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ABSTRACT

In this paper, we consider the output feedback stabilisation of an axially moving string system subject to a
spring-mass-dashpot boundary condition. By constructing an invertible backstepping transformation, we
design a state feedback controller to stabilise the system. Next, we present an observer to estimate the
states of the system, and based on the estimated states, we design an output-feedback controller. The
closed-loop system is proved to be exponentially stable by Lyapunov analysis. Numerical simulations are

presented to verify the effectiveness of the proposed controller.

1. Introduction

The moving cable systems, due to their low bending and tor-
sional stiffness, and due to their better performance and high-
speed automation, have been widely applied in many practical
devices, such as conveyor belts (L. Q. Chen, 2005; Sack, 2002),
elevator cables (Gaiko & van Horssen, 2018; Sandilo & van
Horssen, 2015), hoisting systems (Kaczmarczyk & Ostachow-
icz, 2003a, 2003b) and so on. These systems vibrations may lead
to structural failure by excessive strain in the moving process.
Therefore, moving cable modelling and vibration stabilisation
have been a research hot spot in recent years. E. W. Chen
and Ferguson (2014) used Lagrange’s equation to establish the
model of an axially moving string and analysed energy dissi-
pation in a moving string with a viscous damper at one end.
Further, E. W. Chen et al. (2017), E. W. Chen et al. (2019) and E.
W. Chen etal. (2021) investigated a reflected wave superposition
method for moving string vibration with classical and nonclas-
sical boundaries at two ends and analysed the total mechanical
energy.

There are many methods to achieve the vibration stabili-
sation of axially moving strings or beams. One of the most
useful methods for boundary controller is based on the Lya-
punov method, by which control laws to reduce vibration energy
to zero are derived using Lyapunov function candidates con-
structed by the total mechanical energy of the moving system.
Nguyen and Hong (2010) investigated an adaptive boundary
control based on Lyapunov’s method for a nonlinear axially
moving string. Nguyen and Hong (2012) presented simultane-
ous controls of longitudinal and transverse vibrations of an axi-
ally moving string with velocity tracking. Tebou (2019) studied
the boundary stabilisation of an axially moving Euler-Bernoulli
beam. In the literature, the controllers are required to follow
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the end causing vibration excitation, which is sometimes diffi-
cult to achieve in practical implementation due to inconvenient
installation. Hence, it is necessary to study the control system
where control is applied at the end opposite to the instability.
This is a more challenging task than the classical collocated
‘boundary damper’ feedback control (Krstic et al., 2008). The
backstepping approach, which is proposed by Krstic, can deal
with the proposed non-collocated stabilisation problem. Ren
etal. (2013) analysed boundary stability of an ODE-Schrodinger
cascade. Krstic (2009) provided an explicit feedback law that
compensates the wave PDE dynamics at the input of an LTTODE
and stabilises the overall system. In Susto and Krstic (2010),
a ODE-PDE cascade system was extended from the Dirich-
let type interconnections to Neumann type interconnections.
Wang et al. (2018) designed an observer-based output-feedback
control law for the stability of the axial vibration in the ascend-
ing mining cable elevator. For more information on vibration
suppression problems of axially moving strings, the reader is
referred to Zhu et al. (2001), He et al. (2015) and He et al. (2016).

In this paper, we consider a moving string system with con-
stant speed on a finite spatial domain subject to a spring-mass-
dashpot attached at one end of the string as shown in Figure 1.
This model arises from conveyor belts, cranes or elevators
devices for suppressing large vibrations, and the spring-mass-
dashpot boundary causes vibration excitations. The objective
of the paper is to design an observer-based output feedback
controller at the free boundary to stabilise the system.

The remaining part of this paper is organised as follows.
Section 2 formulates the problem by extended Hamilton’s prin-
ciple. Section 3 designs a controller based state feedback to sta-
bilise the system exponentially. Section 4 concludes the output
feedback law based observer. Section 5 presents some numerical
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Figure 1. An axially moving string with a spring-mass-dashpot boundary.

approximations by using a central finite difference scheme to
validate the theoretical results, and in the last section we draw
some conclusions.

2. Formulation of the problem
2.1 Modelling of the physical system

Nomenclature
u(x,t)  the transverse displacement of the string at the coor-
dinate x and the time ¢

the distance between two boundary ends

the travelling speed of the moving string

the mass density of the string

the mass of the spring-mass

the uniform tension of the string

the stiffness of the spring

N3 <

According to Figure 1, we can obtain the partial differential
equation (PDE) for the moving string by applying Hamilton’s
principle in the following form (Meirovitch, 1997):

7}
/ (8Ex(t) — 8E,(t) + 8W (1)dt = 0. (1)

ty

The kinetic energy Ex(t) is given by

1! 1
Ek(t) = 510/ (ut + Vux)zdx + Emu%(()) t)) (2)
0

where u; + vu, is the instantaneous transverse velocity of a
material particle. The potential energy E,(t) is given by

1! 1
Epy(H) = = / Tuidx + —ku?(0,1), (3)
2 Jo 2

and the difference of §Ex(¢) and SEp(#) is
SEx(t) — 8Ep(t)

I
= ,o/ (us + vuy)é (uy + vuy)dx + muy (0, £) 81 (0, t)
0

)
— |:/ Tu,Su,dx + ku(0, t)5u(0, t):| . (4)
0

The virtual work § W (¢) is written as
SW() = U@®)du(l,t). (5)

Substituting Equations (4)-(5) into (1) yields:

ty 1

/ / o (uy + vuy) s (ur + vy )dxdt
t 0
7]
+ / mu (0, £)Sus (0, t)dt
5]
t I t
— / / Tu,dudxdt — f ku(0, t)8u(0, t)dt
t 0 5]

7]
+ f U®)su(l, tydt = 0. (6)
t

Integrating (6) by parts with respect to the spatial variable (refer
to E. W. Chen et al., 2021) yields:

Py + 2Vt + V) — Ty =0, 0<x <1, >0,
mu (0, 1) + Tuy(0,t) + ku(0, t)
—pvug(0,1) — pv2u,(0,£) =0, >0,
Tux (L, t) — pvue (L t) — pv*u,(l,t) = U(t), t> 0.
(7)

For simplicity, we introduce the following dimensionless

w_x et [T p e
x—l,t—l p,v—v T, M =

*

parameters: u* = %,
o k= M, U* = Y. The problem (7) then becomes

U+ 2V + (1 — Dty =0, 0<x<1,¢>0,
mug (0, 1) — (V2 — Dug (0, 1) + ku(0, t)
—vug(0,£) =0, >0,

(1 = v u (1, 1) — vue(1, 1) = U(F),

(8)

t>0,

where the asterisks are omitted in problem (8) for convenience,
and0<v<1.

2.2 Simplified model for controller design

Define the control force as
Ut = —vue(1,1) + (1 — vV Ua (1), 9)

where U, (¢) is a new control. Then, problem (8) can be rewritten
as

Uy + 2Vt + (V2 — Dty = 0,
mug(0,1) — (vV* — Duy(0, 1)
+ku(0,t) — vus(0,1) = 0,
u(1,t) = Uy(t), t> 0.

0<x<1t>0,
t>0,
(10)

Notice that the axially moving problem (10) is a wave PDE
with a second-order derivative in time boundary condition, we



introduce new variables x; (t) and x; (¢):

x1(8) = u(0,1), x2(t) = ue(0,1). (11)
Substituting (11) into the boundary condition at x = 0 in prob-

lem (10), we have

x1(t) = x2(b),

2 k v (12)
ux(or t) - _M(O, t) + _ut(ox t)
m m

. v
x(t) =

Let X(¢) € R**! be a state variable:
X(1) = [x1(6), x2(0)]", (13)

then we rewrite problem (10) as the following coupled ODE-
PDE system:

X(t) = AX(t) + Buy(0,1), t>0,

U+ 2 + (VP — Dty =0, 0<x<1,t>0,

u(0,t) = CX(t), t=>0,
uy(1,t) = Up(t), t>0,
(14)
where
A=<_0£ i) B:(L), C=(1,0). (15

3. State feedback control

In this section, we construct an invertible transformation to
make system (14) equivalent to an ODE-PDE cascade target sys-
tem. For the target system, we present the well-posedness and
stability results in a suitable space.

First, we consider the backstepping transformation of the
form (Krstic, 2009):

w(x, t) = u(x, t) —/0 b(x, y)u(y, t)dy—/0 c(x, Y)us(y, t)dy

-y ®)X(@®), (16)

where the kernel functions b(x, y) € R, ¢(x,y) € Rand y(x) €
R!*2 need to be chosen to transform system (14) into the system
of the ODE-PDE cascade

X(t) = (A + BK)X(t) + Bwy (0, 1),
Wi + 2vWyx + (Vz — Dwex =0,
w(0,t) =0, t>0,

we(l,t) =0, t>0,

t>0,
0<x<1t>0,

(17)
where K = (ky, k;) is chosen to make A + BK Hurwitz, and

Ua(t) = b(1, Du(L, 1) + c(1, Due(1, 1) + " (DX(2)
1

1
—+—/ bx(l,y)u(y,t)dy—i—/ cx(Ly)ur(y, t)dy. (18)
0 0
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3.1 Kernels of b(x, y), c(x,y) and y (x)

In this subsection, we compute the kernels of b(x, y), c(x, y) and
y (x). Differentiating (16) with respect to t and to x, we get

Wit + 2vwy + (V= D)way

=2(1—%) (%b(x,x)) u(x, t)
+(1—) /Ox(bxx(x,y) — by (5, y))u(y, H)dy
—2v /Ox(bx(x,y) + by (x, y))ur(y, t)dy
+2(1—%) <ic(x,x)> ur(x,t) + (1 — v?)
dx
jo X(Cxx(xa ¥) = &y (% y)ue(y, )dy

—2v / (cx(x,y) + ¢y (x, y)un(y, )dy
0

+ [—2vy/ (%)B + (1 — v*)b(x, 0)
— 2vb(x,0)CB — y (x)AB
— (1 = "¢y (x,0)CB — 2vc(x, 0) CAB]ux (0, 1)
+ [~y (x)B — 2vc(x,0)CB + (1 — v*)c(x, 0) 1t (0, 1)
+ [y @A*+ (1= v)y"(x) — 27y (A
— 2vb(x, 0)0CA — (1 — v*)by(x,0)C

— (1 = v*)cy(x,0)CA — 2ve(x, 0)CA*]X(£) = 0,  (19)

which together with CB = 0 yields

%{b(x,x) =0, %c(x, x) =0,

byx (%, y) — byy(x)}’) =0, cxlxy) — ny(x)}’) =0,
bx(x,y) + by(x)}/) =0, cxy + Cy(x>)’) =0,
—2vy'(x)B+ (1 — v*)b(x,0) — y (x)AB
—2vc(x,0)CAB =0,

—y(x)B — 2vc(x,0)CB + (1 — v?)e(x,0) = 0,

—y (A% + (1 =)y (x) — 2vy'(x)A — 2vb(x,0)CA
-1 - vz)by(x, 0OC—(1-— vz)cy(x, 0)CA

—2ve(x, 0)CA2 = 0.

(20)
Substituting transformation (16) into the first and third equa-
tions of system (17), we derive
y(0) =G,

¥’ (0) = K — b(0,0)C — ¢(0,0)CA, (21)

for which, the solutions b(x, ¥), c(x, ¥) and y (x) of (20) can be
presented as follows:

y () = [y (0),7'(©)]" (é) ,

v,
V2 YV (x _)’)B +

b(x,y) = =

- 1}2)/(96 — y)AB
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2v Define a linear operator A : D(A) C H — H as follows:
oy o~ PBCAB, P A
oy =1 pr ek (22) [ACSL) = (A +BOXD
—v +Bf{(0),fo —2vf + (1 = ],
where D(A) = {(X,f1,f2) € R? x H*(0,1) x V1(0,1)|f{(1) = 0}.
(26)
v (0) = (1,0) Then, system (17) can be written as an evolution equation in H:
1+ 2vky
"0) =k + ———=,k2 ), d
7o ( L 2) 3 KW, wC 0w (1) = AX D, Wl 0, w5 0). (27)
14372 2
00 mafm s 1—1;2
0 0 2kmn:2+(1lz(_1;2§v ) ml(ﬁfl) Lemma 3.1: Let A and H be defined as before. A generates a Cy
D= 1 0 —Jme2r o ‘ semigroup of contractions on H.
m?(1—v2) m(1—v2)
0 1 —kmv+2+° v-—mk
m3(1—v2) m2(1—v2)

Proof: Define an equivalent inner product:

In the same deduction, we seek the inverse transformation

Wi t) = u(xb): (X1, w1, wa), (Xa, wi, w2))1
1
X — —
u(x, t) = w(x, t) — / P(x,)w(y, H)dy = uX{P1X; + / (w2 + vw1) (W2 + v x)dx
0 0
x 1 _
- / A wi(, Hdy — a(0)X(®),  (23) + / WixWi,x dx, (28)
0 0
with where
I AL U
o(x) = [~C, K] (O) 0 < < ML= (@) 09)
2|P,B|
v,
vey) = 1—2 “(x=y)(A4+ BB+ 11— (x =5, and the matrix P; = P! > 0 is the solution to the equation:
A(x,y) = a(x — y)B,
o 0 2 —ky —k Ky —ky v Pi(A+ BK) + (A+ BK)'P; = —Q, (30)
m(1—v2) m(1—v2)
0 0 ki —k =k (kv —kp+v) (ka2 —kp+v)*
7 = m2(1—v2) mz(%v—vz) . for some Q; = Q{ > 0. For any z = (X(t), w(-, 1), w¢ (-, T e
L0 0 1—2 D(A), a straightforward calculation yields
0 1 2v(kiv2—ky —k) 2v(kyv2—ky+v)
m(1—v2) m(1—v2)
R(Az, z)1
. ili K v
3.2 Stability of target system _ —EX(t)TQlX(t) 4 uX(6) Py Bw, (0, £) — QW?(L 5
Firstly, let us reformulate target system (17) in an appropriate 5
Hilbert state space H. Let H be the following space: _ v =) w?(0, 1)
X > *

H =TR>x V(0,1) x L*(0,1),

VR0, 1) = (£ € H (0, 1)[£(0) = 0) (24) According to Young’s inequality ab < % + g, we obtain

equipped with an inner product, for (X, wyi, wy), (Xz, w1, w2) € R(Az, z)1

H: s
< R Q)
<(Xla Wi, WZ)’ (XZ:WDWZ)) M|PIB|2 V(l _ V2) 5 v,
|- w2(0,1) — ~w2(1,£) <0,
|: )‘min(Ql) 2 i| 2

1
= XX, + / (w2 + vwi ) (W2 + vy x) dx
0

— where y is given by (29). Hence, A is dissipative in . More-
+/0 Wi xW1,x dx. (25) over, let (Y, g1,9) € H, and solve A(X, f1,£) = (Y, g1,£) for



(X, f1.f2) € D(A), that s,

(A + BK)X(t) + Bfl/(()) =Y,
hL=g,

31
—2f; + (1= )f = g, Gy
f(0) =0, fi(1) =0.
A direct computation gives the unique solution
=g
[+ |
=- (¢) + 2vg () dg dé,
h o ); — 2% 81 (32)

X(t) = (A+BK)ly
- [— Jo (@) + 2vg{(s))d5] (A+BK)"'B.

Hence, we get the unique solution (X, f1,f,) € D(A) and A~}
exists. The Sobolev embedding theorem (Adams & Fournier,
2003) implies that A~! is compact on . Therefore, the
Lumer-Phillips theorem asserts that .A generates a Cy semi-
group of contractions on . The proof is complete. |

Lemma 3.2: For any initial values (X(t),w(x,0),w:(x,0)),
which belong to 'H, the target system (17) is exponentially stable
in'H.

Proof: Define

E1(1) = llwe(®) +vwx O + w1 + XD (33)
Let V1 be a Lyapunov function written as
Vi) = X0 PIX(®) + @i Ey (1), (34)

where the matrix P; is given by (30). The positive parameter a;
is to be chosen later and function E, (¢) is defined by

1
Ei(h) = [llwe(®) + vwx (D1 + lwx (D]17]

1
+8 /0 (14 Y)we(n 8) [wen 1) + vwa(, ] dy.

(35)
We observe that
O E1(t) < Vi(t) < 61281(D), (36)
where
. al
611 = min {)\min(Pl)) 7[1 - 251]} ,
a
01 = max {Amax (P, S L4280} (37)

1
3

We choose 0 < §; <
Vi(t)
= —X®TQIX(t) + 2X(1) TP Bw, (0, t) + a1 E1 (1)

= —XOTQX(®) + 2X(®)TP;Bw,(0, 1)

INTERNATIONAL JOURNAL OF CONTROL e 5

)
+a [—%((1 — V) lwxll> + [well? + (1 = v?) (0, £)[%)

v (1 =)
- (5 -8) @O - ===, t>|2]
2 2
Ami 2|P;BJ? 1—+2
<_ m1n(Q1)|X(t)|2 _ |:_ |P1B| apv( )
2 )\'min(Ql) 2
a16:1(1 — v2)
—} lwx (0, £)[?
2
v aié
— a1z = 8D WL O = == ((1 = P)lwell® + [lwel1?).
2
(38)
To have V1 (f) < 0 we choose
N 4|P,BJ? 05 <V
ay = 5 <01 = —.
[V(l —v)+6(1— Vz)] Amin(Q1) 2
(39)
We now have
. Ami
ity = =2
aré1(1 — Vz) 2 2
A+ 2 1) (Ilwsell® + llwe + vwell?)
< -mVi®, (40)
where
. : —2
e gten)
m = 01
Thus, we arrive at
Vi) < e MV(0). (42)
The proof is complete. |

Theorem 3.3: For initial value (X(0), u(x,0), u;(x,0)), which
belongs to 'H, the closed-loop system (14) with state feed-
back control law U, (t) in (18) admits a unique solution
(X(1), u(x, t), us(x, t)) that decays to zero exponentially in H as
time t goes to infinity.

Proof: The equivalent well-posedness and stability property
between the target system (17) and the closed-loop system (14)
are ensured due to the invertibility of the backstepping transfor-
mation. Then by Lemmas 3.1 and 3.2, the proofis complete. W

4. Observer and output feedback control

In this section we consider an observer-based output feedback
control law, and the observation output is given as

yout(t) = CX(¥), (43)

where C and A are given by (15) and (26), and (A,C) is
observable.



6 (& JUN-MIN WANG ET AL.

4.1 Observer design

Design the observer of system (14):

X(t) = AX(t) + Biiy (0, ) + LC(X(t) — X(£)), >0,

ﬁtt = —2vﬁxt + (1 — Vz)i\lxx) 0 <x < 1, t > 0,
20,6) = CX(t), t>0,
(1,8) = Up(H), t> 0.

o (44)
The observer gain L = (I, )T is chosen to make A — LC Hur-
witz. Define the observer error as

e t) = ulx t) — t(x, 1), X(t) =X —X(@).  (45)
Then the observer error system can be written as

X(t) = (A — LOX(t) + Biig(0,1), t> 0,

f‘tt = —2viy + (1 — Vz)ﬁxx) 0<x=<L¢t>0, (46)

u(0,t) =0, t>0,

i.(1,6) =0, t>0.

Let us reformulate error system (46) in Hilbert state space H,

equipped with inner product in (25). Define a linear operator
A :D(A) C ' H — H as follows:

AX.fi.f2)
= ((A=LOX®) + Bf{(0).fo, —2vf; + (1 = )ff),
D(A) = {(X.fi.f) € R? x H2(0,1) x V'(0,D|f{(1) = 0}.
(47)
Then, system (46) can be written as an evolution equation in H:

d . . - PO ~
5(X(t)> u('? t)? ut(') t)) = A(X(t)7 M(-, t)) ut(': t)) (48)

Theorem 4.1: For initial value (X(0), fi(x, 0), i (x, 0)), which
belongs to H, the error system (46) admits a unique solution
(X (1), (x, 1), B (x, 1)) that decays to zero exponentially in H as
time t goes to infinity.

Proof: The proofs are similar to the proofs for Lemmas 3.1
and 3.2, so we omit the details here. |

4.2 Output feedback control

Based on the state feedback controller (18) and observer (44), we
can naturally design the following output-feedback controller:

1
Un(t) = b(1, Dir(1, 1) + y' (DX (1) +/ b (L, y)u(y, ydy
0

1
+ /O (L )iy )y, (49)

which leads to the closed-loop system of (14):

X(t) = AX(t) 4+ Buy(0, 1),

Ut + 2Vt + (V= Dty = 0,

u(0,t) = CX(b),

ux(L,£) = b(1, DL, £) + y' (DX @) + [ be(1,p)it(y, t)dy
{rfol ex(L, )i (y, )dy,

X(t) = AX () + Bite(0, 1) + LC(X(t) — X(1)),

Uy = —2vitg + (1 — Vz)axm 0<x=<1,

u(0,t) = CX(t),

fe(1,8) = b(1, DL, £) + y' (DX @) + ;) be(L,p)it(y, t)dy
+ [y ex (L) iy, dy.

(50)

Theorem 4.2: For any initial state (X(0), u(x, 0), u(x, 0), X(0),
i1(x, 0), 1 (x,0)) € H?, the closed-loop system (50) admits a
unique solution (X (1), u(x, t), us(x, 1), X(®), ii(x, 1), ti¢ (x, 1)) that
decays to zero exponentially in 'H as time t goes to infinity.

Proof: By using the transformation (16), the closed-loop sys-
tem (50) can be converted to the following equivalent system:

X(t) = (A 4 BK)X(t) + Bwx(0, 1),
Wit + 2vWyt + (v2 — Dwye = 0,
w(0,8) =0, >0,

we(L, 1) = FX, &, ity),

X(t) = (A — LOX(t) + Biix (0, 1),

t>0,

0<x<1,t>0,

t>0,

Uy = =2y + (1 — )i, 0<x<1,t>0,
(0,) =0, t>0,
ie(1,6) =0, t>0,

(51)
where operator F : H — R defined by FX@), 0(-, 1), i1(-, 1))
= b(1, DL, 1) + ¥’ X @) + [ be(Ly) i, ydy + [ cx
(L, y)uis (y, t)dy. The proof will be completed if we can prove
that (51) has a unique solution and is exponentially stable in
H. [ |

The closed-loop system (51) can be written as the following
evolution equations:

%Y(t) = AY(®t) + BFY(®), (52)

d. .
370 =AY, (53)

where A and A are given by (26) and (47), Y(¢) = (X(¢), w(-, 1),
wi( 1) € H, Y(£) = (X(), 4(-, 1), (-, 1)) € H, and

BFY(t) =[0,0,6(x — DFY (1] (54)

with & being a Dirac function. The operators .A and A generate

Co semigroup of contractions e and e on H, respectively.
Notice that B is an unbounded operator, we will show that B is
admissible to the Cy semigroup e,

Lemma 4.3: B is admissible to the Cy semigroup e,



Proof: As A* is defined by

A*(X, fi.2) = ((A+BKX(®), —f, 2vf; — 1 = vD)f]')
X, f1.f2) € R? x H?(0,1) x H'(0,1),
(1= v)f{(1) — vA(1) =0, ,
(1 —v*)(vf](0) + f2(0)) — BTX* = 0.

D(A*) =

(55)
the dual system of (52) can be written as

LX), —w* (., W (5 1)
= A*(X*(t)’ _W*('> t)) W;k(’ t))a
y(£) = BF (X (1), —w* (-, 0), wi (-, 1) = 0D

1—v2 2

(56)

which means

X*(t) = (A + BK)X*(t), t>0,
wh —2vwh + (V —wi, =0, 0<x<1,t>0,
1 - vz)wjg(l, ) +wvwi(l,) =0, t>0,

(1 — V) (—vwk(0,t) + wi(0,£)) — BTX* =0, t>0.

(57)
The energy function of system is defined by

1 1!
E*(t) = EX*(t)TX*(t) + E/ (wf —vwi)? dx
0
1 !
+ —/ w2 dx. (58)
2 Jo
Let
* X s T * 1 ! * 2
ET(t) = EX (1) P1X*(t) + 3 (wy —vwy)”dx
0

1 !
+5/0 wit dx,

where P; is given by (30), and B is given by

(59)

.= 2|BJ?
v - Vz))tmin(Ql).

(60)

A simple computation for the derivative of E} (t) with respect to
t along the solution to (57) gives

Ei(t) = —%X*(r)TQIXw — BTX* (t)w’ (0, 1) — §|w’:<1,t>|2

(1 —v?) v
- Tw;(l,mz - 5|w;‘(o,t)|2
(1 —v?)
-5 Im, t)[*
)\. .
< X mj(Ql) |X*(t)|2
B|? (1 — 12
o L - Tk
X}\min(Ql) 2
% v(l —v?) v
- 5|w;*(1,t)|2 - Tw;(l,t)ﬁ - 5w, 1.

(61)
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Hence, Ej (t) < E}(0). Define

1
p(t) = / x(Wi — vwi)wi dx. (62)
0
Then p(t) < Ej(t) for ¥V t > 0. Noticing that
. 1 * 2 1 ! 2. *2
o) = mlwt(l,t)l - 5/0 (1 —v)w,"dx
1 ! *2
— 5/0 w; - dx, (63)
we have that
T
/ w1, 0)dt
0
=2(1—=v") [p(T) — p(0)]
T 1
+(1 - vz)/ [/ (1 — V)W + w2 dx:| dt
0 0
.2
< [4(1 —v) + M] E; (0)
1—v
.2
< [4(1 —)+ %] TE ), (64)

where n* = max{x Amax(P1), 1}. A direct calculation shows that

- 1
B*A*_I(Y>g1’g2) = - lgl( )

——1/2’ v (ngl,gz) € H) (65)
which tells us that B*A*~! is bounded. This together with (64)
yields that B* is admissible for e, which means that B is

admissible for eA’. The proof is completed. |

To prove the stability of the closed-loop system (51), define

V() = XOTPX(0) + aEx(0). (66)
The matrix P, = P! > 0 is the solution to the equation:
Py(A=LO) +(A-LOP = ~Q, (67)

for some Q, = QZT > 0. Function E;(t) is defined by

1, - -
B(6) =5 (132 (8) + vite () I1* + N7 () 1)
1
+5, / (L + )it ) (e 1) + vitg(n 1)) dy. (68)
0
By choosing
- 4|P,B|? 05 <
2= A=) + 80— D) hin(Q) 2=y
(69)

and according to the proof the stability of the target system in
Section 3.2, we arrive at

V() < e ™'V (0), (70)
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where 1 y 2
i { o), 0= | + (/0 bx(L )i, t)dy>
2 2 2(1-vi+4v)
n = ) (71) 1 2
2 + ( / (L) (7, t>dy) : (74)
Let V be a Lyapunov function written as 0
B . o . o .
V(6 = Vi(6) + BV (D), (72) :;&l;:f;;;dmg to Agmon’s inequality and Poincare inequality, we
V(1) = —X(0T QiX(5) + 2X(5) "P1Bwx(0, 1) o
. - [u()1” < 2[u(0, H]° + 4llux (D]
+aEi (1) + BV(D) - 2 - 2 = 2
. . (L O < 3170, DI + 5] (75)
= =X QuX(®) + 2X(t)" P1Bw(0,1)
5 Thus, by choosing 8 big enough and
+a [——((1 — ) Iwall? + wel?
2 4|P;B|? v
2 2 ap = ) B > 0<81§_) (76)
+(1 = v)wx(0,)[%) [v(1 = v?) + 611 — v*)]Amin(Q1) 4
4 v(1 —1?) there exits 13 such that
— (5-8) m@oP - =m0, tﬂ "
y , . V(1) < =3V (), (77)
+ar (814 2) = Dlwe(L, )
2 . Thus, we arrive at
1 — V) w1, Hwy(1,£) + BV (¢
+ a1 (1 = v)wi(L, Hwx(1, 1) + V(1) V() < e V(0). (78)
Amin(Q1) X2 2[P1B? av(l —v?)
= T, X" —| - i (Q1) 2 Thus, the closed-loop system of (51) admits a unique solution
5 and decays to zero exponentially in 7 as time t goes to infinity.
+“181(12_ v )] i (0, 1) 2 The proof is complete.
v 1 . . .
+a1(1—1?) <81 + 2 + ;> lwe(1, )2 5. Numerical simulation
In this section, we give some numerical simulation results for
—aq (Z — 51) [we (1, t)|2 the system (8). The finite difference method is adopted in both
5 4 the time and the space domain for both PDEs and boundary
4101 2 2 2 & conditions in (8). In the numerical scheme, we choose the space
— —— | (L = v)|[wxl|” + llw - V). (73 >
2 { Hwal® i) = pr2V (0. (73) grid size N = 200, time step dt = 5 x 1072, The parameter

e 1 ttob
From the second boundary condition in the closed-loop sys- vaiues are setto be

tem (51), we obtain —01, k=1, m=1, K= [k, k] = [1,1],

<

lwe(L,B)* < b2, DIaL b1 + (/' ()X ()] L=[hbL]=[-1,05], (79)
0.06
0.1
0.04
0.05
0.02 -
g 0 _
E 2 of
005 =
-0.02 -
-0.1
0.04 -
05 \(/(/K/,Xr .
10 20 30 -0.06 L
X 0 0 t 0 10 20 30 40 50

(a) (b)

Figure 2. The state of system (8) when U(t) = 0. (a) The responses for the whole space domain (0, 1). (b) The responses at the midpoint.
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|
M“H\mﬂ
\\V/\V/F\W

u(0.5,t)

-0.02 | ‘

0.04F | |

-0.06 I I I I

(b)

Figure 3. The state u(x, t) of closed-loop system (8) with full-state feedback controller (18). (a) The responses for the whole space domain (0, 1). (b) The responses at the

midpoint.

and the initial conditions are taken to be

u(x,0) = 0.1sin(1.5x), u(x,0)=0, 0<&<1. (80)

Figure 2 shows that the displacement of the open-loop sys-
tem (8) is not convergent to zero. Figure 3 show that the dis-
placement of the closed-loop system (8) with state feedback
controller (18) converges to zero. It can be seen that the output
feedback controller can make the closed-loop system exponen-
tially stable.

6. Concluding remarks

In this paper, we have presented a control design to stabilise
an unstable moving string subject to a spring-mass-dashpot
boundary, where the control actuator is located at the other
boundary of the string. Firstly, by a transformation for boundary
condition, the problem can be convert to a coupled ODE-PDE
system. Secondly, by an invertible backstepping transforma-
tion, the coupled ODE-PDE system is equivalent to a target
system of ODE-PDE cascades, which is shown to be exponen-
tially stable in a suitable Hilbert space. Thirdly, we design the
observer-based output feedback controller. It is shown that by
using boundary measurements only, the output feedback can
make the closed-loop system exponentially stable. Finally, the
simulation results illustrate that the proposed control law can
efficiently suppress the axial vibrations of the moving string
system.
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