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ABSTRACT
Real-world route navigation data indicate that nontrivial portion of drivers do not prefer the
system-recommended best routes. Current navigation systems have simplified assumptions
about drivers’ route choice preferences and do not adequately accommodate drivers’ het-
erogeneous route choice preferences, mainly because of: (i) difficulty in acquiring exogenous
criteria (e.g., sociodemographic information) that are typically used to differentiate drivers’
preferences in behavioral modeling; and (ii) difficulty in capturing preference of individuals
due to limited preference data at the individual level. To address these, this paper intro-
duced a human-centric machine learning technique named Multi-Task Linear Classification
Model Adaption (MT-LinAdapt). It can capture drivers’ common aspects of route choice pref-
erences and yet adapts to each driver’s own preference. In addition, any evolvement of indi-
vidual drivers’ preferences can be simultaneously integrated to update the common
preference for further individual drivers’ preference adaptation. This paper evaluated MT-
LinAdapt against two state-of-the-art route recommendation strategies including an aggre-
gate-level and an individual-level data-based strategies, which are categorized based on the
data used for modeling. With a real-world dataset containing 30,837 drivers’ navigation
usage data in Daegu City, South Korea, MT-LinAdapt was compared to existing strategies
for its performance at different levels of data availability, and showed at least the same per-
formance with existing strategies when minimum preference data is available and achieves
up to 7% higher prediction accuracy as more data becomes available. Higher prediction
accuracies are expected to bring better user satisfaction and compliance rates which can
further help with transportation system control and management strategies.
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Introduction

The route navigation system is an important part of
Intelligent Transportation Systems (ITS). A user can
obtain information about possible routes connecting
his/her origin and destination by using a navigation
system and makes an informed decision regarding
which route to take. Routes are usually recommended
based on a single criterion such as the shortest travel
time or the shortest distance without considering the
driver’s own preference. Existing navigation systems,
such as Google Maps and Waze, typically offer limited
options for users to customize his/her own preferen-
ces. It is important to consider each individual user’s

route choice preference in a navigation system because
of following two benefits. Firstly, it can improve users’
satisfactions by providing route recommendations that
users would like to take. A study found that, in
around 60% of trips that drivers use navigation ser-
vice, drivers either do not like the suggested routes
before the trips were started or change to other routes
during their trips (Amirgholy et al., 2017) and users
may or may not follow the information provided by
the system (Liao & Chen, 2015). If individuals’ prefer-
ences can be properly considered in navigation sys-
tems, these phenomena could be largely mitigated.
Secondly, it can help improve transportation systems
performance, especially when route recommendations
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are made for improving the system performance.
Considering individual drivers’ route choice prefer-
ence in route recommendations can increase drivers’
compliance rate thus improve network performance.
Several studies have shown that driver’s compliance
rate to recommendations has significant impacts on
network modeling accuracy (Ma et al., 2016; J. Wang
et al., 2017) and a high compliance rate is a require-
ment for improving road network performance
(Bifulco et al., 2007; Paz & Peeta, 2009).

With emerging information and communication
technologies utilized, navigation systems not only
have large user population but also can collect users’
route choice preference data, even at the individual
user’s level (Zheng Wang et al., 2021). It provides an
opportunity to capture individual users’ route choice
preferences and understand the needs of specific users
when using navigation systems. Therefore, taking
advantage of such data opportunity that emerging
information and communication technologies brought
us, this paper investigates how to capture individual
users’ route choice preference in navigation systems
using over 30,000 drivers’ real-world route
choice data.

The rest of this paper is organized as follows.
Literature review section first categorized the existing
route recommendation strategies from data utilization
perspective and identifies their limitations in practice.
Methodology section described the proposed approach
that this paper offered to address the identified limita-
tions. With real-world users’ data from a route navi-
gation system, we compared the performance of the
solution introduced by this paper with two existing
approaches. The final section presented our conclu-
sions and directions for future research.

Literature review

Route choice models are the major approach that
researchers and practitioners used to capture and pre-
dict drivers’ route choice decisions. Given the focus of
this paper is how to take advantage of the data oppor-
tunity so that individual driver’s route choice prefer-
ence can be considered in navigation systems, existing
route choice models are divided into two types in this
paper according to the data used for establishing
models. The two types of models are aggregate route
choice models which are based on preference data at
the aggregate level, and standalone individual route
choice models which are based on individual user’s
own preference data. We categorized the existing
modeling approaches based on the possible available

data in practice, in order to show how we can better
utilize the data advantages provided by the navigation
systems. In the rest of this paper, “Individual route
choice model” is used to refer the standalone individ-
ual model.

It should be noted that traditional route choice
analysis includes two major research questions,
namely route set generation and route choice decision
(C. Prato, 2009). This paper focuses on the study of
drivers’ route choice decisions, i.e., how to better pre-
dict drivers’ preferred route when route set is already
available. The route set can be generated with meth-
ods in the literatures such as efficient paths (Dial,
1971), labeling (M. Ben-Akiva et al., 1984), K-shortest
paths (Yen, 1971), link elimination (Barra et al.,
1993), or branch and bound algorithm (C. G. Prato &
Bekhor, 2006).

Aggregate models are established based on route
choice preference data from a group of representative
drivers. Data collected from all drivers are put
together to build a model that can be applied to
everyone. It usually comes with an assumption that
drivers who have the same sociodemographic charac-
teristics would share the same route choice preference
(M. E. Ben-Akiva & Lerman, 1985). Therefore, socio-
demographic characteristics such as age, gender,
income, etc. are also included in the model as criteria
to differentiate drivers’ route choice preferences.
Following this concept, aggregate models are estab-
lished with different modeling approaches, including
discrete choice models and machine learning methods.
Discrete choice model family calibrates drivers’ utility
functions and calculate the probability that an individ-
ual driver chooses each alternative route, such as
multinomial logit models (M. E. Ben-Akiva &
Lerman, 1985; C. Prato, 2009). Machine learning
methods treat a route choice decision as a classifica-
tion problem in the sense of classifying a route into
the category of choosing or not choosing. Different
machine learning methods that have been investigated
by researchers for route choice modeling include
neural network (Yang et al., 1993), hybrid route
choice model (Peeta & Yu, 2005), support vector
machine (Sun & Park, 2017), decision tree (Park
et al., 2007). Some of these machine learning techni-
ques were compared with traditional discrete choice
models in traveler behavior study and sometimes
showed better performances (Yamamoto et al., 2002;
Zhang & Xie, 2008). Another variation of aggregate
route choice modeling is the multi-class route choice
model. It first divides drivers into different groups
based on certain criteria (e.g., learning and choice
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evolution pattern) and then build a model for each
group (Peeta & Yu, 2004; Tawfik & Rakha, 2013).
Drivers within the same group share the same route
choice preference. Therefore, aggregate models lack
sufficient preference heterogeneity to accurately pre-
dict each user’s route choice, as drivers who have the
same sociodemographic characteristics can still have
different preferences. In addition, users’ sociodemo-
graphic information is required when applying aggre-
gate models to predict users’ route choice decisions.
However, it is not easy to obtain such sociodemo-
graphic information due to privacy concerns, for
example, age, income level, education, number of cars
in family, etc., which are usually included in aggregate
route choice models (Jan et al., 2000). It is also diffi-
cult to pick proper exogenous criteria for making seg-
mentations (Hensher & Greene, 2003; Peeta & Yu,
2004) and the heterogeneity existing within a class is
still difficult to determine.

The second route recommendation strategy is the
individual route choice model. It is established based
on individual driver’s own route choice preference
data. The data is usually collected from each single
driver by observing his/her route choice behaviors
from multiple either stated or realistic route choice
scenarios (Mahmassani et al., 2013). Route choice
models can be established for each user from his/her
own preference data and does not require segmenting
drivers into different groups based on either sociode-
mographic characteristics or other exogenous criteria.
The individual route choice models are most com-
monly used in the personalized navigation (Nadi &
Delavar, 2011; Pahlavani et al., 2012; Pahlavani &
Delavar, 2014). However, in order to build a valid or
meaningful individual route choice model, it requires
a certain amount of data. The data amounts that were
used by researchers for building individual models
contains 675 accumulated trips (Park et al., 2007) and
232 driver-rated virtual routes (Pahlavani & Delavar,
2014). In real life, it will take a certain length of time
to get this amount of data. In practice, drivers may
give up using a new navigation system after several
times of unsatisfied experiences, so a good navigation
system should capture individual drivers’ preference
even when only several trips’ (for example, 3 to 4
trips) preference data is available. In addition, when
new trip scenarios are not covered by historical data,
it is very likely that the model does not work well in
the new scenarios. In reality, drivers’ preference could
vary with different trip purposes, departure time, and
trip distances, etc. It is impossible to cover all possible

trip characteristics of any particular driver may face
with his/her own historical data.

More recent studies of individual route choice
model capture personalized preference by allowing
users to input preference weights on different crite-
ria. Hayes et al. (2020) asked users to input weights
on three criteria of travel time, distance and the
number of crash incidents. In a personalized indoor
route guidance system for people with visual impair-
ment, Z. Wang et al. (2022) also asked users to put
weights on five criteria that represent different
obstacles. Ceder and Jiang (2020) developed a lexico-
graphical shortest path method for personalized pub-
lic transport services. The method combines users’
input preference rating and human perception
thresholds of the difference between attributes of
alternatives in route generation. As pointed by Ceder
and Jiang (2020), a good personalized route guidance
system should minimize the input efforts required
from users. Asking users to input their preference
requires additional effort from users and also may
not necessarily capture users’ actual preferences as
stated preference may not be consistent with users’
actual preference.

As discussed above, to capture individual drivers’
route choice preferences in navigation systems, aggre-
gate route choice models have assumptions that driv-
ers’ preferences can be distinguished with
sociodemographic characteristics or other criteria
which are required modeling inputs but not easy to
obtain in practice. Individual route choice models
require a certain amount of and enough coverage of a
user’s historical preference data. A model established
based on personal historical data may not work well
in new scenarios. Therefore, in this paper, a human
centric machine learning based technique, Multi-Task
Linear Classification Model Adaptation (MT-
LinAdapt) was introduced to help navigation systems
understand every individual user’s preference and pro-
vide better personalized route recommendations. And
the method was tested with a large-scale and real-
world navigation systems usage data. With the grow-
ing interests of understanding individuals’ preference,
MT-LinAdapt is expected to serve as a machine learn-
ing based approach in recommendation systems of the
transportation domain.

Methodology

MT-LinAdapt model can be used for personalized
route recommendation with its capability of capturing
drivers’ route choice preferences at the individual
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level. MT-LinAdapt roots in social psychology theories
and treats the formation of sentiment as a social
norm (Gong et al., 2016). With the social norm the-
ory, individual human’s opinion or decision usually is
largely affected by other society members’ opinions.
Thus, members of the society have common criteria
used to make decisions or form opinions. Meanwhile,
each member has his/her own preference that is dif-
ferent from other members’. Members influence each
other and the social norm of the whole society tends
to shift or evolve. Based on how social norm forms
and evolves, MT-LinAdapt tries to minimize the error
rates of sentiment classification at the individual level
and the aggregate level together by defining it as a
joint optimization problem.

It is generally understood that drivers’ route choice
preferences follow a kind of social norm. Drivers tend
to have some common criteria to choose one route
over the others, while each individual driver has his/
her own emphasis that is different from other drivers.
Given a group of drivers, MT-LinAdapt can identify
the homogeneous route choice preference across all
drivers (for example, all drivers like the route with
shorter travel time), then capture the heterogeneous
route choice preference existing among individuals
(for example, some drivers prefer routes with less cost
while others like more expensive but more reliable
routes). Instead of requiring drivers’ sociodemo-
graphic characteristics or other criteria to differentiate
their route choice preferences, MT-LinAdapt model
adapts the aggregate route choice preference to indi-
vidual drivers’ level so that individuals’ preference can
be captured. Meanwhile, the change of individual
drivers’ preference could lead to drivers’ aggregate
preferences shifting and evolving which can also be
captured by MT-LinAdapt.

Therefore, there are two adaptation processes: the
adaptation from the aggregate preference to individual
preference, and the adaptation of the aggregate prefer-
ence’s own evolving. A linear classification model typ-
ically has a form of y¼sign(wX1c) in which w is a
weight vector, X is the feature vector, c is the intercept
and y is the predicted classification label. X contains
the attributes of alternative routes in route choice
scenarios. w indicates how important each route attri-
bute is. At the aggregate level of MT-LinAdapt, all
drivers share the same weight vector, Ws, which is a k
dimensional vector. k is the number of route attrib-
utes that affect drivers’ route choice decisions.

When adapting the aggregate preference into the
individual level, all n individuals’ weight vectors can
be obtained by:

W ¼ w1,w2, :::,wi, :::,wn½ � ¼
w11 w21 :::
w12 w22 :::

wi1 ::: wn1

wi2 ::: wn2

..

. ..
. . .

.

w1k w2k :::

..

. . .
. ..

.

wik ::: wnk

2
6664

3
7775

¼ ws,ws, :::,ws½ �8Au þ Bu

¼
ws1 ws1

ws2 ws2

� � � ws1

� � � ws2

..

. ..
.

wsk wsk

. .
. ..

.

� � � wsk

2
6664

3
77758

a11 a21
a12 a22

� � � an1
� � � an2

..

. ..
.

a1k a2k

. .
. ..

.

� � � ank

2
6664

3
7775

þ
b11 b21
b12 b22

� � � bn1
� � � bn2

..

. ..
.

b1k b2k

. .
. ..

.

� � � bnk

2
6664

3
7775

(1)

W is the matrix in which column i represents driver
i’s weight vector. Each weight vector contains k ele-
ments corresponding to the weights for k route attrib-
utes. Each driver’s weight vector is obtained by scaling
and shifting the aggregate preference, ws: Based on
individual driver’s preference data, the scaling and
shifting operations for different drivers are different.
ai and bi in Matrix Au and Bu represent the specific
adaptation operations based on driver i’s preference
data. 8 represents the operation to calculate the entry-
wise product of two matrices.

Since the aggregate preference evolves when indi-
vidual drivers’ preference changes, ws also adapts to
capture such preference changes. Therefore, the simi-
lar adaptation process can be conducted to ws as well.

ws ¼ w08As þ Bs ¼
w01

w02

..

.

w0k

2
6664

3
77758

as1
as2
..
.

ask

2
6664

3
7775þ

bs1
bs2
..
.

bsk

2
6664

3
7775 (2)

w0 is a k dimensional vector representing a prior
weight vector which can be obtained by building a
model based on a dataset that consists of a small por-
tion from every individual’s data. Any linear classifica-
tion model can be incorporated into Eqs. (1) and (2).
The problem becomes to find the Au, Bu, As and Bs

that can minimize the prediction errors at both aggre-
gate and individual levels. The problem can be viewed
as a joint optimization problem. By selecting different
linear classifier models, the objective function can
be different.

To demonstrate how MT-LinAdapt works, this
paper adopts logistic regression as the linear classifica-
tion model with a binary route choice scenario to
show how Au, Bu, As and Bs can be obtained. It is
noted that MT-LinAdapt can incorporate other linear
classification models and can be extended to scenarios
with multiple alternatives. When using individual
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drivers’ weights in logistic regression, the probability
of choosing alternative y¼ 1 for driver i (i¼ 1, 2, … ,
n) in scenario j is:

Pij y ¼ 1jxj
� � ¼ exp wixj1ð Þ

exp wixj1ð Þ þ exp wixj0ð Þ
¼ expððai8ws þ biÞxj1Þ

expððai8ws þ biÞxj1Þ þ expððai8ws þ biÞxj0Þ
¼ expððaiðw08As þ BsÞ þ biÞxj1Þ

expððaiðw08As þ BsÞ þ biÞxj1Þ þ expððaiðw08As þ BsÞ þ biÞxj0Þ
(3)

Xj includes route attributes that driver i experienced
in route choice scenario j. xjm is the route attributes
of alternative m (m¼ 0 or 1). Therefore, Au, Bu, As

and Bs can be retrieved by maximizing log-likelihood.
The log-likelihood function for driver i with all scen-
arios that he/she experienced is:

Li ai,As, bi,Bsð Þ ¼
XJ

j¼1

½yj log Pij yj ¼ 1jxj
� �

þ 1� yjð Þ log Pij yj ¼ 0jxj
� �� (4)

in which yj is the user’s choice in scenario j. As the
MT-LinAdapt model tries to fit each individual driv-
er’s preference, it can be very sensitive to individual’s
historical data. This could lead to overfitting when a
particular driver has very limited data (for example, 1
or 2 observations). In other words, the model can fit
very limited data well but fails to capture this driver’s
general preference. To avoid this overfitting issue,
regularization terms are added to both the individual
level (5a) and the aggregate level (5 b), as shown
below.

R ai, bið Þ ¼ 1
2
g1ðai � IÞT ai � Ið Þ þ 1

2
g2bi

Tbi (5a)

R As ,Bsð Þ ¼ 1
2
g3ðas � IÞT as � Ið Þ þ 1

2
g4bs

Tbs (5b)

The regularization terms are added to the log-likeli-
hood function as penalties. They penalize the log-like-
lihood function when Au, Bu, As and Bs deviate too
much from keeping weights unchanged (i.e., scaling
weight vectors by 1 and shifting weight vectors by 0).
Therefore, taking n drivers’ preference data together,
the objective function is:

maxLðAn,Bn,As,BsÞ ¼
XN
i¼1

½Li ai, bið Þ � R ai, bið Þ�

� R As ,Bsð Þ (6)

Which can be efficiently solved by a gradient-based
optimizer. The parameters g1, g2, g3 and g4 need to
be tuned to make the model work the best. This

problem can be viewed as a joint maximization prob-
lem. The problem is converted to find the Au, Bu, As

and Bs that maximize the log-likelihood function.
Readers who are interested in more details about the
model can refer to (Gong et al., 2016).

Data

Real-world route choice behavior data were obtained
and processed from a mobile navigation application,
Kakao Navigation, in South Korea. Kakao Navigation
is widely used in South Korea and has a large user
population. When people use the navigation, the App
provides two routes for users to choose, as shown in
Figure 1(a). If the user does not take actions to choose
one, the App automatically goes with the first route
(referred as “default route” later in the paper) which
is usually the one with shorter travel time. The other
route is referred as the “alternative route.” App
records the routes recommended to users as well as
the routes they chose. Such data collected from Kakao
navigation users in Daegu, South Korea was used to
test the proposed model.

The data included active drivers who made at least
30 trips with the navigation App from January 1st,
2018 to December 31st, 2019, in Daegu. This includes
9.5 million trips collected from approximately a hun-
dred thousand drivers. When the App recorded that a
driver went with the alternative route, it means the
driver actively chose and preferred the alternative
route. When the app recorded that a driver went with
the default route, it could be the result of “did not
take an action to actively choose” or “actively chose
after consideration.” Though the former situation can
also be interpreted as a kind of driver preference (i.e.,
preferring what the App recommends), this algorithm
targets on the latter case where drivers consciously
compare two optional routes and actively chose one
route to go. We call these drivers the conscious driv-
ers, who are defined as the proportion of his/her own
trips choosing either default or alternative route
should be within 10% to 90%. In other words, a con-
scious driver should have chosen both the default and
alternative routes in his/her historical trip records and
the less-frequent chosen one should be at least 10%.
This criterion excludes drivers who solely chose
default or alternative route therefore creates a dataset
which can reflect drivers’ preference in route evalu-
ation. This results in 20,278 drivers with 2,518,951
trip records for final analysis. This also means that
around 30% of navigation users did not follow the
system recommended top route in at least 10% of
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their guided trips. This further confirms the necessity
of having personalized route recommendation.

To have a better understanding of the dataset,
some of the data description is shown in Figure 1.

As shown in Figure 1(b) and (c), 68.3% of the trips
were made on weekdays and 31.7% of them were
made on weekend. 6.7% and 10.8% of the trips hap-
pened during morning peak and evening peak, while
82.5% of them were made during other time of
the day.

Among trips made by all conscious drivers, 76%
took the default routes and 24% took the alternative
routes, as shown in Figure 1(d). A histogram of driv-
ers with different alternative-default chosen ratios is
shown in Figure 1(e). Only 5.5% of conscious drivers
chose alternative routes more often than the default
routes in their historical trip records.

When look at the number of trips made by each
individual, the boxplot in Figure 1(f) shows that a
portion of drivers used the navigation App exten-
sively. The maximum number of trips that a con-
scious driver made in the dataset is 3,573 trips in two
years, which is roughly 4.89 times a day on average.
As shown on the right-hand side of Figure 1(f), a
closer look at the boxplot shows that conscious drivers

in our dataset used navigation 41 times (median
value) a year (roughly one time every 9 days).

As summarized in Jan et al. (2000), many route
attributes could influence travelers’ route choice deci-
sions, such as travel time, cost, speed limits, waiting
time, congestion, stop signs, etc. From Kakao Navi usage
data, five relevant variables were developed regarding
travel time, toll, day of the week and time of day:

� Travel time ratio: the ratio of the travel time of the
alternative route over that of the default route.

� Cost ratio: the monetary expenditure ratio between
taking two routes. The monetary expenditure com-
prises possible toll and fuel cost. The assumptions
of 1550 Korean won per liter (i.e., $4.725 per gal-
lon) gas and fuel efficiency of 10.5 km/L were used
to calculate the fuel cost.

� Weekend: a binary variable indicating whether it is
a trip on weekend.

� Moring peak: a binary variable indicating whether
it is a trip happening in morning peaks, namely
7:00 to 9:00.

� Afternoon peak: a binary variable indicating
whether it is a trip happening in afternoon peaks,
namely 17:00 to 19:00.

Figure 1. Data Statistics: (a) KaKao Navi interface and provided information; (b) weekday and weekend trips percentages; (c) per-
centage of trips in different time of day; (d) default and alternative chosen percentages; (e) driver counts histgrame by percetnage
of trips that chosen alnterative routes; (f) boxplot of trip counts per user.
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It should be noted that route distance information
is also available, but it is highly correlated with travel
time, so it is embedded in the cost calculation instead
of being included as another independent variable.
Meanwhile, there are different ways to develop the
route features from the dataset. For example, includ-
ing the characteristics of both routes as model features
and using the difference between the two routes’ char-
acteristics as features. We explored different options
and adopted the one with the best performance in
this paper as it can capture the relative level of service
of two routes.

Figure 2 shows the range of two model variables.
The default route usually has shorter travel time. The
travel time of the alternative route is on average 1.15
times of the default route. The ratio can reach up to
3.43 and low to 0.38. For the variable of cost ratio,
using the alternative route can be at most 22 times
more expensive than using the default route.

For each trip, the chosen route paired with the
unchosen route was considered as one route choice
scenario. Values of five variables were generated for
each trip. Such dataset was developed for evaluating
the introduced MT-LinAdapt model.

Performance evaluation and results analysis

Test scenario

We first identified a test scenario which reflects the
difficulty that navigation systems could face in prac-
tice. In reality, some of route guidance system users
could accumulate adequate amount of preference data
either because they are frequent users or have signed
up the service for long time, but there are situations
where users do not have adequate historical prefer-
ence data either because they are new users or they
do not like the service and do not use it often. The
situation that has inadequate preference data is more
difficult to capture users’ preference but is more
important for route guidance systems. as it is

important to make good route recommendations so
that users’ satisfaction can be guaranteed, and the sys-
tem could keep these users. Therefore, we tested
whether the model can capture drivers’ route choice
preference at different levels of data availability.

Existing recommendation strategies
(baseline models)

Based on the types of route recommendation strat-
egies reviewed in the Literature Review section, an
aggregate model and an individual model were
selected for performance comparison. One of com-
monly used machine learning methods, Support
Vector Machine (SVM), was chosen to build the
aggregate and the individual route choice models, as
SVM has demonstrated good performance in many
traveler behavior analysis such as route choice and
mode choice modeling (Sun & Park, 2017; Yuksel &
Atmaca, 2021; Zhang & Xie, 2008). The concept of
SVM is to map the data points into high dimensional
space and find a hyperplane which can separate the
points belonging to different categories. The estima-
tion of SVM model is to maximize the distance of all
data points to the separation plane. Readers could
refer to several literatures (Steinwart & Christmann,
2008; Zhang & Xie, 2008) for detailed objective func-
tions and constraints. It is noted that multinomial
logit model was also explored to establish the individ-
ual and aggregate route choice models. While the
multinomial logit model demonstrated similar per-
formance as SVM, it sometimes cannot generate a
statistically significant model when data amount is too
small. Therefore, SVM was adopted in this paper to
build the individual and aggregate models for
later comparison.

Data preparation

The dataset was divided into training data and test
data. The training data was used for establishing

Figure 2. Value ranges of two variables.
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models and the test data was used for evaluating the
performance of the established models. 30% of each
individual driver’s data was randomly selected as
test data.

Figure 3 shows the data flow in each of the three
models. For the aggregate model, all participant’s
training data was put together as the training dataset.
Each route choice observation was considered as an
independent data point. Neither sociodemographic
data nor participant’s identification were included, as
the data that can be collected from navigation systems
do not contain such kind of information. This train-
ing dataset was used for building aggregated
SVM models.

For individual models, each participant’s training
data was used alone to build a route choice model for
him/herself. This training dataset was used to build
individual SVM models.

As to the proposed MT-LinAdapt, each user’s data
contributes to the estimation of the global-level model,
MT-LinAdapts. Then, MT-LinAdapts is adapted to
each user’s own model with his/her own data.

The random divisions between training and test
data were conducted five times to avoid data divi-
sions’ impacts on model performance. For each data
division, models established based on training data
were tested on the test data. The performance meas-
urement used here is prediction accuracy which is
defined as the percentage that model’s predicted
choices match participants’ actual choices. With five
times of data division, each model has five prediction
accuracies in every testing scenario. The average of

five prediction accuracies was used for final model
comparisons.

To test the performance at different levels of data
availability, each individual participant’s test data was
kept for testing models’ performance, but the training
data was randomly divided into ten groups with each
group having only 10% of training data. Then, the
MT-LinAdapt model, as well as other models used for
comparison, were established with gradually increased
percentages of data, namely 10%, 20%, 30%… 100%
of training data. Therefore, the minimum amount of
data that was used for the model development was
10% of the training dataset. For some drivers who has
less data, that is equivalent to around 2 data points in
the dataset. The data availability of 10% can represent
the difficult scenario that users are new to the naviga-
tion systems and have limited historical data
accumulated.

Implementation of three models

Support Vector Machine (SVM)
The scikit-learn package with Python was used for
training SVM. Since SVM models have decent per-
formance in travelers’ behavior study (Sun & Park,
2017; Zhang & Xie, 2008) and different kernel func-
tions show similar performance with the data, the lin-
ear kernel function was adopted for the SVM model
in this research. SVM has a penalty parameter that
needs to be determined with cross validation. The
range explored in the cross validation is a geometric
sequence from 10�5 to 105 by a factor of 10, which is

Figure 3. Data flow in three models.
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a commonly used range for penalty parameter in
SVM (Ben-Hur & Weston, 2010). The training data
was further split into five groups. Each group was
used as validation data once on all possible values.
This random split was conducted five times. The value
with highest average performance on validation data
was selected to be the penalty parameter value.

SVM was used to establish both aggregate models
and individual models, therefore it was applied to
training datasets prepared for aggregate models and
individual models, respectively. The input data of
SVM models includes all the route attributes that
were contained in the dataset. The final output of
aggregate SVM model is a separation plane repre-
sented by a linear equation for the whole group of
participants. The final output of the individual SVM
models have a linear equation for every single user.
Two types of models were tested on the test data to
obtain the prediction accuracies of the aggregate mod-
els and the individual models.

MT-LinAdapt model
The MT-LinAdapt model described in the
Methodology section was coded with Java. In the
training process, four parameters need to be deter-
mined with cross validation. The ranges of these
parameters are the same, namely from 0.1 to 1 with
the step of 0.1. To reduce the efforts of cross valid-
ation process, four parameters were divided into two
groups and parameters in the same group were tuned
together. The combination with the best performance
was used for final model building. With the parame-
ters selected, the MT-LinAdapt models were estab-
lished based on training data and tested on the test
data. The input data of MT-LinAdapt includes all the
route attributes. The output of the MT-LinAdapt
model includes a set of linear functions, each of which
represents the preference of a particular user. The

individual-level preferences (i.e., wi as shown in Eq.
(1)) were used to evaluate MT-LinAdapt model’s
performance.

Results analysis across three models

Figure 4 shows the prediction accuracies of three
models at different levels of data availability.

For all three models, the overall trend of prediction
accuracy gradually increases as more data is added for
training. The performance of MT-LinAdapt is at least
the same and mostly better for all levels of data avail-
ability, when compared to the other two models.

Among three models, the individual SVM model
has the lowest prediction accuracies in all tested scen-
arios. As explained in the Methodology section, travel-
ers’ route choice behavior can be understood as a
social norm. Travelers share certain common prefer-
ence and still have some differences by individuals.
Individual SVM model only uses each driver’s own
preference data which contains limited data variability.
If test data contains new scenarios that are not cov-
ered by training data, individual SVM model may fail
to predict the route choices correctly.

The performance of aggregate SVM is in between
of the other two models. At the 10% of data availabil-
ity, the aggregate SVM has almost the same prediction
accuracy as MT-LinAdapt. That is because both the
aggregate SVM and MT-LinAdapt capture the com-
mon preference when each user only has limited
amount of data available. As data amount increases,
the performance improvement of the aggregate SVM
is limited because more data does not provide add-
itional information on the common preference. At
higher data availability levels, it is hard for the aggre-
gated SVM to have further performance improve-
ments after the common preference is captured,

Figure 4. Prediction accuracies at different levels of data.
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because it lacks the capability to adapt the captured
preference to individual driver’s level.

As to the MT-LinAdapt model, because of its cap-
ability to capture the social norm (common part of all
drivers’ preferences) and then adapt to each individu-
al’s preference, it consistently has better performance
than other two models. Compare to the aggregate
SVM model, it has the same prediction accuracy at
the 10% of data availability but starts to develop
advantages ranging from 3% to 5% higher prediction
accuracy starting from 20% of data availability. 5% of
higher prediction accuracy leads to 31,864 more cor-
rectly predicted trips. When compare to the individual
SVM, the MT-LinAdapt maintains 5% to 7.5% of
higher prediction accuracy. As each individual driver
accumulates more route choice preference data, the
estimated preference that is adapted to individual level
can become more accurate. Therefore, the perform-
ance can be further improved.

As shown in Figure 4, the performance variation of
three model types also differs. The performance vari-
ation of the global SVM is minimum across data divi-
sions and its error bars are not noticeable in the
figure. It is as expected because the global SVM model
captures the preference at the aggregate level, which
does not change as data availability increases from
10% to 100%. It also means the captured preference
does not change much across data divisions because it
is the preference of the same group of drivers. On the
other hand, individual SVM models’ performance
varies more at low data availability levels than high
data availability levels. It is also as expected, because
individual SVM models only use part of individual’s
data to build a personalized model for each user. Due
to limited observations and variation in individual’s
historical data, additional data points can have large
impact on the estimated individual SVM models. This
is especially true at low data availability levels where
each driver does not have many historical data points.
Thus, the performance of individual SVM models
varies more at low data availability levels. Compared
to global and individual SVM models, the error bar of
MT-LinAdapt starts to become unnoticeable at 30% of
data availability and has stable prediction accuracy
across data divisions at high data availability levels.

When further assessing model’s prediction capabil-
ity in each type of choice, confusion matrices of three
models at 100% data availability level were shown in
Table 1 Each column shows the percentage of the test
data falling into each category. The column “1-0” rep-
resents the percentage of trips in which the predicted
choices are 1 (i.e., alternative route) and the observed

choices are 0 (i.e., default route). The prediction
accuracy calculated in figure is the summation of the
columns “1-1” and “0-0” divided by the total number
of trips. The global SVM basically predicts all cases to
be 1 which is the dominant choice in the data set (as
shown in Figure 1(d)). This is the current practice,
namely recommending what the group likes to each
individual. It should be noted that its performance is
likely to be worse when the percentage of the domin-
ant route decreases. For example, the prediction
accuracy of the global SVM could become 55% when
55% of trips took the dominant route in the data. For
individual SVM, since it is based on individuals’ own
data, it can capture the preferences of some individu-
als whose own dominant route is different from the
group dominant route. Therefore, the column “1-1”
has a slightly larger number of 0.49% than that of the
global SVM. Because of the model nature, MT-
LinAdapt better captures users’ preferences when look
at two types of choice together, as shown in the col-
umns “1-1” and “0-0.”

Table 2 summarized the performance of three
model types at driver level as well as the pair-T test
between MT-LinAdapt and each of the baseline mod-
els. It shows that MT-LinAdapt can not only improve
the system overall prediction accuracy but also
improve the performance for each individual driver.
As shown in Table 2, the minimum accuracy achieved
by MT-LinAdapt is around 38% which is much higher
than 7% of global SVM models and 9% of individual
SVM models. That means the worst service a driver
can receive is much improved. The maximum predic-
tion accuracy achieved by MT-LinAdapt can reach
100%, while the maximum prediction accuracy that
global and individual SVM models can get is 94.6%
and 95%. Therefore, the best service that a driver can
receive is also improved. The average prediction
accuracy at the driver level shows similar trend as the
aggregate performance (i.e., Figure 4).

Additionally, paired-test was conducted between
MT-LinAdapt and each of the baseline models. The
average prediction accuracy of MT-LinAdapt is sig-
nificantly higher than individual SVM models at all
data availability levels. When compared with global
SVM models, the prediction accuracy of MT-

Table 1. Confusion matrices of three models at 100% of data
availability.

Model

Predicted label – Observed label

0-0 0-1 1-0 1-1

Global SVM 75.67% 24.33% 0% 0%
Individual SVM 74.32% 23.84% 1.36% 0.49%
MT-LinAdapt 71.21% 15.28% 4.47% 9.05%
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LinAdapt is significantly higher at data availability lev-
els of 30% to 100%, and has similar performance at
data availability levels of 10% and 20%.

Therefore, MT-LinAdapt has better performance in
terms of prediction accuracy not only at the average
trend, but also improves the best and worst service
scenarios that a driver can experience.

Conclusions

To maximally utilize available data for making person-
alized route recommendations in navigation systems,
we introduced a human-centric machine learning
based technique, MT-LinAdapt and demonstrated its
capability of accommodating drivers’ heterogeneous
preferences even when limited preference data is avail-
able. The model does not require personal sociodemo-
graphic information (e.g., age, gender, income, etc.) or
other criteria to differentiate drivers’ different route
choice preferences. Meanwhile, MT-LinAdapt also
works well when a user has limited amount of prefer-
ence data (e.g., a new user).

This paper compared MT-LinAdapt with two exist-
ing recommendation strategies: the aggregate and the
individual data-based recommendations. Three types
of strategies were tested with route choice preference
data that was collected from 30,837 real-world naviga-
tion system users’ daily usage from South Korea for
performance evaluation at different levels of data
availability. The results showed, MT-LinAdapt has at
least the same and mostly better prediction accuracies
than the other two models at all levels of data avail-
ability. When each user has only limited amount of
data, MT-LinAdapt has 7.5% higher prediction accur-
acy (i.e., 48,500 more trips were predicted correctly)
than the individual model. When more data was
added, the MT-LinAdapt can still maintain the advan-
tage around 5% higher than both the aggregate and
individual models. From individual driver’s

perspective, the best and worst service that a user can
experience are both improved when compared MT-
LinAdapt to baseline models. With more features
developed from route choice preference data and
including more route characteristics or trip informa-
tion (e.g., trip purpose developed from land use data),
the performance of MT-LinAdapt is expected to be
further improved and this will be tested in
future research.

These advantages of MT-LinAdapt would help
navigation systems considering each individual driv-
er’s specific preference when making personalized
route recommendations in practice, and consequently
improve users’ satisfaction, increase users’ compliances
with the guidance system and potentially achieve bet-
ter road network performance (Jaber & O’Mahony,
2009). Take the dataset in this paper as an example,
among 100,000 randomly selected drivers who used
the navigation systems more than 30 times in two
years, 30% of these drivers declined to use the system
suggested route at least in 10% of their trips. The 5%
to 7.5% higher prediction accuracy achieved by MT-
LinAdapt could be converted to thirty to nearly fifty
thousand more trips in which drivers comply with
system suggested routes. Depending on the user popu-
lation, this potentially can help predict future network
conditions and improve network performance when
network performance is also considered in route plan-
ning (Hu et al., 2017). The network level impacts of
considering individual route choice preferences in
navigation systems will be evaluated in a
future research.
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Table 2. Performance at individual driver’s level and statistical test between performance of different models.

Data
levels

Maximum accuracy achieved Minimum accuracy achieved Average Accuracy Achieved Paired T test

Global
SVM

Individual
SVM MT-LinAdapt

Global
SVM

Individual
SVM MT-LinAdapt

Global
SVM

Individual
SVM MT-LinAdapt

MT-
LinAdapt
vs. Global

MT-LinAdapt vs.
Individual SVM

10% 94.7% 90.1% 98.0% 6.9% 14.7% 40.8% 76.3% 69.3% 76.4% ¼ >
20% 94.6% 91.2% 98.1% 6.9% 11.9% 41.4% 76.3% 67.9% 76.2% ¼ >
30% 94.6% 92.2% 98.8% 6.9% 11.7% 41.1% 76.3% 69.8% 77.6% > >
40% 94.6% 93.4% 98.7% 6.9% 11.7% 39.3% 76.3% 72.0% 78.5% > >
50% 94.6% 94.0% 99.0% 6.9% 11.7% 41.0% 76.3% 72.7% 78.9% > >
60% 94.6% 94.0% 99.6% 6.9% 11.7% 39.5% 76.3% 73.0% 79.3% > >
70% 94.6% 93.7% 99.2% 6.9% 11.7% 39.3% 76.3% 73.3% 79.5% > >
80% 94.6% 95.0% 100.0% 6.9% 8.3% 38.0% 76.3% 74.1% 79.6% > >
90% 94.6% 94.2% 99.6% 6.9% 8.9% 37.7% 76.3% 74.4% 79.8% > >
100% 94.6% 94.2% 99.1% 6.9% 9.6% 37.7% 76.3% 74.4% 79.9% > >
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