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In this article, a statistical model of human motion as observed
by a network of radar sensors is presented where knowledge on
the position and heading of the target provides information on the
observation conditions of each sensor node. Sequences of motions are
estimated from measurements of instantaneous Doppler frequency,
which captures informative micromotions exhibited by the human
target. A closed-form Bayesian estimation algorithm is presented that
jointly estimates the state of the target and its exhibited motion class
which are described by a hidden Markov model. To correct errors in
the estimated motion class distribution introduced by faulty modeling
assumptions, calibration of the probability distribution and measure-
ment likelihood is performed by isotonic regression. It is shown, by
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modeling sensor observation conditions and by isotonic calibration
of the measurement likelihood that a cognitive resource management
system is able to increase classification accuracy by 5%–10% while
utilizing sensor resources in accordance with defined mission objec-
tives.

NOMENCLATURE
•k|k−1 RV • estimated at time k given all measurements

until and including time k − 1.
fk|k−1(·) Distribution of · at time k given all measurements

until and including time k − 1.
〈·, ·〉 Inner product.
〈·〉 Mean value of a large number of samples.
y Random variable defining the motion class, dis-

crete.
φ Random variable defining the aspect angle, dis-

crete.
x Random variable defining the continuous state

parameters of the target, continuous.
X Set of future radar measurements.

I. INTRODUCTION

Networks of radar sensors can increase the efficacy of
perception tasks, such as the tracking and classification of
targets by leveraging the diverse observation conditions
of the radar nodes. However, the utilization of a sensing
network relies on the ability to reliably combine the infor-
mation from each sensor and potentially manage the radar
resources across several tasks. One such application of a
radar network is the nonintrusive monitoring of vulnerable
individuals to detect a fall or other potentially dangerous
events [1]–[3].

Existing literature on the classification of human motion
from radar measurements mainly evaluates characteriza-
tions of the received signal. Measurements of the Doppler
effect from micromotions have been found to have the
strong predictive performance [3]–[5]. However, charac-
terizations that incorporate the range response have also
been presented [2]. Limitations in these works comprise
the following.

1) The orientation of the target relative to the sensor is
kept fixed in the experimental environment [3]–[5].

2) Only binary classification in a limited domain is
considered [1]–[5].

3) The class variable does not change with time [1]–[5].
4) The method utilizes simulated radar data [6]–[8].

Experimental environments without the abovemen-
tioned limitations are here considered to provide natural-
istic data, which enables a more accurate understanding of
the efficacy of the proposed methods in nonexperimental
settings.

Previous work on the classification of naturalistic se-
quences of human motion observed by a radar network has
explored learned representations of sequences by applica-
tions of recurrent neural networks [9]. Other work utilizes
logistic regression to discriminate between motion classes
and defines heuristics for sensor fusion [10]. In contrast,
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Fig. 1. Diagram of the statistical model and estimation procedure of a
radar network monitoring human motion. At time k the marginal
distribution of the motion class yk is evaluated with regards to the

observation conditions φk of each sensing node, which is a deterministic
function of the state of the target sk .

this work proposes a statistical model of human motion
that defines a hidden Markov model of a state space, which
includes the motion class of the target and the state space of
a coordinated turn dynamical model [11]. The classification
of human motion is framed as a joint estimation problem
where information on the target’s position and heading pro-
vides an understanding of the observation conditions of each
sensor. The proposed statistical model is an acyclic directed
graph and can therefore be described as a Bayesian network.
An overview of the proposed methodology is visualized in
Fig. 1 with notation described in the Nomenclature.

The aim of the presented methodology is not to evaluate
a specific characterization of radar measurements as in [1]–
[5], [9], [10]. Instead, it is shown how statistical models
can be utilized to increase classification performance. In
particular, knowledge on variables, which does not directly
covary with the motion class is used to increase the informa-
tion in sensor measurements. Also, it is shown how a model
of the dynamical behavior of how a target’s motion class is
leveraged to differentiate classes that are not separable by
the available measurement characterization. In this work
such classes are standing, sitting, and lyingdown for which
no micromotions can be observed.

Notable related works in Bayesian models for joint
estimation problems evaluate how learned representa-
tions of Doppler measurements improve data association
in simulated environments [12]. In [13], a variational

Bayesian method is proposed to reconstruct the instanta-
neous Doppler frequency from a nonuniform sampling of
the radar signal. Other works evaluate classification based
on the congruence of a target’s motion with defined dynam-
ical models [14], [15]. This work builds on such methods
to include the dynamically changing observation conditions
of the sensors in a sensing network.

Cognitive radar frameworks rely on an ability to quan-
tify and reason on future uncertainty, which allows for
the selection of an optimal decision policy [16], [17]. In
previous work on cognitive frameworks for target classifi-
cation [16], the entropy of the classification variable is used
as a proxy for the utility of a measurement, which can be
motivated for a single sensor under static observation con-
ditions. Cognitive methods for target classification are here
extended to include a model of the observation conditions
of each sensing node in a radar network by application of a
Monte Carlo approximation of measurement information.
As in [16], the aim of the cognitive system is to reduce the
utilization of a radar network by taking a set of measure-
ments that are sufficiently informative as defined by some
cost function. The resource management problem explored
in this work is limited to the selection of micro-Doppler
measurements while state point measurements are taken
continuously. This restriction is motivated by the long co-
herent processing interval required by micro-Doppler mea-
surements, which is here considered a dominating factor in
measurement cost.

Cognitive radar frameworks and sensor fusion algo-
rithms rely on that the uncertainty estimates provided by
the model are meaningful. Poor probability calibration is a
consequence of incorrect modeling assumptions, such as
the independence of features and the analytical form of
estimated distributions [18]. This work proposes the utiliza-
tion of probability calibration techniques, which improves
the performance of the fusion algorithm and increases the
reliability of a radar resource management system. Methods
of probability calibration are also extended to calibrate
measurement likelihood, which is needed to evaluate the
information in a radar measurement of the instantaneous
frequency spectrum.

In summary, the contributions of this article are as
follows:

1) A statistical model of human motion as observed
by a network of radar sensors with a closed-form
Bayesian estimation algorithm.

2) The solution to a minimal radar network resource
problem, which is able to account for the observation
conditions of each radar nodes.

3) An extension of probability calibration methods to
the proportional calibration of measurement likeli-
hoods.

The signal model is presented in Section II, which
outlines the signal processing chain and measurement char-
acterizations followed by the problem formulation in Sec-
tion III. The proposed statistical model and estimation
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procedure are described in Section IV. A resource man-
agement problem is defined in Section V, which solution is
enabled by the probability calibration technique described
in Section VI. Results and the related discussion are found
in Sections VII and VIII, respectively, and Section IX
concludes this article. For reproducibility, the code has been
made available on GitHub1 and the dataset is published [19].

II. SIGNAL MODEL

A coherently pulsed transceiver transmitting a coded
waveform measures the backscatter signal s : R → C,
which is recovered by a bank of receivers [20]. The in-
phase component of s(t ) is sampled and the quadrature
component is reconstructed by the Hilbert transform [21].
Ranging is inferred from backscatter time-of-flight and the
instantaneous frequency spectrum ŝ(t, r, ωD) is estimated
by frequency analysis of the backscatter over a sequence of
pulses at a given range r. The spectrum ŝ(t, r, ωD) describes
the Doppler shift of the backscatter. The backscatter can
then be characterized by a range-Doppler response where
range r and measured radial velocity vr follow a linear
relationship with the time-of-flight τ and Doppler frequency
ωD, respectively,

r = τ c

2
, vr = λ ωD

2

where λ and c denote the wavelength and the speed of light,
respectively.

The instantaneous frequency spectrum ŝ(t, ωD) of the
extended target is estimated by first identifying the fre-
quency f in the bandwidth of s(t ) with the highest am-
plitude. The instantaneous frequency spectrum is then es-
timated by frequency analysis of f over a sequence of
pulses. Frequency analysis has in this work been limited
to a discrete Fourier transform of the digitized signal with
parameters found in Table I. The instantaneous frequency
spectrum can be visualized as a spectrogram that describes
the micro-Doppler signature of the target which is found in
Fig. 2.

A low dimensional representation of the micro-Doppler
spectrogram is acquired by principal component analysis
(PCA). A dataset X ∈ Rn×k is constructed by drawing n
samples of one-second duration from the recorded micro-
Doppler spectrograms where k denotes the number of ele-
ments in a micro-Doppler sample. PCA finds a linear and
orthogonal basis P ∈ Rk,k̃ , which comprise an optimal low-
rank approximation of the covariance matrix of X ∈ Rn,k

[22]. The information retained in the k̃ dimensional repre-
sentation of the micro-Doppler spectrograms

X̃ = XP

can be visualized by the reconstruction X̂ = X̃PT . PCA as
a method for low-rank approximations of micro-Doppler
spectra to be used in classification has been established

1[Online]. Avaialable: https://github.com/petersvenningsson/radar-
Bayesian-human-motion

TABLE I
Experimental Parameters

Fig. 2. Micro-Doppler sample of a walking motion (right) and its
reconstruction from 20 principal components (left). The spectrograms are

visualized in logarithmic scale (dB) relative to the largest amplitude.

SVENNINGSSON ET AL.: BAYESIAN NETWORK FOR THE CLASSIFICATION OF HUMAN MOTION 5663

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 12:33:04 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/petersvenningsson/radar-Bayesian-human-motion
https://github.com/petersvenningsson/radar-Bayesian-human-motion


Fig. 3. Explained variance ratio is the proportion of the total variance in
the dataset explained by a given number of principal components. It is a

metric on the quality of the low-rank approximation. The explained
variance ratio of the 20 first principal components is 0.710%.

in the literature [23]–[29], and is here further motivated
by the visual similarity between the spectrogram X and its
reconstruction X̂ , which is found in Fig. 2. Following the
recommendation in [30], the number of principal compo-
nents is set so that the proportion of the total variance in the
dataset explained by the low-rank approximation exceeds
70%, which occurs at k̃ = 20. The choice of k̃ is further
motivated by the decreasing improvements in explained
variance for a larger number of principal components than
the set value as seen in Fig. 3.

Before fitting the PCA transform, the micro-Doppler
samples are shifted along the frequency axis to align the
amplitude centroid of ŝ(t, ωD) with zero-Doppler, postpro-
cessing aimed at making the samples directly comparable
by hiding information related to the velocity of the target. To
account for differences in the amplitude of the backscatter
which decreases with the fourth power of the range to the
target, the micro-Doppler samples are evaluated in decibels
relative to the highest amplitude over a four-second interval.
The duration of the interval was found to be appropriate by
visual inspection. The dynamic range is set to the interval
[−80, 1] dB. The dataset used to fit the PCA transform is
subsampled to uniform class distribution to account for class
imbalance.

The space complexity of an exact PCA implementation
is O(n k). Due to the large dataset used in this work, an
approximate PCA algorithm [31] with space complexity
O(k) is used where memory requirements are lowered by
processing the dataset in batches.

III. PROBLEM FORMULATION

A surveillance area is observed by five monostatic
pulsed radar nodes. The surveillance area is inscribed by a
circle with diameter 4.39 m, as shown in Fig. 4. One human
target is present in the surveillance area and at each time
step exhibits one of nine motion classes found in Table I. For
two minutes, the target exhibits a sequence of motion classes
considered a facsimile of naturalistic data. Correlations over
long periods of time exist in the data. For example, a target
may stand up only after sitting down or falling over.

Fig. 4. Surveillance area is visualized with the placement of the radar
nodes and the aspect angle φ of a radar node.

Fig. 5. Range-Doppler response of a human target. The response is
truncated to zero at the 80% percentile to remove thermal noise and low

amplitude clutter. Visualized in logarithmic scale (dB).

The experimental configuration of the PulsON P410
radar system used in this work is found in Table I. The target
extends in range and Doppler is identified by truncating the
amplitude of the response to zero at the 80% percentile.
The range-Doppler response of a human target is shown in
Fig. 5. The amplitude centroid of the truncated response zk

is defined as a point measurement of the target

zk =
[∑

r,ωD
r trunc (ŝ(tk, r, ωD))∑

r,ωD
trunc (ŝ(tk, r, ωD))

, . . .

∑
r,ωD

ωD trunc (ŝ(tk, r, ωD))∑
r,ωD

trunc (ŝ(tk, r, ωD))

]
(1)

with truncation defined as

trunc(x) =
{

x if x > 0.8 max(ŝ(tk, r, ωD))
0 else

.

5664 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 6 DECEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 12:33:04 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Overview of the estimation procedure for target state and motion class. The observation conditions of each sensor is estimated in (a) by
Monte Carlo sampling. In the motion class estimation procedure shown in (b) distribution of y is updated based the conditional measurement

likelihood p(xk | yk, φk ) after which the marginal distribution of yk is taken. (a) The estimation procedure for the target state sk and sensor aspect angle
φk . (b) The estimation procedure for the motion class y.

At each time-step tk a detection is generated from each
sensor.

An algorithm is tasked with predicting the exhibited mo-
tion class for each time step in the sequence comprising a se-
mantic segmentation in time. The algorithm’s performance
is characterized by the total accuracy of the predictions and
the macroaveraged Jaccard index. Total accuracy is defined
as

Total accuracy = Correct predictions

Number of predictions

and measures the classification performance disregarding
class imbalance. The Jaccard index [32]

J = TP

TP + FP + FN

is evaluated for each class as a function of the true posi-
tives (TP), false positives (FP), and false negatives (FN).
The mean Jaccard index is taken over the classes, which
constitutes the macroaveraged Jaccard index Jma.

IV. STATISTICAL MODEL

The motion class of the target is estimated from a
low-dimensional representation x of micro-Doppler spec-
trograms one second in duration acquired by principal com-
ponents decomposition. The response of x covaries with the
motion class of the target as well as the observation condi-
tions of the sensor. The observation conditions are modeled
in order to increase the information in x | φ relative to the
motion class y. The observation conditions here considered
is the aspect angle φ as visualized in Fig. 4.

The target state and motion class are estimated jointly
by the recursive filtering algorithm outlined in Fig. 6 and
explained throughout the remaining section. It is assumed
that the sensors take independent measurements and that
any conditional distribution of x is a multivariate normal

distribution with a diagonal correlation matrix. A graphical
model of the system is found in Fig. 8.

A. State Estimation

An overview of the state estimation algorithm is found
in Fig. 6(a). The aim of the state estimation algorithm is to
map a sequence of sets of point measurements to a sequence
of estimates of the aspect angle φk for each sensor

Z0, Z1, . . . , Zk �→ �0|0, �1|1, . . . , �k|k

where Z0 = {z(1), . . . , z(N̂k )}, � = {
φ(1), . . . , φ(N )

}
, for N

sensors and N̂k detections at time k.
The state of the target sk−1 is mapped to the next time

step sk by a deterministic process model gk (·) with additive
Gaussian noise

sk = gk (sk−1) + qk, qk ∼ N (0, Qk )

where Qk denotes the covariance matrix of the noise. A
sensor is modeled by a deterministic measurement model
hk (sk ) with Gaussian noise

zk = hk (sk ) + rk, rk ∼ N (0, Rk )

where Rk denotes the covariance matrix of the noise.
The recursive estimation of sk can then be decomposed

into the Chapman–Kolmogorov prediction

fk|k−1(sk ) =
∫

g
(
sk | sk−1

)
fk−1|k−1

(
sk−1

)
dsk−1 (2)

and update step following from Bayes rule

fk|k (sk ) ∝ h(Zk | sk ) fk|k−1(sk ) (3)

for which there exists closed form solutions if g(·) and h(·)
are linear functions and the noise is additive Gaussian [33].

The target’s state vector s = [x1, x2, v, ϕ, ϕ̇] defines the
position, velocity, heading, and turn rate of the target. It is

SVENNINGSSON ET AL.: BAYESIAN NETWORK FOR THE CLASSIFICATION OF HUMAN MOTION 5665

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 12:33:04 UTC from IEEE Xplore.  Restrictions apply. 



assumed that the target follows a coordinated turn process
model, which is discretized by the Euler method [11]

g(s) =

⎡
⎢⎢⎢⎣

x1 + T v cos (φ)
x2 + T v sin (φ)

v

ϕ + T ϕ̇

ϕ̇

⎤
⎥⎥⎥⎦ (4)

with time-step length T and noise covariance

Q = diag
([

0 0 σ 2
v 0 σ 2

φ̇

])
.

The radar nodes in the sensing network take point mea-
surements of range and radial velocity as modeled by

h(s) =
⎡
⎣ ‖x − b‖〈[

v cos ϕ

v sin ϕ

]
, x − b

〉⎤⎦ (5)

with noise covariance

R = diag
([

σ 2
r σ 2

ṙ

])
where x = [ x1 x2 ]

T
denotes the position of the target and

b = [ b1 b2 ]
T

the position of the sensor.
The nonlinear process model (4) and measurement

model (5) are linearized around sk−1|k−1 and sk|k−1, re-
spectively. This approximation is commonly referred to as
extended Kalman filtering [33].

The aspect angle φ from a sensor to the target follow
the deterministic relationship

	(s) = arctan2(b2 − x2, b1 − x1) − mod(ϕ, 2π ).

The aspect angle φ is estimated by a Monte Carlo approx-
imation. Let S be a set of samples drawn from sk|k . The
aspect angle φ is discretized into M equisized bins and is
estimated by

P
(
φ = φ( j)

) =
∑

s∈S 1[ j− 2π
M , j+ 2π

M ](	(s))

|S|
j ∈ {0, . . . (M − 1)}

where 1 is the indicator function.

B. Class Estimation

The motion class exhibited by the target is modeled as
a discrete Markov chain, which is visualized in Fig. 7. An
overview of the estimation procedure for the motion class
is found in Algorithm 6b.

The distribution of the motion class y is estimated re-
cursively. The discrete process model

fk|k−1(yk ) = Q yk−1

maps the motion class y at time k − 1 to the succeeding time
step k. The transition matrix Q ∈ RM×M defines the transi-
tion between M classes where Qnp = P(yk = n | yk−1 = p).

The conditional distribution of x(i)
k | yk is modeled as

Gaussian with a diagonal covariance matrix �

p(xk | yk ) ∼ N (xk;μ, �)

Fig. 7. First-order Markov model of a subset of the motion classes
which defines fk|k−1(yk ).

Fig. 8. Graphical model of the target and sensor network, which can be
categorized as a dynamic Bayesian network. The state sk and motion

class yk are estimated dynamically from range-Doppler point
measurements x(i)

k and micro-Doppler measurements z(i)
k . The sensors in

the radar network, which are modeled as independent, are indexed by i.
Shading indicates variables that are directly observed.

where

fk|k (yk ) ∝ p(xk | yk ) fk|k−1(yk ).

Similarly, the observation conditions φ are considered by
assuming

p
(
xk | yk, φk

) ∼ N (xk;μ, �)

where an estimate of fk|k (yk ) is obtained by its marginal
distribution

fk|k (yk ) ∝
∑

φ

p
(
xk | y, φ

)
fk|k (φk ) fk|k−1(yk ).

For a network of multiple sensors, the Bayesian network
shown in Fig. 8 is factorized by

fk|k (yk ) ∝
∑

i

∑
φ

(i)
k

p
(

x(i)
k | y, φ(i)

k

)
fk|k

(
φ

(i)
k

)
fk|k−1(yk )

(6)
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where i ∈ {1, . . . , N̄k} and N̄k denotes the number of valid
measurements of xk at time k. A micro-Doppler measure-
ment may be considered invalid if the target leaves the
sensing node’s line-of-sight during the coherent processing
interval. In this work, N̄k = N for all k.

The parameters of the distributions, p(xk | yk ) and p(xk |
yk, φk ) are estimated from data with known labels y and
point estimates of φ are extracted from Algorithm 6a.

V. RESOURCE MANAGEMENT

Resource management can be viewed as a decision
process where the utility of an action accounts for the cost
of the action and the expected benefits associated with the
action. A minimal resource management problem is here
formulated as

max
Xk+1

I
(Xk+1; yk+1|k

) − c |Xk+1|
For Xk+1 over P (S ) (7)

where X is the set of selected radar sensors, P denotes
all subsets of S , and S =

{
x(1)

k+1 | φ(1)
k+1, . . . , x(N )

k+1 | φ(N )
k+1

}
is

the set of available sensors with corresponding observation
conditions φ

(i)
k+1. The utility function in (7) weighs the

information in a set of future measurements I(Xk+1; yk+1)
against the cost of the using |Xk+1| number of sensors as
defined by the cost factor c.

The information in a future measurement is quantified
as the conditional information in xk+1 | φk+1|k relative to the
motion class yk+1 | k

I
(
xk+1 | φk+1|k; yk+1|k

)
= Ep(x,y,φ) log

p(x, y | φ)

p(x | φ) p(y | φ)
(8)

where time indices have been dropped from the notation for
brevity. Considering a set of independent sensors Xk+1 ={
x(1) | φ(1), . . . , x(N ) | φ(N )

}
with corresponding angle esti-

mates �k+1|k the information in a measurement from the
sensors in X

I(X ; y) = Ep(X ,y,�) log
p(X , y)

p(X ) p(y)
(9)

can be expressed in the conditional form

I(X ; y) = Ep(X ,y,�) log
p(X | y)∑′

y p(X | y′) p(y′)

and

I(X ; y)

= Ep(X ,y,�) log

∏
x(i)∈X p(x(i) | φ(i), y)∑′

y

∏
x(i)∈X p(x(i) | φ(i), y′) p(y′)

(10)

follows from the independence of the sensors in X . The
conditional distributions p

(
x(i) | φ(i), y

)
are modelled as

Gaussian and the expectation in (10) is approximated by

Fig. 9. Reliability curve for the binary prediction if the target is
exhibiting the Walking motion class. The classification is made on a

uniform prior with no dynamical modeling of the human motion. The
uncalibrated classification model is overconfident and the isotonic

calibration method is able to correct the confidence of the predictions.

Monte Carlo sampling

I(X ; y) = Ep(X ,y,�) log
p(X | y)∑′

y p(X | y′) p(y′)

≈
〈

log

∏
x(i)∈X p(x(i) | φ(i), y)∑′

y

∏
x(i)∈X p(x(i) | φ(i), y′) p(y′)

〉
(11)

over Nmc samples which are drawn with replacement from
the training split. Information is here and throughout the
manuscript defined in base e.

VI. MODEL CALIBRATION

Methods that aim to correct the predicted class proba-
bility ŷ to make it more similar to the true class probability
y are named probability calibration methods [18]. The aim
is for a prediction made at confidence q to have the prob-
ability q of being true. A well-calibrated model improves
the efficacy of data fusion over time and across sensors as
uncertainty estimates remain meaningful. The calibration of
a classification model can be characterized by a reliability
curve which is found in Fig. 9.

Following the method proposed by [34], a function m is
fit to minimize the squared error of predictions made on a
validation dataset V

m̂ = argminm

∑
i∈V

(
yi − m

(
ŷi
))

2 (12)

where yi denotes an annotated motion class and ŷi is the
respective prediction. The function m̂ is restricted to a piece-
wise constant monotonically increasing function and is fit
using the pair-adjacent violators algorithm [35] developed
for isotonic regression. The validation datasetV is generated
by folded validation.

This work extends probability calibration to the pro-
portional calibration of measurement likelihoods. Let the
motion class y be estimated from the measurement of one
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sensor x ∈ R
k̂ using a uniform prior p̄(y)

p̂(y) = p(x | y) p̄(y)∑′
y p(x | y) p̄(y)

.

The distribution of p̂(y) is calibrated on a uniform prior
by subsampling the validation dataset V to a uniform class
distribution. The calibrated measurement likelihood can
then be approximated as

m̂
(
p̂(y)

) ≈ p(x | y) p̄(y)∑
y′ p(x | y′) p̄(y′)

= p(x | y)∑
y′ p(x | y′)

(13)

where

p(x | y)∑
y′ p(x | y′)

∝ p(x | y).

The calibrated measurement likelihood are used in the mo-
tion class estimation update step (6)

fk|k (yk ) ∝
∑

i

∑
φ

(i)
k

m̂
(

p̂
(

y | x(i)
k , φ

(i)
k

))

fk|k
(
φ

(i)
k

)
fk|k−1(yk )

and to estimate the information in a measurement from a
set of sensors (10)

I(X ; y) =Ep(X ,y,�)log

∏
x(i)∈X m̂

(
p̂
(
y | x(i), φ(i)

))
∑′

y

∏
x(i)∈X m̂

(
p̂
(
y′ |x(i), φ(i)

))
p(y′)

.

The calibrated measurement likelihood has been optimized
to reflect how well the measurements can discriminate
between the classes and can, therefore, more accurately
estimate how much information exists in a measurement.
The calibrated measurement likelihood also improves the
outcome of sensor fusion as uncertainty in the measure-
ments is more correctly estimated.

VII. CASE STUDY

A human target exhibiting a sequence of motion classes
has been recorded in an experimental environment de-
scribed in Section II and visualized in Fig. 4. A total of
900min of data has been recorded, of which 60 min are nat-
uralistic data sequences. The predictive model proposed in
Section IV is evaluated on naturalistic data sequences using
folded validation where a test fold comprises data from an
individual not found in the training fold. The parameters of
the conditional distributions p(x | y, φ) are estimated from
the training fold from a maximum a posteriori probability
point estimate of φ. The calibration procedure splits the
training fold into an additional five folds to estimate the
model’s probability predictions on test data. Parameters
related to the dataset and the estimation procedure are found
in Table I.

The performance of the proposed model is evaluated by
an ablation study. The effects of different components of the
proposed solution are analyzed by observing the decrease in
the performance when removed. The components evaluated
by the ablation study are as follows:

Fig. 10. Radar nodes visualized with the estimated aspect angle to

the target where the shading indicates the probability mass of the
discrete aspect angles. The 3-sigma bound of the target’s position is

indicated by - - -. The measurement noise σr , σṙ has been tuned so that
the 3-sigma bound approximates the cross-section of the target. The

instantaneously Doppler frequency measured by each sensor is
visualized on the bottom row. Video renderings of the track are available

at https://bit.ly/3jMy9Cm.

1) A dynamic estimation of the motion class.
2) An estimation of the observation conditions of the

radar nodes.
3) A calibration of the model’s uncertainty estimates.

When all three components are missing the statistical
model is a Gaussian naive Bayes classifier.

A. Results

A visualization of the state estimation track is found in
Fig. 10. The algorithm tracks the position of the target with
a 3-sigma bound of approximately 0.7 m. Each sensor’s
estimated discrete aspect angle can be estimated with high
certainty when the target is in motion. However, if the target
remains stationary, the uncertainty in the aspect angle is
high. Rendered videos of the target track have been made
available at https://bit.ly/3jMy9Cm.

The ablation study found in Table II verifies that each
component of the statistical model increases classification
performance by 2%–6% accuracy. The proposed solution
achieves an accuracy of 64.9% and a Jaccard index of
31.1%. In contrast, the simplest model which is equivalent
to a Gaussian naive Bayes classifier, achieves an achieves
of 54.6%, and a Jaccard index of 24.3%.

The confusion matrix found in Fig. 11 shows that the
model has high accuracy for predictions made on the Walk-
ing class, which has a steady-state micro-Doppler signature.
Contrary, the model has low performance for predictions
made on motion classes with short complex micromotions,
such as falling, sitting down, and bending.
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TABLE II
Comparison of Classification Performance When Components of the

Proposed Method Are Not Included in the Estimation Procedure

aA prediction for each sample is estimated without fusion over time. Fusion over the
five sensors follows from Bayes rule with a uniform prior. The three components
of the proposed method, dynamic estimation of the motion class, conditioning
the measurements on observation conditions and calibration of the measurement
likelihood increases accuracy by 6.5%, 2.5%, and 3.0% respectively.
The highest values in the table are set as bold to be more easily found.

Fig. 11. Confusion matrix of predictions made by the proposed model.
True labels are indicated on the y-axis and predicted labels on the x-axis.

Shown values are normalized by the number of true samples.

The classes standing, sitting, and lying down are mo-
tionless and are not separable by their micro-Doppler sig-
nature. The model can separate these classes by leveraging
information on the transition between classes as encoded
in the transitions matrix Q. The accuracies for lying down
and sitting are 76 and 61%, respectively, while standing
is predicted with lower accuracy of 34% and is misclassi-
fied as Sitting at a rate of 24%, which shows a difficulty
in identifying the transition between these classes. The
model also shows some confusion between the nonsta-
tionary Walking class and the stationary motion classes,
which indicates that information on the target’s velocity has
been obfuscated by the postprocessing of the micro-Doppler
samples.

TABLE III
Breakdown of the Information in a Single Calibrated Measurement

Taken at Different Aspect Angles

aThe aspect angle interval [ 2 j−π

8
2 j+π

8 ].
bA prediction is here estimated independently without fusion over time or across
sensors.
In the operational domain, higher accuracy is achieved at inference from measurement
near aspect anglesφ′ ∈ {0, π} corresponding to aspect angle bins j ∈ {0, 4}. When the
observation conditions are modeled, the increased information at φ′ can be identified.

A breakdown of the information in micro-Doppler mea-
surements at varying observation conditions is found in
Table III. Measurements are most informative at angle
bins 0 and 4, which signifies that the target is measured
from the front and back, respectively. Many micromotions
such as swinging arms can be measured well under these
observation conditions. Prediction accuracy from measure-
ments taken at different observation conditions follows the
trends of measurement information with predictions made
at aspect angle bins 0 and 4 being the most accurate. The
information in measurements from the most advantageous
observation conditions is 0.79 nats while the informa-
tion in the least advantageous observation conditions is
0.61 nats, which is coincidentally also the information in
measurements where the observation conditions have
not been modeled. A upper bound on the measure-
ment information is log(9) ≈ 2.20 nats, which is the log-
arithm of the size of the class set [36]. Significant de-
creases in measurement information and classification per-
formance are found if observation conditions are not
modeled.

The predictions of a cognitive system classifying a mo-
tion sequence while managing sensor resources by solving
the resource management problem expressed in (7) are vi-
sualized in Fig. 12. Fewer measurements are taken when the
model has high certainty on the motion class, such as during
long sequences of walking. At times of high uncertainty
such as when the information in measurements is conflicting
or ambiguous, an increased number of measurements are
taken. The advantages of taking more measurements are
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Fig. 12. Classification predictions made by a cognitive system which selects the set of radar measurements to take in order to maximize the utility in
(7). (a) Low measurement cost scenario c = 0.04. (b) High measurement cost scenario c = 0.4.

made clear as the low measurement cost scenario shown
in Fig. 12(a) is able to classify the Bending motion at 60 s
which is misclassified in the high-cost scenario shown in
Fig. 12(b).

Quantitative results on resource management are found
in Fig. 13. The classification performance increases with
sensor utilization, defined as the ratio of utilized micro-
Doppler measurements over the total number of possible
measurements available. Resource management systems
that use a statistical model that includes sensor observation
conditions performs well at 20–40% sensor utilization as
these systems can select the sensors with the most in-
formative measurements based on the current observation
conditions—outperforming simpler statistical models by
3–5% in the interval.

At sensor utilization higher than 20% the calibrated
models outperform uncalibrated models by 2.5–4% as the
efficacy of sensor fusion is improved by calibration. As
shown in Fig. 13(b), the uncalibrated models also system-
atically under- and overutilize sensor resources as the infor-
mation in the measurements is overestimated. It is assumed
that the calibrated model utilizes sensor resources correctly
because its uncertainty estimates are well-calibrated, as
shown in Fig. 9.

VIII. DISCUSSION

The results in Secion VII show that increased mea-
surement information and classification performance is
achieved by modeling sensor observation conditions. As

seen in Table III modeling the observation conditions
improves the predictive performance and measurement
information across all evaluated aspect angles. As radar
sensors only measure velocity in the radial direction, the
micro-Doppler signature may vary significantly with the
aspect angle. Consequently, by conditioning on the obser-
vation conditions the model can expect an reduced micro-
Doppler response from a disadvantageous aspect angle and
make predictions accordingly. This behavior can be seen
in Table III as significant increases in the performance
are found for the aspect angle bins 2 and 6 in which the
micro-Doppler response is likely to be reduced for the
motion classes explored in this work.

By modeling the observation conditions, an increase of
3 percentiles in accuracy is achieved, as shown in Table II.
Since information on the aspect angle of the target is only
available when the point object model of the target is in
motion, this increase in the performance is isolated to the
walking and a subset of the samples in the falling class.
Future work includes the validation of the proposed method
on an experimental dataset that comprises a diverse set
of classes where the target is in motion and consequently
information on the aspect angle available. Examples of such
classes are walking, limping, and crawling.

The importance of modeling the observation conditions
of the sensor network is supported by the increases in the
performance of cognitive systems in high measurement
cost scenarios. Knowledge on the observation conditions
enables a cognitive system to select the most favorable
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Fig. 13. Resource management results from a cognitive system operating under statistical models of varying complexity. Sensor utilization is defined
as total measurements taken

total measurements available . (a) Proposed method of a calibrated statistical model which includes sensor observation conditions has the strongest
classification performance. The network utilization determined by the cognitive system for a given cost function is visualized (b) which shows that

uncalibrated models may over- or underutilize sensor resources. Note the qualifying legend where indicates that isotonic calibration is used and
the prediction is conditioned on the observation conditions φ. (a) Classification performance. (b) Resource management decision making.

sensors, which leads to an increase in the performance at a
given rate of sensor utilization. These models of observation
conditions could be extended according to mission require-
ments to include other variables, such as signal-to-noise
ratio, waveform parameters, and the possibility of interfer-
ence.

Uncertainty estimates provided by calibrated models
are shown in Fig. 9 to have high reliability while the
uncalibrated model is overconfident. The performance in-
creases in sensor fusion outcomes that should follow from
calibration are confirmed by the increases in classification
accuracy in Table II. This performance increase is partly
caused by better utilization of the information stored in the
motion class transition matrix as the classification prior is
incorrectly disregarded if the model has poor probability
calibration.

Model calibration also impacts the cognitive system,
which manages the sensor resources. If the model is poorly
calibrated, the measurement information estimated by (11)
will not be meaningful. Consequently, the uncalibrated
model overutilizes the sensor resources for high measure-
ment cost as the cognitive system overestimates how well
observations of x separates the motion classes. For low mea-
surements cost the uncalibrated system underutilizes sensor
resources as the entropy of y is underestimated. In both
these situations, the cognitive system is operating contrary
to mission goals. Hence, model calibration increases the
reliability of cognitive systems.

Information on the velocity of the target was obfuscated
in the postprocessing procedure described in Section II to
make the recorded micromotions more directly comparable
across samples. However, in the classification predictions
shown in Fig. 11 there exists confusion between stationary
and nonstationary classes that should be separable by the
target’s velocity. The tracked velocity of the target may be
included as a classification covariate to distinguish these
classes but was not explored in this article in order to reduce
the systematic complexity of the proposed method.

Only one target is present in the surveillance area in
the experimental setup used in this work. This assumption
allows for a simple signal processing chain used to estimate
the instantaneous frequency Doppler spectrum dissemi-
nated by the target. However, it is not a realistic assumption
for practical applications. If multiple targets are present in
the surveillance area, then a detector and tracking algorithm
with support for multiple targets can be used to localize the
targets. The instantaneous time Doppler frequency for any
given target can then be estimated by frequency analysis of
the range bin where the target is located. If the targets are
not separable in range then hardware that allows for beam-
forming could be used, e.g., MIMO array FMCW radars.
The implementation of one such signal processing chain to
estimate the instantaneous Doppler frequency spectrum of
multiple targets is presented in [37].

This article has explored how modeling observation
conditions in a sensing network can increase performance
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under the operation of a cognitive resource management
system in the application of classification of human mo-
tion from micro-Doppler measurements. The application
space was suitable to validate the methodology because
micro-Doppler varies strongly with sensor aspect angle
as some motions may give a severely reduced Doppler
response under disadvantageous observation conditions.
However, the proposed method generalizes to other applica-
tions, such as the classification of fixed-wing aircraft from
characterizations of radar cross-section, which vary with
sensor aspect angle [38]. The investigation of more appli-
cation domains as well as the exploration of more diverse
and possibly multimodal sets of classification covariates
constitutes topics for future work.

IX. CONCLUSION

A statistical model has been presented, which incorpo-
rates sensor observation conditions into the classification
of human motion from measurements of micromotions. The
marginalization over observation conditions and the calibra-
tion of measurement likelihoods are two novel components
of the estimation procedure validated by an ablation study
as the removal of either of these components is detrimental
to performance. An increase of 2 and 3 percentiles in accu-
racy and Jaccard index is achieved by modeling the sensor
observation conditions and calibrating the measurement
likelihoods, respectively.

A cognitive system has been proposed which solves a
minimal resource management problem which comprises
the selection of sensors to observe the future micromotions
of the target. The system can utilize knowledge on sen-
sor observation conditions to improve its ability to satisfy
defined objectives. In addition, it has been shown how
probability calibration procedures can be used to increase
the reliability of cognitive systems so that resources are
utilized in accordance with user-defined cost functions.
Knowledge on observation conditions and calibrations pro-
cedures have been shown to increase the classification
accuracy of the cognitive system 5%–10% for varying
measurement costs scenarios.
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