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Identification and detection of thin-cap fibroatheroma (TCFA) from intravascular optical coherence
tomography (IVOCT) images is critical for treatment of coronary heart diseases. Recently, deep learning
methods have shown promising successes in TCFA identification. However, most methods usually do not
effectively utilize multi-view information or incorporate prior domain knowledge. In this paper, we pro-
pose a multi-view contour-constrained transformer network (MVCTN) for TCFA identification in IVOCT
images. Inspired by the diagnosis process of cardiologists, we use contour constrained self-attention
modules (CCSM) to emphasize features corresponding to salient regions (i.e., vessel walls) in an unsuper-
vised manner and enhance the visual interpretability based on class activation mapping (CAM).
Moreover, we exploit transformer modules (TM) to build global-range relations between two views
(i.e., polar and Cartesian views) to effectively fuse features at multiple feature scales. Experimental results
on a semi-public dataset and an in-house dataset demonstrate that the proposed MVCTN outperforms
other single-view and multi-view methods. Lastly, the proposed MVCTN can also provide meaningful
visualization for cardiologists via CAM.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thin-cap fibroatheroma (TCFA) is defined as a lipid plaque with
a fibrous cap less than 65lm thickness that forms in vessel walls
and destroys the three-layer membrane structure of the vessel wall
[1]. TCFA is also one type of vulnerable plaque that can lead to
thrombosis, acute coronary syndrome, acute myocardial infarction
or even sudden death [2]. Identification and detection of TCFA is
critical for treatment of coronary heart diseases. Intravascular opti-
cal coherence tomography (IVOCT) is a catheter-based inspection
method that uses near-infrared light to obtain high-resolution
imaging of microstructures of blood vessel walls [3]. Compared
with intravascular ultrasound (IVUS) imaging, IVOCT can acquire
higher resolution images with clearly visible fine structures and
characteristics of vulnerable plaques, so it has been widely used
as a gold standard for assessing TCFA [4]. Usually, a catheter that
contains an OCT probe is inserted into a coronary artery and then
pulled back, obtaining hundreds of high-resolution images. Manual
TCFA identification from so many images is not only time-
consuming but also subjective. Therefore, automated TCFA identi-
fication in IVOCT images is a valuable and challenging task.

Recently, deep learning methods have shown promising success
in TCFA identification. Wang et al. [5] used a convolutional neural
network to extract multi-scale features from a polar view of IVOCT
image to identify vulnerable plaques. Xu et al. [6] studied the effec-
tiveness of four types of deep neural networks in identifying
fibroatheromas, where deep learning features were directly
extracted from a Cartesian view of IVOCT image. Multi-view learn-
ing has recently received increasing attention. Gessert et al. [7]
fused deep learning features from two views of images (i.e., the
polar and Cartesian views of IVOCT images) via a single concatena-
tion operation to improve the identification performance. How-
ever, there is huge spatial distortion between the two views,
shown in Fig. 1. The same location in the two views of images
may have completely unrelated clinical biomarkers. Fusing the
features of the biomarkers through a concatenation operation
may lead to suboptimization. Therefore, more effective fusion
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Fig. 1. A schematic diagram of the view transformation between (a) a polar view of
image and (b) a Cartesian view of image.
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operations may be considered and multi-scale feature fusion may
also be an effective factor for TCFA identification.

In addition, there have been some attempts to incorporate prior
domain knowledge into deep learning. Shi et al. [8] exploited two
cascaded networks to identify vulnerable plaques according to a
diagnosis process of cardiologists in which cardiologists first focus
on salient regions and then locate and identify vulnerable plaques
in the salient regions. Liu et al. [9] proposed to unify the two net-
works as a single network through sharing the bottom layers of the
two networks. However, both methods require additional salient
regions to be annotated for the training phase, which increases
the annotation burdens on cardiologists and limits the application
of the methods. Therefore, a method without annotating the sali-
ent region deserves further study.

In this paper, we consider incorporating prior domain knowl-
edge in an unsupervised manner and fusing the multi-view fea-
tures at multiple feature scales for TCFA identification. To this
end, we propose a multi-view contour-constrained transformer
network (MVCTN) for TCFA identification in IVOCT images. First,
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Fig. 2. An overview of the proposed method for TCFA identification in the IVOCT images.
as the auxiliary view. In fact, the primary view and the auxiliary view are interchang
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inspired by the diagnosis process of cardiologists, we use contour
constrained self-attention modules (CCSM) to emphasize features
corresponding to salient regions (i.e., vessel walls) in an unsuper-
vised manner and enhance the visual interpretability based on
class activation mapping (CAM) [10]. Furthermore, we use trans-
former modules (TM) to build global-range relations between the
two views (i.e., the polar view and the Cartesian view) to effec-
tively fuse the two views of features at multiple feature scales.
Specifically, as shown in Fig. 2, we first use a view transformation
to generate the two views of images. Second, the polar view is used
as a primary view while the Cartesian view is used as an auxiliary
view (or vice versa). Third, each of the views has a SENet-based
pathway with three CCSMs, each of which includes a spatial atten-
tion block (SAB) and an active contour loss (ACL). The ACL can sup-
port the SAB to improve the detection ability of the salient regions
as well as the visual interpretability based on CAM. It’s worth not-
ing that since TCFA forms in vessel walls and destroys normal ves-
sel wall structures in IVOCT images, the vessel wall is considered as
the salient region in this paper. Finally, three TMs bridge the two
pathways to allow the auxiliary view to assist the primary view
at the multiple feature scales. In order to verify effectiveness and
robustness of the proposed MVCTN, we evaluate it on one semi-
public dataset (i.e., the 2017 Chinese Conference on Computer
Vision-IntraVascular Optical Coherence Tomography challenge
(CCCV-IVOCT) dataset) and one in-house dataset (i.e., the Optical
coherence tomography Plaque Recognition Database (OPRD)).
Besides, we also try to use CAM to understand and interpret deci-
sions of the proposed MVCTN. In summary, main contributions are
as follows:

� We propose a multi-view contour-constrained transformer net-
work (MVCTN), which emphasizes the features corresponding
to the salient regions in the unsupervised manner, enhances
the visual interpretability based on CAM and fuses the multi-
view features at the multiple feature scales for TCFA
identification.
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eable.
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� Inspired by the diagnosis process of cardiologists, we propose a
CCSM consisting of a SAB and an ACL. The SAB is a type of self-
attention block which can emphasize or suppress features in
different spatial locations by learning. The ACL is attached to
the SAB to improve the detection ability of the salient regions
and enhance the visual interpretability based on CAM.

� In order to effectively fuse the two views of features with huge
spatial distortion, we introduce three TMs to build the global-
range relation between the two views at the multiple feature
scales.

� The proposed MVCTN not only outperforms other single-view
and multi-view methods on the two datasets, but also provides
meaningful CAM-based visualization, thus potentially becom-
ing a useful tool with explainable results for cardiologists, espe-
cially for inexperienced cardiologists, to support them in
making diagnostic decisions.

2. Related Work

2.1. Plaque Identification in IVOCT Images

Automated methods for plaque identification in IVOCT images
can be generally divided into three categories: polar view based
methods, Cartesian view based methods and multi-view based
methods. The polar view based methods only use the polar view
of images. For example, Rico-Jimenez et al. [12] segmented lumen
areas from the polar view of images, and classified plaque types
based on their morphological characteristics. With the rapid devel-
opment of deep learning, Liu et al. [13] proposed a ResNet-3D net-
work to classify coronary plaques in the polar view of IVOCT
pullbacks. And Shi et al. [14] proposed a deep multiple instance
learning method to classify and locate vulnerable plaques from
the polar view of IVOCT images. The Cartesian view based methods
only use the Cartesian view of images. For example, texture fea-
tures were directly extracted from the Cartesian view of images
to automatically identify plaques [15]. Recently, convolutional
neural networks (CNNs) were proposed to automatically learn
plaque-related features from the Cartesian view of images
[16,17]. The multi-view based methods use both of the polar and
Cartesian views of images. For example, Xu et al. [18] transformed
the Cartesian view of images into the polar view of images and
extracted texture features from the polar view of images to identify
plaques. In contrast, Zhou et al. [19] segmented lumen contours
using the polar view of images and transformed the segmented
lumen contours into the Cartesian representation to classify plaque
tissues. Furthermore, deep multi-view learning for the plaque
identification has drawn some attention. Gessert et al. [7] demon-
strated that the performance of plaque identification could be
improved by fusing deep learning features from both of the polar
and Cartesian views of images.
2.2. Active Contour Model

Active contour models, also known as snakes [20], evolve a con-
tour to detect objects in a given image by minimizing an energy
function based on marginal information and smoothness con-
straints. However, snakes are sensitive to initial contour location
and might get stuck in a local minimum. In the past three decades,
a number of snake variants have been proposed, such as active
contour without edges (ACWE) [21], where an implicit contour
evolution modelled as the evolution of a zero level set is guided
by the optimization of an energy function. The active contour
model has been widely used in medical image segmentation [22].
Some of the methods based on deep learning used the active con-
tour model as an active contour loss (ACL) to optimize deep neural
226
networks [23,24]. Inspired by this, we apply an ACL to identify
TCFA in IVOCT images.

2.3. Transformer

The architecture of Transformer [25] can effectively capture
long-range dependencies and has become a de facto standard for
natural language processing tasks. There are also many variants
of Transformer in the computer vision community. Wang et al.
[26] proposed a non-local module to enhance CNN’s ability to cap-
ture long-range dependencies. Dosovitskiy et al. [27] replaced
CNNs with the architecture of Transformer. Inspired by this, in this
paper, we propose a new variant of Transformer to build global-
range relations between the polar view and the Cartesian view,
thereby overcoming the huge spatial distortion between the two
views.

3. Methods

An overview of the proposed method is illustrated in Fig. 2.
Firstly, we use a view transformation to generate the two views
of images. Secondly, we insert CCSMs into a SENet [28] to build
two types of SENet-based pathways, including a primary pathway
and an auxiliary pathway. The primary pathway is a SENet where

three CCSMs are inserted behind the 1st;2nd, and 3rd convolution
stages, respectively. The auxiliary pathway has a similar structure
to the primary pathway, and their difference is that there is no
module after the 3rd CCSM of the auxiliary pathway. Thirdly, we
use three TMs to bridge the two pathways to allow an auxiliary
view to assist a primary view at the multiple feature scales. It’s
worth noting that the primary view and the auxiliary view are
interchangeable. Finally, we propose a loss function including
one cross entropy loss and six active contour losses for optimizing
the proposed MVCTN.

3.1. View Transformation

In order to utilize multi-view information, we use a view
transformation to generate the other view of images from one view
of images. For the polar view of images, the Cartesian transforma-
tion [7] is applied. Specifically, the polar image Ipðd; hÞ can be
transformed into Cartesian representation with the transformation
x0 ¼ dcosðhÞ and y0 ¼ dsinðhÞ. Then the Cartesian image Icðx; yÞ
is derived from applying the bilinear interpolation in the trans-
formed image Icðx0; y0Þ. For the Cartesian view of images, the polar
transformation is applied. Specifically, the polar image Ipðd; hÞ is
derived from the transformation d ¼ x=cosðarctanðy=xÞÞ and h ¼
arctanðy=xÞ. The schematic diagram of the view transformation
between the two views is illustrated in Fig. 1. The polar view of
images do not suffer from distortion caused by the bilinear
interpolation artifacts, while using the Cartesian view of images
is more intuitive as their representation resembles the anatomical
structure of the artery. We hypothesize that one view of represen-
tation can be a useful complement to the other view of representa-
tion in deep learning methods.

3.2. Contour Constrained Self-attention Module

A contour constrained self-attention module (CCSM) can
emphasize features corresponding to the salient regions (i.e. the
vessel walls) in an unsupervised manner and enhance the visual
interpretability based on CAM. The CCSM consists of a spatial
attention block (SAB) and an active contour loss (ACL), shown in
Fig. 3. The SAB is a type of self-attention block which can empha-
size or suppress features in different spatial locations by learning.
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Fig. 4. Visualized outputs of the CCSM without the constraint c1 P c2. The left two
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The ACL is attached to the SAB to improve the detection ability of
the salient regions and enhance the visual interpretability based on
CAM. The following describes the details of the SAB and ACL.

3.2.1. Spatial Attention Block
Given an input feature F 2 RH�W�C , the SAB infers an attention

map SðFÞ 2 ½0;1�H�W�1. The refined feature F0 is formulated as:

F0 ¼ F � SðFÞ; ð1Þ

where � denotes element-wise multiplication while S indicates four
convolution layers and one sigmoid fuction.

3.2.2. Active Contour Loss
Compared with ACWE [21], the ACL removes the two

regularization terms with respect to the length and area as [11]
does, and also adds a constraint to ensure the foreground is the
salient region. Given a shifted attention map / ¼ SðFÞ � 0:5 2
½�0:5;0:5�H�W�1, the ACL infers a loss value ACLð/Þ 2 R which is
formulated as:

ACLð/Þ ¼ R
X juðx; yÞ � c1j2H�

�ð/ðx; yÞÞdxdyþ
R
X juðx; yÞ � c2j2ð1� H�

�ð/ðx; yÞÞÞdxdy;
s:t: c1 P c2;

ð2Þ

where X denoted an entire domain of a given image u that has been
downsampled to the same size as the shifted attention map /, and
uðx; yÞwas a pixel value at a location ðx; yÞ 2 X. And c1 and c2 are the
average pixel values inside and outside the contour, respectively,
which are computed as:

c1ð/Þ ¼
R
X
uðx;yÞH�

�ð/ðx;yÞÞdxdyR
X
H�
�ð/ðx;yÞÞdxdy

;

c2ð/Þ ¼
R
X
uðx;yÞð1�H�

�ð/ðx;yÞÞÞdxdyR
X
ð1�H�

�ð/ðx;yÞÞÞdxdy
;

8>><
>>:

ð3Þ

where the modified approximated Heaviside function (MAHF) [11]
H�
� can allow that errors can be back propagated to previous layers,

which is defined as:

H�
�ðzÞ ¼

1
2
ð1þ tanhðz

�
ÞÞ: ð4Þ

It’s worth noting that since the SAB isn’t directly supervised by any
annotation information of the salient regions, a totally inverse
shifted attention map /, focusing on the non-salient regions, may
be generated by the SAB, resulting in c1ð/Þ < c2ð/Þ. As we can
observe from Fig. 4, the vessel walls are surrounded exactly by
the red contours but the corresponding shifted attention maps
show that the other areas should be emphasized. Hence, if this issue
occurs, the attention map SðFÞ will be replaced by 1� SðFÞ, causing
/ to be transformed to �/. In this way, the constraint c1 P c2 in Eq.
(2) can always be satisfied, and each attention map of the SAB with
the ACL is shown in Fig. 2.
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It is easy to optimize the ACL defined in Eq. (2). By calculus of
variation, the derivative of the ACL with respect to / can be written
as:

@ACL
@/

¼ d��ð/Þ½ðu0 � c1Þ2 � ðu0 � c2Þ2�; d��ðzÞ ¼
@H�

�ðzÞ
@z

¼ 1
2�

1� tanh
z
�

� �� �
1þ tanh

z
�

� �� �
:

ð5Þ
3.3. Transformer Module

A transformer module (TM) builds the global-range relation
between the two views to allow the auxiliary view to assist the pri-
mary view at the feature scale, shown in Fig. 5. Compared to the
naive concatenation operation in [7], the TM overcomes the huge
spatial distortion between the two views by calculating the
global-range relation, and thus does not distort the spatial distri-
bution of the primary view of features, which will be demonstrated
in Section 5.1.

Specifically, given a primary view of feature xp 2 RH�W�C and an
auxiliary view of feature xa 2 RH�W�C ; xp is transformed into a



Table 1
Division of the CCCV-IVOCT dataset and OPRD. P/N: positives/Negatives.

Dataset Training (P/N) Validation (P/N) Testing (P/N) View

CCCV-IVOCT 900/900 100/100 198/102 Polar
OPRD 1946/2054 590/710 663/537 Cartesian
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query matrix Q 2 RH�W�ðC=2Þ, while xa is transformed into a key
matrix K 2 RH�W�ðC=2Þ and a value matrix V 2 RH�W�ðC=2Þ. Then a
weight matrix applied to the matrix V from xa is determined by
the matrix multiplication between the matrix Q from xp and the
matrix K from xa, which can capture the relations between each
position in xp and all the positions in xa. And thus the weighted fea-
ture ~xa is calculated as:

~xa ¼ SoftmaxðQKTÞV: ð6Þ
Further, the weighted feature ~xa undergoes one convolution to pro-
duce the same dimensions as xp, and then is fused with the original
primary view of feature xp to output the fused feature ~xp that is
defined as:

~xp ¼ FuseðCð~xaÞ; xpÞ; ð7Þ
where C denotes a convolution operation, while Fuse denotes a
fusion operation. Herein, we provide three alternative versions for
the fusion operation, including (a) addition, (b) concatenation fol-
lowed by convolution, and (c) max [29].

3.4. Loss function

The proposed MVCTN can be optimized by one cross entropy
(CE) loss and six active contour losses (ACL). The total loss function
is formulated as:

Loss ¼ CEð~yp; yÞ þ kð
X3
n¼1

ACLð/n
up Þ þ ACLð/n

ua ÞÞ; ð8Þ

where subscripts p and a indicate the primary view and auxiliary
view respectively, ~y and y denote a predicted probability and its
corresponding label respectively, /n

u denotes a shifted attention
map generated by the nth CCSM with an image u as input, and k is
a loss coefficient.

4. Experiments

4.1. Dataset Description

4.1.1. CCCV-IVOCT
The 2017 Chinese Conference on Computer Vision-

IntraVascular Optical Coherence Tomography challenge (CCCV-
IVOCT) dataset is a semi-public dataset for detecting TCFA in IVOCT
images, whose data is supplied by Xi’an Institute of Optics and Pre-
cision Mechanics of Chinese Academy of Sciences. This dataset is
not in the public domain, but the institute grants participants of
this challenge the right to use this dataset and publish results of
this dataset. To the best of our knowledge, many studies on TCFA
segmentation or detection [8,30,31] have been conducted on this
dataset. But in this paper, we consider the problem of identifying
whether an IVOCT image contains TCFA.

This dataset consists of 2300 IVOCT images represented in the
polar coordinate system with a size of 352� 720 pixels. Specifi-
cally, there are 1000 images with TCFA (i.e., positive samples)
and 1000 images without TCFA (i.e., negative samples) in a training
set, while there are 198 positive samples and 102 negative samples
in an independent testing set. Given the relatively small size of this
dataset, we use a 5-fold cross-validation strategy to evaluate the
proposed MVCTN on this dataset. Specificaly, in every fold, the
training set is divided into a new training set with 1800 images
and a validation set with 200 images. The division of this dataset
is summarized in Table 1. Then the model that performs best on
the validation set is further evaluated on the testing set. Finally,
the mean and standard deviation performance of the five folds
are reported.
228
4.1.2. OPRD
The Optical coherence tomography Plaque Recognition Data-

base (OPRD) is our in-house dataset and includes 31049 IVOCT
images from 2137 vessel segments of 540 patients supplied by
the Second Affiliated Hospital of Harbin Medical University. The
patients are between 18 to 80 years old and have not undergone
stent surgery. These IVOCT images are obtained through OPTIS
from June 2015 to August 2016, and are represented in the Carte-
sian coordinate system. TCFA identification from the IVOCT images
is performed by two MD students and one chief physician with
more than 10 years of clinical experience, who use the C7-XR/
ILUMIEN OCT system to detect fibrous caps less than 65lm thick-
ness according to the guideline of Sinclair et al. [1]. The two MD
students identify TCFA independently and the chief physician inde-
pendently identifies cases in which there is disagreement by the
two MD students.

Since images within a single vessel segment have a high degree
of similarity and there is a huge imbalance between the positive
and negative samples, we sample 6500 images from 31049 images.
These sampled images are divided into a training set with 4000
images, a validation set with 1200 images, and a testing set with
1300 images. Each of the three sets is obtained by sampling from
different vessel segments and thus is independent. The division
of this dataset is summarized in Table 1.

4.2. Implement Details and Evaluation Metrics

4.2.1. Implement details
During the training phase, the polar and Cartesian views of

images are generated by the view transformation and resized as
352� 352� 3 pixels for initializing the pre-trained weights of
ImageNet. The data augmentation scheme depends on the view.
For the polar view, the scheme includes circular translation and
horizontal reflection. For the Cartesian view, the scheme includes
rotation, horizontal and vertical reflection. The proposed MVCTN
is implemented with Pytorch [32], and is trained on two Nvidia
GPUs (i.e., GTX Titan X) with a batch size of 20. The proposed
MVCTN is initialized with the pre-trained weights of ImageNet,
as [7] does. In addition, an adaptive moment estimation (Adam)
with an initial learning rate of 10�3, a momentum of 0.9 and a
weight decay of 5� 10�4 is used for optimization. Lastly, the loss
coefficient k is set to 2. During the inference phase, no data aug-
mentation scheme or post-processing operation is applied.

4.2.2. Evaluation Metrics
According to the characteristics of the datasets, we use different

metrics to evaluate the proposed MVCTN on the two datasets. For
the CCCV-IVOCT dataset, since there is an imbalanced ratio
between the positive and negative samples (about 2:1) in the test-
ing set, we use the area under the receiver operating characteristic
curve (AUC) as a main metric, and also show results on F1-score,
precision, and recall. For OPRD that is more balanced, we use accu-
racy, F1-score, precision, and recall as the evaluation metrics.

4.3. Ablation Studies

In this subsection, an ablation study is conducted on the CCCV-
IVOCT dataset to investigate the effectiveness of our design
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choices. We first study the impact of the loss coefficient of the ACL
of the CCSM, then explore the influences of the quantity and the
fusion operation of the TM. Finally, we study the effects of the
CCSM and TM in a quantitative way.
4.3.1. Loss Coefficient of ACL
We study the impact of the loss coefficient k of the ACL on the

single-view network (i.e., SENet50 + CCSM). Fig. 6 shows the
results of the polar and Cartesian views with six different loss coef-
ficients k (i.e., 0, 0.5, 1, 2, 3, 5). When k ¼ 0, the single-view net-
work is only trained with the cross entropy loss, and the SAB is
optimized by the gradient from the cross entropy loss. When
k > 0, the single-view network is trained with both of the cross
entropy loss and the active contour loss (ACL), and the SAB is opti-
mized by the two losses. As shown in Fig. 6, the AUCs of both views
drop when k is small, next rise gradually, then reach the maximum
values (0.8904 for the polar view and 0.8990 for the Cartesian
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Loss Coefficient 

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

A
U

C

Cartesian view
Polar view

Fig. 6. Results of the polar and Cartesian views with different loss coefficients k.

Table 2
Results of the Cartesian view with the different fusion operations and the different numb

Operation Quantity AUC(%)

Addition 1 90.85�0.57
Concat & Conv 1 90.89�0.49

Max 1 91.13�0.37

Addition 3 91.03�0.56
Concat & Conv 3 91.15�0.45

Max 3 91.31�0.35

Table 3
Ablation results on the CCCV-IVOCT dataset. The best results are in bold.

SENet50 CCSM TM View

Primary Auxiliary
p

Polar -p p
Polar -p p
Polar Cartesianp p p
Polar Cartesian

p
Cartesian -p p
Cartesian -p p
Cartesian Polarp p p
Cartesian Polar
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view) at k ¼ 2, finally decrease by a small margin. The result sug-
gests that it’s relevant to determine a suitable loss coefficient k. k
is set to 2 in the follow-up experiments unless otherwise specified.

4.3.2. Quantity and Fusion Operation of TM
Based on the above study, we further explore the influences of

the quantity and the fusion operation of the TM on the proposed
MVCTN in the Cartesian view. We bridge three TMs between the
three pairs of CCSMs or bridge one TM between a pair of CCSMs

inserted behind the 3th convolution stage of SENet50. And we pro-
vide three alternative fusion operations for the TM, including
Addition;Concat & Conv, and Max. Table 2 shows the results with
the different fusion operations and the different number of TMs.
It’s observed that the more TMs lead to the better AUC, F1-score
and recall in general, and that Max obtains the better average
AUC and F1-score compared to Addition and Concat & Conv. As a
result, three TMs with Max can lead to the best average AUC
(91.31%), F1-score (90.76%), and recall (97.98%). Thus Max is used
as the fusion operation of the TM in the follow-up experiments
unless otherwise specified.

4.3.3. Effects of CCSM and TM
We further study the effects of the CCSM and TM in a quantita-

tive way. We divide the experiments into two groups: one takes
the polar view as the primary view and the other takes the Carte-
sian view. The results are reported in Table 3. Firstly, compared
with SENet50, SENet50 armed with the CCSM boosts the results
of all the evaluation metrics in both groups. Then compared with
SENet50, SENet armed with the TM enhances the results of all eval-
uation metrics in both groups as well. Finally, SENet50 armed with
both of the CCSM and TM achieves the best AUC, F1-score and
recall in both groups.

4.4. Comparisons with the other methods

Single-view methods: To investigate the effectiveness of the
CCSM, we compare with EfficientNet-B0 [33], ResNet50 [34],
SENet50 [28], and Twins [38].

Multi-view methods: According to the taxonomy [35], existing
methods for multimodal fusion can be categorized into three
er of TMs.

F1-score(%) Precision(%) Recall(%)

89.89�2.14 87.81�3.30 92.63�4.64
88.98�2.29 86.55�5.11 92.32�5.12
90.48�2.57 89.30�1.65 92.42�3.64

90.09�1.76 87.01�3.32 93.84�3.65
90.55�1.08 86.76�3.68 95.55�3.74
90.76�0.78 84.71�3.68 97.98�3.29

AUC(%) F1-score(%) Precision(%) Recall(%)

87.43�1.85 84.11�4.04 89.06�2.04 80.51�7.87
89.04�0.84 87.30�1.29 89.98�1.26 84.85�3.05
89.97�0.67 88.27�2.13 89.64�3.64 87.47�4.47
90.56�0.39 90.18�1.18 87.63�3.20 93.33�1.57

88.41�1.61 83.41�4.82 89.05�1.48 79.70�6.50
89.90�0.40 87.26�2.52 90.24�2.21 84.95�4.13
90.41�0.41 88.11�3.83 90.52�1.94 86.16�5.01
91.31�0.35 90.76�0.78 84.71�3.68 97.98�3.29
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classes: input-level fusion, feature-level fusion, and decision-level
fusion. Therefore, to investigate the effectiveness of the TM, we
compare with a straightforward input-level fusion method (SIFM)
(Fig. 7(a)), a straightforward feature-level fusion method [7]
(SFFM) (Fig. 7a straightforward decision-level fusion method
(SDFM) (Fig. 7h are based on SENet50. Besides, we also compare
with one advanced input-level fusion method (i.e., TransMed
[36]) and one advanced feature-level fusion method (i.e., BFNet
[37]).
4.4.1. Results on the CCCV-IVOCT Dataset
Experimental results are reported in Table 4. The proposed

single-view network is SENet50 + CCSM and the proposed multi-
view networks are the MVCTN (p) and the MVCTN (c). The MVCTN
(p) takes the polar view as the primary view while the MVCTN (c)
takes the Cartesian view as the primary view. First of all,
SENet50 + CCSM outperforms the other single-view methods on
AUC, F1-score, and recall, and obtains the comparable result on
precision. We argue that the CCSM can force SENet50 to focus on
the features corresponding to the salient regions (i.e., the vessel
walls), and thus improves the performance. Moreover, from the
comparison among the multi-view methods, we can find that the
MVCTN (c) achieves the best AUC (91.31%), F1-score (90.76%),
and recall (97.98%), and that the MVCTN (p) also yields the second
best AUC (90.56%), F1-score (90.18%), and recall (93.33%). This
demonstrates that using TM to fuse the two views of features is
an appropriate choice in this task.
4.4.2. Results on OPRD
To further assess the effectiveness and robustness of the pro-

posed MVCTN, we also compare with the aforementioned methods
on OPRD. Table 5 shows these experimental results. Firstly,
SENet50 + CCSM outperforms the other single-view methods on
AUC, F1-score, and recall, and obtains the comparable result on
Fig. 7. Three types of multi-view fusion methods: (a) an input-level fusion method,
(b) a feature-level fusion method, and (c) a decision-level fusion method.

Table 4
Comparison with the other methods on the CCCV-IVOCT dataset. The best results are in b

Method View Fusion

EfficientNet-B0 [33] Polar -
ResNet50 [34] Polar -
SENet50 [28] Polar -
Twins [38] Polar -

SENet50 + CCSM Polar -

EfficientNet-B0 [33] Cartesian -
ResNet50 [34] Cartesian -
SENet50 [28] Cartesian -
Twins [38] Cartesian -

SENet50 + CCSM Cartesian -

SIFM (Fig. 7(a)) Polar + Cartesian Input-level
TransMed [36] Polar + Cartesian Input-level

SFFM [7] (Fig. 7(b)) Polar + Cartesian Feature-level
BFNet [37] Polar + Cartesian Feature-level

SDFM (Fig. 7(c)) Polar + Cartesian Decision-level
MVCTN (p) Polar + Cartesian Feature-level
MVCTN (c) Polar + Cartesian Feature-level 9
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precision. Secondly, the MVCTN (p) achieves the best accuracy
(93.51%) and F1-score (93.68%), and the MVCTN (c) also yields
the second best accuracy (93.20%) and F1-score (93.40%). These
results show the proposed networks have good effectiveness and
robustness when applied to a new dataset.
5. Discussion

5.1. Visualization based on CAM

We analyze the effects of the CCSM and TM on the visualization
based on CAM for correctly classified samples, which is shown in
Fig. 8. For negative samples, we visualize negative class activation
maps (CAMs). For positive samples, we visualize positive CAMs. In
every case, the Cartesian and polar views of image can be trans-
formed mutually. For SENet50 + TM and SENet50 + CCSM + TM,
the CAM is generated by taking the input image in the same col-
umn as the primary view of image, and the other input image as
the auxiliary view of image. For SENet50 and SENet50 + CCSM,
the CAM is generated from the input image in the same column.

Firstly, we find that for the negative samples, SENet50 presents
the CAMs where most of the regions, including some regions irrel-
evant to the TCFA identification in clinical diagnosis, have the high
heat values. However, SENet50 + CCSM and SENet50 + CCSM + TM
have the high heat values on the regions with the normal vessel
wall structure. Secondly, for the positive samples, the CAMs of all
the methods show that the region of TCFA is highlighted while
the other regions are not, indicating a good ability of detecting
TCFA. However, compared to SENet50, SENet50 + CCSM and
SENet50 + CCSM + TM tend to ignore catheter regions with high
pixel values. Thirdly, the CAMs of SENet50 + TM are similar to
the CAMs of SENet50, demonstrating that a key to improving the
visualization result is CCSM instead of TM. Last but not least, CAMs
generated by SENet50 + TM and SENet50 + CCSM + TM are based
on the primary view designated by users. It manifests that using
the TM to fuse the two views of features doesn’t distort the spatial
distribution of the primary view of features. The comparison
between SFFM [7] and SENet50 + TM in Fig. 9 further demonstrates
this conclusion. SFFM, which uses a concatenation operation to
fuse the two views of features, produces the high heat values in
regions that overlap with the regions with the normal vessel wall
structure of the one of the two views. But SENet50 + TM (p) pro-
duces the high heat values only in regions that overlap with those
of the polar view, and SENet50 + TM (c) produces the high heat val-
old.

AUC(%) F1-score(%) Precision(%) Recall(%)

87.17�3.07 77.54�5.52 90.91�1.50 68.08�7.38
87.51�1.89 76.32�3.61 89.95�1.15 67.58�8.42
87.43�1.85 84.11�4.04 89.06�2.04 80.51�7.87
88.21�1.21 86.13�2.82 89.75�1.38 82.62�4.50
89.04�0.84 87.30�1.29 89.98�1.26 84.85�3.05

88.19�2.16 79.69�4.08 90.60�1.56 72.39�5.71
88.07�2.09 79.26�5.76 90.93�1.77 70.71�7.90
88.41�1.61 83.41�4.82 89.05�1.48 79.70�6.50
89.32�1.21 86.53�3.13 89.85�1.63 83.25�4.82
89.90�0.40 87.26�2.52 90.24�2.21 84.95�4.13

88.93�0.62 86.83�3.28 89.32�2.04 84.85±4.31
89.46�0.27 87.77�3.24 88.63�4.04 87.78�4.99
89.90�0.20 89.21�1.84 88.11�3.47 90.81±3.91
89.95�1.18 86.65�2.48 88.20�5.47 86.06�4.55
89.59�0.60 88.36�1.20 87.68�5.55 89.69±3.41
90.56�0.39 90.18�1.18 87.63�3.20 93.33�1.57
1.31�0.35 90.76�0.78 84.71�3.68 97.98�3.29



Table 5
Comparison with the other methods on OPRD. The best results are in bold.

Method View Fusion Accuracy(%) F1-score(%) Precision(%) Recall(%)

EfficientNet-B0 [33] Polar - 92.00�0.56 92.06�0.32 93.20�0.51 90.95�2.23
ResNet50 [34] Polar - 91.46�0.27 91.35�0.87 94.52�0.47 88.39�3.10
SENet50 [28] Polar - 91.82�0.54 92.12�0.63 91.64�1.14 92.61�1.57
Twins [38] Polar - 92.33�0.52 92.44�0.42 91.86�0.92 93.03�1.45

SENet50 + CCSM Polar - 92.85�0.49 93.02�0.50 92.54�0.89 93.51�1.28

EfficientNet-B0 [33] Cartesian - 91.31�0.31 91.38�0.52 92.44�1.07 90.35�2.69
ResNet50 [34] Cartesian - 90.00�1.24 89.95�1.17 92.23�2.33 87.78�3.65
SENet50 [28] Cartesian - 90.92�0.89 91.07�0.97 91.35�1.56 90.80�2.54
Twins [38] Cartesian - 91.71�0.65 91.73�0.88 92.03�1.49 91.51�2.31

SENet50 + CCSM Cartesian - 92.23�0.57 92.40�0.48 92.19�1.89 92.61�1.63

SIFM (Fig. 7(a)) Polar + Cartesian Input-level 91.95�0.82 92.30�0.78 91.95�2.31 93.06±1.73
TransMed [36] Polar + Cartesian Input-level 92.23�0.37 92.51�0.66 90.96�2.54 94.12�1.25

SFFM [7] (Fig. 7(b)) Polar + Cartesian Feature-level 92.69�0.48 92.95�0.56 91.52�1.67 94.42±1.42
BFNet [37] Polar + Cartesian Feature-level 92.46�1.04 92.62�0.57 92.48�1.25 92.76�1.46

SDFM (Fig. 7(c)) Polar + Cartesian Decision-level 92.32�0.26 92.55�0.37 91.15�1.53 94.72±1.02
MVCTN (p) Polar + Cartesian Feature-level 93.51�0.53 93.68�0.69 92.86�1.70 94.12�1.38
MVCTN (c) Polar + Cartesian Feature-level 93.20�0.49 93.40�0.22 92.31�0.95 94.12�1.19

Fig. 8. CAM-based visualization results for correctly classified samples. In every case, the Cartesian view of image and the polar view of image can be transformed mutually.
And in every case, for SENet50 + TM and SENet50 + CCSM + TM, the CAM is generated by taking the input image in the same column as the primary view of image, and the
other input image as the auxiliary view of image. For SENet50 and SENet50 + CCSM, the CAM is generated from the input image in the same column. In addition, the regions of
TCFA are indicated with the red box.
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ues only in regions that overlap with those of the Cartesian view.
This characteristic makes the CAMs of SENet50 + TM more
explainable.

We also visualize and analyze somemisclassified samples of the
proposed MVCTN, shown in Fig. 10. For the negative samples, we
visualize the positive CAMs, because these negative samples are
misclassified as the positive samples. Similarly, for the positive
samples, we visualize the negative CAMs. Firstly, the proposed
MVCTN predicts the high positive probabilities (0.93 and 0.95)
for the two misclassified negative samples, and their CAMs look
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similar to the CAMs of true positive samples, where a small region
within the vessel wall is highlighted. According to our cardiolo-
gist’s analysis, the two highlighted regions actually contain lipid
plaques. The lipid plaques have some characteristics of TCFA but
the thickness of their fibrous cap is greater than 65lm. We con-
sider that these lipid plaques are potentially dangerous and also
worthy of cardiologist’s attention. Secondly, the CAMs of the two
misclassified positive samples show the regions with the normal
vessel wall structure have high heat values while the core regions
of TCFA have low heat values. It indicates the proposed MVCTN has



Fig. 9. A CAM-based visualization comparison between SFFM and SENet50 + TM.
The first two columns show the polar and Cartesian views of images, respectively.
And the rest columns show the CAMs. In addition, the regions of TCFA are indicated
with the red box.

Fig. 10. CAM-based visualization results of the proposed MVCTN for misclassified
samples. The first row shows the primary view of images, and the second row
shows their CAMs. Besides, the regions of TCFA are indicated with the red box and
the predicted positive probabilities are also indicated.
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an ability to distinguish the region of TCFA from the region of the
normal vessel wall.

5.2. Selection of the Primary View

We further study how to select an appropriate view as the
primary view in the proposed MVCTN. First of all, we can find that
there is no significant performance difference between MVCTN (p)
and MVCTN (c) on the two datasets, especially on OPRD. Secondly,
as aforementioned, CAMs of the proposed MVCTN are based on the
primary view of images. However, compared to original images,
the new images generated by the view transformation have some
information added or missing because of the up-sampling or
down-sampling operation. It is more straightforward for cardiolo-
gists to use the CAMs to analyze the original images. All in all, we
argue that it is reasonable to take the original view as the primary
view in the proposed MVCTN.

5.3. Clinical Benefits

In clinical routine, hundreds of IVOCT images are acquired from
each patient’s pullback, which requires automated TCFA identifica-
tion for fast and accurate decision support. The proposed MVCTN is
deployed on one Nvidia GTX Titan X, and processes one image
every 0.02 s, which means the proposed MVCTN takes only 4 s to
process a patient’s pullback consisting of two hundred IVOCT
images. This processing speed is sufficient for clinical implementa-
tion. Next, it is worth noting that before implementing the view
transformation, the CCCV-IVOCT dataset only has the polar view
of images and OPRD only has the Cartesian view of images.
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Therefore, compared to SENet50 trained with the original single
view of images, the proposed MVCTN improves AUC, F1-score
and recall on the CCCV-IVOCT dataset by 4.4%, 7.9%, and 21.7%,
respectively, while improving accuray, F1-score, precision and
recall on OPRD by 2.8%, 2.9%, 1.7% and 3.7%, respectively. It is also
worth noting that the recall of the proposed MVCTN is better than
the precision. The reason might be that the proposed MVCTN is
more sensitive to the pathological features in the salient regions
due to the presence of the CCSM. However, we do not consider this
is a disadvantage. Firstly, the proposed MVCTN aims to fastly and
accurately determine the location of TCFA in a patient’s pullback.
We do not expect to miss any suspicious locations. Secondly, as
shown in Fig. 10, the proposed MVCTN misclassifies lipid plaques
as TCFA, and the lipid plaques may develop to dangerous plaques,
which thus are also worthy of cardiologist’s attention. Further-
more, via the CCSM, the proposed MVCTN can mimic the diagnos-
tic process of cardiologists to extract more discriminative features
from the salient regions, thereby improving the identification per-
formance. This mechanism may be easily understood and accepted
by cardiologists. Lastly, the proposed MVCTN can also use CAM to
provide some meaningful visualization. For one thing, it highlights
the regions with the normal vessel wall structure as much as pos-
sible in the CAMs of the negative samples. For another thing, it
highlights the core regions of TCFA in the CAMs of the positive
samples. Consequently, the proposed MVCTN will potentially be
a useful tool with explainable results for cardiologists, especially
for inexperienced cardiologists, to support them in making diag-
nostic decisions.
5.4. Limitations and Future Work

Although the proposed MVCTN shows excellent TCFA identifica-
tion performance, it still has several limitations. Firstly, with the
memory limitation of the GPUs used in this paper, the proposed
MVCTN merely uses one auxiliary view to assist one primary view.
However, the primary view and the auxiliary view can simultane-
ously assist each other. Thus a mutually assisted network based on
the proposed MVCTN could be built, and the interaction between
the two views of outputs could also be worth exploring. Secondly,
the proposed MVCTN is trained with the 2D IVOCT images that are
selected from 3D IVOCT volumes. It means that a large number of
images are not utilized and using them may further boost perfor-
mance. Therefore, a 3D extended version considering the relation
of adjacent images could be studied. Last but not least, the pro-
posed MVCTN is only used for the TCFA identification in this paper.
However, the proposed MVCTN may be applicable to other classi-
fication tasks. There are two conditions for such wider applica-
tions. The first is that the active contour model can be used to
detect salient regions. The second is that two different views of
images can be acquired. Therefore, applying the proposed MVCTN
to other classification tasks could be investigated.
6. Conclusion

In this paper, we propose a multi-view contour-constrained
transformer network (MVCTN) for the TCFA identification in the
IVOCT images. The proposed MVCTN can not only extract discrim-
inative features from the salient regions (i.e., the vessel walls) and
enhance the visual interpretability based on CAM via the CCSM,
but also build the global-range relation between the two views
to allow the auxiliary view to assist the primary view at multiple
feature scales via the TM. The experimental results on the CCCV-
IVOCT dataset and OPRD demonstrate that the proposed MVCTN
outperforms the other single-view and multi-view methods.
Besides, the proposed MVCTN can also provide some meaningful
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CAM-based visualization for cardiologists, especially for inexperi-
enced cardiologists, to support them in making fast and accurate
decisions.
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