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An Analytical and Numerical Approach for Shear Failure of Pier-Wall Connections 
in Typical Dutch URM Buildings
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aDipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, Rome, Italy; bDepartment 3MD, Delft University of 
Technology, Delft, The Netherlands

ABSTRACT
Since the 1980s, calcium silicate element masonry has been commonly used in Dutch buildings, and 
vertical continuous joints have been usually located at the corner of perpendicular walls. Since the 
shear failure of these joints may significantly reduce the seismic performance of the flanged wall 
and therefore of the entire building, the assumption of rigid connection may be inaccurate, unlike 
for the traditional interlocking of bricks in running bond textures. In this paper, analytical and 
numerical approaches to study the failure of vertical joints in the seismic assessment of URM 
buildings are presented. The first part of the work focuses on two different numerical models to 
study the nonlinear behaviour of the vertical connection; the related critical numerical issues are 
then discussed. The second part introduces an analytical method able to estimate the lateral force– 
displacement curve of a flanged wall, which considers the possible failure of the connection. In 
particular, the method is derived from the section analysis approach developed for controlled 
rocking deformable systems. The comparison between the numerical simulations and the analytical 
method proves the capacity of the latter to provide a quick but sufficiently accurate estimate of the 
force–displacement curve of a URM U-Shaped wall.
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1. Introduction

The premature failure of connections between perpen
dicular walls was observed in a number of strong earth
quakes (Parisi and Augenti 2013a), which showed that 
the joints play an important role in the seismic response 
of Unreinforced Masonry (URM) structures. Especially, 
this work focuses on the failure of vertical continuous 
connections in typical Dutch URM buildings. Dutch 
Unreinforced Masonry (URM) terraced houses are typi
cally composed of facades with large openings and slen
der piers, connected at corners with transverse walls. 
A large number of URM terraced houses have window 
banks made of timber elements structurally not con
nected to the masonry, and the contribution of spandrels 
to the seismic response is considered negligible. An 
example of a real building lacking structural spandrels 
is shown in Figure 1.

The strength of the connections between the trans
verse main wall and piers influences the seismic capacity 
of the flanged walls, and therefore of the whole building. 
Before 1980, calcium silicate (CS) bricks with interlock
ing of the units at the corners were commonly used in 
building practice. Since the 1980s, large CS elements, 
having in-plane dimensions of 400 × 300 mm2 or larger, 
gradually replaced the traditional small CS bricks (about 

210 × 70 mm2) to accelerate the construction process. At 
the corners between walls and piers, the connection is 
provided by a continuous vertical joint, with horizontal 
steel ties at the bed-joint level. A schematic figure of the 
flanged “U-Shaped” wall is shown in Figure 2. The con
tinuous vertical connections are weaker than the tradi
tional toothed ones and their sliding shear failure may 
considerably decrease the seismic capacity of the struc
ture. For this reason, the assumption of rigid connec
tion, usually holding in case of interlocking of the bricks, 
may be inappropriate in case of vertical connection 
(Fusco et al. 2021, 2022; Rots et al. 1997).

Raijmakers and Van der Pluijm (1992) conducted an 
experimental campaign to test the lateral capacity of 
a U-Shaped element composed of piers and walls linked 
through a continuous connection. In the following 
years, the seismicity in the Netherlands induced by the 
gas extraction raised interest in the study of seismic 
vulnerability of typical Dutch URM buildings and sev
eral experimental campaigns from the material level up 
to the structural scale have been carried out. In particu
lar, a full-scale two-storey building was tested at Delft 
University of Technology to evaluate the seismic capa
city of these structures (Esposito et al. 2019, 2017; 
Mariani et al. 2017; Messali et al. 2018). In recent 
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years, the out-of-plane seismic performance of 
U-shaped elements was studied at the laboratory of 
Eucentre (Kallioras, Grottoli, and Graziotti 2020).

Moreover, several procedures were developed to eval
uate the seismic capacity of URM buildings (Calderini, 
Cattari, and Lagomarsino 2008; Magenes and Penna 
2011; Sacco, Addessi, and Sab 2018). Among them, the 
finite element method (FEM) is the most commonly 
adopted to perform nonlinear analyses. Different scales 
of the analysis can be distinguished for masonry model
ling, that is micromechanical, macromechanical, macro- 
element based and multiscale models (Addessi et al. 
2014; Calderini and Lagomarsino 2008; Lourenco 1996, 
2002; Parisi, Balestrieri, and Asprone 2016). If on the 
one hand the numerical modelling of the URM struc
tures allows to analyse the behaviour of complex struc
tures under seismic loads, on the other hand a detailed 
description of the masonry microstructure would 
require high computational efforts, which may be unsus
tainable in engineering practice. Therefore, the develop
ment of simplified analytical methods can give an 

effective tool for the preliminary analysis and control 
of the numerical results. Several analytical methods were 
also developed to estimate the force capacity of in-plane- 
loaded unreinforced masonry single walls (Benedetti 
and Steli 2008; Parisi and Augenti 2013b; Petry and 
Beyer 2015), but those were not implemented for flanged 
walls with continuous vertical joints.

This work aims to propose an analytical and numer
ical method to analyze the influence of the connection 
failure on the seismic capacity of typical Dutch URM 
buildings built after the 1980s. Section 2 proposes two 
alternative numerical approaches selected to describe 
the nonlinear behaviour of the continuous vertical con
nection, highlighting the issues related to the numerical 
modelling of joint shear failure (Fusco et al. 2021, 2022). 
In Section 3, an analytical method is proposed to derive 
the force–displacement curve of a flanged wall with 
a continuous vertical joint. This method is based on 
the procedure originally developed for the PREcast 
Seismic Structural System (PRESSS) post-tensioned 
rocking-dissipative technology, and elaborated by 

Figure 1. Typical Dutch Unreinforced Masonry (URM) terraced houses [http://www.bestaandewijk.nl/tag/jaren-60-wijk/ - Roel Simons 
(photographer)].

Figure 2. Pier-main wall system with calcium silicate elements and continuous vertical connections (Fusco et al. 2022).
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a research team of the University of California, San 
Diego, to analytically calculate the force–displacement 
curve of the rocking mechanism of a deformable body 
(NZCS 2010; Pampanin 2005; Pampanin, Priestley, and 
Sritharan 2001; Priestley et al. 1999) as opposed to the 
traditional rigid body rocking theory (Housner 1963). In 
the years, the procedure, referred to as Monolithic Beam 
Analogy (MBA), has been adopted and successfully vali
dated for a wide range of precast concrete, steel, lami
nated timber and masonry rocking systems 
(Christopoulos et al. 2002; Newcombe et al. 2008; 
Palermo 2004; Palermo et al. 2005; Palermo, 
Pampanin, and Carr 2005; Palermo, Pampanin, and 
Marriott 2007; Sansoni 2021). In this work, the method 
is extended and applied to a flanged URM wall, allowing 
to capture both the single wall rocking and the coupled 
(thus post-sliding) rocking mechanism. Section 4 sum
marizes the conclusions of the paper.

2. Finite element modelling of continuous 
vertical connections

The interlocking of masonry bricks provides a strong con
nection between walls at the corner of masonry structures, 
which is usually modelled as rigid in numerical models. In 
case of typical Dutch URM buildings built after 1980, this 
assumption may lead to overestimate the seismic capacity 
of the structures due to the possible shear failure of the 
vertical connection between the main wall and piers. 
Experimental research performed by Raijmakers and Van 
der Pluijm (1992) investigated the seismic performance of 
a masonry sub-assembly with continuous vertical connec
tions: a U-shaped structure, composed of the main wall and 
two perpendicular piers, was tested under lateral loading to 
study the occurrence of possible failure mechanisms. This 
section focuses on the three tests with calcium silicate 
elements and continuous vertical joints at the corners with
out the horizontal steel ties at the bed-joint level. The 
experimental test consisted in the application of an initial 
vertical load on top of the main wall, followed by 
a monotonically increasing horizontal load. The dead 
weight of the floor is applied only to the transverse wall, 

because this load condition simulates reinforced concrete 
floors spanning in between the transverse walls, which is 
representative of the floor system in typical Dutch terraced 
houses. The stabilizing moment of the structure was given 
by the self-weight of the components and the vertical load 
applied at the top of the wall. Figure 3 summarizes the three 
potential failure mechanisms of the U-shaped structure 
investigated by the experimental test: (a) the rocking 
mechanism of the structure, followed by compression fail
ure at toes of the pier; (b) the diagonal cracking/compres
sion failure of the pier; and (c) the shear failure of the joint. 
When dealing with strong connections, as in case of the 
interlocking of bricks, either the mechanisms (a) or (b) 
prevail. In particular, the compressive failure is associated 
with sub-vertical cracks at the wall toes. It typically occurs 
for large rotations of the piers determined by the rocking 
motion, but it may also precede the activation of the rock
ing mechanism in case of high vertical stresses. When the 
connections are weak, as in case of continuous connec
tions, the brittle failure of the joint (c) determines a sudden 
reduction of the capacity of the structure for lower hori
zontal forces than those related to the pier failure (Rots 
et al. 1997). In case of continuous vertical connections in 
typical Dutch buildings, tensile failure is prevented by the 
presence of steel anchors embedded in the bed-joint. Due 
to their flat geometry, such anchors have a low shear 
stiffness and strength and for this reason such contribution 
to the overall shear strength of the connection is neglected. 
On the other hand, their tensile strength is usually able to 
prevent the tensile opening of the joint. For this reason, the 
tensile failure of the joint and the consequent detachment 
of the pier is neglected.

The results of the experimental test are shown in 
Figures 7 and 8 (Rots et al. 1997).

2.1. Constitutive laws for continuous vertical 
connection

The continuous vertical connections between piers and 
walls are modelled through interface elements with non
linear behaviour to simulate the potential shear failure 
mechanism of the joint. The interface elements are 

Figure 3. Failure mechanisms of a U-Shaped wall (Fusco et al. 2022; Rots et al. 1997).
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characterized by cracking in tension along the normal 
direction “n” of the interface (perpendicular to the joint 
plane) and sliding in shear along the tangential direction 
“t”. The tensile constitutive law is defined in terms of 
normal traction versus normal relative displacement, 
where the peak and softening phase are characterized 
by the tensile strength ft and Mode I fracture energy Gf

I. 
In this work, a linear elastic constitutive law was adopted 
for the tensile/cracking behaviour of the joint. In addi
tion, two alternative laws were selected among the pro
posed constitutive models to simulate the shear failure 
of the joint and compared among each other: a Coulomb 
friction model and a nonlinear elastic formulation. The 
Coulomb failure criterion is defined by the cohesion cu 
and friction angle ϕ through the following formula 
(Fusco et al. 2022): 

ttj j � cu � tn tanϕ (1) 

where the traction along the interface in normal and 
tangential direction are expressed by tn and tt, respec
tively. As known, in this formulation, the shear yield 
limit function depends on the stress in the normal direc
tion. The nonlinear behaviour is governed by the cohe
sion softening curve and Mode II fracture energy Gf

II, as 
illustrated in Figure 4. The failure criterion reduces to 
dry friction when the cohesion softening is completed. 
The dilatancy angle may be defined equal to the friction 
angle in case of associated plasticity, whereas, if the 
dilatancy is assumed lower than the friction, a non- 
associated plasticity is formulated (DIANA FEA 2019).

As mentioned above, the Coulomb failure criterion is 
characterized by a coupled response in the shear and 
normal direction of the interface. This may complicate 
the convergence of the analyses when the brittle failure 
of the interface occurs, especially in case of non- 
associated plasticity where the stiffness matrix is non- 
symmetric. The adoption of an alternative nonlinear 
elastic model, although less consistent with the actual 
nonlinear mechanisms exhibited by the joint, was then 
explored. This constitutive law separately defines the 
behaviour in the two orthogonal directions, defining 

two uncoupled relative displacement-traction diagrams 
for the normal and tangential direction, respectively. 
The resulting diagonal stiffness matrix improves the 
robustness of the model, speeding up the convergence 
of the analysis (Fusco et al. 2022).

2.2. Numerical application

The U-Shaped structure tested by Raijmakers and Van 
der Pluijm (1992) was modelled adopting both plane 
stress (2D-model) and solid finite elements (3D-model), 
as illustrated in Figure 5. 4-node quadrilateral isopara
metric elements with a 2 × 2 Gauss integration scheme, 
and interface elements with linear interpolation of the 
displacements, were used in the 2D-model. Conversely, 
8-node isoparametric solid brick elements with 2x2x2 
Gauss integration and linear interpolation interface ele
ments were selected for the 3D-Model. In both 2D and 3D 
models, the mesh size was set equal to 100 mm following 
a sensitivity analysis of the numerical model. The Calcium 
Silicate masonry was modelled with linear elastic finite 
elements, as suggested in literature (Rots et al. 1997), with 
Young’s modulus equal to 5000 N/mm2 and a Poisson’s 
ratio to 0.12. To simulate the rocking mechanism, bound
ary interface (contact surfaces) elements with no-tension 
response were introduced at the base section in between 
the masonry elements and the fixed supports. A constant 
vertical load was applied at the top of the wall to simulate 
the presence of the floor. A displacement-controlled ana
lysis was performed by applying a monotonically increas
ing displacement on top of the wall as shown in Figure 5. 
For the 3D-Model, all the nodes located at the upper edge 
of the wall were connected by tying elements, which 
connect rigidly the translational degree of freedom in 
the horizontal x-axis of all nodes. The prescribed displa
cement in the x-direction is applied to the master joint of 
the tying elements so that all the slave nodes undergo the 
same horizontal displacement. According to this con
straint and load conditions, both the connections between 
the transversal wall and the flanges are compressed in the 

Figure 4. Coulomb friction model for shear stresses (Fusco et al. 2022; Rots et al. 1997).
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same way. According to this constraint and load condi
tions, both the connections between the transversal wall 
and the flanges are compressed in the same way.

As mentioned in the previous section, the vertical 
connection was modelled through interface elements in 
between the wall and the pier, considering either the 
Coulomb friction model, or the nonlinear elastic 
model. The material parameters used for the Coulomb 

friction law are summarized in Table 1, in accordance 
with the literature (Rots et al. 1997).

Regarding the nonlinear elastic constitutive law, 
an elastic behaviour was assumed in the normal 
direction, assuming no opening of the interface. In 
shear direction, a traction-relative displacement dia
gram was defined, as shown in Figure 6. The 
Coulomb friction failure criterion is capable of 
properly representing the physical behaviour of the 
interface, by coupling the shear strength to the nor
mal stress. Since the latter varies along the height of 
the connection, also the shear strength assumes dif
ferent values along the joint. On the opposite, the 
nonlinear elastic constitutive law defines a constant 
shear strength along the interface and this assump
tion requires to calibrate the maximum peak value. 

Figure 5. Model of the pier-main wall: 2D-model (a) and 3D-model (b) (Fusco et al. 2022).

Table 1. Vertical interface Coulomb friction model properties 
(Fusco et al. 2022; Rots et al. 1997).

Vertical Joint Normal modulus kn 3125 N/mm2

(Coulomb Friction) Shear modulus kt 1395 N/mm2

Mode II fracture energy Gf
II 0.05 N/m

Cohesion cu 0.4 N/mm2

Angle of friction tanφ 0.75 -

Figure 6. Nonlinear elastic constitutive law: shear stress — relative displacement diagram (Fusco et al. 2022).

INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE 5



For this reason, three different maximum shear 
stresses were adopted, tt,max = 0.4 N/mm2, 0.5 N/ 
mm2, 0.6 N/mm2. A brittle behavior after the peak 
was defined to simulate the sudden propagation of 
the fracture along the joint. A calibrated value of the 
residual shear strength equal to 0.05 N/mm2 was 
considered to simulate the residual friction along 
the interface after the complete degradation of the 
cohesion.

The results of the pushover analyses of the U-shaped 
structure obtained by the 2D-model are shown in 
Figure 7 (Fusco et al. 2022). Figure 7(a) illustrates the 
capacity curve obtained with the adoption of the 
Coulomb friction model, and Figure 7(b) that derived 
with the nonlinear elastic constitutive law. Both results 
are compared with the outcomes of the experimental test 
and with those of earlier simulations provided in Rots 
(Rots et al. 1997), where the arc-length method was 

Figure 7. 2D-model capacity curves: Coulomb friction model (a) vs nonlinear elastic model (b) (Fusco et al. 2022).

Figure 8. 3D-model capacity curves: Coulomb friction model (a) vs nonlinear elastic model (b) (Fusco et al. 2022).
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adopted to accurately describe the snap-back of the 
capacity curve, which corresponds to the propagation 
of the crack along the interface. The numerical methods 
described above cannot reproduce the snap-back due to 
the adopted displacement-controlled procedure. In case 
of Coulomb friction interface model, the numerical 
analyses showed great difficulty in reaching the conver
gence at the onset of the cracking, requiring a very high 
computational effort to overcome the peak of the capa
city curve. Especially, the sudden propagation of the 
crack after the shear failure of the connection deter
mined the divergence of the numerical solution, when 
the Newton-Raphson iterative method was used. 
Alternatively, the Secant (Quasi-Newton) method, with 
a high number of time steps, was adopted to follow the 
post-peak behaviour, but the development of the rock
ing mechanism was not accurately described. In case of 
nonlinear elastic constitutive law, the shear failure of the 
interface and post-peak behaviour were obtained with
out any convergence issue adopting the Newton- 
Raphson iteration method, although the value of the 
peak lateral force was not accurately estimated. In 
Figure 7(b) the capacity curves for different values of 
the maximum shear stress are compared to each other.

Figure 8 shows the results of the 3D-model compared 
with those obtained by Rots and the results of the experi
mental test (Rots et al. 1997). The adoption of solid ele
ments required an additional computational effort 
compared to the 2D- model. Especially, an associated plas
ticity was adopted to improve the robustness of the model 
by setting the dilatancy angle equal to the friction value. The 
model adopting the nonlinear elastic law for the interface 
elements gives larger global capacity of the flanged wall as 
compared to the corresponding 2D analyses.

In conclusion, the use of the nonlinear elastic constitutive 
law considered in this work allows to overcome the conver
gence issues of the Coulomb friction failure model, thanks to 
the diagonal stiffness matrix governing the interface response. 
On the other hand, the decoupling of the normal and tangen
tial constitutive laws approximates the physical behaviour of 
the joint, so that an accurate calibration of the mechanical 
parameters is required (Fusco et al. 2022).

3. Analytical approach

In this section, an analytical procedure defined to evaluate 
the capacity curve of the pier-main wall system is presented 
and discussed. Section 3.1 briefly recalls the approach 
commonly adopted, i.e. the limit analysis method, which 
provides the maximum in-plane force capacity of the pier- 
wall system, but does not allow to follow the evolution of 
the nonlinear mechanisms leading to the force- 
displacement nonlinear response curve. Section 3.2 

introduces the basic concepts of PREcast Seismic 
Structural System (PRESSS) rocking dissipative technology 
and the Monolithic Beam Analogy (MBA) procedure to 
model the rocking mechanism of deformable bodies. The 
proposed analytical method is described in section 3.3. An 
additional procedure to consider the compressive crushing 
of the pier toes is discussed in section 3.4.

The results of the analytical method are compared 
with those experimentally obtained by Raijmakers and 
Van der Pluijm (1992), and already described in the 
previous section. Table 2 summarizes the geometry of 
pier-main wall system and the applied loads, that is the 
vertical load at the top of the wall and the weight of the 
elements. Only half structure is considered to simplify 
the calculation due to the symmetry conditions.

3.1. Classical approach based on limit equilibrium 
analysis

In common practice, the limit analysis is typically used 
to evaluate the limit load associated with the rocking 
mechanism of a wall or a pier. In this approach, wall and 
pier are considered as rigid blocks, which rotate around 
the toe of the pier due to the horizontal force applied at 
the top of the wall, while the resultant of the compressive 
forces is assumed applied at the toe of the pier. The 
capacity of the structure is defined as the horizontal 
load at the top of the wall for which the rotational 
equilibrium is satisfied.

The self-weight of the pier and the wall (Pp and Pw) are 
applied at the respective centers of gravity. The resultant 
of the vertical loads Fv is positioned at the center of the 
top of the wall. As mentioned above, the compressive 
resultant of the base section R is applied at the toe of the 
pier. Several codes and guidelines assume the centre of 
rotation around compressed toe located in the centroid 
of the stress diagram. In this work, this aspect is neglected 
and the position of the resultant force is approximately 
located at the toe of the pier, as a small difference in 
terms of capacity is expected. It should be noted that this 
assumption is not conservative, so that a refinement of 
the analysis may be needed in case the lateral force 
demand is close to the capacity of the connection.

Table 2. Geometry and load conditions of the pier-main wall 
system.

Elastic modulus E 3264 N/mm2

Wall thickness lw 265 mm
Half-wall length sw 800 mm
Pier length lp 600 mm
Pier thickness sp 100 mm
Height h 2500 mm
Vertical Load q 301.9 kN/m
Unit Mass ρ 1800 kg/m3

INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE 7



The capacity of the structure is calculated by impos
ing the rotational equilibrium at the limit state, i.e. 
before the overturning of the structure around the toe 
corner (pivot point), as follows: 

Fhh ¼ Pw þ Fvð Þ
lw
2
þ lp

� �

þ Pp
lp
2

(2) 

In the analyzed case, the horizontal force Fh is obtained 
equal to 26.5 kN.

The limit analysis is typically used to calculate the over
turning of the pier/wall and the capacity Fh is assumed 
related to a displacement equal to zero. The post-peak is 
characterized by the decrease of the capacity due to the 
P-Delta effect, until the overturning of the pier. Instead, in 
this case, since the values of the horizontal displacements 
are low, the P-Delta effect is considered negligible and the 
maximum capacity is assumed as constant, as illustrated in 
Figure 14. In conclusion, the limit analysis provides an 
upper bound of the horizontal capacity, which does not 
completely represent the evolution of the nonlinear beha
vior of the structure during the rocking mechanism.

3.2. Member compatibility (Monolithic Beam 
Analogy — MBA)

To improve the seismic performance of the structure and 
reduce the costs of the damage after an earthquake, a low- 
damage technology named PRESSS Technology was devel
oped in the 1990s (Priestley et al. 1999). It is based on the 
concept of ductile jointed connection, where the inelastic 
demand is concentrated at the critical section through 
opening and closing of an existing gap at the interface 
(rocking motion of the beam or wall panel). In particular, 
the precast elements are connected through unbonded 
post-tensioned tendons. In the hybrid systems, the 
unbonded tendons and the axial load provide recentring 
properties, while the dissipating contribution is provided 
by mild steel or external replaceable dissipation devices 
(Pampanin 2005; Pampanin, Priestley, and Sritharan 2001).

Due to the opening and closing of the gap associated 
with the rocking motion, the strain compatibility of the 
section is violated. Thus, the relation between the strain 
of the concrete and neutral axis position is not valid 
anymore. To overcome this problem, Pampanin, 
Priestley, and Sritharan (2001) and Palermo (2004) pro
posed a relation between the imposed rotation θimp and 
the virtual curvature χ, enforcing a displacement com
patibility at the element level, based on the Monolithic 
Beam Analogy (MBA). The MBA expresses in terms of 
global displacements the analogy between a ductile con
nection and an equivalent monolithic connection, as 
illustrated in Figure 9. In this procedure, the distribution 
of the plastic curvature of a monolithic reinforced con
crete is assumed concentrated in the plastic hinge. 
Several relations are obtained depending on the displa
cement Δ of the point of contraflexure (Palermo 2004). 
The displacement and curvature at the decompression 
point are indicated by Δdec and χdec, and Δy is the dis
placement at the yielding point of the monolithic sec
tion. The cantilever length, Lcant, is the distance from the 
interface and the point of contraflexure, which is equal 
to the height of the cantilivered wall. The following 
relations hold:

(1) If 0 ≤ Δ ≤ Δdec:

Δimp ¼ Δmon ¼ χdec
L2

cant
3

(3) 

In this case, θimp is zero.

(2) If Δdec ≤ Δ ≤ Δy:

Δimp ¼ θimpLcant þ χdec
L2

cant
3

(4) 

Δmon ¼ χmon
L2

cant
3

(5) 

Figure 9. Monolithic beam analogy for reinforced concrete elements (Palermo 2004).
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Imposing the equivalence of the displacements, the 
equivalent curvature is obtained as: 

Δimp ¼ Δmon (6) 

χmon ¼ 3
θimp

Lcant
þ χdec (7) 

(3) If Δy ≤ Δ ≤ Δs:

The displacement of the monolithic concrete element 
is composed of an elastic and a plastic part, where Lp is 
the length of the plastic hinge, resulting as: 

Δmon ¼ Δy þ Δp (8) 

Δmon ¼ χy
L2

cant
3
þ χy � χdec

� �
Lp Lcant �

Lp

2

� �

(9) 

Imposing Δimp = Δmon, the equivalent curvature is: 

χmon ¼

3θimp
Lcant
� χy � χdec

� �

3Lp
Lcant

1 � Lp
2Lcant

� � þ χy (10) 

The aforementioned relations describe the curvature 
of a section as a function of the imposed rotation. The 
compression strain in the concrete measured at the 
outer fiber is calculated as follows: 

εc ¼ c χmon (11) 

where c is the neutral axis position of the section. 
Imposing the rotation of the section, with an iterative 
procedure, it is possible to find the neutral axis position 
that verifies the section equilibrium. Therefore, the step- 
by-step moment-rotation capacity curve of the rocking 
interface may be evaluated. Adding the elastic (flexure 
and shear) deformation contribution of the element, the 
force–displacement curve can be obtained.

3.3. Proposed analytical procedure

The procedure here proposed is an extension of the 
MBA to URM U-shaped walls and is divided into three 
different steps. The first step regards the evaluation of 
the force–displacement curve of the pier-main wall sys
tem assuming that the vertical interface remains intact. 
The second step estimates the horizontal displacement 
at which the failure of the vertical interface occurs. The 
third step considers the pier and wall as a coupled sys
tem after the interface failure. The procedure is sum
marized in Figure 10.

3.3.1. Rocking mechanism
The first step of the analytical procedure aims to obtain 
the force–displacement curve of the pier-main wall sys
tem when the vertical connection is considered as rigid. 
The horizontal force applied at the top of the wall, which 
represents the seismic load, determinates the overturn
ing moment of the system. The rotational equilibrium is 
satisfied thanks to the stabilized moment provided by 
the axial loads, i.e. the weight of the components and the 
vertical load of the floors. Unlike the limit analysis, the 
adopted MBA procedure considers wall and pier as 
a “quasi-rigid” (in fact deformable) body, with 
a neutral axis position instead of a pivot point at the 
corner toe as per the traditional rigid body rocking 
motion theory developed by Housner (1963).

To calculate the capacity of the pier-main wall system 
in terms of horizontal force and displacement, the pro
cedure is divided into two sub-steps, as shown in 
Figure 11. The first sub-step evaluates the moment- 
rotation curve (M, θ) of the base section of the pier- 
main wall, rather than the traditional moment-curvature 
of the pier. In particular, the cracking of the section at 
the bottom of the system is expected due to the low value 
of tensile strength of the masonry and axial load ratio. 
Since, after the cracking, infinitive values of the 

Figure 10. Conceptual steps of the analytical method to model the flanged wall as single or coupled elements.
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curvature at the critical section would be obtained, the 
rotation θ is adopted as the parameter to describe the 
response of the critical section, as for the controlled 
rocking system. The relation between the (gap opening) 
base rotation and the compression strain in the masonry 
is given by the compatibility at the member level, as 
described in section 3.2. The position of the neutral 
axis and the relative moment are computed by enforcing 
the equilibrium of the section at any increasing value of 
the rotation.

The second sub-step correlates the moment-rotation 
curve of the base section with the force–displacement 
curve (Fh — Δtot) of the entire system. In detail, the 
horizontal force is obtained by dividing the moment by 
the cantilever length, whereas the displacement is given 
by the sum of the elastic (flexure and shear contribution) 
displacement and the inelastic displacement determined 
by the rotation of the section.

Sub-step 1: Moment–Rotation Curve
In this section, the procedure to obtain the moment– 

rotation curve is discussed in detail. The behaviour of 
the section can be distinguished in the elastic phase, 
which precedes the base cracking (decompression 
point), and in the subsequent inelastic phase.

The cracking point, which is the first point of the 
moment–rotation curve, corresponds to zero value of 
the (gap opening) base rotation (θdec = 0). If the tensile 
strength of the masonry is neglected, the position of the 
neutral axis is assumed to be located at the extreme fibre 
of the section, as illustrated in Figure 12.

The diagram of the compressive stresses at the base 
section is divided into three blocks to consider the dif
ferent thicknesses of the wall and pier. The value of the 

variable, σmax,dec, is determined through the equilibrium 
of the vertical loads, where R1,R2,R3 are the resultants of 
the compressive stress diagram. The moment capacity of 
the section related to the decompression of the base 
section results as: 

Mdec ¼ R1 lp þ
lw
3

� �

þ R2
lp
2
þ R3

lp
3
þ Fv þ Pwð Þ lp þ

lw
2

� �

þ Pp
lp
2

(12) 

Assuming a linear elastic constitutive law for the 
masonry, the curvature at the decompression point is 
expressed by Equation (13). 

χdec ¼
σmax;dec

E lw þ lp
� � (13) 

After the decompression point, the opening of the gap 
at the bottom of the wall occurs. The analytical procedure 
to derive the moment–rotation curve consists in finding 
the moment capacity of the section imposing the rotation 
(θimp). For each value of the imposed rotation, the posi
tion of the neutral axis is obtained according to the 

Figure 11. Flow chart force–displacement curve of the flanged wall.

Figure 12. Internal actions of the section at the bottom: decom
pression point.
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following iterative procedure, based on the verification of 
the equilibrium of the section. Two different cases are 
considered corresponding to the neutral axis at the base 
section located in the wall and in the pier. A scheme of the 
strains and compressive stresses of the section are illu
strated in Figure 13.

The maximum strain, defined through the member 
compatibility condition, is given by Equation (14). 
Unlike concrete, in a masonry wall no plastic hinges 
develop, so that the equivalent connection remains elas
tic. For this reason, the pre-yielding equivalent curvature 
is herein assumed as the most appropriate. 

εmax ¼ � c 3
θimp

Lcant
þ χdec

� �

(14) 

The cantilever length, Lcant, is the distance from 
the interface and the point of contraflexure, which in 
this specific case is equal to the height of the (canti
lever) wall. Since the masonry is assumed to be linear 
elastic in compression, the maximum stress can be 
determined straightforward via the following 
expression: 

σmax ¼ Eεmax (15) 

The position of the neutral axis is obtained through 
the equilibrium of the vertical forces. Finally, the 
moment capacity is given by the contribution of the 
vertical loads (Maxial) and the moment derived from 
the compressive stresses (Mcomp), resulting as: 

Maxial ¼ Fv þ Pwð Þ lp þ
lw
2

� �

þ Pp
lp
2

(16) 

Mcomp ¼
R1 lp þ

c� lpð Þ
3

� �

þ R2
lp
2 þ R3

lp
3 if c> lp

R3
c
3 if c< lp

8
<

:

(17) 

M ¼ Maxial þMcomp (18) 

Repeating this procedure iteratively for each rotation 
value, the moment–rotation curve of the section at the 
bottom of the pier-main wall is obtained interpolating 
the points, as illustrated in Figure 14(a).

Sub-step 2: Base Shear–Displacement Curve
The second sub-step consists in the definition of the 

base shear–displacement curve for the entire wall, start
ing from the moment–rotation curve. In detail, the 
lateral load capacity is obtained by dividing the moment 
capacity by the cantilever length, which in this case 
corresponds to the height of the wall. 

F ¼
M

Lcant
(19) 

The displacement at the top of the wall is calculated as 
sum of the elastic displacement Δdec and of the inelastic 
displacement Δgap caused by the gap opening, result
ing as: 

Figure 13. Strain and stress distributions at the base section: neutral axis in the wall (a) and in the pier (b).
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Δdec ¼
Fdec

k
(20) 

Δgap ¼ θimpLcant (21) 

Δtot ¼ Δdec þ Δgap (22) 

where k is the stiffness of the half flanged wall, consider
ing both flexural and shear contributions.

The force-displacement capacity curve of half flanged 
wall is shown in Figure 14(b) and compared with the 
results of the limit analysis. The development of the 
rocking mechanism is fully captured by the proposed 
analytical procedure, unlike the limit analysis which 
neglects the pre-peak flexural behavior. Also whilst the 
MBA considers the actual neutral axis position, the limit 
analysis assumes the corner toe as pivot point for the 
rocking mechanism, thus (un-conservatively) overesti
mating the level arm and overall capacity of the system.

3.3.2. Shear failure of the pier-wall connection
The shear failure of the vertical connection between the 
pier and wall is governed by the Mohr–Coulomb failure 
criterion. Consequently, the shear capacity depends on 
the distribution of shear and normal stresses along the 
vertical connection, which is highly complex to obtain 
analytically, due to the considerable extension of the 
D-region. Accordingly, a simplified global procedure 
based on two steps to evaluate the failure of the connec
tion is hereinafter proposed. The first step verifies if the 
failure occurs, in particular if the maximum shear stress 
exceeds the estimated shear strength. The second step 
concerns the identification of the displacement at which 
the failure occurs and the horizontal force is then 
derived indirectly from the force–displacement curve. 
The following paragraphs describe the assumptions of 
the simplified proposed procedure.

The maximum shear transferred by the vertical con
nection (V) is assumed to be equal to the sum of the 
vertical load at the top of the wall and the weight of the 
wall. This corresponds to the phase when the wall is 
completely lifted, and the vertical loads are supported 
by the pier through the vertical connection, resulting: 

V ¼ Fv þ Pw (23) 

In analogy with a rectangular section and in 
a conservative manner, the distribution of the shear 
stress is assumed as parabolic. Consequently, the max
imum shear stress is calculated with the following 
expression, where Ainterf denotes the area of the vertical 
joint: 

τmax;ext ¼
3
2
�

V
Ainterf

(24) 

As previously mentioned, due to the difficulty of calcu
lating the normal stress distribution along the connec
tion, a further conservative assumption is adopted. 
Namely, the frictional contribution to the resisting 
shear stress is assumed to be negligible, so that the 
strength only depends on the cohesion τcohesion, that is: 

τres ¼ τcohesion (25) 

Once the maximum shear stress along the joint exceeds 
the shear strength (Equation 25), the failure of the ver
tical connection occurs being: 

τmax;ext � τres (26) 

When Equation (25) is verified, a straight line is drawn 
in the force-displacement diagram, as illustrated in 
Figure 15, which represents the failure of the vertical 
connection. The horizontal displacement at the top of 
the wall of this line corresponds to the value for which 
the wall is completely lifted. In fact, from the procedure 

Figure 14. Moment-Rotation of the section at the bottom of the flanged wall (a) and force–displacement curve of the flanged wall (b).
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of the flanged wall capacity curve, it is possible to know 
the position of the neutral axis at each value of the 
horizontal displacement. Therefore, the value of this 
for which the neutral axis passes from the wall to the 
pier is considered as the horizontal displacement related 
to the sliding. If Equation (26) is not verified, the origi
nal force–displacement curve computed from section 
3.3.1 can be used (up to the toe crushing).

3.3.3. Rocking mechanism after the sliding shear 
failure at the interace
In case of sliding shear failure of the vertical interface, 
the response can be analytically described and modelled 
assuming a complete degradation of the cohesive bond 
between wall and pier, which remain only coupled via 
the residual friction of the interface, as shown in 
Figure 16(a). The behaviour of the coupled system is 

Figure 15. Failure of the vertical connection.

Figure 16. Equilibrium of the coupled pier-wall (a) and an example of a coupled post-tensioned rocking wall via U-shaped flexural 
plates (NZCS 2010).
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hereinafter described in analogy with the analytical pro
cedure used for coupled post-tensioned rocking walls via 
U-Shaped Flexural Plates illustrated in Figure 16(b).

The overturning moment is obtained as sum of the 
moment capacity of wall, Mw, and the pier, Mp, calcu
lated about the centre of the sections of each structural 
component, and an additional contribution related to 
the coupling shear Vres, resulting as: 

Mot ¼ Mw þMp þ Vres
lw þ lp

2

� �

(27) 

The moment capacities Mw and Mp are obtained by 
imposing the rotational equilibrium at the base section, 
considering the contribution of the residual shear trans
ferred via the connection, in case the resultant force 
interface demand exceeds the Coulomb force capacity, 
as illustrated in Figure 16. The equilibrium expressions 
for the wall and pier are reported in Equation (28) and 
Equation (29), respectively, where Cw and Cp are the 
resultant compression forces, as follows: 

Cw þ Vres � Pw � Fv ¼ 0 (28) 

Cp � Vres � Pp ¼ 0 (29) 

The analytical procedure is summarized in 
Figure 17. The coupling shear force transferred 
through the interface is assumed to be equal to the 
residual friction of the connection. Namely, the value 
of the coupling force is a function of the stresses 
normal to the interface and the friction coefficient. As 
mentioned in the previous section, the distribution of 
the normal stresses along the connection is complex 
and onerous to be estimated analytically. For this rea
son, a simplified expression to evaluate the shear force 
is proposed. The shear force is assumed to be equal to 
the friction coefficient of the joint, μ, multiplied by the 
lateral load capacity, obtained through the limit analy
sis Fh,lim. In this case, the interface shear results are 
equal to 19.9 kN, considering the friction coefficient μ 
and the lateral force Fh,lim equal to 0.75 and 26.5 kN, 
respectively. It results: 

Vres ¼ μFh;lim (30) 

The resultant of the coupling shear force is propor
tional to the maximum lateral force computed via the 
limit analysis, which is an upper bound for the lateral 
capacity of the wall. For this reason, also the coupling 
shear, and therefore the overall capacity of the wall 
obtained through Equation (30), is considered an 
upper bound of the real capacity. On the opposite, the 
lower bound is obtained by assuming Vres = 0. The 
analytical procedure defined to obtain the moment 

capacity of the wall is hereinafter explained for the 
upper bound curve only.

This computes first the moment–rotation curve of the 
section at the base of the U-wall. As shown in section 
3.3.1, for each value of the imposed rotation θimp,w, the 
neutral axis cw position is iteratively computed. 
Assuming a linear elastic constitutive law, the position 
of the neutral axis cw is calculated via the equilibrium of 
the wall section expressed in Equation (28). 
Consequently, the moment capacity of the wall is: 

Mw ¼ Cw
lw
2
�

cw

3

� �

(31) 

The same procedure is repeated to compute the 
moment-rotation of the pier. For each imposed rotation 
θimp,p, the position of the neutral axis cp is obtained by 
imposing the equilibrium of the section in Equation (29) 
and the moment capacity of the pier is given by: 

Mp ¼ Cp
lp
2
�

cp

3

� �

(32) 

The displacement at the decompression point is calcu
lated as follows: 

Δdec;w ¼ χdec;w
L2

cant
3

(33) 

The displacement related to the gap opening is com
puted via the following expression: 

Δgap;w ¼ θimp;wLcant (34) 

Finally, the total displacement is: 

Δtot;w ¼ Δdec;w þ Δgap;w (35) 

The lateral load capacity of the wall is obtained by dividing 
the moment capacity by the cantilever length as follows: 

Fh;w ¼
Mw

Lcant
(36) 

The same procedure is applied to compute the force– 
displacement curve of the pier.

The additional contribution of the coupling shear is 
estimated as described above and by assuming 
a constant shear force. This results as: 

MV ¼ Vres
lw þ lp

2

� �

(37) 

Fh;V ¼
MV

Lcant
(38) 

Finally, the force–displacement curve of the coupled 
wall-pier is obtained by summing up the moment capa
city of pier and wall and the contribution of the coupling 
shear: 
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Fh ¼ Fh;w þ Fh;p þ Fh;V (39) 

The results are illustrated in Figure 18. The upper bound of 
the capacity curve corresponds to the coupling shear pro
portional to the maximum lateral force computed via the 
limit analysis. On the opposite, the lower bound is calcu
lated by imposing a zero residual shear force along the 
interface.

The upper-bound capacity curve of the coupled wall 
is different from zero for a horizontal displacement 
equal to zero. It is evident that it has no real physical 
meaning, but it is caused by the assumption of consider
ing the shear force as constant. Since the coupling of wall 
and pier only occurs after the failure of the connection, 
the initial branch of this curve is not relevant if consid
ered alone, but should rather be part of a two-stage 

Figure 17. Flow chart force–displacement curve of the coupled pier-wall after shear failure of the vertical connection.
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analysis merging the initial phase (fully coupled pre- 
sliding) and the final stage (sliding shear at the interface 
and residual coupling friction shear) as described in the 
following section, where a consolid analytical approach 
is proposed and validated against the numerical results.

3.4. Comparison between the analytical and 
experimental results

In the previous sections, half structure was considered 
due to symmetry. The capacity curve of the whole 
U-wall system is obtained by multiplying by two the 
horizontal force, as shown in Figure 19. This illustrates 
the capacity curve of a flanged wall with an intact 
interface connection, the upper and lower bound of 
the capacity curve of the coupled pier-wall after shear 

failure, and the horizontal displacement for which the 
failure of the connection occurs. The behaviour of the 
U-wall is represented by the combination of the two 
phases of the mechanism (pre- and post- interface 
sliding): the black thick curve represents the upper- 
bound curve and the grey thick curve indicates the 
lower bound curve. For both curves, the initial capa
city coincides with that of the pier-wall with a rigid 
connection (dashed black curve) up to the displace
ment at which the failure of the interface connection 
occurs (dashed grey curve). The sliding failure of the 
joint reduces the capacity of the U-wall down to inter
sect the dash-dotted curves, which represent the upper 
and lower bound behaviour of the wall/pier after the 
sliding Figure 19 compares the capacity curve obtained 
via the experimental/numerical simulations and the 
analytical capacity curve. The numerical results are 
presented in (Rots et al. 1997) and validated by com
parison with the results of the experimental test. The 
analytical model is able to predict accurately the stiff
ness degradation due to the onset of the rocking 
mechanism. However, the failure of the vertical con
nection occurs for both lower horizontal displace
ments and lateral forces in the case of the analytical 
model with respect to the numerical results. As regards 
the post-peak behaviour, the numerical model shows 
an increase of the lateral force due to the increase of 
the normal stresses along the interface, caused by the 
increasing imposed displacements. This specific beha
viour is not described by the analytical model, which 
assumes a constant shear force transferred along the 
connection, so that the lateral force after the peak 
remains approximately constant. On the other hand, 
the numerical curve remains mostly within the lower 
and upper bounds estimated via the analytical method. 
The analytical procedure is therefore able to provide 
a simple but sufficiently accurate prediction of the 
U-wall force–displacement curve.

3.5. Accounting for toe-crushing failure in the 
analytical procedure

The compressive failure, characterized by sub-vertical 
cracks, was observed in a several real earthquakes 
(Parisi and Augenti 2013a). Several alternative proce
dure to consider the compression failure in the section 
analysis is also present in the literature (Parisi and 
Augenti 2013b). In this section, the previously proposed 
analytical method is refined by including also the toe- 
crushing of the pier as a potential failure mechanism, 
caused by the compressive stress localization at the bot
tom due to rocking. Such a failure mechanism can occur 
when large compressive forces are transferred at the base 

Figure 18. Capacity curve of the coupled wall/pier: upper and 
lower bound.

Figure 19. Numerical analysis vs analytical analysis results.
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of the wall, and it occurs then when the vertical connec
tion does not fail. For this reason, a rigid vertical con
nection is assumed in the following.

With respect to the procedure described in the pre
vious sections, a parabolic nonlinear constitutive law for 
masonry is used (Figure 20(a)). For the considered wall, 
the maximum compressive stress is equal to 5.9 N/mm2 

and the ultimate strain to 0.5%, based on common 
literature (Jafari, Esposito, and Rots 2019).

Similar to the procedure described in section 3.3.1 for 
the rocking mechanism, the position of the neutral axis 
is obtained from the section equilibrium, and the 
moment capacity is then calculated. To consider 
a nonlinear constitutive law, the problem is discretized 
and the section is divided into equal intervals Δx, as 
illustrated in Figure 20(b). The values of the strain at 
each point of the discretization are calculated by: 

εi ¼ εmax
c � L � xið Þ

c

� �

(40) 

Consequently, the constitutive law relates the strain to 
the stress as: 

σi ¼ f εið Þ (41) 

For each interval, the compressive force resultant and 
the moment about the extremity of the section are 
obtained as follows: 

Ri ¼ σisΔx (42) 

Mi ¼ Ri L � xið Þ (43) 

The total resultant of the compressive force at the base 
and the moment derived from this are the sum of the 
contribution of each interval: 

Rcom ¼
X

Ri (44) 

Mcom ¼
X

Mi (45) 

Therefore, Rcom is included in the equilibrium equation, 
instead of R1+ R2+ R3. Similarly, also the moment Mcom 
in Equation (17) is now evaluated via Equation (45).

The remaining part of the procedure employed to 
obtain the force–displacement curve from the moment- 
rotation is identical to that described in section 3.3.1. 
The force–displacement curve obtained from the non
linear constitutive law for masonry is illustrated in 
Figure 21 for the considered U-shaped wall (assuming 
that no failure of the vertical joint occurs), where the 
drop of the capacity at the end of the curve corresponds 
to the toe-crushing of the pier. In addition, diagrams of 
the stresses along the base section of the wall are plotted 
for three different imposed rotations(Figure 22). When 
the imposed rotation is equal to 0.05%, the neutral axis 

Figure 20. Masonry constitutive law and section analysis.
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still lies in the main wall and masonry still exhibits an 
elastic behaviour. At θimp = .7% the nonlinear behaviour 
of the material already occurs. For even larger rotations, 
the stresses decrease until the stress located at the toe of 
the pier reaches a zero value (complete toe-crushing). 
For the considered wall, the toe-crushing is reached for 
a rotation equal to 1.75%.

The analytical force–displacement curve is compared 
in Figure 21 to the corresponding curve defined via 
numerical simulations in which the vertical connection 
was modelled as rigid to prevent the joint shear failure. 
The model corresponds to that presented in Section 2, 
but a parabolic nonlinear constitutive law with compres
sive strength equal to 5.9 N/mm2 and compressive frac
ture energy equal to 25 N/mm2 was used to model the 
masonry. The results of the numerical simulation show 
a larger ductility of the wall when compared to the 
analytical predictions, which can therefore be used to 
obtain a conservative but reasonable first estimate of the 
displacement capacity of the wall.

4. Conclusions

The seismic performance of Dutch masonry terraced 
houses built after the 1980s may be limited by the fail
ure of the continuous vertical connections that are 
present at the corners between crossing walls and 
piers. In common practice, these connections are 
assumed to be rigid, but this assumption may lead to 
overestimate the lateral load capacity of the masonry 
buildings, especially when cohesion and friction of the 
connection are not sufficiently high. The present work 
investigates the problem via both a numerical and an 
analytical approach, whose limitations and advantages 
are discussed.

The most critical aspect of the numerical modelling of 
these structures is the choice of the constitutive law for 
the vertical continuous connections between wall and 
pier, which are typically modelled by means of interface 
elements. A Coulomb-friction criterion provides the 
most appropriate description of the physical behavior 
of the connection. However, the analyses presented in 
this work highlight the severe numerical convergence 
issues related to the brittle shear failure of the vertical 
connection. Therefore, a nonlinear elastic constitutive 
law may be considered as an alternative. This law decou
ples the force-displacement behaviour in the normal and 
tangential directions. Such assumption, although less 
consistent with the actual mechanical response, allows 
for the stability of the numerical analysis, but it requires 
the calibration of the mechanical parameters.

The proposed analytical procedure overcomes the 
limitations of limit equilibrium analysis, which can be 
used to estimate the capacity of the structure. The 
described procedure identifies three phases: first the 
onset of rocking of the pier-main wall system when the 
connection is intact, second the shear failure of the 
vertical connection, and third the rocking of the coupled 
wall-pier system in the post-peak phase. Additionally, 
also the toe-crushing at the bottom of the pier is 

Figure 21. Comparison capacity curve: analytical vs numerical 
methods.

Figure 22. Stress values along the base section for three representative imposed rotations of the wall.
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considered as failure mechanism alternative to the shear 
failure of the connection. Although the analytical nature 
of the model requires the definition of simplifying 
assumptions, the results of the analytical method are 
consistent with those obtained via the numerical simu
lations. Therefore, the proposed analytical method can 
be used to provide a quick, but sufficiently accurate, 
estimate of the complete force–displacement curve of 
a URM U-wall.
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