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Chapter 4 
Synthesis of Organic–Inorganic 
Nanohybrids-Based Polymeric 
Nanocomposites 

Ahmad Shakeel, Komal Rizwan, Ujala Farooq, and Saima Yasin 

1 Introduction 

Polymeric nanocomposites are of great importance in different fields [74]. Synthesis 
of hybrid nanocomposites based on organic (polymer) and inorganic components 
has gained serious attention of researchers due to their extensive range of appli-
cations in biomedical, environment, and energy-related areas. Progress in polymer 
science has created an opportunity to produce an extensive range of materials having 
superior mechanical, electroactive, and thermal properties [55]. In addition to this 
direction of developing new nanocomposites, researchers are continuously exploring 
novel techniques to prepare hybrid nano-materials by combining desirable features 
of polymers and nanoparticles. In literature, various challenges have been mentioned 
in preparing polymeric nanocomposites with desired features [68, 87]. The major 
limitation for producing nanocomposites at a commercial scale is the absence of
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economical methods for nanoparticle dispersion into the polymer matrix. The aggre-
gation of nanomaterials hinders its benefits associated to the dimension (nanoscale), 
and hence, well-dispersed and isolated nanoparticles within the polymer matrix are 
needed. Hence, there is a need to develop synthesis methods that are effective on 
nanoscale yet appropriate for macroscopic processing. Researchers have developed 
a range of synthesis methods for preparing polymer nanocomposites which include 
direct processing, in situ polymerization, sol–gel, etc. [44]. Table 1 provides an 
overview of benefits and limitations of different synthetic routes for polymer based 
nanocomposites. 

Table 1 Benefits and limitations of different conventional techniques for preparing polymeric 
nanocomposites 

Synthesis method Benefits Limitations 

Melt blending • Well-adapted for mass-scale 
industrial applications 

• Economical 
• Wide spectrum of materials can 
be employed 

• Environmental-friendly 

• Poor dispersion of 
nanomaterials, particularly at 
higher concentrations 

• High temperature and/or 
shearing is required 

Solution blending • Appropriate for membrane/film 
formation 

• Better dispersion of nanofiller 
• Recommended for thermally 
sensitive polymer 

• Higher capital cost 
• Compatibility between polymer 
and solvent is critical 

• Aggregation of polymer chains 
after solvent evaporation 

• Environmental restrictions 

In situ polymerization • Enhanced dispersion of 
nanofiller 

• Both thermoplastics and 
thermosets can be used 

• Permits the grafting or 
exfoliation of polymers on filler 
surface 

• Complex processing steps 
• Expensive reactants 
• Not appropriate for all types of 
polymers and elastomers 

Sol–gel • Higher-quality product 
• High potential for developing 
hybrid materials 

• Unsatisfactory bonding 
• High permeability 
• Expensive raw material 

Electrochemical • Short reaction time 
• Simple and easy operation 
• Eco-friendly 
• High-purity product 

• Limited surface area of electrode 
which hinders large-scale 
production
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2 Synthesis Routes 

Synthesis of polymer nanocomposites via suitable processing technique is vital in 
order to get high-performance nanocomposites. Several approaches have been devel-
oped to prepare polymeric nanocomposites including in situ preparation and direct 
processing [87]. The direct mixing process involves the dispersion of desired nanoma-
terial into polymer matrix either by melt, mechanical, or solution blending. However, 
uniform dispersion of nanomaterial is a major challenge of this approach [79]. In 
contrast, in situ polymerization technique solves the above-mentioned problem by 
creating a polymer microenvironment to synthesize the desired nanomaterial from its 
precursors through series of reactions [54]. This method is gaining interest because 
of the ease of controlling the morphology and particle size within the composite. The 
most important processing methods (Fig. 1) for polymer nanocomposites have been 
explained below. 

2.1 Direct Processing 

This technique is based on the dispersion of nanofiller into the polymer matrix using 
heating, solvent, or mechanical action, which makes it a top-down approach. This 
method is extensively used for preparing polymeric composites due to the sustainable 
bulk production and lower cost. This approach results in nanocomposites with one-
or two-dimensional structures having particles within the range of submicron to 
nanoscale. In order to attain homogenous dispersion of filler into the polymer matrix,

Fig. 1 Various routes for 
synthesis of 
organic–inorganic 
nanohybrids-based polymer 
nanocomposites
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several approaches have been developed such as adding stabilizers or dispersants, 
adjusting process parameters (mixing speed, temperature, time, etc.), and chemical 
modification of polymers [87]. There are two main approaches for direct mixing of 
fillers and polymer.

2.1.1 Melt Blending 

Melt blending is a typical procedure to disperse nanofiller into the continuous matrix 
for producing thermoplastic or elastomer-based nanocomposites. It involves the 
usage of a suitable processing machine (i.e., extruder or ultrasonicator) for applying 
required shear forces at high temperatures (usually above the glass transition temper-
ature of polymer) in order to melt the polymer, followed by the addition and mixing 
of the filler for achieving uniform filler distribution [79]. Typically, melt mixing 
is performed in the presence of an inert gas like nitrogen, argon, etc. [33]. Melt 
mixing possesses several inherent advantages such as environmental-friendly due 
to the absence of any solvent, economical, and convenient because of the compati-
bility with large-scale industrial processes (i.e., extrusion and injection molding) and 
applicability for both polar and aploar polymers [54]. 

Saleh and Jawad prepared the graphene nanoplatelet (Gr NP) and polystyrene-
based nanocomposites by dispersing Gr NP into the polystyrene matrix using a 
small batch mixer at 190 °C and a mixing speed of 100 rpm for 10 min. The prepared 
nanocomposite was then pressed in a compression molding machine at 25 MPa and 
220 °C for 10 min, in order to prepare the samples for characterization [3]. Alig 
and colleagues explained the correlation between the morphologies obtained for 
carbon nanotube-based nanocomposite and the processing conditions [6]. Further-
more, they described the dispersion process of filler into the polymer matrix in four 
steps: (i) wetting of filler aggregates with polymer, (ii) infiltration of polymeric 
chains into the filler aggregates, (iii) dispersion of filler aggregates by erosion and 
rupture, and (iv) distribution of individual carbon nanotubes into the polymer. Simi-
larly, different polymeric nanocomposites such as graphene-polypropylene, exfoli-
ated graphite-poly(methyl methacrylate), graphene-polycarbonate, graphene oxide-
poly(ethylene-2,6-naphthalate) have been prepared via melt blending for different 
applications [76]. 

However, the distribution of filler into the polymer matrix is less efficient in case 
of melt blending as compared to the solution blending due to the higher viscosity 
of melt, which can be further enhanced by modifying the surface of fillers, tuning 
the interactions between the filler and polymer matrix, using solvent together with 
melt processing, etc. For instance, the distribution of graphene nanoplatelet into the 
polypropylene matrix was enhanced by using solvent (mixture of p-xylene and N,N-
dimethylform-amide)-assisted melt blending process, which eventually resulted in 
better mechanical properties of nanocomposites [47]. 

In another study, the dispersion of filler (carbon black, carbon nanotube, and 
graphene nanoplatelet) into the polymer matrix was enhanced by installing an ultra-
sonic device at the extruder [96]. The vibration caused by the ultrasonic device helped
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in breaking the filler aggregates (or removing the air trapped inside the polymer) 
during mixing and hence, enhancing the filler distribution. Likewise, the dispersion 
of graphene sheets in polypropylene (PP) was improved by modifying PP by using 
triethylaluminum and rar-Ethylenebis(1-indenyl) zirconium dichloride (EBIZrCI2), 
which resulted in terminally hydroxylated PP [21]. The modified PP and graphene 
sheets were first heated in tetradecane at 200 °C followed by melt mixing with PP, 
in order to prepare the nanocomposite. 

Moreover, the application of high temperature for melt blending is known to 
damage the surface modification of fillers, leading to inhomogeneous distribution of 
filler. For instance, alkyl ammonium modified organoclays was observed to degrade 
at temperatures greater than 140 °C, whereas the melt blending temperature was 
within the range of 190–220 °C [2]. This issue can be solved by using the thermally 
stable modification of filler or by performing the blending process at lower temper-
atures [58]. Hence, in order to attain good dispersion of filler and better mechanical 
properties of nanocomposites, several parameters are important to consider including 
surface modification of fillers, processing conditions, and compatibility between filler 
and matrix. 

2.1.2 Solution Blending 

Solution blending is another common processing method for producing polymeric 
nanocomposites. The overall procedure can be divided into three steps: (i) disper-
sion of nanofiller in appropriate solvent using agitation, (ii) mixing of polymer and 
nanofiller solutions, and (iii) removal of solvent by evaporation or solvent coagula-
tion [29]. Polymers are typically dissolvable in a variety of solvents including water, 
cyclohexane, chloroform, acetone, dimethylformamide (DMF), toluene, tetrahy-
drofuran, etc. [54]. The selection of suitable solvent is mainly governed by the 
dispersibility of nanofiller and/or solubility of polymer [7]. The same solvent can be 
used for both nanofiller and polymer matrix. This method facilitates the dispersion of 
nanofiller into the polymer matrix with the help of solvent. However, this synthetic 
approach is not suitable for the insoluble polymers. Moreover, the removal of solvent 
imposes environmental restrictions, which limits its applicability from small scale 
to industrial scale [79]. 

For example, Marroquin and colleagues prepared chitosan-based nanocomposite 
by dispersing Fe3O4 and multi-walled carbon nanotubes (MWCNTs) using solvent 
blending [52]. Firstly, the nanofillers (Fe3O4 and MWCNTs) were distributed in 
distilled water by ultrasonication for 1 h, followed by the addition of chitosan and 
acetic acid. Magnetic stirring of the mixture was performed for 2 h and then ultra-
sonicated for 30 min. The prepared mixture was then degassed and vacuum dried to 
produce the nanocomposite. Likewise, Taha and Alzara reported the development of 
polyvinyl alcohol (PVA) and SrTiO3-based nanocomposites [78]. PVA powder was 
firstly dissolved in distilled water at 80 °C and stirred for 60 min. SrTiO3 powder was 
then incorporated into the PVA solution and agitated for 1 h. The resulting mixture
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was poured into a glass dish and dried at 80 °C. In another study, the poly(ether-ether-
ketone) (PEEK) and MWCNTs-based nanocomposites have been synthesized via 
solution blending [39]. First of all, N-methyl-2-pyrrolidone (NMP) solvent was used 
to disperse MWCNTs by ultrasonication for 15 min. PEEK powder was dissolved 
in dichloroacetic acid (DCA) at 185 °C and cooled down to room temperature. The 
PEEK solution was then added into the MWCNTs solution and manually shaken 
to mix the solution. The resulting mixture was filtered and washed with methanol 
and deionized water to remove the residual solvents. The obtained precipitates were 
dried at 80 °C to obtain nanocomposite powder, which were finally injection molded 
to prepare the required samples. 

In addition to the single polymer matrix, binary/ternary polymer mixture has 
also been reported in literature to prepare nanocomposites. For example, Lu and 
colleagues produced nanocomposites, based on boron nitride (BN) as a filler and 
mixture of polystyrene (PS) and polypropylene (PP) as a polymer matrix, through 
solution blending method [48]. Polystyrene particles were firstly dissolved in DMF 
at 80 °C via magnetic stirring followed by the addition of BN platelets into the 
PS solution and vigorously stirred. The PP microspheres were then added into the 
PS/BN mixture and coagulated in deionized water. The resultant granules were 
filtered, washed by DI water, and dried at 80 °C. The characterization samples were 
prepared by pressing the granules at 170 °C under 10 MPa for 15 min. In order to 
further enhance the filler distribution and to avoid the filler aggregation and stack up 
problems, grafting to/from and chemical functionalization approaches are typically 
used to prepare polymeric nanocomposite. For instance, phase transfer techniques 
[22], lyophilization methods [20], and surfactants [46] were utilized to facilitate the 
solution blending of graphene into the polymer matrix. 

2.2 In Situ Polymerization 

In situ polymerization method is a bottom-up approach in which polymers and nano-
materials are formed within the final composite system with the help of series of 
chemical reactions catalyzed by suitable agents (radiation, heat, initiator, catalyst, 
etc.) [7]. Typically, there are three approaches for preparing polymeric nanocompos-
ites using in situ method: (i) Nanomaterial precursor is preloaded onto the polymer 
matrix, which forms required nanomaterial after chemical reaction, (ii) monomers 
(instead of polymer matrix) along with the nanomaterials forms the starting mixture, 
and (iii) both monomers and nanomaterial precursors are mixed through an appro-
priate solvent, followed by the in situ polymerization and chemical reactions to form 
nanomaterials [87]. The second option (combination of monomer and nanomaterial) 
avoids the aggregation of nanofiller within the polymer matrix, which eventually 
results in excellent dispersion of nanofiller and better interfacial interaction with 
polymers. Moreover, this second approach also alters the physical characteristics of 
the resultant polymer nanocomposite due to the intercalation or grafting of polymer 
structures within/on the layers of nanomaterials. This intercalation and homogeneous
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distribution of nanomaterials within the polymer matrix allows the development of 
partially exfoliated structures [29]. However, this method also has several limita-
tions such as requirement of expensive reactants, complex processing steps, and not 
suitable for all types of polymers and elastomers [79]. 

The production of polypyrrole and reduced graphene oxide (r-GO)-based 
nanocomposites using chemical oxidative in situ polymerization method has been 
reported [75]. The nanomaterial was dispersed in CTAB/APS mixture using ultra-
sonic bath for 10 h. Pyrrole monomer was then added to this stable suspension, and 
the required nanocomposite was obtained after the polymerization. The prepared 
nanocomposite was washed, followed by overnight drying in a vacuum oven at 
60 °C. Likewise, polymeric nanocomposites based on polyaniline and montmoril-
lonite using in situ polymerization approach have been fabricated [41]. In short, clay 
particles were distributed in distilled water using ultrasonicator for 10 min. Then, the 
solution of aniline in HCl was slowly added to the clay suspension, followed by the 
slow addition of APS (oxidizing agent) under magnetic stirring. For complete poly-
merization at 0 °C, the suspension was stirred for 4 h and a dark green polymer 
nanocomposite was obtained by vacuum filtration. The obtained composite was 
washed with water and acetone followed by overnight drying in vacuum oven at 
50 °C. 

Hou and colleagues reported the preparation of nanocomposites based on water-
borne polyurethane (WPU) as a polymer matrix and combination of graphene 
oxide (GO) and carbon black (CB) as nanomaterials [36]. First of all, the mixture 
of monomer (isophorone diisocyanate) and polypropylene glycol was stirred in a 
container at 85 °C for 3 h. Then, mixture of NMP/DMPA along with the few drops of 
dibutyltin dilaurate was incorporated into the system under stirring for 2 h, to obtain 
NCO-terminated prepolymer. Nanomaterials (CB and GO) were then dispersed in the 
prepared mixture and stirred at high speed for 2 h. Neutralizer (TEA) and viscosity 
reducer (acetone) were added, and the mixture was stirred for 45 min and cooled 
down to 45 °C. Mixture of EDA and water was then added dropwise under extensive 
stirring, and the nanocomposite dispersion was finally obtained. Similarly, the highly 
conductive polymeric nanocomposites based on polypyrrole and Zeolite nanoparti-
cles using in situ polymerization method have been synthesized [35]. Firstly, nanopar-
ticles were dispersed into the mixture of distilled water and CH3Cl by stirring for 1 h. 
Then, monomer was incorporated into the suspension with continuous stirring for 4 h. 
After 3 h, the obtained composite material was filtered, washed, and dried in an oven. 
The oxidizing agent (FeCl3) was then added dropwise to initiate the polymerization 
process at 0 °C or 25 °C. In another study, Nicosia and colleagues compared the 
photocatalytic activity of TiO2-poly(methyl methacrylate) nanocomposites synthe-
sized by solution blending and in situ polymerization for water pollution remediation 
[60]. The results revealed that the chemical-physical interactions between the nano-
materials and polymer matrix was significantly influenced by in situ polymerization 
approach, which eventually boosted the photocatalytic degradation of dyes.
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2.3 Sol–Gel Method 

Synthesis of polymeric nanocomposites via sol–gel method is an old technique; 
however, recently, it is getting famous for preparing structurally advanced and func-
tionalized hybrid materials. This method is quite similar to the in situ polymeriza-
tion method, which involves the nanomaterial precursor and polymer matrix along 
with the suitable reagent (solvent, heating, radiation, etc.). In short, the nanoma-
terial precursor is dissolved in a suitable solvent and mixed with polymer matrix 
in precise molar ratios [87]. This mixture then undergoes a series of hydrolytic (or 
non-hydrolytic in case of organic solvents) and condensation reactions followed 
by nucleophilic substitution reaction facilitated by polymer matrix, which results 
in sol formation. Sol can be understood as a colloidal suspension having almost 
non-interacting particles. This sol then converts into a (wet) gel system due to the 
crosslinking reactions and the formation of interconnected network of particles facil-
itated by agitation and/or temperature changes. This wet gel eventually leads to 
the formation of polymeric nanocomposite after the drying procedure [67]. Typical 
nanomaterials used for preparing polymer nanocomposites through sol–gel tech-
nique include alumina, silica, titania, and vanadia. However, silica-based materials 
are commonly used because of their lower cost and highly stable Si–O bond [65]. 
In this method, polymer nanocomposites are synthesized by having either physical 
or chemical interactions between the inorganic nanomaterials and organic polymers. 
This method does not involve separate steps or additional energy to distribute the 
nanomaterials within the polymer matrix. Other benefits of this technique include 
high purity and uniformity of product, low sintering temperature, easily controllable 
reaction, better forming ability, etc. On the other hand, this method also inherits 
some drawbacks such as requirement of expensive and toxic precursors, difficulty in 
making crystalline nanocomposites, brittle fracture of product due to the volatility 
of solvents, and longer preparation times (i.e., few days to weeks) [79]. 

For instance, Factori and colleagues reported the development of polymer 
nanocomposite based on ZnO and poly(vinyl alcohol) (PVA) via sol–gel technique 
under microwave heating [26]. PVA was firstly dissolved in hot DI water followed by 
the incorporation of ethyl alcohol, acetic acid, and Zn(NO3)2.6H2O into the solution. 
The prepared solution was then poured into the round bottom flask and placed on a 
microwave reactor. The mixture was maintained at 100 °C via microwave irradiation 
of varying power as a heating source, which eventually resulted in polymer nanocom-
posite. Phase inversion phenomenon was further used to prepare polymer nanocom-
posite films. Likewise, Besancon et al. used non-hydrolytic sol–gel technique along 
with reactive extrusion to produce polypropylene (PP) and titanium dioxide-based 
polymer nanocomposites [16]. PP was firstly added into the co-rotating twin screw 
extruder at 200 °C followed by the addition of nanomaterial precursor and other reac-
tants. After adding reactants, the temperature was increased up to 240 °C in a certain 
region of extruder. A vacuum pump was installed to extract the by-products. The 
prepared nanocomposite was obtained at the exit of die and cooled under air flow. In 
order to further remove the residual by-products, Soxhlet extraction technique was
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used with ethyl acetate as a solvent at 110 °C for 72 h. In another study, Behnam and 
colleagues fabricated the polyurethane and carbon nanotubes (CNTs)-based polymer 
nanocomposites with enhanced thermal stability using sol–gel method [14]. In short, 
CNTs were distributed in tetrahydrofuran (THF) and sonicated for 30 min followed 
by the addition of polyurethane, tetraethyl orthosilicate (TEOS), and DI water into 
the mixture. Then, formic acid was incorporated into the mixture under continuous 
stirring until complete solvent evaporation. 

2.4 Electrochemical Synthesis 

Electrochemical synthesis is a simple chemical procedure for preparing polymeric 
nanocomposites, which is typically performed on electrochemical workstation. 
Commonly used monomers for this processing technique include aniline, thiophene, 
and pyrrole [65]. Generally, there are three electrodes present during the electro-
chemical synthesis: (i) working electrode, (ii) counter electrode, and (iii) reference 
electrode. This methodology is an excellent way to directly prepare the polymeric 
nanocomposite film on the surface of electrode. The main controlling parameters of 
electrochemical synthesis process include current density or applied potential and 
the amount of charges integrated in the system. This approach offers many advan-
tages including operational simplicity, short reaction time, eco-friendly, and easier to 
control. Moreover, this technique avoids the use of oxidant; hence, greater purity of 
the final product can be achieved. However, the mass production using this technique 
is not feasible because of the limited surface area of the working electrode [79]. 

For example, Fani and colleagues reported the fabrication of polymeric nanocom-
posite biosensor based on polypyrrole, reduced graphene oxide, and gold nanoparti-
cles via electrochemical method [28]. In short, the working electrode (screen printed 
carbon electrode) was first cleaned with H2SO4 and DI water followed by drying at 
room temperature. Then, the mixture of reduced graphene oxide, pyrrole, HAuCl4, 
and l-Cys in PBS was sonicated for 20 min and electrodeposited onto the electrode 
surface using voltammetric sweep. Similarly, Saeb and Zenali synthesized the poly-
meric nanocomposite (polyaniline-TiO2-gold nanoparticles) sensor for hydrazine 
detection using electrochemical technique [71]. Firstly, the electrode (glassy carbon 
electrode) surface was polished using 0.3 mm alumina-based abrasive paper followed 
by rinsing with deionized (DI) water. The electrode was then sonicated for 10 min in 
a mixture of water and ethanol, in order to eliminate the remaining alumina particles. 
TiO2 nanoparticles were dispersed in DI water by using ultrasonicator for 30 min 
and then dropped onto the electrode surface and allowed to dry at ambient temper-
ature. After drying, the electrode was rinsed with DI water to remove the residual 
nanoparticles. The prepared electrode was then submerged in a mixture of aniline 
and H2SO4, and the electro-polymerization of aniline was performed with a potential 
window of −0.2 to 0.8 V for 5 cycles. Then, the solution of Au in chloroauric acid 
was electrodeposited on the electrode surface using cyclic voltammetry.
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In another study, Yan and colleagues fabricated the multi-layer polymer nanocom-
posite (chitosan silver nanoparticles) coating for pH-dependent controlled release of 
active compounds using a two-step electrochemical synthesis approach [86]. The 
electrodeposition of chitosan was performed by using a two-electrode worksta-
tion: (i) working electrode made of stainless steel wire of 0.4 mm diameter and 
(ii) counter electrode made of platinum wire. All the electrodes were sonicated in 
ethanol, acetone, and water for 5 min for removing the impurities. Then, the two 
electrodes were partially immersed in chitosan solution (chitosan and nitric acid), 
and a constant current density (2.5 A m−2) was applied for particular time. In the 
next step, the chitosan-coated electrode was soaked in the solution of AgNO3 and 
NaNO3 for 12 h to allow complete loading of silver ions. The electrode was removed 
from the solution, then gently washed with DI water followed by the application of a 
cathodic voltage (5 V) for particular time to allow the electrochemical reduction of 
silver ions to the nanoparticles. In the end, the prepared polymeric nanocomposite 
was washed with DI water, removed from the electrode surface using tweezers, and 
freeze-dried for further analysis. 

2.5 Nonconventional Methods 

In addition to the above-mentioned techniques, researchers have investigated some 
other approaches as well such as template-based synthesis, electrospinning to 
produce polymer nanocomposites with improved properties due to the better 
dispersion of nanofiller into the polymer matrix. 

2.5.1 Template-Based Synthesis 

In this approach, an inert material acts as a framework or skeleton for the in situ poly-
merization of monomer. The template-based synthesis is typically used to prepare 
polymer nanocomposites with porous structures. For example, Wang et al. reported 
the sacrificial template synthesis of N-doped carbon, molybdenum disulfide (MoS2) 
nanosheets, and polypyrrole (PPy)-based hollow nanocomposites for sodium storage 
performance [84]. The result showed that the MoS2 nanosheets were protected by 
PPy and N-doped carbon via Mo–N bonds, which inhibits the volume change and 
prevents the aggregation and fracture of electrode. Moreover, the external PPy and 
inner N-doped carbon effectively accelerated the Na-ion transport. Likewise, Zhang 
et al. [94] produced PPy nanostructure with platinum and gold nanoparticles using 
a reactive template based on manganese oxide (MnO2) nanowires. The reactive 
template (MnO2 nanowires) induced one-dimensional polymerization of monomers, 
and the simultaneous dissolution of template provided the hollow tube-like structure. 
The nanoparticles content in the prepared nanocomposites can simply be varied by 
manipulating the amount of precursors. However, this technique is not suitable when 
complex composite system is required.
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2.5.2 Electrospinning Method 

This method is typically used to prepare polymer nanocomposites in the form of 
nanofibers by applying high voltage. This approach is a modification of solvent 
blending; i.e., polymer and nanomaterial are dispersed/dissolved into a solvent to 
obtain homogeneous solution. Then, a hydraulic syringe is filled with this solution, 
and the nanofibers are extruded under high voltage to overcome the surface tension. 
For example, [19] utilized electrospinning technique to prepare poly(ethylene oxide) 
or poly(vinyl pyrrolidone) and iron oxide nanoparticles-based nanofibrous network. 
Metal organic framework based on poly(methyl methacrylate) and zirconium via 
electrospinning technique has been synthesized [53]. This approach is highly suitable 
to produce uniform morphology and size of nanofibers. Table 2 provides an overview 
of different polymer nanocomposites along with their synthesis route. 

3 Conclusion 

Synthesis of hybrid nanocomposites based on organic (polymer) and inorganic 
components has gained serious attention of researchers due to their extensive range 
of applications. Integration of inorganic nanomaterials to polymeric components is 
excellent tool to confer their unique characteristics to polymeric materials. Polymeric 
nanocomposites showed great conductivity, large surface area, high porosity, signif-
icant catalytic, electric and optical potential. These composites may possess weak 
interactions like hydrogen bonding and Van der Waals forces, and some nanocompos-
ites possess strong interactions at the interface as well. Different synthetic routes have 
been developed for the preparation of polymeric nanocomposites as in situ polymer-
ization, melt blending, solution blending, sol–gel, and electrochemical synthesis. The 
polymeric nanocomposites synthesized through these approaches showed intriguing 
features which have been explored in applications of electronic devices, different 
sensors, and in biomedicines. Different synthetic approaches have different limita-
tions such as direct mixing process involves the dispersion of desired nanomate-
rial into polymer matrix either by melt, mechanical, or solution blending. However, 
uniform distribution of nanomaterial is a major challenge of this approach. In contrast, 
in situ polymerization method solves the above-mentioned problem by creating a 
polymer microenvironment to synthesize the desired nanomaterial from its precur-
sors through series of reactions. This method is gaining interest because of the ease 
of controlling the morphology and particle size within the composite. Still problem 
exists to enhance the conductivity control, the morphology, shape size, and composi-
tion of polymeric nanocomposites, so future developments must focus on improving 
the synthetic protocols, and novel assembly approaches should be introduced.
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