
unable to be aware of the details of the real event. This leads oper-
ators to make different assumptions of the event that may not cor-
respond to the real event (when this happens); and (3) The authors
make use of the advanced NSGA II, which is applied to a simple
water network. NSGA II is a computationally demanding optimi-
zation technique, and it is expected that when applied to a real-life,
complex network, it will propose optimal solutions after a signifi-
cant period of time, i.e., not near real time (as also observed in
Nikoloudi et al. 2020). The present paper addresses the first chal-
lenge by using the minimization of the operational cost of interven-
tions as the second optimization objective. The second challenge is
addressed by running all the hydraulic simulations online simulat-
ing only the real-life event. Finally, the third challenge is addressed
by proposing a novel, heuristic-based optimization technique tested
on a real-life complex network that identifies optimal responses in
near real time.

© ASCE 04022039-2 J. Water Resour. Plann. Manage.
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Vamvakeridou-Lyroudia et al. (2010) presented an intervention
management model (IMM) for the near real-time response to WDS
failure events (i.e., pipe bursts and leaks). A multiobjective prob-
lem was formulated with two objective functions: (1) minimizing
impacts on customers, and (2) minimizing the number of interven-
tions. Optimization was carried out using a heuristic algorithm
based on the discrete dynamic dimensioned search method. The
method was tested on a real-life case study in the Harrogate area
of North Yorkshire, UK. Although the aforementioned advanced
optimization technique was used to solve the optimization problem,
the use of the number of interventions as the second objective (as in
Mahmoud et al. 2018) does not allow a realistic approach to the real
optimization problem (e.g., the operational cost of interventions,
as used in the present study, could be a more realistic approach).
Furthermore, the authors make use of an offline preprocessor
(similarly to Mahmoud et al. 2018) to simulate (through hydraulic
simulations) different pipe failure scenarios and store the resulted
response of each scenario in an offline database. However, an off-
line preprocessor is unable to predict and simulate all the possible
failure scenarios, i.e., all the combinations of failure pipe(s), time
of failure, magnitude of failure, and pipes to be isolated for repair.
The present paper addresses the presented challenge by making all
the hydraulic simulations online, i.e., after the failure event has
happened.

From the presented literature review, it can be seen that among
the different optimization methods used to optimize the response to
WDS failures, the use of genetic algorithms (GAs), e.g., TGA and
NSGA, dominates. The review of Mala-Jetmarova et al. (2018)
mentions that stochastic methods including GAs that have been
used for the optimal WDS design/rehabilitation and more lately
for optimal WDS failure responses have proven to be able to suc-
cessfully deal with these problems, accurate (in optimization prob-
lems of varying complexity), and time-efficient (in noncomplex
optimization problems). Therefore, in this study, the results of the
proposed heuristic-based method have been compared with the re-
sults of the widely used NSGA II method. Having said this, other
mathematical optimization methods could have been used for the
comparison instead of the NSGA II, as these methods have also
proven to be effective in dealing with the issues of nonlinearity
and discrete nature of decision variables present in the control and
operation of water supply systems (e.g., Pecci et al. 2019, 2021;
Ulusoy et al. 2021). However, this is beyond the scope of present
work, and a robust comparison of different mathematical and other
optimization methods with the heuristic-based method proposed
here is recommended for future work.

As mentioned earlier, the NSGA II is conducted in the context of
this work (i.e., in the case studies) in order to compare the optimal
solutions (generated by the NSGA II) with the near-optimal ones
(generated by the heuristic). The aim of this comparison is to point
out the benefit of the new method regarding the reliability of so-
lutions and the time for them to be identified compared to more
conventional methods used in past studies. The NSGA II method
used in this work considers as objective functions the minimization
of the total end-impact of an identified response solution to custom-
ers and the minimization of the total cost of this response solution,
i.e., the same objectives as in the heuristics-based method. The
NSGA II decision variables are the different combinations of inter-
ventions (like in the heuristics method), as well as the start time of
each intervention considered in the response solution. It is observed
that more decision variables are used in the NSGA II method com-
pared to the heuristics method because it has been proven that
NSGA II can better deal with multiple variables, although it might
be time-inefficient in complex networks (Nikoloudi et al. 2020).
This makes the NSGA II results in the present work more reliable,

i.e., NSGA II identifies optimal solutions, whereas the heuristics
method identifies near-optimal solutions.

Heuristics-Based Optimization Methodology

Optimization Problem

In this section, the new optimization method is described and for-
mulated. As mentioned in the Background Section, the same opti-
mization problem (i.e., same objective function, decision variables,
and constraints) as in Nikoloudi et al. (2020) has been used here.
Later in this paper, the new optimization approach to solve the
optimization problem (i.e., to identify optimum solutions in near
real time) is discussed. The presented optimization problem is two-
objective. The two objectives are the minimization of the total end-
impact (of a response solution) and the minimization of the total
cost associated with this solution.

More specifically, the first objective function is the minimiza-
tion of the total (i.e., aggregated) end-impact, i.e., impact after
interventions are implemented. This is estimated by normalizing
and then adding up the values of the individual impact indicators,
as follows:

Total impact ¼
X4

i¼1

ðwif 0
i Þ ð1Þ

where i = index of each impact indicator with iϵ½1; 4�; f 0
i = normal-

ized impact indicator i; and wi = weight of impact indicator i withP
wi ¼ 1. Further details for calculating the first objective are pre-

sented in the Supplemental Materials.
The impact indicators used here cover the impact aspects

of supply interruption, low pressure, and discoloration risk in-
crease. They are the following: (1) customer minutes lost (CML)
in minutes/customer; (2) average minutes low pressure (AMLP) in
minutes/customer; (3) unaccounted for water (UW) in cubic me-
ters; and (4) discoloration risk increase (DRI) in the number of
pipes that face a high risk of discoloration increase. AMLP and
UWare calculated for different customer types, namely: residential,
industrial, and sensitive (i.e., schools and hospitals). The impact
horizon in the new response methodology is the period of time
for which the end-impact is assessed. It starts from the localization
time of an event and lasts until the repair is completed (i.e., the time
period over which restoration interventions can be implemented).
The definitions of impact indicators used in this work are presented
in the Supplemental Materials for this paper, but more details can
be found in Nikoloudi et al. (2020).

The response solution includes a series of operational interven-
tions whose application allows the restoration of supply while the
repair is been conducted. The interventions considered here are:
(1) rezoning by valve manipulations (i.e., opening initially closed
boundary valves); (2) water injection at different network locations;
(3) overland bypasses; and (4) combination of these. Water injec-
tion, which is a novel type of intervention considered in this study,
is carried out through the alternative supply vehicles (ASVs). It is
important to stress that rezoning is assumed to last until the repair is
complete (i.e., as in utility’s general practice), i.e., its duration is not
considered a decision variable. ASV injection, on the other hand,
is carried out until the tank (modeled at each injection point) gets
empty. This may happen before the repair is complete depending on
the water demand (under normal conditions) of the affected area.
Injection takes place from specific hydrant locations in the network.

It should be stressed that the isolation of the failure pipeline was
not included in the optimization. This is because this isolation is

© ASCE 04022039-3 J. Water Resour. Plann. Manage.
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assumed to have already been conducted before the application of
interventions considered here in order to isolate the failure. The
interventions optimized here are assumed to be applied after iso-
lation to restore the interrupted supply.

The second objective function is formulated as follows (with
more details being presented in the Supplemental Materials):

Total cost ¼ crezdrezNrez þ cPRVdPRVNPRV þ cASVhASV

þ cOLBhOLB ð2Þ

where crez, cPRV = costs (£) per hour of manipulating (i.e., open-
ing, closing, or adjusting) a single rezoning valve or pressure
reduction valve (PRV); cASV , cOLB = costs (£) per hour of
ASV and overland bypass (OLB) injection; drez, dPRV are the
time periods it takes to open, close, or adjust a single rezoning
valve or PRV, in hours; hASV , hOLB = total time periods of ASV
and OLB injection (i.e., hours of injection from all the ASVs and
OLBs sent to the site); and Nrez, NPRV = numbers of rezoning
valves and PRVs to open, close, or adjust in the specific response
solution.

Heuristic-Based Optimization Method

The new optimization method developed here consists of three
main steps, the offline step 0 and the online steps 1 and 2. The
offline step is conducted under normal (i.e., business as usual) op-
eration of the system (i.e., no event has been detected/localized).
It contains all the (offline) actions required by the utilities to iden-
tify their available intervention options (i.e., types and locations)
in their system. The online steps (steps 1 and 2) include manual/
human decisions and automatic calculations for the preparation of
the optimization and the optimization through a heuristic algorithm,
respectively. In Fig. 1, the new optimization steps and the heuristic
algorithm are shown.

The proposed optimization method has been developed in the
programming environment of MATLAB R2016b (Higham and
Higham 2016). More specifically, step 0 of the method is applied
manually by utility operators who update/make use of the utility
systems. Step 1 of the method is conducted manually in Matlab
to prepare for the heuristics optimization in step 2. Step 2 of the
method is the execution of the heuristics optimization, and it is
applied automatically in Matlab (implementing the pseudocode
presented in Fig. 1). Matlab also links to EPANET 2.0 (Rossman
2000) for the execution of the hydraulic simulations. Pressure-
driven network modeling is used based on the methodology devel-
oped by Paez et al. (2018).

The new optimization method’s steps are described in detail in
the following text. Step 0 includes the offline preparation for the
optimization. Here, the initial list of all the interventions is iden-
tified. This database of interventions should be updated periodi-
cally by the utility to reflect reality. The offline process here,
unlike the process in Mahmoud et al. (2018), does not consider
any event scenario, i.e., no hydraulic simulation is conducted for
the identification of affected DMAs/nodes. This is because when
offline, it is hard to predict/evaluate all the possible event scenarios,
including start time of the event, start time of isolation, magnitude
of leak/burst, and location of the event.

In step 1, the online preparation for optimization takes place.
Specifically, in step 1a, the initial list of interventions from step
0 is narrowed down in the following way: (1) the overland bypasses
and rezoning valves located in areas that link affected with unaf-
fected DMAs are considered, (2) the OLBs and ASV points located
in the affected DMAs are considered, and (3) the (pressure reduc-
tion valves) PRVs located upstream of affected nodes are consid-
ered. It is implied that at this step, the affected DMAs/nodes of the
specific event have to be identified after hydraulic analysis. In this
step, a DMA is considered affected when at least one node has a
pressure less than 15 m (i.e., low pressure or no supply impact) for
at least one time step (i.e., 15 mins).

Fig. 1. New optimization strategy steps and heuristic algorithm.

© ASCE 04022039-4 J. Water Resour. Plann. Manage.
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In step 1b, individual evaluation of end-impact and cost for
the identified interventions (i.e., types and locations identified in
step 1a) for a selected (by an operator) start time is conducted.
In that way, the individual interventions that do not further reduce
end-impact are rejected and not considered anymore in the next
step. The start time is selected by the operator due to time limita-
tions to evaluate every single start time. This means that all the
interventions will be implemented at the same time. This is a sig-
nificant limitation of the new optimization method, but when
online, the time to identify the best solutions is limited. The selec-
tion of start time by operators compensates for this limitation
though, as engineering judgment makes this selection more realistic
(e.g., time to reach the site and availability/accessibility of re-
courses). In Mahmoud et al. (2018), the start time of interventions
is not a variable either (e.g., for the burst on pipe P307 in their paper
they consider a start time 8 h after localization for all the interven-
tions). It is stressed that the heuristic proposed in step 2 (i.e., opti-
mization step) can be also applied considering the start time of each
intervention type as a decision variable.

In step 1c, a number (hereafter equal to x) of interventions
with the lowest end-impact is selected, and these interventions
are nominated to the optimization stage. This number depends
on the time it takes for each evaluation to be completed (i.e., in
simple networks, it takes some seconds, whereas in more complex
real-life networks, it takes some minutes).

In step 2, the optimization via a heuristic takes place online. The
heuristic algorithm’s steps are described hereafter. In step 2a, in real
time, the initial solution is identified (from the identified list of x
interventions in step 1c) by the heuristic algorithm as the single
intervention with the lowest cost. If multiple solutions with the
same lowest cost exist, then the solution with the lowest end-impact
for this cost is selected by the algorithm. Then, the heuristic iden-
tifies the subsequent solution i in step 2b as the single intervention
from step 1 with the lowest end-impact. If multiple solutions with
the same lowest end-impact exist, then the solution with the lowest
cost for this end-impact is selected by the algorithm. This is done
in order to account for the other extreme point, i.e., the solution
with the lowest end-impact. Solution i is accepted if at least one
of the two objectives is better (i.e., lower) compared to the initial
solution. In step 2e, new solutions are identified by combining sin-
gle interventions. At every iteration, the single intervention with the
next lowest end-impact is added to the previous solution. If the new
solution is rejected, then the last single intervention that was added
is removed and the next best (i.e., with the lowest end-impact) sin-
gle intervention is added. Iterations (i.e., new solutions generation)
end when all the available single interventions identified in step 1
have been added/used.

It is stressed that the heuristic’s checks of end-impact/cost of
the subsequent solutions (i.e., steps 2c, 2d, 2f, and 2g) do not al-
ways generate nondominated solutions. For example, when both
objectives of the subsequent solution are lower than the ones in the
previous solution, then the subsequent solution dominates the pre-
vious one. This issue is addressed at the end of iterations (in step 2j)
by identifying the nondominated solutions. The nondominated so-
lutions then form the final Pareto front of near-optimal solutions
proposed to operators.

It is also highlighted that the focus of this new optimiza-
tion method is not on selecting the initial population, but on the
improvement of the optimization method for the generation of
near-optimal solutions in near real time. Hence, the new heuristic
algorithm proposed here (in step 2) can be easily linked to any
preferred method for selecting the initial population (i.e., step 1
can be substituted with any desired initial population selection
method).

Case Study

The new optimization method is tested/validated on two real-life
networks: (1) C-Town (i.e., a simple real-life network); and
(2) a more complicated real-life network obtained by the water
industry (located in northwest England), hereafter called P-Town.
The first network has been extensively used in the literature to dem-
onstrate different optimization methods, e.g., in Mahmoud et al.
(2018). In the context of the first case study, a sensitivity analysis
is conducted in order to investigate the sensitivity of the new
method to the start time of intervention implementation. For the
first case study, a comparison is also conducted between the NSGA
II solutions obtained in Mahmoud et al. (2018) (i.e., for the same
network and event) and the new method’s solutions. The second
network (also found in Nikoloudi et al. 2020) is used here in order
to validate the new method on a more complicated real-life network
and demonstrate its benefit (i.e., near-optimal solutions in near real
time) under a real-life scenario (i.e., network and event). The real-
life event used in the second case is the same as the one used in
Nikoloudi et al. (2020). As mentioned at the beginning of the paper,
in both case studies, the NSGA II is also conducted in the context
of this work in order to compare the optimal solutions (generated
by the NSGA II) with the near-optimal ones (generated by the
heuristic).

C-Town

The assumed failure event considered here is a burst on pipe P307
localized at 1 a.m. and isolated at 2 a.m. (i.e., 1 h after localization).
Fig. 2 shows the C-Town network layout as well as the network
elements. It is highlighted that the isolation start time considered
here is the same as the one used in Mahmoud et al. (2018) to allow
for the comparison between the aforementioned study and the
present one. The initial system condition here (that needs to be
restored/recovered via optimized recovery interventions) is the sys-
tem with the leaking pipe (at 1 a.m.) and isolated main (at 2 a.m.)
(i.e., the same as in Mahmoud et al. 2018). Selecting a later iso-
lation start time could reduce the end-impact even more, as pro-
posed in Nikoloudi et al. (2020). However, selecting the isolation
scenario is part of a more effective overall response methodology
and is not the focus of the present study.

The impact horizon starts from the localization time (i.e., 1 a.m.)
and lasts until the end of isolation duration 25 h later (i.e., at
2 a.m. of the next day), similar to Mahmoud et al. (2018). Other
assumptions made here that are the same as the ones used in the
aforementioned work (to facilitate the comparison) are the follow-
ing: (1) location of hydrant points (shown in Fig. 2); (2) location of
isolation valves (shown in Fig. 2); (3) diameter, Hazen–Williams
roughness coefficient and the maximum length of overland by-
passes (linking pairs of hydrants) equal to 200 mm, 100 m, and
300 m, respectively; (4) Preq ¼ 15 m (pressure under which low-
pressure impact is introduced and hence undelivered volume of
water); (5) same intervention types, i.e., PRVs setting adjustment
and overland bypasses. (Rezoning valves and water injection are
not considered here as intervention types because there are no real-
life data about them for the C-Town network and they are not used
in Mahmoud et al. 2018); (6) PRV settings allowed to change are:
no increase, 5% increase, 10% increase, 15% increase, 20% in-
crease, or 25% increase, all relative to the original PRV setting;
and (7) assumption of recovery initialization (i.e., start time of
all interventions) at 9 a.m. (i.e., 8 h after event localization). It is
stressed that the same assumption/limitation is used in the heuristic
to facilitate the comparison between the two studies. However, this
is not the case with the NSGA II conducted for the same case study
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where each intervention is allowed to start at a different time on the
horizon.

One significant discrepancy between the previous work and
the present one is the impact assessment. Mahmoud et al. (2018)
assess end-impact in a more conventional way, i.e., by considering
only the volume of water undelivered to the customers. Here, end-
impact is calculated by taking into account different impact aspects
(see impact assessment method in Nikoloudi et al. 2020), including
supply interruption (CML index), low pressure (AMLP index), un-
delivered water (UW index), and discoloration risk increase (DRI
index). The same weight factors for all impact indicators have been
used [see Eq. (S1)]. Additionally, the second optimization objective
differs between the two studies. Mahmoud et al. (2018) optimize
the number of interventions (i.e., again in a more conventional
way), whereas here the cost of the recovery interventions is used.
It is stressed that a smaller number of interventions does not always
imply lower cost due to particular hydraulic network requirements
(e.g., the use of only one ASV injection point might be quite ex-
pensive when injecting many hours to meet the required demand).
Finally, the opening/closing of isolation valves is not considered
here as a possible intervention type, as done in the previous work.
This is because manipulation of isolation valves is not a common
means to intervene in the network when a failure occurs. Notwith-
standing the presented discrepancies, it is assumed here that it is
still worth comparing the results between the two studies. In that
way, the difference in optimal solutions will be demonstrated when
different aspects of impact and selection of interventions (number
of interventions vs cost), i.e., different optimization conditions, are
considered. It is worth mentioning here that in order to directly
compare the results of the two studies, the identified optimal solu-
tions by Mahmoud et al. (2018) were regenerated in the present

paper, i.e., under the optimal conditions of our study. Due to the
aforementioned differences between the optimization conditions
of the two studies, some of the optimal solutions by Mahmoud et al.
(2018) turned into dominated solutions in our work.

Here, the new optimization method (described in the previous
section) is implemented step by step for the C-Town network and
event. In the offline step 0, all the intervention types (i.e., overland
bypasses and PRVs) and possible locations are identified for the
C-Town network. The initial list of interventions includes 352
OLBs and 5 PRVs. In the online step 1a, the initial list is narrowed
down by identifying: (1) the OLBs that link affected with unaf-
fected DMAs, (2) the OLBs located in the affected DMAs, and
(3) the PRVs upstream affected nodes. In that way, 247 OLBs are
nominated to the online step 1b, and out of which: 35 OLBs link
(affected) DMA1 with (unaffected) DMA5, 20 bypasses link
(affected) DMA2 with (unaffected) DMA4, and 192 OLBs are lo-
cated in the affected DMA1 and DMA2. No PRV was identified to
be upstream affected nodes, i.e., no PRV is nominated for the next
step. Fig. 3 shows the affected nodes/DMAs for the ‘No inter-
vention’ case, the PRVs, and some OLBs (i.e., the ones used in the
intervention plans proposed by the optimization as shown later, for
clarity reasons).

In the online step 1b (i.e., individual evaluation step), the 247
bypasses are assessed individually (for their total aggregated end-
impact and cost) for a fixed start time in the impact horizon. Here,
it is assumed that operators decide the interventions start at 9 a.m.
(i.e., 8 h after localization), i.e., similar to Mahmoud et al. (2018).
This start time is a realistic decision, as it assumes that interventions
start when there is peak in demand, as well as it allows plenty of
time for the technicians to reach the site and start implementation.
In the online step 1c, a number of interventions with the lowest

Fig. 2. C-Town network layout with the simulated event (burst) on pipe P307. (Reprinted from Mahmoud et al. 2018, © ASCE.)
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end-impact (identified in step 1b) are selected and nominated for
the optimization step (i.e., step 2). Here, 10 interventions are se-
lected because this number is considered adequate to provide a
sufficient response plan for a small network such as that of C-Town,
as well as the total time required for evaluation can be conducted
in near real time. This is because a single impact evaluation takes
approximately 3 s to take place for the simple network of C-Town.
Hence, step 1b, which includes 247 single impact evaluations
(see above), lasts for 247 (interventions) × 3 s (time of a single
impact evaluation) = 741 s. Considering that steps 1a and 1c take
approximately 1 min each (because they do not require hydraulic
simulation), then the overall preparation in step 1 takes approxi-
mately 14 min.

The end-impact (in %) and cost (in £) of the 10 candidate
interventions (i.e., overland bypasses in 10 different locations)
for a start time of 9 a.m. are shown in Table 1. It is stressed that in
the cost function in Eq. (2), only the cost of the overland bypasses
has been used (assuming cOLB ¼ 30£=h, obtained by the utility)
because this is the only intervention type nominated for the next
step of optimization. In Table 1, it is observed that all interventions
obtain the same cost because they are of the same type and applied
for the same duration.

In step 2a of the heuristic, the initial solution is identified by the
algorithm as the single intervention with the lowest cost. In Table 1,
it can be observed that the cost of all interventions is equal to £540
because they all start at the same time. The single solution OLB3
that obtains the lowest end-impact (i.e., equal to 6.63%) is selected
as the initial solution (i.e., Solution 1).

Then, in step 2b of the heuristic algorithm, the subsequent sol-
ution is identified as the single solution with the lowest end-impact
among all interventions. In this example, the solution with the
lowest end-impact has already been used. In this case, the lowest
end-impact of the rest of the solutions is identified. In Table 1, it is
shown that the next lowest end-impact is equal to 7.44% obtained

by OLB1 (Solution 2). This solution does not reduce the end-
impact (i.e., at least one of the two objectives), and it is rejected.
In the subsequent solution (i.e., Solution 3), the single intervention
with the next lowest end-impact is added to Solution 1 (i.e., the last
accepted solution). As noticed in Table 1, OLB2 obtains the next
lowest end-impact (equal to 7.45%) and is added to Solution 1.
Hence, Solution 3 is the combination of OLB3 and OLB2. Table 2
shows the end-impact and cost of all the solutions (i.e., interven-
tion combinations) identified by the heuristic. It is observed that
Solution 3 with an end-impact equal to 6.77% and a cost of £1,080
does not further reduce end-impact or cost compared to Solution 1,
and it is rejected. Because Solution 3 is rejected, in subsequent
Solution 4, OLB2 is not considered and the single intervention with
the next lowest end-impact is added. In Table 2, it is observed that
OLB6 obtains the next lowest end-impact, and is combined with

Table 1. End-impact (%) and cost (£) of single interventions for the
C-Town event

Intervention
type

End-impact (%) Cost (£)

Start time Start time Start time Start time

2 a.m. 9 a.m. 2 a.m. 9 a.m.

No intervention 8.63 — 0 —
OLB1 — 7.44 — 540
OLB2 — 7.45 — 540
OLB3 — 6.63 — 540
OLB4 — 8.56 — 540
OLB5 — 8.38 — 540
OLB6 — 8.09 — 540
OLB7 — 8.14 — 540
OLB8 — 8.62 — 540
OLB9 — 8.62 — 540
OLB10 — 8.62 — 540

Fig. 3. Location of affected nodes for the ‘No intervention’ case (i.e., with burst on pipe P307 and isolation in place), isolated area, PRVs, and
overland bypasses OLB1, OLB2, OLB3, OLB4, OLB5, and OLB6 in the C-Town network.
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OLB3 in Solution 4. Now, Solution 4 does further reduce end-
impact compared to Solution 1, and it is accepted, as shown in
Table 2. The same process is followed until all the single inter-
ventions have been added (i.e., after 10 evaluations, as shown in
Table 2).

The 10 solutions proposed by the heuristic algorithm (shown in
Table 2) are finally checked for optimality in step 2j online. This
implies that each proposed solution should not be better than
another solution (i.e., Pareto front). It is noticed that the accepted
solutions in Table 2 are already the optimal ones and are the final
solutions included in the Pareto front. Finally, step 2 includes 10
more impact evaluations, i.e., it lasts for 10 (evaluations) × 3 s
(time of a single impact evaluation) = 30 s. This means that the
total duration of the application of the optimization method for the
C-Town network is approximately 15 min (i.e., 14 min from step 1
and 30 s from step 2).

After the implementation of the new optimization method
proposed here, the NSGA II is conducted for the same event.

The considered interventions, the impact horizon, and optimiza-
tion objectives are the same as used in the heuristic. More spe-
cifically, the decision variables of the heuristic are the 10 OLBs
identified in step 1 of the new optimization method. However,
NSGA II here considers the start time of each intervention a var-
iable too (i.e., in the range of 1 and 24 h after localization). This
is done in order to indicate the error introduced by the limitation
of the heuristic (i.e., where a fixed start time is assumed). Addi-
tionally, the optimal solutions (i.e., combinations of overland
bypasses) identified by Mahmoud et al. (2018) are assessed here
(i.e., in the environment of IRPT) for their total end-impact
(i.e., considering all aforementioned impact aspects) and for their
cost. It is reminded here that Mahmoud et al. (2018) identified
these optimal solutions by assessing the impact of undelivered
water (only) and the number of interventions (i.e., not cost). Fig. 4
compares the results obtained by the NSGA II (Pareto front) of
the present optimization problem, the heuristic Pareto front of
near-optimal solutions, the heuristic dominated (i.e., rejected)

Table 2. Solutions identified by the heuristic algorithm for the C-Town event compared to the ‘No intervention’ case and optimal solutions proposed by
Mahmoud et al. (2018)

Solutions Evaluations End-impact (%) Cost (£) Outcome

No intervention — 8.63 0 —
Solution 1 (OLB3, t ¼ 9 a:m:) 6.63 540 Accept
Solution 2 (OLB1, t ¼ 9 a:m:) 7.44 540 Reject
Solution 3 (OLB3/OLB2, t ¼ 9 a:m:) 6.77 1,080 Reject
Solution 4 (OLB3/OLB6, t ¼ 9 a:m:) 6.08 1,080 Accept
Solution 5 (OLB3/OLB6/OLB7, t ¼ 9 a:m:) 6.08 1,620 Reject
Solution 6 (OLB3/OLB6/OLB5, t ¼ 9 a:m:) 6.07 1,620 Accept
Solution 7 (OLB3/OLB6/OLB5/OLB4, t ¼ 9 a:m:) 5.98 2,160 Accept
Solution 8 (OLB3/OLB6/OLB5/OLB4/OLB8, t ¼ 9 a:m:) 5.98 2,700 Reject
Solution 9 (OLB3/OLB6/OLB5/OLB4/OLB9, t ¼ 9 a:m:) 5.98 2,700 Reject
Solution 10 (OLB3/OLB6/OLB5/OLB4/OLB10, t ¼ 9 a:m:) 5.98 2,700 Reject
Solution Aa (OLB3, t ¼ 9 a:m:) 6.63 540 —
Solution Ba (OLB3/OLB1, t ¼ 9 a:m:) 6.84 1,080 —
aMahmoud et al. (2018).

Fig. 4. End-impact versus the cost of the solutions for the C-Town event identified by NSGA II (Pareto front), the Heuristic (Pareto front and
dominated solutions), and the NSGA II by Mahmoud et al. (2018)–CML in mins=cust, AMPL in mins=cust, UW in m3 and DRI in no. of pipes.
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solutions, the ‘No intervention’ case, and the solutions obtained
by Mahmoud et al. (2018).

Based on the results shown in Table 2 and Fig. 4, the following
observations are made:
• The Pareto front identified by the heuristic sufficiently ap-

proximates the NSGA II Pareto front, as the maximum dis-
crepancy (i.e., error) of end-impact between an NSGA II and
a heuristic solution with similar costs (e.g., Solution 6 of
heuristic compared to Solution 20 of NSGA II and Solu-
tion 7 of heuristic compared to Solution 23 of NSGA II) is
equal to 4%.

• The Pareto optimal front identified by the heuristic is less dense
than the Pareto front proposed by the NSGA II. This is because
only four near-optimal solutions are proposed by the heu-
ristic compared to the 24 solutions proposed by the NSGA II.
However, this is not deemed a significant drawback of the new
optimization method because all the proposed solutions are
near-optimal. Additionally, it is believed here that in near real
time in a control room, there is limited time available to check a
large number of optimal solutions.

• In Table 2 and Fig. 4, it is observed that all the overland by-
passes identified in the accepted solutions (i.e., OLB3, OLB4,
OLB5, and OLB6) are located in the affected DMA1, close
to the affected nodes and isolated area (i.e., burst event). With
this observation, it is confirmed the obvious point that bypass-
ing affected nodes with unaffected nodes in the affected
DMA and close to the isolated area can significantly reduce
end-impact.

• The NSGA II Solution B conducted by Mahmoud et al. (2018)
managed to reduce the undelivered water (i.e., their sole impact
indicator) to 120 m3. However, the new heuristic method iden-
tified a solution (i.e., Solution 7) where the undelivered water
was reduced to 32 m3. This is due to the fact that the heuristic
optimized not only the undelivered volume of water but also
additional impact aspects (e.g., CML, AMLP) whose reduction
facilitates the reduction of undelivered water.

• In Mahmoud et al. (2018), Solution A and Solution B are the
nondominated solutions in their proposed NSGA II Pareto front.
In their study, Solution B obtains lower end-impact (i.e., unde-
livered water volume, first objective) and a larger number of

interventions (i.e., second objective) than Solution A. However,
in Fig. 4, it is shown that when end-impact with more than
one impact aspect is considered (i.e., 1st objective function)
and when cost instead of the number of interventions is used
(i.e., 2nd objective function), the Pareto front can change. Here,
Solution B is dominated by Solution A. This is because while
UW was reduced to 120 m3 in Solution B (compared to 131 m3

in Solution A) and AMLP was reduced to 2.2 mins=cust in
Solution B (compared to 2.5 mins=cust in Solution A), the num-
ber of DRI interventions was increased (from 106 in Solution A
to 111 in Solution B). This ultimately led to the increase of the
total aggregated end-impact of Solution B (instead of decreasing
it as anticipated in a Pareto front).
In the context of the present case study, a sensitivity analysis is

also conducted in order to test different start times of interventions.
This sensitivity analysis aims to investigate the sensitivity of the
new optimization method to the interventions’ start time. As was
mentioned earlier, the new optimization method proposes a (se-
lected by the operator) fixed start time (here assumed as 9 a.m.)
due to time limitations to test different start times in near real time.
In the context of this analysis, five more start times close to the
selected one here (i.e., 9 a.m.) are tested, i.e., at 6 a.m., 7 a.m.,
8 a.m., 10 a.m., and 11 a.m. The mentioned additional start times
are considered here to be adequate to conduct the sensitivity analy-
sis. This is due to the fact that they are all morning hours (i.e., with
similar demands) close to the initially selected one (i.e., some start
times earlier than 9 a.m. and some start times later than 9 a.m.).
Considering much later hours (i.e., after 12 p.m.) might produce
results substantially deviated from the original start time due to
different demand levels. The results are shown in Fig. 5 and are
compared with the NSGA II results.

From Fig. 5, it is observed that:
• The Pareto front obtained using the heuristics algorithm approx-

imates the NSGA II front reasonably well, especially for the
most important part with lower-cost solutions. Indeed, for lower
costs (i.e., lower than £1,500) and for all the start times the heu-
ristic approach identifies solutions that are almost identical to
the NSGA II. For higher costs (i.e., higher than £1,500), heu-
ristic solutions are dominated by the NSGA II solutions but not
by much, i.e., the distance between the two Pareto fronts is

Fig. 5. Solutions of different start times identified by the heuristic for the C-Town event.
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rather small with heuristic solutions with the earliest start times
(i.e., 6 a.m. and 7 a.m.) being closer to the NSGA II solutions.

• The following overland bypasses exist in all heuristic solutions,
regardless of the start time used: OLB3, OLB4, and OLB6.
This is good news as these overland bypasses are the most
important ones, as confirmed by the NSGA II solutions.

P-Town

Here, the steps of the new optimization method are followed for the
P-Town network and event and are also compared with the NSGA
II results (conducted in the context of this case study, similar to the
C-Town case study). The P-Town network serves approximately
100,000 customers via water treatment work (WTW). The custom-
ers are separated into 24 DMAs, and among them, there are 16
schools, 11 industrial users, and 1 hospital. The P-Town real-life
event is a shutdown at the WTW of the network, localized at
2 p.m. on 2nd November 2019. The shutdown lasted for 24 h
(i.e., until 2 p.m. the next day). The impact horizon considered here
lasts from the localization time (i.e., 2 p.m. the first day) until the
end of shutdown/isolation (i.e., 2 p.m. the next day), i.e., 24 h hori-
zon. More details about the event description and timeline can be
found in Nikoloudi et al. (2020). The heuristic-based optimization
method is applied here too step by step (as described in the previous
section), but the details of this implementation are shown only in
the Supplemetal Materials due to the space limitation of this paper.

Fig. 6 compares the results obtained by the NSGA II (Pareto
front) of the present optimization problem, Heuristic Pareto front
of near-optimal solutions, heuristic dominated (i.e., rejected) solu-
tions, and ‘No intervention’ case. In Fig. 6, it is observed:
• The Pareto front identified by the heuristic approximates the

NSGA II Pareto front well, as the maximum discrepancy (i.e., er-
ror) of end-impact between an NSGA II and a heuristic solution
with similar costs (e.g., Solution 7 of heuristic compared to
Solution 16 of NSGA II) is equal to 9%. It is noticed that the
error in the P-Town case study is higher than the error in the
C-Town (i.e., 4%). However, it is deemed low considering

the significant limitation of the fixed start time for the present
complex real-life network.

• The new method also identified the ‘jump’ from a solution with
high end-impact (i.e., Solution 1) to a solution with much lower
end-impact (i.e., Solution 2) with the minimum cost increase.
Solutions like these (i.e., Solution 2) are likely to be selected
by decision makers. It is also observed that Solution 2 seems
identical to the solution proposed by NSGA II.

• Similar to the C-Town case study, the Pareto optimal front
identified by the heuristic is less dense than the Pareto front
proposed by the NSGA II. Here only seven (nondominated)
near-optimal solutions are proposed by the heuristic compared
to the 20 solutions proposed by the NSGA II. However, as
mentioned earlier, this is not deemed a significant drawback
of the new optimization method because the front coverage
is good, and in near real time, in a control room, there is
limited time available to check a large number of optimal
solutions.

• NSGA II was conducted here and took approximately 2 days to
be completed, while the new optimization process (i.e., online
selection of population and heuristic) took approximately 1 h.
It is noticed that the time the proposed heuristic optimization
was completed here is much lower than the NSGA II.

Conclusions

The paper presents a novel optimization methodology to identify
near-optimal response solutions to water network failures in near
real time. The optimization problem is multiobjective, and the
decision variables are the interventions in the network to restore
supply as long as the repair is being conducted. Unlike other con-
ventional optimization problems, the present problem minimizes
the total aggregated end-impact to the customers (i.e., considering
different impact aspects) and the cost of a response solution
(i.e., instead of the conventional number of interventions). The new
optimization method includes three main steps, one offline and two

Fig. 6. End-impact versus the cost of the solutions for the P-Town event identified by NSGA II (Pareto front) and the heuristic (Pareto front and
dominated solutions).
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online. In the offline step, the initial list of available interventions is
identified. In the first online step, the narrowed-down set of inter-
ventions considered in the optimization is found. In the second on-
line step, a novel heuristic algorithm is applied in order to identify
near-optimal solutions in near real time. The new optimization
method was validated in two semireal case studies.

Based on the case study results obtained, the following results
are concluded:
1. The new, heuristics-based method is able to identify near-

optimal response solutions in an effective (i.e., accurate) and
efficient (i.e., computationally fast) manner. The effectiveness
is confirmed by running the full, NSGA II-based optimization
runs and comparing the resulting Pareto fronts that match well.
The computational efficiency achieved enables its application in
near real time for larger, more complex WDS.

2. The Pareto optimal front identified by the heuristics method has
good coverage, but it is less dense than the corresponding front
obtained by the NSGA II. This, however, is not deemed as a
significant drawback because all solutions proposed by the heu-
ristics method are near-optimal and the set of solutions identi-
fied represents well the trade-off between the impact reduction
and associated costs of responses. Therefore, the solutions iden-
tified provide a good starting point for consideration by control
room operators who have a final say anyway.

3. When compared to the solutions obtained by Mahmoud et al.
(2018), the heuristics method managed to improve the quality
of some solutions (e.g., reduced the volume of undelivered
water) despite the fact that its impact reduction is driven by other
criteria as well.

4. The potential limitation of the method is its inability to optimize
for the start time of interventions that therefore needs to be set
by the control room operator. Having said this, as demonstrated
in both case studies, the solutions generated by the heuristics
method are robust enough, i.e., rather insensitive to this start time.
Future work on further improvement of the proposed method

includes: (1) consideration of the start time of interventions as a
decision variable (i.e., each intervention should be able to start
at a different time on the horizon); (2) consideration of more impact
aspects in the calculation of the first objective (e.g., environmental
aspect and 3rd party damage); (3) development of a more advanced
(i.e., more automatic) process for selection of the initial population
(i.e., step 1 of the new method); (4) application of the methodology
in cases of multiple pipeline failures occurring at the same time;
and (5) reduction of computational time required to identify the
near-optimal response solution, ideally to less than 1 h even in
the case of complex water networks. Mathematical optimization
methods should be considered for this, in addition to heuristic-
based methods.
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