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SUMMARY

Knowledge about the magnetic and electronic properties of materials does not only ex-
pand our fundamental understanding of nature, but is also crucial for the development
of new technologies. Today’s electronic devices rely on electrical currents to transport
and process information, which generate a lot of heat waste via Joule heating. These
devices could become much more energy efficient by using the electron’s spin or valley
degree of freedom to encode information, rather than its charge. In this dissertation we
study the elementary excitations of magnetic and semiconducting materials, called spin
waves and excitons, which have been proposed as respectively spin and valley informa-
tion carriers in future electronic devices.

In the first part of this thesis we detect spin waves via their microwave magnetic field
using both electrical spectroscopy and nitrogen-vacancy (NV) centers in diamond. Spin
waves are collective, wave-like precessions of electron spins that can propagate through
magnetic insulators free of Joule heating. To harness spin waves for data transport, it is
essential to develop spin-wave detection techniques that can give insight in their micro-
scopic behaviour and dynamics. NV centers are defects in the diamond crystal lattice
of which the photoluminescence depends on the NV spin state. Since the spin state is
sensitive to spin-wave magnetic fields, we can locally study spin waves via the NV pho-
toluminescence.

In the second part of this thesis we study excitons in semiconducting transition metal
dichalcogenide (TMD) monolayers. These electron-hole bound states can be selectively
excited in one of the two TMD bandstructure valleys using circularly polarized light. In-
formation stored in the excitonic valley index is typically quickly lost due to rapid scat-
tering between the valleys. We use chemical doping to realize a large steady-state valley
polarization of excitons at room temperature.

Chapter 1 introduces NV centers as magnetic-field sensors and describes how they could
be harnessed for characterization of future valleytronic and magnonic devices (a magnon
is an elementary spin-wave excitation). Next, we review the theory behind NV centers,
spin waves and excitons in chapter 2 and discuss the experimental setups used to study
them. Chapters 3-6 describe the research results obtained in this thesis.

A key advantage of magnetic microscopy with NV centers is that it can provide a direct
view on spin waves, even when they are hidden underneath optically-opaque materi-
als. In chapter 3 we demonstrate NV-based magnetic imaging of coherent spin waves
excited by microstrips in an yttrium iron garnet (YIG) film (see the cover of this thesis for
an artist’s impression). We determine the spin-wave dispersion and magnetic damping
from the measured spin-wave images, and explain the observed autofocussing of spin

xi



xii SUMMARY

waves by considering the anisotropy of the dispersion.

An important limitation of NV magnetometry is that it is only sensitive to a narrow fre-
quency band in the microwave regime. We greatly extend the microwave detection band-
width of NV centers by converting target microwave frequencies on-chip to the NV de-
tection frequency using two nonlinear spin-wave mixing protocols in YIG. The first pro-
tocol described in chapter 4 relies on four-spin-wave mixing and allows microwave de-
tection over a gigahertz range at a constant external magnetic field. In addition, it en-
ables coherent control of NV spins using off-resonant microwaves. The second detec-
tion scheme relies on difference frequency generation and enables the detection of mi-
crowave signals at multi-gigahertz detuning from the NV detection frequency. This pro-
tocol paves the way for detecting high-frequency magnetization dynamics in atomically-
thin van-der-Waals magnets with NV centers.

In addition to its ultralow spin-wave damping, YIG is a prime magnonic material due
to the tunability of its magnetic properties via doping. For instance, the introduction of
gallium dopants strongly reduces the magnetization such that the spin-wave dispersion
becomes isotropic, making gallium-doped YIG (Ga:YIG) a promising material for spin-
wave optics. Chapter 5 focuses on the electrical detection of spin waves in Ga:YIG by
measuring the spin-wave-mediated microwave transmission between two microstrips.
We reconstruct the spin-wave dispersion from the propagating spin wave spectroscopy
measurements, while considering the out-of-plane magnetic anisotropy. In addition, we
characterize the foldover of the spin-wave modes at increased microwave drive powers.

Chapter 6 presents polarization-resolved optical measurements of valley excitons in WS2

monolayers. We demonstrate that chemical doping with anisole induces a significant
steady-state valley polarization of the TMD excitons. The doping stimulates the conver-
sion of neutral excitons into charged trions, which decreases the exciton lifetime com-
pared to the intervalley scattering time. We use a rate equation model to explain the ob-
served valley polarization in terms of the doping-controlled trion-exciton equilibrium.

In chapter 7 we summarize our findings and suggest potential directions for future re-
search.



SAMENVATTING

Kennis over magnetische en elektronische eigenschappen van materialen verruimt niet
alleen ons inzicht in de natuur, maar is ook cruciaal voor de ontwikkeling van nieuwe
technologieën. Hedendaagse elektronische apparaten maken gebruik van elektrische
stroompjes om informatie te transporteren en verwerken, waarbij veel restwarmte vrij-
komt als gevolg van het Joule effect. Codering van informatie in elektronische appara-
ten kan veel energie-efficiënter worden door gebruik te maken van de spin- of valleivrij-
heidsgraad van het elektron. In dit proefschrift bestuderen we de elementaire excitaties
van magnetische en halfgeleidende materialen, genaamd spingolven en excitonen. Bei-
den zijn aangedragen als respectievelijk spin- en vallei-informatiedragers in toekomstige
elektronica.

In het eerste deel van dit proefschrift bestuderen we spingolven door hun microgolfmag-
neetveld te detecteren met behulp van zowel elektrische spectroscopie als stikstof-gat
(nitrogen-vacancy, NV) centra in diamant. Spingolven zijn collectieve, golvende preces-
sies van elektronenspins in magnetische materialen. Zij kunnen zich door magnetische
isolatoren voortbewegen, vrij van de warmteproductie die gepaard gaat met elektrische
stroom. Om spingolven voor datatransport te gebruiken, is het essentieel spingolfdetec-
tietechnieken te ontwikkelen die inzicht kunnen geven in hun microscopische gedrag
en dynamica. Zo zijn NV centra defecten in het diamanten kristalrooster, waarvan de
fotoluminescentie afhangt van de NV spintoestand. We kunnen spingolven lokaal be-
studeren via de NV fotoluminescentie, aangezien de NV spin gevoelig is voor spingolf-
magneetvelden.

In het tweede deel van dit proefschrift bestuderen we excitonen in halfgeleidende transi-
tiemetaal dichalcogenide (TMD) monolagen. Deze gebonden toestanden van een elek-
tron en een elektronengat kunnen in één van de twee TMD bandstructuurvalleien aan-
geslagen worden door gebruik te maken van circulair gepolariseerd licht. Informatie
opgeslagen in de excitonische vallei-index gaat doorgaans snel verloren door verstrooi-
ing tussen de valleien. Wij gebruiken chemische dotering om een grote valleipolarisatie
van excitonen bij kamertemperatuur te realiseren.

Hoofdstuk 1 introduceert NV centra als magneetveldsensoren en beschrijft hoe deze ge-
bruikt kunnen worden om toekomstige valleitronische en magnonische apparaten te ka-
rakteriseren (een magnon is een elementaire spingolfexcitatie). Vervolgens komt de the-
orie achter NV centra, spingolven en excitonen in hoofdstuk 2 aan bod, alsmede de expe-
rimentele opstellingen waarmee ze bestudeerd worden. Hoofdstukken 3-6 beschrijven
de resultaten van dit promotieonderzoek.
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Een cruciaal voordeel van magnetische microscopie met NV centra is dat het zicht op
spingolven geeft, zelfs wanneer deze verborgen zijn onder ondoorzichtige materialen.
In hoofdstuk 3 demonstreren we magnetische beeldvorming van coherente spingolven,
die door microdraden in een dunne laag yttrium-ijzer-granaat (YIG) worden aangesla-
gen (zie de omslag van dit proefschrift voor een artistieke impressie). Vervolgens bepalen
we de spingolfdispersie en magnetische demping met behulp van gemeten spingolfaf-
beeldingen. Tot slot verklaren we het geobserveerde autofocussen van de spingolven aan
de hand van de anisotropie van de spingolfdispersie.

Het feit dat NV magneetvelddetectie alleen gevoelig is voor een smalle frequentieband
in het microgolfregime vormt een belangrijke beperking. In hoofdstuk 4 vergroten we
de microgolfdetectie brandbreedte van NV centra door microgolffrequenties lokaal naar
de NV detectiefrequentie om te zetten via twee niet-lineaire spingolfmengprotocolen
in YIG. Het eerste protocol maakt gebruik van vier-spingolfmenging en laat microgolf-
detectie over een gigahertzbereik toe bij een constant extern magneetveld. Bovendien
maakt het coherente controle van NV spins mogelijk met niet-resonante microgolven.
Het tweede detectieschema berust op verschilfrequentiegeneratie en maakt het mogelijk
microgolfsignalen te detecteren die meerdere gigahertz verwijderd zijn van NV detectie-
frequentie. Dit protocol maakt de weg vrij voor detectie van hoogfrequente magnetisatie
dynamica in atomair-dunne van-der-Waals magneten met behulp van NV centers.

YIG is een uitermate geschikt materiaal voor magnonica aangezien het, naast een ul-
tralage spingolfdemping, magnetische eigenschappen heeft die via dotering te verande-
ren zijn. De introductie van galliumdotering zorgt bijvoorbeeld voor een sterke reduc-
tie van de magnetisatie, zodat de spingolfdispersie isotroop wordt. Hiermee is gallium-
gedoteerde YIG (Ga:YIG) een veelbelovend materiaal voor spingolfoptica. Hoofdstuk 5
concentreert zich op de elektrische detectie van spingolven in Ga:YIG, door de spingolf-
gemedieerde microgolftransmissie tussen twee microdraden te meten. We reconstrue-
ren de spingolfdispersie op basis van de spingolfspectroscopiemetingen, waarbij we de
magnetische anisotropie uit het vlak in acht nemen. Daarnaast karakteriseren we de
omslag van de spingolfmodi bij hoge microgolfaandrijfkrachten.

Hoofdstuk 6 presenteert polarisatie-afhankelijke, optische metingen van vallei-excitonen
in WS2 monolagen. We laten zien dat chemische dotering met anisol tot een significante,
stabiele valleipolarisatie van de TMD excitonen leidt. De dotering stimuleert de om-
zetting van neutrale excitonen in geladen trionen, wat de exciton levensduur verkleint
ten opzichte van de vallei-verstrooiingstijd. We gebruiken een snelheidsvergelijkingmo-
del om de geobserveerde valleipolarisatie te verklaren aan de hand van het dotering-
gecontroleerde trion-exciton evenwicht.

In hoofdstuk 7 vatten we onze bevindingen samen en suggereren we potentiële richtin-
gen voor toekomstig onderzoek.



1
INTRODUCTION

Sensors are omnipresent in daily life. They enable measurements of our surroundings
by converting a physical quantity to a detectable signal. For example, mercury-in-glass
thermometers convert the outdoor temperature to a certain mercury level in a glass tube.
The sensor’s sensitivity indicates how fast tiny signals can be detected. It is determined
by how much the output (in this case, the mercury level) changes upon small variations
of the measured input (the outdoor temperature) compared to the intrinsic noise of the
sensor (fluctuations of the mercury level that are not related to temperature changes,
e.g., due to mechanical vibrations). In many day-to-day situations relatively coarse mea-
surements of physical quantities are satisfactory (for instance, often it is sufficient to
know the outside temperature with the precision of a degree). However, when studying
the microscopic world large sensor sensitivities are required as the signals to be detected
are tiny.

Quantum systems are famously sensitive to external disturbances. These systems have
discrete energy levels, which can be occupied in a quantum superposition. The system’s
energy state can be initialized and manipulated, but evolves inevitably over time to a ran-
dom state due to uncontrolled interactions with the environment. This process is known
as decoherence and poses a central challenge to the development of quantum comput-
ing and communication technologies, where sufficient control over the quantum state
is required. Vice versa, the fragility of quantum states is an opportunity for the field of
quantum sensing, which harnesses the sensitivity of quantum systems to infer informa-
tion about the environment [1]. Examples of quantum sensors include gravity gradient
sensors based on interferometry of free-falling cold atoms [2], and nanoscale magnetic-
field sensors based on superconducting quantum interference devices (SQUIDs) [3] or
solid-state spins [4].

1.1. MAGNETIC-FIELD SENSING WITH NV CENTERS
Nitrogen-vacancy (NV) centers are lattice defects in diamond where two neighbouring
carbon atoms are replaced by a nitrogen atom and a lattice vacancy (Fig. 1.1a). The

1
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Figure 1.1: The nitrogen-vacancy center as quantum magnetometer. (a) Nitrogen-vacancy (NV) centers are
defects in the carbon (C, gray) lattice of diamond comprising a nitrogen atom (N, purple) and an adjacent
lattice vacancy (V, black). The electron spin of the NV center (orange arrow) is effectively modeled as a two-
level quantum system that can detect magnetic fields in two ways (b). (1) The static (DC) magnetic field B0
determines the energy difference ∆E between the |0〉 and |1〉 spin levels and is extracted by measuring the ESR
frequency fESR. (2) Microwave (AC) magnetic fields oscillating at the ESR frequency B( fESR) drive transitions
between the two energy levels and are measured by detecting changes of the spin state via the spin-dependent
NV photoluminescence (red wiggly arrows). (c) Sketch of the NV photoluminescence dip measured in an opti-
cally detected magnetic resonance (ODMR) experiment. A continuous-wave green laser excites the NV centers
and pumps the NV spin into |0〉 [green wiggly arrow in (b)], while the NV photoluminescence is monitored.
The |1〉 state becomes occupied when the microwave frequency f is at the ESR frequency, leading to more dark
decay of the NV and therefore a decrease of the NV photoluminescence. The static magnetic field is deter-
mined from the measured ESR frequency (1), while the microwave magnetic-field strength scales with the ESR
contrast (2).

electron spin of the NV center is a highly coherent quantum system and has become
a workhorse in quantum computing and entangling experiments [5–7]. As such, when
harnessed as a sensor NV centers are being called "quantum sensors", even though most
sensing experiments do not rely on quantum coherent coupling between the NV and the
sample under study [1]. NV spins have been used to study temperature [8], stress [9], and
electric [10] and magnetic fields [11–13] in a wide variety of microscopic biological [14],
geological [15] and condensed-matter systems [16]. Due to their point-like nature, NV
centers can provide local measurements with a spatial resolution that is only limited by
their stand-off distance to the sample of interest.

In this thesis we harness NV spins for detecting magnetic fields [4]. Previously, NV mag-
netometry was used to study nuclear magnetic resonance [17, 18], electric currents [19,
20] and magnetism [16] at the nanoscale. We can detect both static magnetic fields and
fields oscillating in the gigahertz range (GHz, also known as microwaves, ∼ billion cycles
per second) by monitoring the spin-dependent photoluminescence of NV centers.

In a simplified picture the NV spin corresponds to a qubit [1] with two quantized spin en-
ergy levels, labeled |0〉 and |1〉. A green laser pulse brings the NV center to its electronic
excited state without changing its spins state, from which it falls back to the electronic
ground state either by emitting a photon (bright decay) or by decaying via a metastable
state without emitting a photon (dark decay) [21]. Dark decay is more likely when the
NV is in the |1〉 spin-state, causing spin-dependent NV photoluminescence that enables
readout of the NV spin (Fig. 1.1b). Furthermore, the metastable state decays preferen-
tially towards |0〉, enabling initialization of the spin in |0〉 by repeatedly cycling between
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the electronic ground and excited states.

Importantly, both the energy gap between the spin levels and the quantum state of NV
centers are sensitive to magnetic fields. Microwave magnetic fields drive transitions be-
tween |0〉 and |1〉 when they are resonant with the energy gap, which is determined by
the static magnetic field B0 at the position of the NV (Fig. 1.1b). Therefore, static and
microwave magnetic fields can be locally measured from the NV photoluminescence
during an optically detected magnetic resonance (ODMR) experiment [22].

In an ODMR experiment a continuous-wave green laser continuously pumps the NV
center into |0〉, while the frequency f of a microwave field B is swept and the NV pho-
toluminescence is monitored. A dip in the photoluminescence due to an increased oc-
cupation in |1〉 is recorded when the microwave frequency is resonant with the energy
difference ∆E between the NV spin states depicted in Fig. 1.1b, such that

f = fESR =∆E/h, (1.1)

where h is the Planck constant and fESR is the electron spin resonance (ESR) frequency.

The static magnetic field is determined from the measured ESR frequency (Fig. 1.1c, la-
beled 1), which depends linearly on the field strength according to the Zeeman effect
(see section 2.1). The depth of the measured photoluminescence dip (also known as the
ESR contrast, Fig. 1.1c, labeled 2) is a probe for the amplitude of the microwave mag-
netic fields at the ESR frequency B( fESR) [23], where a deeper dip indicates a larger field.
Throughout this thesis we mostly focus on measuring the ESR contrast of NV centers, as
it allows us to study the microwave magnetic fields of spin waves in magnetic materials.

1.2. SPIN WAVES AND THEIR APPLICATIONS IN MAGNONICS
Spin waves are emergent phenomena in which many electron spins in a magnetically-
ordered material precess in a collective, wave-like manner [24, 25] (Fig. 1.2a). In this
thesis we locally detect the microwave magnetic fields generated by spin waves with NV
centers, from which we obtain a direct view on the interactions and dynamics of spin
waves. Besides improving our fundamental understanding of magnetism, these insights
are valuable when harnessing spin waves in next-generation electronic devices.

Currently electronic devices rely on electrical currents in thin metal electrodes to pro-
cess and transport information. However, the moving electrons dissipate a lot of energy,
resulting in Ohmic heating of the electrodes. This constrains further miniaturization of
devices, puts high demands on the energy supply of electronics and causes a huge en-
ergy consumption by the global ICT sector [26].

Spin waves can propagate through magnetic materials even when the carrier electrons
remain at fixed positions. As such, spin-wave transport is free of Ohmic heat dissipation
in magnetic insulators, making spin waves an attractive alternative information carrier
in spin-wave electronics [27–29] (also refered to as magnonics, since the quanta of spin
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waves are called magnons). Spin waves have a few other technologically-appealing prop-
erties, which we summarize below.

1. Spin waves have frequencies in the gigahertz/terahertz range, such that they can
be manipulated at ultrashort timescales.

2. They can have nanoscale wavelengths, allowing their integration in miniature in-
tegrated circuits.

3. They propagate quickly through materials (group velocities up to 650 km/s have
been reported [30]), enabling rapid data transfer.

4. Spin waves stably exist over a wide temperature range, allowing their integration
in room-temperature devices.

5. Spin waves can propagate over millimeter distances without significant decay in
magnetic materials with low spin-wave damping [27].

6. The wave-like nature of spin waves allows encoding information in their ampli-
tude and phase, making them suitable for non-boolean logic [31].

7. Multiple data streams can be processed at the same time using spin waves with
different frequencies [32]. This is called "multiplexing".

8. Spin waves exhibit a rich variety of nonlinear effects that could be used in de-
vices [29].

9. Devices could potentially harness processes associated to the quantum nature of
magnons, such as magnon condensation [33].

Prototype magnonic devices that have been realized in the past include majority gates [34],
directional couplers [35] and transistors [36].

a

h+
e-

b

Figure 1.2: Solid-state excitations as measurement target. (a) Spin waves are collective excitations of mag-
netic materials in which neighbouring spins (blue arrows) precess with a slight phase difference with respect
to their neighbours. As a result a wavelike excitation (the spin wave, highlighted in orange) propagates through
the spin ensemble. (b) Excitons are the excitations of semiconducting materials and consist of bound states
of negatively charged electrons (e−) and positively charged holes (h+). Spin waves and excitons both generate
magnetic fields that can be detected using NV centers in diamond. (a) is adapted from [37].
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1.2.1. HYBRID MAGNON-QUANTUM SYSTEMS
An intense and rapidly growing research field is the realization of hybrid magnon-quantum
systems, which are a special class of magnonic devices [38]. In these devices new func-
tionalities are added to quantum systems, such as NV centers, by coupling them to spin
waves.

In this thesis we greatly extend the microwave frequency sensitivity of NV sensors by in-
terfacing them with spin waves in a hybrid magnet-diamond system. Generally, NV cen-
ters are only sensitive to microwave frequencies near the ESR frequency, where the func-
tional bandwidth is limited to the linewidth of the photoluminescence dip measured in
an ODMR experiment (typically around 0.01 GHz, c.f. Fig. 1.1c). We circumvent this lim-
itation by converting microwave frequencies on-chip to the ESR using spin-wave mixing
in a nearby magnet. This enables NV-based microwave sensing over an 1-GHz band-
width and allows coherent quantum control of NV spins using broadband microwaves.

1.3. VALLEYTRONICS WITH EXCITONS IN TMD MONOLAYERS
Besides measurements on spin-wave excitations in magnetic materials, this thesis also
presents measurements on excitons, the elementary excitations of semiconducting ma-
terials. Just like spin waves, excitons have been proposed as information carrier in future
electronic devices, which store and process information using the valley degree of free-
dom of the excitons [39].

Excitons are bound states of electrons and holes that can stably exist at room tempera-
ture [25] (Fig. 1.2b). We study excitons in transition metal dichalcogenide (TMD) mono-
layers of which the bandstructure is characterized by two valleys, labeled K and K ’. Cir-
cularly polarized light selectively excites excitons in one of the valleys (e.g., left (right)
circularly polarized light excites excitons in the K (’) valley), which induces a valley po-
larization of the excitons [40–42].

The valley index is viewed as a "pseudospin", as it resembles a binary quantum degree
of freedom analogous to a spin-1/2 system [43]. As such, excitons can be excited in a
valley superposition using linearly polarized light, a phenomenon known as valley co-
herence [44]. After initialization, the valley state can be manipulated using ultrashort
light pulses [45]. Valleytronic devices could naturally be integrated into photonic cir-
cuits, since excitons emit photons upon electron-hole recombination with a polariza-
tion depending on the valley state (e.g., excitons in K (’) valley emit photons that are left
(right) circularly polarized).

In the final part of this thesis we present measurements aimed towards detecting TMD
excitons with NV magnetometry. Each exciton has a magnetic dipole moment with a sign
depending on its valley index [46]. Strongly valley-polarized excitons are thus expected
to generate a magnetic field that could in principle be detected with NV centers. This
would allow nanoscale characterization of the valley dynamics while the excitons are ex-
cited. However, at room temperature it is challenging to maintain a large steady-state
valley polarization [47] due to strong intervalley scattering of excitons via phonons [48]
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and Coulomb interactions [49]. We show via optical measurements that a large room-
temperature excitonic valley polarization in TMD monolayers can be realized using elec-
tron doping.

Although our results resemble a first step towards NV-based detection of valley polariza-
tion, many other challenges remain to be solved. For instance, it is difficult to separate
the NV photoluminescence from the excitonic photoluminescence, making it challeng-
ing to readout NV centers that are in close proximity to TMD excitons. In addition, the
optically-induced exciton density is typically small, such that the magnetic fields gener-
ated by the valley magnetization are expected to be weak and therefore hard to detect.

1.4. THESIS OUTLINE
This thesis consists of two parts. The first three research chapters focus on the detection
of spin waves, while the final research chapter focusses on the optical characterization
of TMD excitons. We start by covering the relevant theory behind NV center magnetom-
etry, spin waves and excitons in TMD monolayers in chapter 2.

In chapters 3 and 4 we place a diamond with an NV sensing layer on top of a magnet
(as depicted in the artist’s impression on the cover of this thesis). In chapter 3 we use
the NV centers to detect the microwave magnetic fields of spin waves resonant with the
NV ESR frequency. This allows imaging the spin-wave wavefronts and characterization
of the spin-wave dispersion. We explain the observed autofocussing of spin waves using
an analytical model of the spin-wave dynamics.

In chapter 4 we demonstrate NV-based detection of spin waves with frequencies detuned
from the NV ESR frequency. By harnessing nonlinear magnetization dynamics we con-
vert off-resonant target frequencies to the ESR, facilitating their detection. Excitingly,
this enables broadband microwave sensing with NV centers and coherent control of the
NV spin state using off-resonant microwaves. It also opens the door for detecting high-
frequency spin waves in atomically-thin magnets.

In chapter 5 we detect spin waves in an unconventional magnet by measuring the mi-
crowave transmission between two micro-antennae fabricated directly on the magnet’s
surface. We show that we can reconstruct the spin-wave dispersion from our measure-
ments and observe strongly nonlinear spin-wave behaviour. As such, electrical spec-
troscopy is a useful tool for characterizing spin waves in unknown magnetic materials
prior to NV measurements.

In chapter 6 we realize a large valley polarization in monolayer WS2 at room temperature.
Using chemical doping we stimulate the conversion of excitons into trions (charged exci-
tons), which quenches the exciton lifetime. We explain the observed quenching-induced
valley polarization using a rate equation model that describes the valley dynamics of the
exciton-trion equilibrium. The realized valley polarization could potentially facilitate
the detection of excitons with NV centers in future experiments.
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2
THEORETICAL AND EXPERIMENTAL

FRAMEWORK

In this chapter we provide an overview of the theory and experimental techniques relevant
for this thesis. We first describe the physics of nitrogen-vacancy (NV) centers in section 2.1
and discuss how we use them to detect microwave magnetic fields. Next we cover the ba-
sic theory behind spin waves in section 2.2. We derive the spin-wave dispersion from the
Landau-Lifshitz-Gilbert equation, discuss how spin waves can be inductively excited us-
ing microwave antennae and describe the nonlinear effects that arise when spin waves
are driven to large amplitudes. In section 2.3 we calculate the magnetic fields generated
by spin waves and discuss how these fields can be experimentally detected using NV mag-
netometry and electrical spectroscopy measurements. Finally, we cover the theory behind
valley polarization of excitons in section 2.4 and discuss how valley-polarized excitons
could potentially be detected with NV centers.
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2.1. NV MAGNETOMETRY OF MICROWAVES
Nitrogen-vacancy (NV) centers [1] are lattice defects in the carbon lattice of diamond,
where two adjacent carbon atoms are substituted for a lattice vacancy and a nitrogen
atom (Fig. 2.1a). NV centers can exist in two charge states: A charge neutral state (NV0)
and a negatively-charged state (NV−), in which an electron is trapped by the vacancy. In
this thesis we only consider NV− centers, which we will denote as "NV centers" for con-
ciseness.

The NV electronic structure can be described as a spin-triplet ground and excited state
and intermediate spin-singlet states [2] (Fig. 2.1b). The electronic ground and excited
states are connected by an optical transition with a zero-phonon line at 637 nm, which
is accompanied by a phonon sideband both in the emission and absorption [3]. The
phonon sideband allows spin-preserving excitation of the NV to its electronic excited
state by absorbing a high-energy green photon (515 nm in our experiments) and emit-
ting a phonon to compensate the excess energy. Vice versa, the NV can relax back to
its electronic ground state by emitting a low-energy red photon (typically 650-800 nm),
while emitting a second phonon.

In the electronic ground state, the electrons associated with the NV defect form an effec-
tive spin-1 system [1] (S = 1). NV-based microwave sensing relies on detecting microwave-
driven transitions of the NV spin between ms = 0 (|0〉) and ms = ±1 (|±1〉), where ms

indicates the spin projection along the NV quantization axis. The spin eigenstates are
described by the Hamiltonian

H = DS2
z +γB ·S, (2.1)

with γ= 28 GHz/T the electronic gyromagnetic ratio, B a static magnetic bias field and Si

the i th spin-1 Pauli matrix (where i ∈ {x, y, z}). The Hamiltonian is given in the reference
frame with z along the "NV axis" defined by the nitrogen atom and the vacancy, which
can be oriented along one of the four diamond <111>-crystallographic axes (Fig. 2.1a).
The first term describes the "zero-field splitting" due to spin-spin interactions, which
split the |0〉 and |±1〉 spin states in the electronic ground (excited) state by D ≈ 2.87 GHz
(DES ≈ 1.42 GHz). The second term describes the Zeeman interaction, which allows tun-
ing the spin levels using a magnetic bias field.

When the bias field BNV is applied along the NV axis, the energy difference between the
|0〉 and |±1〉 eigenstates is

fESR = D ±γBNV. (2.2)

Microwave magnetic fields at the electron spin resonance (ESR) frequencies fESR can
drive transitions between between the |0〉 and |±1〉 eigenstates. Transitions between |−1〉
and |+1〉 are magnetic dipole forbidden, but can be driven via mechanical strain [4] or
electric fields [5].

NV centers occur in four different orientations in the diamond lattice, which each make
a 71◦ angle with respect to the other three axes due to crystal symmetry. Therefore, when
the bias field is applied along the axis of one NV family, the other families experience the
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Figure 2.1: Structural, electronic and spin properties of NV centers in diamond. (a) Atomic structure of an
nitrogen-vacancy (NV) center in the diamond carbon lattice (black spheres). NV centers exist in four lattice
orientations (also called "families"), as indicated by the numbered lattice sites that the nitrogen atom can
occupy with respect to the vacancy. (b) Electronic structure of an NV center, indicating the intermediate singlet
states and the triplet ground and excited states with corresponding phonon side bands (purple shading). The
green and wiggly red arrows indicate optical excitation and photoluminescence, respectively. (c) Ground state
electron spin resonance (ESR) frequencies as a function of magnetic bias field applied along the NV axis (red
lines). The other three NV families experience the same misaligned field such that they have degenerate ESR
frequencies (green lines). Figures are adapted from [6].

same off-axis field, such that they have mixed eigenstates with the same ESR frequencies
(Fig. 2.1c). The key property of NV centers is that resonantly-driven ESR transitions can
be recorded optically via the spin-dependent NV photoluminescence, which enables the
detection of microwave fields at the ESR frequencies, as described in the next section.

2.1.1. OPTICALLY DETECTED MAGNETIC RESONANCE
Instead of emitting a photon, an NV can also relax from the electronic excited state to the
ground state via the optically-dark singlet states (Fig. 2.1b). This alternative decay chan-
nel has two crucial properties. First, it is spin-dependent. The NV has a larger chance
to decay via the singlet states when it is in the |±1〉-state than in the |0〉-state [2, 7]. The
NV spin state can thus be inferred by monitoring the NV photoluminescence, which is
less bright in the |±1〉-state. Second, the singlet states decay preferentially towards |0〉,
allowing initialization of the NV spin into |0〉 by repeatedly cycling between the ground-
and excited state [8].

In an optically detected magnetic resonance (ODMR) measurement [9] both these prop-
erties are harnessed simultaneously to detect microwave magnetic fields at the ESR fre-
quency. A continuous-wave green laser excites the NV centers, while the frequency of
a microwave field is swept and the NV photoluminescence is recorded using a confocal
microscope (Fig. 2.2a). Since the NV centers are continuously pumped into |0〉 by the op-
tical excitation, the |±1〉-state only becomes significantly occupied when the microwave
field BAC is resonant with the corresponding |0〉 ↔ |±1〉 ESR frequency. Therefore, dips
in the NV photoluminesence are observed when the microwave frequency matches the
ESR frequencies (Fig. 2.2b).
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Figure 2.2: Optically detected magnetic resonance with NV centers in diamond. (a) Schematic overview of a
confocal microscope used to readout the NV photoluminescence. A green laser (Cobolt, 06-MLD, λ= 515 nm)
is focused to a diffraction-limited spot by an objective (OBJ, Olympus, MPlanApo 50X, NA= 0.95) after passing
through a beam expander (two positive lenses (L)). A scanning mirror (SM, Thorlabs, GVS212/M) and another
two lenses move the laserspot over the sample. The same objective collects the red NV photoluminescence,
which is separated from the excitation by a dichroic mirror (DM, cutoff at 607 nm). The photoluminescence
is long-pass filtered (F) and spatially filtered by a pinhole (diameter 50 µm) before it is collected by a avalange
photodiode (APD, Laser Components, COUNT-NIR-100). (b) Example of an ESR photoluminescence (PL) spec-
trum for a small, misaligned bias field, such that eight photoluminescence dips corresponding to the two ESR
transitions of the four NV families are visible. Figures are adapted from [6].

The depth of a photoluminescence dip ("the ESR contrast") is a measure for the mag-
nitude of the microwave field at the ESR frequency. In the NV coordinate frame (with z
along the NV axis) the ESR contrast C± for the |0〉↔ |±1〉 transition is expressed as [6, 10]

C± =C0
|BAC, x ± i BAC, y |2

|BAC, x ± i BAC, y |2 +Φ
, (2.3)

where C0 is the maximum ESR contrast in the limit of strong driving, BAC, x(y) are com-
plex phasor components of the Jones vector describing the amplitude and polarization
of BAC in the x y-plane and Φ is a parameter that depends on the optical excitation
power and the NV spin coherence time. |BAC, x ± i BAC, y | corresponds to the right and
left circular-polarized components of BAC, indicating that the |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉
ESR transitions are most efficiently driven by circularly-polarized microwave fields with
opposite handedness in the plane perpendicular to the NV axis [11]. Linearly-polarized
microwave fields drive both transitions equally, since they can be decomposed into two
counter-rotating circularly-polarized fields.

Although the ESR contrast gives a qualitative estimate for the strength of the microwave
drive field, it does not provide a quantitative measurement as often the value ofΦ is not
precisely known. In addition, it is of limited use when the drive fields are strong, since
the contrast saturates towards C0 when |BAC, x ± i BAC, y |2 ≫ Φ. Rabi oscillation mea-
surements do not suffer from these limitations and enable quantitative, non-saturating
measurements of the microwave magnetic field strength.
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Figure 2.3: Rabi oscillations. (a) Pulse sequence used to measure Rabi oscillations. We first initialize the NV
spin in the |0〉-state via a ∼ 1-µs green laser pulse, then we drive the spin using a microwave pulse of variable
duration τ that is resonant with the |0〉↔ |±1〉 ESR frequency and finally we read out the NV photons in the first
300-400 ns of a second laser pulse. (b) Optically detected Rabi oscillations measured using the pulse sequence
in (a), corresponding to a Rabi frequency of approximately 40 MHz. Figures are adapted from [6].

2.1.2. RABI OSCILLATIONS
In a Rabi measurement [12], we harness laser and microwave pulses to measure coher-
ent NV spin rotations (Fig. 2.3a). When sweeping the duration of the microwave pulse
(τ), we observe oscillations in the NV photoluminescence (Fig. 2.3b). These "Rabi oscil-
lations" result from coherent rotations of the NV spin in the Bloch sphere between the
|0〉 and |±1〉 states.

Since the microwave amplitude determines the spin rotation speed, the Rabi oscillation
frequencyΩR is a quantitative measure for the microwave field strength, according to [6]

Ω±
R = γp

2
|BAC, x ± i BAC, y |. (2.4)

Here it is assumed that the microwave frequency is resonant with the ESR transition and
the ±-sign depends on the transition that is driven, similar as in Eq. 2.3. As the elec-
tronic gyromagnetic ratio is precisely known (γ/2π = 28 GHz/T), the amplitude of the
circular-polarized microwave component corresponding to the driven ESR transition
can be quantitatively determined. Unlike the ESR contrast, the Rabi frequency does not
saturate when strongly driven but continues increasing linearly with microwave ampli-
tude.

2.1.3. STARK SHIFT
Both the ODMR and Rabi measurement schemes only allow detection of microwave fre-
quencies that are within the linewidth of the ESR photoluminescence dip (typically ∼10
MHz, c.f. Fig. 2.2b). Often a magnetic bias field BNV is used to tune the ESR frequency
into resonance with the frequency of interest. However, such a bias field can change the
properties of e.g. magnetic or superconducting samples under study [13, 14], limiting its
application in materials science and technology.
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The dynamic (A.C.) Stark effect [15–17] can be used to detect microwave signals that are
frequency detuned from the ESR by ∆. Such an off-resonant drive causes a "Stark shift"
δ f of the ESR frequency that increases the frequency difference between the ESR and
the drive by

δ f = Ω
2
R

4∆
, (2.5)

with ΩR the Rabi frequency at zero detuning. In contrast to the ODMR and Rabi mea-
surement schemes, the Stark shift only provides insight in the ratio between amplitude of
the drive and its frequency detuning. In addition, the Stark shift δ f decreases rapidly for
increasing frequency detunings ∆, requiring strong drive fields to probe far off-resonant
frequencies.

In chapter 5 of this thesis we present a new measurement scheme for detecting off-
resonant microwave frequencies, in which we use the nonlinear magnetization dynam-
ics of a nearby magnetic film to convert detuned microwave frequencies to the ESR fre-
quency. Very recently, two alternative off-resonant microwave detection protocols were
reported that rely on frequency conversion by a magnetic microdisk [18] and quantum
frequency mixing induced by nonlinear Floquet effects [19].

2.2. SPIN-WAVE THEORY

In this thesis we use NV centers and electrical spectroscopy to detect the microwave
magnetic fields emitted by spin waves in magnetic materials. In this section we discuss
the spin-wave theory required for interpreting the measurements in chapters 3-5.

In magnetic materials unpaired electron spins have a preferred orientation with respect
to their neighbours as a result of the exchange interaction [20, 21]. Neighbouring spins
are oriented parallel in a ferromagnet and antiparallel in an antiferromagnet. Spin waves
are the collective, wave-like excitations of this magnetically ordered spin texture [20–23].
Magnons are the quasiparticle excitations of the spin-wave modes and correspond to
spin flips in the magnetically ordered electronic spin lattice. Since electrons have spin
1/2, each spin flip changes the spin of the entire system by S = 1/2− (−1/2) = 1, indicat-
ing that magnons are bosonic excitations. As such, they obey Bose-Einstein statistics in
equilibrium and can form Bose-Einstein condensates [24–26], in which a large fraction
of magnons occupies the magnon mode with the lowest energy.

Since a small magnetic dipole moment is associated to each spin and spin-wave excita-
tions involve many spins, a macroscopic oscillating magnetic field is generated by spin
waves in ferromagnets. In this work we detect this gigahertz field using NV magnetom-
etry and electrical measurements, which provides important insights in the spin waves
themselves. Magnetometry of antiferromagnetic spin waves remains beyond the scope
of this thesis. Their magnetic field largely cancels due to the antiparallel spin alignment
and their frequencies are typically in the terahertz range (THz, 1000 GHz), making them
challenging to detect with electrical microwave devices or NV centers [27].
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2.2.1. YTTRIUM IRON GARNET

One of the main challenges of working with spin waves is that they typically damp out
quickly over short (micron) length scales. The spin-wave damping is parametrized by
the phenomenological "Gilbert damping" parameter αG [28]. Multiple spin-wave de-
cay mechanism contribute to the total Gilbert damping. For instance, in metallic fer-
romagnets spin waves rapidly dissipate energy because their oscillating magnetic fields
inductively drive Eddy currents in the film [29]. Furthermore, spin waves can lose en-
ergy by scattering into other spin-wave modes [29–31], phonons [32–34] or (magnetic)
defects [29, 35, 36].

We detect spin waves in the model-magnet yttrium iron garnet [37] (YIG, Y3Fe5O12). Of
all known magnets, YIG has the lowest Gilbert damping (αG can be as low as 10−4 for
10-nanometer thick films [38]), such that spin waves can propagate over millimeter dis-
tances. YIG is electrically insulating (so no Eddy currents!) and it can be grown in high-
quality monocrystalline films using liquid phase epitaxy on lattice-matched gadolinium
gallium garnet (GGG, Gd3Ga5O12) substrates [38, 39]. Furthermore, YIG is ferrimagnetic,
meaning that the iron spins inside its rather complicated, cubic unit cell are antiparallel
aligned, but exhibit different magnetic moments. Therefore, each unit cell has an un-
compensated magnetic moment, making the material effectively behave as a ferromag-
net on length scales that are large compared to the inter-spin distance. The magnetic
properties of YIG can be tuned by doping the material with other elements [40, 41]. This
is the focus of study in chapter 5, where we study spin waves in gallium-doped YIG [42,
43].

2.2.2. SPIN WAVES IN THE MAGNETIC PLANE

We study spin waves in YIG thin films with in-plane wavelengths much larger than the
film thickness. These spin waves have quantized mode profiles in the thickness direc-
tion resulting from the out-of-plane confinement [44, 45] (Fig. 2.4a). Typically we detect
spin waves in the lowest ("zeroth") order mode, for which the magnetization amplitude
is homogeneous along the thickness. Like all wave-like excitations, a key property of
these (quasi) two-dimensional spin waves is the dispersion, which relates the spin-wave
frequency to the spin-wave wavelength.

In general, the spin-wave frequency is determined by the coupling between spins on
the scale of the spin-wave wavelength, where a stronger coupling leads to a higher fre-
quency. In ferromagnets there exist two coupling mechanisms that operate on different
length scales. First, the magnetic exchange interaction couples directly neighbouring
spins (Fig. 2.4b). This interaction is isotropic in YIG, meaning that each spin couples
equally strong to its neighbours in all directions. Second, spins are coupled over much
longer length scales via their magnetic fields. This dipolar coupling is anisotropic, since
every spin generates a strongly anisotropic magnetic field (see Fig. 2.4c, the field lines
are non-spherical symmetric). Therefore, spins couple differently to spins located par-
allel to its orientation than perpendicular to it.
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Figure 2.4: Spin-wave dispersion. (a) Sketch of the magnetization amplitude along the thickness of the mag-
netic film (black shading) for different perpendicular spin-wave modes. In this thesis we focus on spin waves
in the zeroth mode. (b, c) Top-view sketches of the exchange and dipolar interactions between in-plane mag-
netized spins (black arrows). (d) Spin-wave dispersion in YIG at BB = 30 mT calculated using Eq. 2.17. Due
to the anisotropic dipolar interaction, the dispersion is anisotropic for long wavelengths, but becomes more
isotropic for smaller wavelengths. (e) Linecuts indicated by the dashed lines with corresponding color in (d),
showing the Damon-Eshbach (DE) and backward-volume (BV) dispersion. (d, e) are adapted from [6].

As a result of these interactions the spin-wave dispersion can be split up in two regimes
depending on the spin-wave wavelength. The "dipolar regime" contains long-wavelength
spin waves with frequencies set by the saturation magnetization Ms, which corresponds
to the magnetic moment density in the sample. The "exchange regime" contains short-
wavelength spin waves with frequencies determined by the exchange interaction, which
is parametrized by the exchange constant αex.

The dispersion is anisotropic in the dipolar regime when the magnetization points in-
plane due to the anisotropic dipolar coupling (Fig. 2.4d). Therefore, spin waves with a
fixed, long wavelength have a different frequency when they propagate parallel to the
magnetization (backward volume spin waves) than perpendicular to it (Damon-Eshbach
spin waves). At shorter wavelengths the dispersion becomes increasingly more isotropic
as the exchange interaction starts to dominate (Fig. 2.4e). The dipolar interaction is
isotropic when the magnetization points out of the plane, such that the dispersion of
forward volume spin waves is isotropic both in the dipolar and exchange regimes [46].

The spin-wave dispersion is given by the poles of the transverse magnetic suscepti-

bility
↔
χ [47], which relates the transverse magnetization amplitude mT to a drive field
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BAC, according to

mT =↔
χBAC. (2.6)

In the next section, we derive the magnetic susceptibility from the Landau-Lifshitz-Gilbert
equation for a magnetic film in the x y-plane with perpendicular magnetic anisotropy
(PMA) and a magnetic bias field BB in an arbitrary direction. We neglect cubic magnetic
anisotropy as it is relatively small in YIG films [38].

2.2.3. LANDAU-LIFSHITZ-GILBERT EQUATION
The Landau-Lifshitz-Gilbert (LLG) equation describes the dynamics of the unit magne-
tization vector m [28] (Fig. 2.5a)

ṁ=−γm×B−αGṁ×m, (2.7)

where the “overdot” denotes the time derivative. We solve this equation in the (x ′,y ′,z ′)
magnet frame that is tilted with respect to the (x,y ,z) lab frame by an angle θ0, such
that the equilibrium magnetization points in the ẑ′ direction and the ŷ(′) axes overlap
(Fig. 2.5b). B = Beff +BAC, with Beff the effective magnetic field as derivative of the
magnetic free energy density F

Beff,α′ =− 1

Ms

∂F

∂mα′
, (2.8)

where α′ ∈ {x ′, y ′, z ′} indicates the vector components in the magnet frame. The free
energy density includes the Zeeman energy, the demagnetizing field Bd, the PMA energy
FA, and the exchange interaction

F =−Msm · (BB + Bd

2
)+FA + D

2

∑
α,β=x,y,z

(
∂mα′

∂β

)2

. (2.9)

In the magnet frame

FA = K

2
m2

z =
K

2
(sinθ0mx ′ +cosθ0mz ′ )

2, (2.10)

such that the x ′ and z ′ components of the anisotropy effective field are

BA,x′ =− 1

Ms

∂F

∂mx′
=− K

Ms
(sin2θ0mx′ +cosθ0 sinθ0mz ′ ),

BA,z ′ =− 1

Ms

∂F

∂mz ′
=− K

Ms
(cosθ0 sinθ0mx′ +cos2θ0mz ′ ).

(2.11)

The contributions of the Zeeman-, demagnetizing- and exchange energy to Beff have
been derived in Refs. [29, 47].
In linear response with mz ′ ≈ 1, the LLG equation describes the transverse magnetization
dynamics. In the frequency domain it reads

− iωmx ′ =−γ(my ′Bz ′ −By ′ )+ iαGωmy ′ ,

− iωmy ′ = γ(mx′Bz ′ −Bx′ )− iαGωmx′ ,
(2.12)
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whereω is the angular frequency. Substituting the components of the effective magnetic
field and rewriting the equations in matrix form,(

ω2 − iαGω −ω1 + iω
−ω1 − iω ω3 − iαGω

)(
mx′
my ′

)
= γ

(
BAC,x′
BAC,y ′

)
, (2.13)

where

ω0 =−(ωM −ωK )cos2θ0 +ωB cos(θB −θ0)+ωD k2,

ω1 = 1

2
ωM f sin(2φ)cosθ0,

ω2 =ω0 +ωM f (cos2φcos2θ0 − sin2θ0)+ (ωM −ωK )sin2θ0,

ω3 =ω0 +ωM f sin2φ,

(2.14)

and ωB = γBB , ωM = γµ0Ms, ωD = γD
Ms

and ωK = γK
Ms

. µ0 is the vacuum permeability, k =
|k| = 2π

λ is the modulus of the wavevector along an angle φ with respect to the in-plane
projection of the magnetization (withλ the spin-wave wavelength), θB is the angle of the

magnetic bias field with respect to the plane normal (z axis), and f = 1− 1−e−kt

kt depends
on the film thickness t . By inverting the matrix in Eq. 2.13, we obtain the transverse

magnetic susceptibility tensor
↔
χ (cf. Eq. 2.6)

↔
χ = γ

(ω2 − iαGω)(ω3 − iαGω)−ω2
1 −ω2

(
ω3 − iαGω ω1 − iω
ω1 + iω ω2 − iαGω

)
. (2.15)

From the magnetic susceptibility we can derive a couple of important spin-wave prop-
erties, which we summarized below.
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Figure 2.5: Magnetization precession described by the Landau-Lifshitz-Gilbert equation. (a) The magneti-
zation rotates around B due to the first term in Eq. 2.7 and the precession is damped by the second term. In
this sketch B is static, but in our experiments it is dynamic due to the drive field BAC, such that a steady-state
spin-wave precession is maintained. (b) Sketch of the (x′,y ′,z′) magnet frame (black dashed arrows), which is
rotated with respect to the (x,y ,z) lab frame (black solid arrows) by an angle θ0 along y , such that z′ is parallel
to the equilibrium magnetization (M , green arrow). θB is the angle of the bias field BB with respect to the film
normal and φ is the angle between spin-wave wavevector k and the in-plane projection of the magnetization.
(a) is adapted from [6].
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1. The spin-wave dispersion.
The susceptibility diverges when

Λ= (ω2 − iαGω)(ω3 − iαGω)−ω2
1 −ω2 = 0. (2.16)

AssumingαG ≪ 1, the real part of the solutions of this quadratic equation gives the
spin-wave dispersion as the angular frequency ω versus k [44, 48]

ω=
√
ω2ω3 −ω2

1. (2.17)

2. The FMR frequency.
The spin-wave mode with infinite wavelength is called the ferromagnetic reso-
nance (FMR) and corresponds to the uniform precession of the magnetization [49].
In measurements it often gives the largest signal as it can be driven to large ampli-
tudes by spatially homogeneous (cavity or antenna) drive fields. By setting k = 0
in Eq. 2.17, we obtain the FMR frequency for an arbitrary field and magnetization
orientation

fFMR = γ

2π√(
BB cos(θB −θ0)− (µ0Ms − K

Ms
)cos(2θ0)

)(
BB cos(θB −θ0)− (µ0Ms − K

Ms
)cos2(θ0)

)
.

(2.18)

When both the magnetization and bias field point in-plane (θB = θ0 =π/2)

fFMR(||) = γ

2π

√
BB

(
BB +µ0Ms − K

Ms

)
, (2.19)

which is also known as Kittel’s formula [21]. When both the magnetization and
bias field point out-of-plane (θB = θ0 = 0), we obtain

fFMR(⊥) = γ

2π

(
BB −µ0Ms + K

Ms

)
. (2.20)

This equation only gives positive values when BB >µ0Ms− K
Ms

, which corresponds
to the requirement to overcome the demagnetizing field and lift the magnetization
out-of-plane. As demonstrated in chapter 5, the saturation magnetization and
magnetic anisotropy fields can be determined by measuring the FMR frequency
with an in-plane and out-of-plane bias field. We also show how the Gilbert damp-
ingαG can be extracted from the frequency dependence of the FMR magnetic-field
linewidth ∆BFWHM via [39, 50]

∆BFWHM =∆B0 + 2αG

γ||
ωFMR(||). (2.21)

Here, ∆B0 is the inhomogeneous broadening and the magnetic field is applied in
the plane.
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In general the FMR frequency increases with magnetic field when the magnetiza-
tion points parallel to the field. The FMR is the spin-wave mode with the lowest
frequency in the Damon-Eshbach configuration, but in the backward volume con-
figuration also spin waves below the FMR exist (Fig. 2.4e). The backward volume
mode with the lowest frequency is referred to as "the bottom of the spin-wave
band" and its frequency increases with field, similar to the FMR. The frequency
range below the bottom of the band is called "the spin-wave gap", since no spin-
wave modes exist at these frequencies.

3. The spin-wave decay length.
The spin-wave decay length ydecay is given by the inverse of the imaginary part of
the spin-wave wavevector k, according to

k = 2π

λ
+ i

1

ydecay
, (2.22)

with λ the spin-wave wavelength. This can be understood by substituting k into
the spatial profile of the transverse magnetization

mT ∝ e i kx = e i 2π x
λ e

− x
ydecay . (2.23)

We derive the decay length from the susceptibilty in k-space, which we find by
Taylor expanding

ω(k) ≈ω(k0)+ ∂ω

∂k
(k −k0) =

√
ω2ω3 −ω2

1 + vg(k −k0). (2.24)

Here vg is the group velocity of spin wave with wavevector k0 and ω(k0) is its an-
gular frequency according to Eq. 2.17. Substituting Eq. 2.24 into Eq. 2.16 gives

Λ= 2ω(k0)
(
vg(k −k0)− iαG

ω1 +ω2

2

)= 0, (2.25)

where we only kept the first-order terms in αG and δk = k −k0. Solving this equa-
tion gives

k = k0 + iαG
ω1 +ω2

2vg
, (2.26)

such that decay length is given by

ydecay =
2vg

αG(ω1 +ω2)
. (2.27)

We use this equation in chapter 5 to estimate the decay length of spin waves in
gallium-doped YIG.

4. The handedness of the magnetization precession.
When electron spins are aligned to the externally applied bias magnetic field, the
Larmor precession is counter-clockwise around the direction of the magnetic field.



2.2. SPIN-WAVE THEORY

2

23

For small wavelengths the magnetization in a magnet precesses circularly with the
same handedness as can be deduced from Eq. 2.15 in the limit of large k, giving

mx′

my ′
= BAC,x′ωD k2 − i BAC,y ′ωD k2

i BAC,x′ωD k2 +BAC,y ′ωD k2 , (2.28)

where we again used αG ≪ 1. We obtain my ′ = i mx′ , indicating that spin pre-
cession is always right-circularly polarized, independent from orientation of the
spin-wave wavevector. When BAC,x′ = i BAC,y ′ the amplitudes of mx′ and my ′ be-
come zero, indicating that only right-circular polarized magnetic fields can ex-
cite circularly-polarized, short-wavelength spin waves. This becomes important
in section 2.2.4, where we discuss the excitation of spin waves using a microwave
stripline. The spin precession of long-wavelength spin waves is influenced by the
dipolar demagnetizing field generated by the other spins in the magnetic film, re-
sulting in right-elliptically polarized spin precession.

5. The spin-wave ellipticity.
For in-plane magnetization (ω1 = 0), the ellipticity η of the long-wavelength spin-

wave modes is given by the ratio of the elements in
↔
χ

η= |mx′ |
|my ′ | =

|χx′x ′ |
|χy ′x′ | =

|χx′y ′ |
|χy ′y ′ | =

√
ω3

ω2
, (2.29)

where we have set αG = 0. The ellipticity is important, as it has a large influence
on the magnetic field that is generated by the spin waves (see section 2.3.1).

The orientation of the equilibrium magnetization minimizes the free energy F (Eq. 2.9)
and is found by numerically solving ∂F

∂θ0
(θB ) = 0 (in absence of any in-plane anisotropy,

the in-plane angle of BB and m overlap). For a magnetic film the magnetization is pushed
in the plane by the demagnetizing field, which is given by Ms [51] (∼ 175 mT in YIG). Only
when a magnetic bias field or a PMA field overcomes the demagnetizing field, the mag-
netization points fully out-of-plane, as is the case in chapter 5.

2.2.4. SPIN-WAVE EXCITATION
At finite temperature, spin waves are always present in a magnet as a result of ther-
mal excitation. At room temperature the spin-wave band is occupied according to the
Rayleigh-Jeans distribution [52], which is the high-temperature limit of the Bose-Einstein
distribution. These thermal spin waves are referred to as "spin-wave noise", as they
span a continuum of frequencies and are incoherent, meaning that their phase fluc-
tuates rapidly over time. Driving the FMR raises the spin chemical potential and thus
increases the thermal spin-wave occupation. Incoherent, broadband spin waves can
also be injected via the spin Hall effect by running a DC current through a metal with a
large spin-orbit coupling, such as platinum [53].

In this thesis we use a microwave drive field to excite propagating, coherent spin waves
with a well-defined frequency and phase that are locked to the drive [54]. This mi-
crowave magnetic field is generated by an oscillating microwave current in a narrow mi-
crostrip fabricated on top of the magnet. Monochromatic spin-waves can also be excited
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using other techniques, e.g. via surface acoustic waves [55] or light pulses [56].

The spin-wave excitation efficiency is determined by the wavevector overlap between
the target spin-wave mode and the drive field [57–62]. This can be understood intu-
itively by realizing that a spatially homogeneous drive field is very inefficient in exciting
spin waves with a very small wavelength as their spatial profiles do not overlap. Since
the width of the stripline sets the spatial confinement of the drive field, generally only
spin-wave wavelengths larger than the width are efficiently excited. In chapter 5 we ex-
perimentally verify this by using striplines with different widths for spin-wave excitation.

For a stripline along x and with z out-of-plane (from now on called "the lab coordi-
nate frame") the magnetic-field vector components generated by a straight microstrip
of width w , thickness δ and length l have an oscillating profile in k-space [6, 13]

BAC,z(y)(z;ky ,kx ) = 2iµ0 J (ω)
e−i kz z

kz

e i kzδ−1

kz(y)
sin

(
ky

w

2

) sin(kx l /2)

kx
, (2.30)

where J (ω) is the current density at an angular frequencyω. At gigahertz frequencies k =√
k2

x +k2
y +k2

z =ω/c ≪ 100 rad/m, whereas in our experiments the spin-wave wavenum-

bers are in the range of 105-107 rad/m. Therefore, we may approximate kz =
√

k2 −k2
y −k2

x ≈
i
√

k2
y +k2

x = iκ, with κ the norm of the spin-wave wavevector, such that

BAC,z (z;ky ,kx ) =−2iµ0 J (ω)eκz e−κδ−1

κ2 sin
(
ky

w

2

) sin(kx l /2)

kx
,

BAC,y (z;ky ,kx ) = 2µ0 J (ω)eκz e−κδ−1

κky
sin

(
ky

w

2

) sin(kx l /2)

kx
.

(2.31)

The drive field is inefficient in exciting short wavelengths parallel to the stripline as
in this direction its amplitude falls off rapidly in k-space (Fig. 2.6a, green line). For
wavevectors perpendicular to the stripline, it is inefficient in exciting wavelengths that
fit an integer times in its width, as represented by the nodes in the spectrum (red line).
In practice spin-waves in the second maximum of the spectrum are still excited with a
significant amplitude (see chapter 5). By using magnetic coplanar waveguides [63] or
magnetic nanowire gratings [64] spin-wave wavelengths much smaller than the antenna
width can be excited efficiently.

Importantly, the Fourier components of the drive field corresponding to wavevectors
perpendicular to the striplines (k = ky ) are circularly-polarized with a chirality locked to
the sign of the momentum (Fig. 2.6b). This reflected by the relation

BAC,z =−i BAC,y ky /κ=−i sgn(ky )BAC,y . (2.32)

For clarity we note that, even though drive field curves circularly around the stripline,
it is linearly polarized at every point in space. However, as discussed before, any linear
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Figure 2.6: Amplitude and polarization of the stripline-field in Fourier space. (a) Normalized Fourier ampli-
tude of the drive field calculated for a stripline with length l = 100 µm (along x) and width w = 5 µm (along y).
(b) Sketch of the stripline-field polarization (black arrows) that couple to the different spin-wave wavevectors.
Figures are adapted from [6].

polarized field can be decomposed in two circularly-polarized fields with opposite hand-
edness. Since spin-wave modes only couple to the Fourier component of the drive field
corresponding to their wavevector, Eq. 2.32 shows that opposite spin-wave wavevectors
perpendicular to the stripline are driven by circular-polarized drive field components of
opposite handedness. Wavevectors parallel to the stripline (k = kx ) are driven by the lin-
ear drive in the y direction, since then BAC,z = 0.

According to the magnetic susceptibility (Eq. 2.15), spin waves are excited by the stripline-
field components perpendicular to the equilibrium magnetization. We now review the
spin-wave excitation for in-plane magnetization parallel and perpendicular to the stripline.

1. Damon-Eshbach configuration.
In this configuration the bias field and magnetization are parallel to the stripline
(along x), such that Damon-Eshbach spin waves (k = ky ) are excited by circularly-
polarized drive fields with opposite handedness for ±ky . By combining Eqs. 2.32
and 2.15, we find a scaling of the magnetization amplitude

my (±ky ) ∝ iωBAC,z (±ky )+ω2BAC,y (±ky ) = BAC,y (ω2 ±ω) = BAC,yω2(1±η), (2.33)

where we used in the last step the expressions for the ellipticity η=
√

ω3
ω2

(Eq. 2.29)

and the spin-wave frequency ω = p
ω2ω3 = ω2η (Eq. 2.17, ω1 = 0 for φ = π/2).

Clearly, the momentum-locking of the drive field’s chirality leads to highly anisotropic
spin-wave excitation. Circularly-polarized spin-waves (η= 1) with negative wavevec-
tor are not excited by the stripline field, whereas positive wavevectors are effi-
ciently excited. For elliptically-polarized spin waves the excitation efficiency be-
comes more symmetric. In contrast, the excitation of (long-wavelength) backward-
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volume spin waves (k = kx ) is symmetric, since they are driven by a linear field

my (±kx ) ∝ω2BAC,y . (2.34)

2. Backward-volume configuration.
In this configuration the bias field and magnetization are in-plane perpendicu-
lar to the stripline (along y), such that only the out-of-plane component of the
circular-polarized drive field couples to backward volume spin waves (k = ky ), re-
sulting in a symmetric spin-wave amplitude

mx (±ky ) ∝ iωBAC,z . (2.35)

Long-wavelength Damon-Eshbach spin waves are not excited by the stripline, since
the linear drive field BAC,y is parallel to the magnetization and thus does not cou-
ple to it,

mx (±kx ) = 0. (2.36)

2.2.5. NONLINEAR SPIN WAVES

When driven to large amplitudes, spin waves exhibit nonlinear behaviour [54]. In this
thesis we study several nonlinear spin-wave processes, which we briefly introduce be-
low.

MAGNON-MAGNON SCATTERING

Spin waves scatter with each other at large densities. These scattering processes con-
serve energy and momentum, and are described by the magnon-magnon interaction
(mmi) terms in the spin-wave Hamiltonian [65]

Hmmi =∑
k1,k2,k3

Tk1,k2,k3 ck1 c†
k2

c†
k3
δ(k1 −k2 −k3)

+ ∑
k1,k2,k3,k4

Wk1,k2,k3,k4 ck1 ck2 c†
k3

c†
k4
δ(k1 +k2 −k3 −k4).

(2.37)

Here c(†) is the magnonic annihilation (creation) operator and the Kronecker delta en-
sures conservation of momentum. As observed in the electrical spectroscopy measure-
ments of chapter 3, three-magnon scattering (represented by the first term in the Hamil-
tonian) is very efficient [29], leading to a rapid decay of magnons with frequency ω1 into
two other magnon with frequency ω2 +ω3 =ω1. However, no magnon modes are avail-
able when ω2 and ω3 are below the minimum of the spin-wave band ωBM, such that the
process only occurs when ω1 > 2 ·ωBM. When ω1 < 2 ·ωBM four-magnon scattering is
the dominant scattering process [30, 31], which we harness in chapter 4 to realize broad-
band microwave sensing with NV centers. Spin waves can also scatter efficiently to the
first perpendicular spin-wave mode when the bands of the zeroth and first perpendicu-
lar modes cross, as observed in chapters 3 and 4.
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FMR FOLDOVER

The magnetization precession associated to spin waves reduces the static, longitudinal
component of the magnetization. Therefore, the effective saturation magnetization Ms

decreases with the spin-wave amplitude, according to

Ms = M 0
s

√
1−|mT|2, (2.38)

where M 0
s is the saturation magnetization without spin waves in the sample and mT

is the transverse component of the unit magnetization. Since the spin-wave frequency
depends on Ms via the dispersion (Eq. 2.17), it changes with increasing spin-wave ampli-
tude. The FMR typically experiences the largest frequency shifts, since it can be driven
to large amplitudes most efficiently.

At large amplitudes the frequency shift results in the foldover of the FMR [66–68], sim-
ilar to a Duffing oscillator. In this case the FMR amplitude is bistable in a certain fre-
quency window, where it follows a low- or high-amplitude branch depending on the ex-
citation frequency sweep direction. In practice the FMR amplitude is limited by decay
into other spin-wave modes via Suhl instabilities [69–72]. As such, the strongest hystere-
sis of the FMR amplitude has been observed in nanomagnets [68], where the confined
geometry strongly reduces the spin-wave density of states, limiting the available decay
channels. In the Hamiltonian formalism the frequency shift of the FMR is caused by the
four-magnon self-interaction term, as discussed in Ref. [65] and chapter 5.

2.3. SPIN-WAVE DETECTION
There are various experimental methods to detect spin waves. Optical techniques such
as Brillouin light scattering (BLS) [73] and magneto-optical Kerr microscopy [74, 75] al-
low table-top imaging of broadband spin waves at picosecond timescales with a diffraction-
limited spatial resolution set by the wavelength of the photons. X-ray scattering at syn-
chrotron facilities uses radiation with nanometer wavelengths, providing a view on spin
waves with nanoscale wavelengths [76]. In this thesis, we detect spin waves using elec-
trical spectroscopy measurements and NV magnetometry.

2.3.1. NV MAGNETOMETRY OF SPIN WAVES
NV magnetometry could in principle provide nanoscale resolution in a table-top setup
over a wide temperature range [8, 77, 78]. To this end, a single NV center is integrated
in an atomic force microscope (AFM) and scanned over a sample of interest, while read-
ing out its photoluminescence [79]. We use a different measurement geometry, in which
we place a diamond membrane containing a near-surface NV layer directly on top of a
sample (see the cover of this thesis) and readout the photoluminescence by scanning
the excitation laser over the diamond surface. This enables diffraction-limited imaging
of spin waves using a confocal microscope setup (Fig. 2.1d).

Compared to optical techniques, NV magnetometry has the advantage that it enables
quantitative imaging of DC and gigahertz magnetic-field profiles by monitoring the spa-
tial dependence of the ESR and Rabi frequency. It also allows imaging of magnetization
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patterns that are hidden underneath optically opaque materials [29].

In the lab frame with the equilibrium magnetization pointing in the plane along x, the
stray magnetic field above a magnetic film with thickness t generated by a spin wave is
given by [6, 13]

BSW,z (z;k) = µ0Ms

2
e−kz (1−e−kt )

(−mz (k)+ i sinφmy (k)
)

= B 0
SWmy (k)i

(
η+ sinφ

)
,

BSW,y (z;k) = µ0Ms

2
e−kz (1−e−kt )

(
i sinφmz (k)+ sin2φmy (k)

)
= B 0

SWmy (k)
(
ηsinφ+ sin2φ

)
,

BSW,x (z;k) = µ0Ms

2
e−kz (1−e−kt )

(
i cosφmz (k)+ 1

2
sin(2φ)my (k)

)
= B 0

SWmy (k)

(
ηcosφ+ 1

2
sin(2φ)

)
.

(2.39)

Below the film the spin-wave field is given by the complex conjugate of the first expres-

sion. In the second expression we substituted mz = −iηmy and B 0
SW = µ0Ms

2 e−kz (1 −
e−kt ). Using sinφ= ky /k and cosφ= kx /k, we find

BSW,y =−i (ky /k)BSW,z ,

BSW,x =−i (kx /k)BSW,z .
(2.40)

Clearly, the field is circularly polarized in the y z plane for Damon-Eshbach spin waves
(k = ky ) and in the xz plane for backward volume spin waves (k = kx ), with opposite
handedness for opposite wavevectors.

The spin waves generate an evanescent field with a transverse spin angular momentum,
since the axis around which the polarization rotates is perpendicular to the propaga-
tion direction [80, 81]. In contrast, free-space photons only have a longitudinal spin
component with an electromagnetic field oriented perpendicular to the propagation di-
rection [82]. Electromagnetic fields with transverse spin can exist (i.e., obey Maxwell’s
equations) when light is spatially confined, for instance in plasmonic systems [83] or
photonic crystal waveguides [84, 85]. A similar confinement is established by spin waves,
as the spin-wave wavelength (∼micrometers) is much smaller than the wavelength of
free-space microwave radiation (∼millimeters).

The ESR transitions of NV centers are driven by circularly-polarized fields in the plane
perpendicular to the NV axis (Eq. 2.4). Compared to the lab frame, the NV coordinate
frame is rotated around y by θNV = 35.3◦, such that the NV axis is parallel the x ′ axis. Even
though a static bias field is applied along the NV axis in our experiments, the magnetiza-
tion points approximately along x as it is pushed in the plane by the demagnetizing field



2.3. SPIN-WAVE DETECTION

2

29

z

x

y

x

x-k
k

a

yk

y-k

θNV

M

NV

magnet

microstrip
y-k y+k

z

y

b Damon-Eshbach geometry

Figure 2.7: Momentum-locked handedness of the spin-wave field. (a) Sketch of the spin-wave magnetic field
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low rectangle). Due to the momentum-locked chirality of the drive field elliptically-polarized Damon-Eshbach
spin waves are more efficiently excited in the positive y direction. For opposite wavevectors the field has an
opposite handedness and is larger at opposite sides of the magnetic film.

(Fig. 2.7a). In the NV frame, the spin-wave magnetic fields are thus given by

BSW,z ′ = BSW,z cosθNV −BSW,x sinθNV,

BSW,y ′ = BSW,y ,

BSW,x′ = BSW,x cosθNV +BSW,z sinθNV,

(2.41)

where the expressions for the spin-wave field in the lab frame are given by Eqs. 2.39.
Therefore, when driving the |0〉↔ |±1〉 ESR transition, the Rabi frequency caused by the
spin-wave magnetic field is given by

Ω∓
R = γp

2
|BAC, z ′ ± i BAC, y ′ | = γp

2
|BSW,z cosθNV −BSW,x sinθNV ± i BAC, y |. (2.42)

By substituting the expressions for the spin-wave fields into Eq. 2.42, we obtain a few
interesting cases (Fig. 2.7a).

1. Backward volume spin waves.
For φ= 0 and φ=π the spin-wave wavevector is parallel to the magnetization and
the spin-wave driven Rabi frequency is given by

Ω∓
R = | γp

2
B 0

SWmy (k)η|. (2.43)

Clearly, both |0〉 ↔ |±1〉 ESR transitions are driven equally. This is expected, since
the projection of the circularly-polarized field generated by backward volume spin
waves is a linearly-polarized field in the plane perpendicular to the NV axis, which
can be decomposed in two counter-rotating fields that each drive an ESR transi-
tion.
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2. Damon-Eshbach spin waves.
Damon-Eshbach spin waves are called "surface spin waves" [86, 87], as their am-
plitude decays exponentially with depth, such that in thick magnetic films they are
confined to either the upper or lower surface depending on their propagation di-
rection. Even though in practice the surface confinement can be neglected when
the spin-wave wavelength is much larger than the film thickness, Damon-Eshbach
spin waves are said to be "chiral", meaning that their chirality index Z is fixed and
always equal to 1 [81]

Z = n̂ · (M̂ × k̂) = 1. (2.44)

Here, M̂ indicates the unit static magnetization direction, k̂ the unit spin-wave
wavevector and n̂ is the unit normal of the surface that the spin wave is con-
fined to. As a result of the chirality, circularly-polarized Damon-Eshbach spin
waves generate only a magnetic field at one side of the film depending on the
spin-wave momentum and magnetization direction (the transverse magnetiza-
tion corresponds to a Halbach array [88]). Therefore, the Rabi frequency induced
by Damon-Eshbach spin waves (φ = ±π/2) strongly depends on the sign of its
wavevector. We consider both cases separately below.

• φ=π/2 (positive ky)
The Rabi frequency is given by

Ω∓
R = | γp

2
B 0

SWmy (k)(η+1)(cosθNV ±1)|. (2.45)

If the NV would be only sensitive to fields in the z y-plane (θNV = 0), only the
|0〉 ↔ |−1〉 transition is driven. The field does not couple to the |0〉 ↔ |+1〉
due to its chirality. The Rabi frequency decreases when the spin precession
becomes more elliptical.

• φ=−π/2 (negative ky)
The Rabi frequency is given by

Ω∓
R = | γp

2
B 0

SWmy (k)(η−1)(cosθNV ∓1)|. (2.46)

In this case only the |0〉↔ |+1〉 transition is driven for θNV = 0, since the chi-
rality of the field has reversed. Also the field entirely disappears for circularly-
polarized spin waves (η= 1). These spin waves only produce a magnetic field
below the film. The missing mode overlap of the magnetic fields generated
by counterpropagating Damon-Eshbach spin waves is expected to give rise to
backscattering immunity [36, 89]. Elliptically-polarized spin waves also con-
tain a clockwise precessing spin component (in addition to the usual coun-
terclockwise component), which generates a field with opposite handedness
above the film that drives the |0〉↔ |+1〉 transition (Fig. 2.7b).
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sensitive imaging by letting the spin-wave field interfere with a spatially-homogeneous reference field (in this
sketch, the field of the excitation stripline). The interference results in a standing-wave in the magnitude of
microwave field above the film, which is imaged by NV sensors. Figure is adapted from [90].

Summarizing, Damon-Eshbach spin waves drive the NV |0〉↔ |−1〉 ESR transition
only efficiently at the one side of a stripline [91], as a combined result of

(a) the asymmetric spin-wave excitation efficiency of the stripline drive field,

(b) the momentum-locked handedness of the spin-wave field,

(c) the confinement of the spin-wave field above and below the magnetic film.

Although the phase of the spin-wave field BSW changes in space with the spin-wave
wavelength (according to Eqs. 2.39, BSW ∝ my (k) ∝ e i k·r, with r the real-space vector),
the Rabi frequency does not allow imaging the spin-wave wavefronts since it is only sen-
sitive to the magnitude of the drive field. In our experiments we obtain a finite phase
contrast by letting the spin-wave field interfere with a reference field BREF that has a
constant phase in space [13, 36]. The stripline drive field can serve as a reference field
(Fig. 2.8), but it decays inversely on the scale of the stripline width, preventing phase-
imaging over large areas. By sending microwaves through a bonding wire spanned over
the sample a large-area reference field can be created, as is done in chapter 3.

2.3.2. PROPAGATING SPIN WAVE SPECTROSCOPY
Measurements of the spin-wave-mediated microwave transmission between two striplines
can provide insight in the spin-wave dispersion without requiring an optical setup [57–
62]. Such electrical spectroscopy measurements can complement NV magnetometry
measurements by providing an estimate for the expected spin-wave wavelength at the
ESR frequencies. For these measurements two parallel striplines are fabricated on top
of a magnet and connected to the ports of a vector network analyzer (VNA, Fig. 2.9a).
This device performs a lock-in measurement of the microwave transmission between
the striplines by sweeping the frequency of a microwave voltage V1 at port 1 and mea-
suring the phase and amplitude of the retrieved signal V2 at port 2.

Even when the microstrips are not physically connected, a finite microwave voltage V2 =
Σ is detected due to the parasitic inductive and capacitive coupling between the striplines.
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The detected voltage changes when the microwave frequency becomes resonant with
spin-wave modes in the magnet. The magnetic field generated by the microwaves in the
first stripline excites spin waves that propagate towards the second stripline, where their
oscillating magnetic fields inductively induces a voltage σ. Spin waves with wavevec-
tors perpendicular to the striplines generate the largest voltages, since the efficiency of
both the inductive excitation and detection are proportional to the Fourier amplitude of
the stripline magnetic field at the spin-wave wavevector (Eq. 2.30, Fig. 2.6a). Typically
the largest signal is obtained in the Damon-Eshbach configuration with the bias field
oriented such that the direction of efficient spin-wave excitation is towards the second
stripline [62]. The spin-wave-induced microwave voltage σ interferes with the voltage
generated by the direct parasitic coupling Σ, resulting in oscillations in the frequency-
dependent microwave transmission.

The interference can best be understood using a phasor representation of the parasitic
and spin-wave microwave voltages (Fig. 2.9b). Each voltage {Σ,σ} is represented by a
vector in the complex plane, where the length {Σ0,σ0} and angle {Θ,θ} of the vector cor-
responds to the amplitude and phase of the voltage, respectively. The length of the vector
sum of both components gives the normalized microwave transmission |S21| measured
by the VNA

|S21| = |V2

V1
| = |Σ+σ

V1
| = 1

V1
|Σ0e iΘ+σ0e iθ|, (2.47)

in which we defined V1 to be real and positive in the last step. As the parasitic coupling
is typically large compared to the spin-wave signal, we represent it as a long vector along
the positive real axis. The spin-wave signal is a small vector pointing in an arbitrary di-
rection, since its phase is generally different than that of the parasitic signal.

When the microwave frequency ω is swept by the VNA, the phase of the parasitic signals
changes due to the changing microwave wavelength λMW in the cables connecting the
striplines, according to

Θ∝ 2π
L

λMW
∝ ω

c
L, (2.48)

where c is the speed of light and L is the electric length between the VNA ports. The
spin-wave-mediated microwave signal experiences the same phase shift, such that the
changing microwave wavelength does not influence the relative phase between both sig-
nals and therefore it does not change the interference. In contrast, the changing spin-
wave wavelength λSW with frequency (Eq. 2.17) leads to a different spin-wave phase at
the position of the second stripline without changing the phase of the parasitic signal.
Therefore, the phase of the spin-wave signal has two contributions

θ∝ 2π
L

λMW
+2π

s

λSW(ω)
(2.49)

where s is the separation distance between the striplines. The measured microwave
transmission is thus proportional to

|S21|∝ |Σ0e
i
(
2π L

λMW

)
+σ0e

i
(
2π L

λMW
+2π s

λSW

)
| = |Σ0 +σ0e

i 2π s
λSW(ω) |. (2.50)
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Figure 2.9: Propagating spin wave spectroscopy (a) Sketch of the experimental setup (not to scale). Gold
striplines (SL) are e-beam patterned and evaporated onto a magnet (in this figure, YIG) and wirebonded to
a printed circuit board (PCB). The striplines are U-shaped to minimize the parasitic coupling. Each stripline
is connected at one side to a port of a vector network analyser (VNA, Keysight, P9372A) using non-magnetic
SMPM connectors (Amphenol RF, 925-169J-51PT), while the other side is 50 Ohm terminated (G). The mi-
crowave transmission is amplified (A, +20 dB, Minicircuits, ZX60-83LN-S+) and detected by VNA port 2. The
static in-plane bias field is swept using two cylindrical magnets (Supermagnete, S35-20-N) on computer-
controlled translation stages (range: 25 mm, Thorlabs, MTS25-Z8). (b) Phasor diagram of the microwave
transmission. The measured |S21 | is the norm of the vector sum of the parasitic coupling (Σ) and the spin-
wave-mediated transmission (σ). Due to the changing spin-wave wavelength, the phase of the spin-wave
signal changes with respect to parasitic signal when sweeping frequency by ∆ f , resulting in fringes in the
microwave transmission every time another wavelength fits between the striplines (c). (d) Example of the mi-
crowave transmission spectrum measured at 30 mT bias field in the Damon-Eshbach configuration on YIG
using striplines with length 300 µm, width 5 µm, height 200 nm, and center-to-center distance s = 200 µm.
The spin-wave fringes start at the bottom of the zeroth-order perpendicular mode Damon-Eshbach band (in-
dicated by the star), which is analytically calculated in (e). At the crossing between the zeroth and first perpen-
dicular band (indicated by the arrow), the spin-wave signal disappears as a result of efficient scattering into
the first perpendicular mode.
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Effectively, the spin-wave vector rotates as a function of frequency, while the parasitic
coupling vector remains the same (Fig. 2.9b). A full rotation is made every time an extra
wavelength fits in between the two microstrips (Fig. 2.9c), corresponding to a change of
the spin-wave wavevector by

∆k = 2π

s
. (2.51)

The phasor rotations are detected as frequency-dependent fringes in the absolute value
of the microwave transmission (Fig. 2.9d) and give insight in the spin-wave dispersion
(Fig. 2.9e). Since each fringe corresponds to a wavevector change ∆k, the spin-wave
group velocity vg can be determined from the frequency spacing ∆ f = ∆ω

2π between con-
secutive fringes

vg = ∂ω

∂k
≈ ∆ω
∆k

=∆ f s. (2.52)

The spin-wave dispersion can be reconstructed from the frequency-dependence of the
measured group velocity, as we demonstrate in chapter 5. In practice, the spin-wave
fringes are best visualized by substracting the absolute microwave transmission with-
out spin-wave-mediated transmission, for instance by applying a large enough bias field
such that the microwave frequencies of interest lie inside the spin-wave gap.

2.4. EXCITON THEORY
In addition to spin waves, we study a second kind of excitations called excitons, which
are bound states of electrons and holes in semiconducting materials. As discussed in
section 1.3, excitons have recently been proposed as information carriers in valleytronic
devices, where information is stored in the valley index of the excitons. In 2012 it was pre-
dicted that excitons in two-dimensional semiconductors give rise to a valley-dependent
magnetic moment that should be measurable with NV magnetometry [92]. The idea is
that circularly polarized light induces a magnetization by exciting excitons in one valley,
which generates a magnetic field that can be detected with NV centers. Imaging of the
excitonic magnetic field could give insight in the spatial distribution and dynamics of
excitons at the nanoscale. In this thesis we focus on excitons in atomically-thin tungsten
disulfide (WS2) layers and take the first steps towards detecting the magnetic moment of
excitons with NV sensors.

2.4.1. VALLEY POLARIZATION IN TMD MONOLAYERS
Transition metal dichalcogenides (TMD) are semiconducting materials of the type MX2,
with M a transition metal atom (e.g., Mo, W) and X a chalogen atom (e.g, S, Se) [93, 94].
They are van-der-Waals materials that can be thinned down to the monolayer limit us-
ing scotch-tape exfoliation. The crystal lattice of TMD monolayers has a honeycomb
structure similar to graphene with a broken inversion symmetry (Fig. 2.10a). Graphene
is a semi-metal with a bandstructure that is characterized by two Dirac cones near the
Fermi level [95]. In contrast, the broken inversion symmetry opens a direct bandgap in
TMD monolayers [96, 97], allowing efficient excitation of electrons using light. Further-
more, the electrons acquire a finite effective mass [92], such that the dispersion becomes
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cell similar to graphene. However, parity symmetry is broken in these materials, since atoms of type M are
mapped onto atoms of type X2 upon inversion. (b) Sketch of the TMD monolayer bandstructure, which con-
sists of two valleys with a bandgap near the Fermi level. Electrons (e−) are near-resonantly excited to the
conduction band in the K valley by σ+ circularly-polarized photons (λ = 594 nm), leaving a hole (h+) in the
conduction band. The electrons and holes form excitonic bound state, which scatter between the valleys at
a rate Γiv. Upon recombination excitons in the K(’) valley emit photons with polarization σ+(−), which pro-
vide insight in the steady-state valley polarization and are detected using a home-built microscope sketched
in (c). The first quarter-lambda plate (λ/4) corrects for imperfections in the laser polarization (Coherent, OBIS
594 nm) and makes it perfectly linear, such that the excitation polarization can be controlled by turning the
half-lambda plate (λ/2). A 10:90 beam splitter (R:T, Thorlabs) separates the excitation from the detection. The
polarization of the detection is controlled by the orientation of the second quarter-lambda plate relative to the
transmission axis of the polarizer. The objective (Olympus, 50X NA=0.95) focuses the laser and collects the pho-
toluminescence of the sample, which is positioned using an XYZ piezo stage (Mad City Labs, Nano-3D200FT).
Two longpass filters (Semrock, BLP01-594R-25) eliminate the laser reflection. Depending on the orientation
of a mirror on a computer-controlled flipmount (indicated by the V) the photoluminescence is detected by
an avalanche photodiode (APD, Laser Components) or spectrometer (Andor, Kymera 193 spectrograph with an
air-cooled, front illuminated Andor, iVac 324 CCD detector). Before the emission is detected by the APD, it is
filtered with a pinhole and bandpass filter (Semrock, FF01-623/32-25).

parabolic near the Fermi level and thus the bandstructure is characterized by two "val-
leys", labelled K and K’ (Fig. 2.10b).

The broken lattice symmetry also allows electrons to have a finite valley-dependent Berry
curvature [92, 94] and enables valley-selective excitation of electrons using circularly po-
larized light, such that left (right) polarized photons excite electrons to the conduction
band of the the K(’) valley [98–100]. The hole left behind in the valence band attracts the



2

36 2. THEORETICAL AND EXPERIMENTAL FRAMEWORK

excited electron via the Coulomb interaction [93], resulting in the formation of bound
electron-hole states (excitons) that can stably exist even at room temperature.

Excitons in TMD monolayers have been proposed as next-generation information car-
riers [101, 102], in which a |0〉 or |1〉 corresponds to an excitons being either in the K or
K’ valley. A crucial requirement for realizing valley-electronic ("valleytronic") devices are
long-lived, valley-polarized excitons. This is challenging, since valley-polarized excitons
are typically rapidly redistributed over both valleys by intervalley scattering [98, 103].

In chapter 6 we develop a new technique to maintain a large steady-state valley polariza-
tion in WS2 monolayers at room temperature after exciting electrons in one valley with
circularly polarized light. Physisorption of anisole molecules increases the electron den-
sity in the monolayer, such that valley-polarized excitons rapidly capture an additional
electron after being created. As such, a new exciton complex is created comprising two
electrons and one hole [104, 105]. These negatively-charged trions have a strongly re-
duced lifetime compared to charge-neutral excitons [106]. This is the result of enhanced
recombination via charged lattice defects [107] and Auger recombination [108–110], in
which the energy associated to electron-hole pair is released non-radiatively by convert-
ing it into kinetic energy of the excess electron. We show that electron doping can reduce
the exciton lifetime below the intervalley scattering time, such that a finite valley polar-
ization is obtained.

The steady-state valley polarization is measured through optical circular dichroism mea-
surements [103] (Fig. 2.10c). In these experiments excitons are excited by circular po-
larized laser light, while the polarization of their photoluminescence is analyzed. Upon
recombination excitons emit circularly polarized photons with a handedness depending
on the exciton valley, such that a finite valley polarization ρ results in polarized exciton
photoluminescence, according to

ρ = Iσ+ − Iσ−

Iσ+ + Iσ−
, (2.53)

with the Iσ± the left/right circularly-polarized emission under σ+ excitation.

2.4.2. TOWARDS NV MAGNETOMETRY OF EXCITONS
Excitonic valley polarization could potentially also be detected using NV magnetome-
try. The valley-dependent Berry curvature induces a self-rotation of electrons in the
unit cell, which effectively acts as a magnetic moment with a sign depending on the
valley-index [92, 111]. Previously the valley magnetic moment was detected optically
via the valley Zeeman effect [112, 113], electrically via the valley Hall effect [114] (which
can also be induced by applying uniaxial stress [115]), and optomechanically using sus-
pended TMD monolayers [116]. By detecting the magnetic stray fields generated by
valley-polarized excitons using NV centers, the valley polarization can be probed with
nanoscale resolution while the excitons are excited.

In an experiment aimed to detect valley-polarized excitons it is crucial to maximize the
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magnetic-field sensitivity of the NV centers, since the optically-excited valley magneti-
zation is expected to be small. By turning the target field into a megahertz signal, for
instance by repeatedly switching the polarization handedness of the excitation laser, the
valley magnetic field could be detected using highly-sensitive pulsed AC magnetome-
try sequences [77]. Such sensing sequences have already allowed NV-based detection
of chiral Nernst photocurrents in TMD monolayers [117]. To detect the valley magnetic
moment it is crucial to realize a large steady-state valley polarization, which we achieve
in chapter 6. The induced valley magnetization is expected to be uniform over the area
excited by the laserspot, such that the largest magnetic fields are expected near sharp
boundaries, like the edges of the flake.
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MAGNETIC RESONANCE IMAGING

OF SPIN-WAVE TRANSPORT AND

INTERFERENCE IN A MAGNETIC

INSULATOR

Spin waves — the elementary excitations of magnetic materials — are prime candidate
signal carriers for low-dissipation information processing. Being able to image coherent
spin-wave transport is crucial for developing interference-based spin-wave devices. We in-
troduce magnetic resonance imaging of the microwave magnetic stray fields that are gen-
erated by spin waves as a new approach for imaging coherent spin-wave transport. We re-
alize this approach using a dense layer of electronic sensor spins in a diamond chip, which
combines the ability to detect small magnetic fields with a sensitivity to their polarization.
Focusing on a thin-film magnetic insulator, we quantify spin-wave amplitudes, visual-
ize spin-wave dispersion and interference, and demonstrate time-domain measurements
of spin-wave packets. We theoretically explain the observed anisotropic spin-wave pat-
terns in terms of chiral spin-wave excitation and stray-field coupling to the sensor spins.
Our results pave the way for probing spin waves in atomically thin magnets, even when
embedded between opaque materials.

This chapter has been published in Science Advances 6, eabd3556 (2020) by I. Bertelli, J. J. Carmiggelt, T. Yu,
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3.1. INTRODUCTION
Over the last few decades, the desire to understand and control spin transport, and to
use it in information technology, has invigorated the field of spintronics. A central goal
of the field is to provide information processing based on the spin of the electron instead
of its charge and thereby avoid the heating associated with charge currents. As heating
is currently the main obstacle for increasing computational speed, spin-based informa-
tion processing may provide the next transformative change in information technology.

Promising signal carriers for low-dissipation information transport are spin waves [1, 2]
— the collective spin excitations of magnetic materials. Spin waves exist even in electri-
cally insulating magnets, where they are able to propagate inherently free of the dissipa-
tive motion of charge. They can have nanometer wavelengths and gigahertz frequencies
well suited for chip-scale device technologies and interference-based spin-wave logic
circuits [2]. Consequently, a growing research field focuses on spin-wave devices such as
interconnects, interferometers, transistors, amplifiers, and spin-torque oscillators [3–7].

Being able to image coherent spin waves in thin-film magnets is crucial for develop-
ing spin-wave device technology. Leading techniques for imaging coherent spin waves,
such as transmission x-ray microscopy [8, 9], Brillouin light scattering [10], and Kerr mi-
croscopy [11], rely on a spin-dependent optical response of a magnetic material. Here,
we introduce a new approach: phase-sensitive magnetic resonance imaging of the mi-
crowave magnetic stray fields generated by coherent spin waves. We realize this ap-
proach using a layer of electronic sensor spins in a diamond chip as imaging platform
(Fig. 3.1A). These spins enable quantitative measurements of microwave magnetic fields
including their polarization, making the approach well suited for spin-wave imaging in
magnetic thin films.

Focusing on a ∼200-nm-thick magnetic insulator, we quantify spin-wave amplitudes, vi-
sualize the spin-wave dispersion, and demonstrate time-domain measurements of spin-
wave packets. We observe unidirectional emission of spin waves that autofocus, inter-
fere, and produce chiral magnetic stray fields with a handedness that matches that of
the natural precession of the sensor spins. We present a theoretical analysis of the chiral
spin-wave excitation and stray-field coupling to the sensor spins and show that it accu-
rately describes the observed spatial spin-wave maps.

We detect the magnetic fields generated by spin waves using electron spins associated
with nitrogen-vacancy (NV) lattice defects in diamond [12]. These spins can be initial-
ized and read out optically and manipulated with high fidelity by microwaves. Over the
last decade, NV magnetometry has emerged as a powerful platform for probing static
and dynamic magnetic phenomena in condensed matter systems [13]. Key is an NV-
sample distance tunable between 10 and 1000 nm that is well matched with the length
scales of spin textures such as magnetic domain walls, cycloids, vortices, and skyrmions
[14–16] as well as those of dynamic phenomena such as spin waves [17–21]. Recent ex-
periments demonstrated that NV magnetometry has the sensitivity required for imaging
the static magnetization of monolayer van der Waals magnets [22]. Here, we develop



3.2. RESULTS

3

49

NV-based magnetic resonance imaging into a platform for studying coherent spin waves
via the gigahertz magnetic fields that they generate.

3.2. RESULTS
Our imaging platform consists of a diamond chip hosting a dense layer of shallowly im-
planted NV spins. We position this chip onto a thin film of yttrium iron garnet (YIG) — a
ferrimagnetic insulator with record-high magnetic quality (Fig. 3.1A-B) [23]. The typical
distance between the diamond and the magnetic film is ∼ 1 µm (section 3.5.1). We ex-
cite spin waves using microwave striplines microfabricated onto the YIG. When the spin-
wave frequency matches an NV electron spin resonance (ESR) frequency, the oscillating
magnetic stray field BSW drives NV spin transitions [17, 19] that we detect through the
NV’s spin-dependent photoluminescence (Methods). By tuning the external static mag-
netic field B0, we sweep the NV ESR frequencies through the spin-wave band, thereby
probing spin waves with different wavelength (Fig. 3.1C).

We start by characterizing the NV photoluminescence as a function of B0 and the fre-
quency ωMW of a microwave drive current sent through the stripline, at a distance of
∼ 5 µm from the stripline edge (Fig. 3.1D). This microwave current not only generates
an oscillating magnetic field that drives ESR transitions of the NV spins directly but also
excites spin waves in the YIG film that can drive NV ESR transitions via their magnetic
stray field (Fig. 3.1A). The dips in the observed NV photoluminescence correspond to
the ESR frequencies of the NV spins in the diamond (Fig. 3.1D; Methods). We observe an
enhanced contrast for the ω− transition when B < B (2)

0 . In this region, the excited spin
waves efficiently drive the ω− ESR transition.

We image the spin waves excited by the stripline in the YIG film by characterizing the
contrast of the ω− ESR transition as a function of the distance to the stripline (Fig. 3.2A).
We do so by tuning the magnetic field such that the ω− frequency is 2.17 GHz, i.e.,
160 MHz above the bottom of the spin-wave band, thereby exciting spin waves in the
film. To gain the phase sensitivity required for detecting the individual wavefronts of
these propagating spin waves, we let their stray field interfere with an additional, ex-
ternally applied microwave magnetic field BREF that is spatially homogeneous and has
the same frequency (Methods). As formulated mathematically below, this interference
leads to a spatial standing-wave pattern in the total magnetic field that drives the NV
ESR transition with a spatial periodicity equal to the spin-wave wavelength. We can thus
rapidly visualize the spin waves by measuring the ratio between the NV photolumines-
cence with and without applied microwaves (Fig. 3.2A).

Quantifying the amplitude of a spin wave is a challenging task for any technique because
the coupling between spin wave and probe is often not well known. With NV magnetom-
etry, however, we accurately measure the microwave magnetic field generated by a spin
wave as described by Maxwell’s equations. We can therefore determine the amplitude
of a spin wave of known direction and ellipticity with high confidence by solving a well-
defined inverse problem.
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Figure 3.1: Imaging spin waves using NV spins in diamond. (A) A diamond hosting a layer of NV spins im-
planted at 20 nm below its surface is placed onto a film of YIG (thickness of 245 nm) grown on gadolinium
gallium garnet (GGG). The NVs detect the magnetic fields of stripline-excited spin waves. (B) NV-containing
diamond (thickness of ∼ 40 µm) on YIG with gold stripline. B0 is applied along the stripline at φ= 35◦ relative
to the sample plane, aligning it with one of the four possible NV orientations. (C) The NV ESR frequencies ω±
are swept over the Damon-Eshbach spin-wave dispersion (black line) by tuning B0. For any B (1)

0 < B (2)
0 , ω−

is resonant with spin waves of finite wavelength. At B0 < B (2)
0 , ω− is resonant with the ferromagnetic reso-

nance (FMR). (D) Normalized NV photoluminescence versus B0 and microwave drive frequency, measured at
∼ 5 µm from a 2.5 µm-wide stripline. Indicated are the electronic ground-state ESR transitions ω± (NVoff) of
the NVs aligned (not aligned) with B0. An electronic excited-state ESR transition (NVex) is visible because of
the continuous optical and microwave excitation and identified through its location at ω+/2 [12]. The FMR is
calculated from the independently determined saturation magnetization (section 3.5.2).
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To illustrate the concept, we formulate the magnetic stray field of a spin wave traveling
perpendicularly to the static magnetization (such as the one in Fig. 3.2B) in the reference
frame depicted in Fig. 3.1A with transverse magnetization

m⊥(y) = m0
⊥Re

{
e i (ky y−ωt )(ŷ− iηx̂)

}
(3.1)

where ky , ω, and η are the wave number, angular frequency, and ellipticity of the spin
wave, respectively; t is the time; and hats denote unit vectors. This spin wave produces
a magnetic stray field above the film that rotates in the x y plane (see section 3.5.3 and
[24]).

BSW(y) =−B 0
SWRe

{
e i (ky y−ωt )(ŷ+ i sgn(ky )x̂)

}
(3.2)

where B 0
SW = µ0m0

⊥
[
1+ sgn(ky )η

] |k|de−|ky |x0 /2, x0 is the NV-YIG distance, and d is the
thickness of the YIG film.

The handedness of BSW is opposite to that of m⊥ for a spin wave traveling to the right
(i.e., with ky > 0; as in Fig. 3.2B), which drives theω− (rather than theω+) NV spin transi-
tion (section 3.5.3). Moreover, the amplitude B 0

SW depends on the propagation direction
and degree of ellipticity η of the spin wave: Those traveling to the right (left) generate a
stronger field above (below) the magnetic film. Therefore, only the ω− transition of NV
centers to the right of the stripline in Fig. 3.2B is excited (section 3.5.3). The resulting NV
spin rotation rate (Rabi frequency) ωRabi is determined by the interference between the
spin-wave field and the reference field BREF

ωRabi =
p

2γ|B 0
SW cos2

(
φ

2

)
e i ky y −BREF| (3.3)

where φ = 35◦ is the angle with respect to (w.r.t.) the film of the NV centers used in
Fig. 3.2 and γ/2π= 28 GHz/T is the (modulus of the) electron gyromagnetic ratio. Fitting
the data in Fig. 3.2B by Eq. 3.3 (including a spatial decay; see section 3.5.3), we extract a
spin-wave amplitude m0

⊥ = 0.033(1) Ms at the location of the stripline and a decay length
of 1.2(1) mm, corresponding to a Gilbert damping parameter 1.2(1) ·10−4, which is simi-
lar to the typically reported 1 ·10−4 for films of similar thickness [25].

By tuning the externally applied magnetic field, we sweep the NV ESR frequency through
the spin-wave band and access spin waves with different wavelengths (Fig. 3.3A), as
schematically described in Fig. 3.1C. In Fig. 3.3A-B, we visualize the individual spin-wave
fronts using the interference between the direct stripline field and the stray field of the
propagating spin wave. We extract the spin-wave dispersion from the frequency depen-
dence of the wavelength (Fig. 3.3C). This dispersion matches the one calculated using
values of the saturation magnetization Ms and film thickness d determined by indepen-
dent measurements (section 3.5.2).

Travelling spin-wave packets can be used for pulsed quantum control of distant spins
such as those of the NV centers [19, 20]. Understanding the distance-dependent re-
sponse of the spins to an applied control sequence requires knowledge of the spin-wave
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Figure 3.2: Imaging coherent spin waves. (A) Spatial ESR contrast at B0 = 25 mT when a spin wave of fre-
quency ωSW = ω− = 2π× 2.17 GHz is excited by a microwave current in the stripline (length of 2 mm, width
of 30 µm, and thickness of 200 nm) at the left image edge. The NV photoluminescence with applied mi-
crowaves (PL) is normalized to that without applied microwaves (PL0). The NV-YIG distance at the stripline
was 1.8(2) µm, determined by measuring the field of a DC stripline current (section 3.5.1). Scale bar, 20 µm.
(B) Rabi frequency ωRabi/2π versus distance from the stripline. ωSW = ω− = 2π× 2.11 GHz, B0 = 27 mT. In
(A) and (B), the microwaves were split between the stripline and a bonding wire, located ≈100 µm above the
YIG and oriented along y to generate a spatially homogeneous field BREF, creating an interference pattern (see
text). Red line: Fit to a model including the field of the stripline, the bonding wire, and the spin waves (sec-
tion 3.5.3). Inset: Measurement sequence. Laser pulses (1 µs) are used to initialize and read out the NV spins.
Microwave pulses (duration τ) drive Rabi oscillations. ωRabi was calculated from the measured ωRabi,0 using

ωRabi =
√
ω2

Rabi,0 −∆2 to account for a ∆ = 2π× 1.5 MHz detuning between the drive frequency and the two

hyperfine-split ESR resonances caused by the 15N nuclear spin.

group velocity. We demonstrate a time-domain characterization of the spin-wave prop-
agation using pulsed control of the NV spins (Fig. 3.3D-E). In our measurement scheme
(Fig. 3.3D), the NV spins at a target distance from the stripline are prepared in ms = 0
using a green laser pulse. A spin-wave pulse (excited by the stripline) flips the NV spins
into the dark ms = −1 state only if it arrives either before or after a set of two reference
pulses acting on the 0 ↔ +1 transition (generated by a wire above the sample), result-
ing in low photoluminescence upon spin readout. In contrast, if the spin-wave pulse
reaches the NVs between the two reference pulses, then it does not affect the NV spins
because they are in ms =+1 due to the first reference pulse. The second reference pulse
subsequently flips the spin back to the bright ms = 0 state, resulting in high photolumi-
nescence upon spin readout. Measurements as a function of time between spin-wave
and reference pulses and distance from the stripline reveal the spin-wave packet in the
time domain and allow the extraction of the group velocity (Fig. 3.3E). We find a velocity
of 3.6(2) km/s at a frequency of 2.169 GHz and a wavelength of 12 µm, consistent with
the YIG spin-wave dispersion.

The 2-mm-long stripline used in Figs. 3.2 and 3.3 corresponds to an effectively one-
dimensional situation. We now turn to spin waves injected by a shorter stripline with
a length comparable to the scanned area (Fig. 3.4A). We observe a focused emission
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Figure 3.3: Spin-wave dispersion in the space and time domains. (A) NV Rabi frequency versus microwave
drive frequency and distance from the stripline. The feature at 2.2 GHz matches the first perpendicular spin-
wave mode (section 3.5.2). Inset: Measurement sequence. (B) Linecut of (A) with fit (red line) at 2.119 GHz.
(C) Blue dots: Spin-wave frequency versus wave number extracted from (A). Red line: Calculated spin-wave
dispersion. (D) Pulse sequence for studying spin-wave packets in the time domain [see text for details; data in
(E)]: Laser pulses (1 µs) are used for NV spin initialization and readout. Two reference (RF) π pulses separated
by 100 ns are applied at the 0 ↔+1 ESR frequency via a wire above the sample. After a time τ from the end of the
first RF pulse, a spin wave–mediated π-pulse (SW) is generated at the 0 ↔−1 ESR frequency. (E) Normalized
NV photoluminescence (PL) during the first 400 ns of the laser readout pulse [see (D)] versus distance from
the stripline and delay time π. Negative τ indicates a spin-wave packet generated before the first RF pulse. For
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at 360 µm, indicating a spin-wave group velocity of 3.6 km/s. Circles, data; colored surface, interpolation.
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pattern that is dominated by spin-wave beams traveling at specific angles (Fig. 3.4B-C).
Such "caustics" occur when the dispersion is strongly anisotropic [26, 27]. They can be
understood in terms of stationary points in the isofrequency curves in reciprocal space
(Fig. 3.4D). In optics, such an isofrequency curve kz = kz (ky ) is called "slowness" curve,
because it is perpendicular to the group velocity vg = ∇kω(k). The states for which the
angle of the group velocity θ = −arctan(dkz (ky )/dky ) is stationary along the curve, i.e.,
when dθ/dky ∝ d 2kz (ky )/dk2

y = 0, dominate emission, generating high-intensity spin-
wave beams. The external magnetic field and the drive frequency can tune the beam di-
rection and intensity [26, 27], providing opportunities to optimize the efficiency of spin
wave–mediated magnetic field driving of distant spins at target locations.

Last, we image the interference between spin waves excited by two adjacent striplines on
the YIG chip (Fig. 3.4, E and F), which shows rich interference patterns radiating from the
three crossing points of the main caustics (i.e., ∼ 80 µm from the striplines edge). The
strongly anisotropic spin-wave dispersion causes a triangular "dark" region between the
striplines in which no spin waves are detected, because spin waves traveling at small an-
gles with respect to the equilibrium magnetization direction or having large wave num-
bers are neither efficiently excited (when the wavelength is shorter than the half-width
of the stripline) nor efficiently detected due to the ∼ 1 µm NV-sample distance. The
downward directionality of the observed spin-wave patterns has two causes: The chiral
spin-wave field has the correct handedness to drive the ω− NV transition, and the hand-
edness of the stripline field excites downward-propagating spin waves more efficiently
(section 3.5.3). We note that these waves are not intrinsically directional because their
wavelength far exceeds the film thickness [28], in contrast with Damon-Eshbach surface
waves in thick films [29]. The observed directionality and interference patterns agree
well with linear response calculations of the nonlocal dynamic susceptibility and the
spatial profile of the microwave drive field, as described in section 3.5.3. These quanti-
tative measurements of the spin wave–generated rotating magnetic stray fields illustrate
the power of NV-based magnetic resonance imaging in magnonics.

3.3. DISCUSSION
Our results demonstrate that ensembles of NV spins in diamonds enable quantitative,
phase-sensitive magnetic imaging of coherent spin waves in thin-film magnets. A the-
oretical analysis explains the NV sensor signals in terms of the rotating stray fields gen-
erated by spin waves that are excited unidirectionally by the stripline magnetic field. In
contrast to other spin-wave imaging techniques, our technique images spin waves by
their microwave magnetic stray fields. This does not require a specific spin-photon or
spin-electron interaction and enables imaging spin waves through optically opaque ma-
terials. These capabilities provide new opportunities, e.g., for studying top-gated mate-
rials and the interaction of spin waves with magnetic and nonmagnetic materials placed
on top of a magnetic film, which play an important role for spin-wave excitation and
damping and form the basis for nonreciprocal devices [30]. NV magnetometry also al-
lows high-resolution imaging of electric currents [31], enabling spatial studies of the in-
teraction between spin waves and charge transport.
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Both the NV-sample distance and the optical resolution of our microscope limit the res-
olution of our technique. The typical NV-magnet distances are here 0.5 to 2 µm (lim-
ited by, e.g., dust particles), comparable to our diffraction-limited optical resolution.
Shallow NV centers in diamond chips that are wafer-bonded to (i.e., in direct contact
with) a magnetic sample should allow the detection of spin waves with wavelengths
comparable to the implantation depth of the NV centers of a few nanometers [32]—
albeit without phase sensitivity. This requires resonance between the spin waves and
the NV sensors, e.g., by tuning a magnetic field and/or magnetic anisotropies. This may
be difficult for magnetically hard materials. We can probe nonresonant spin waves by
detecting the Stark shift that they impart on the sensor spins [33] or by detecting in-
traband spin-wave transitions using NV spin relaxometry [34]. Phase-sensitive imaging
of spin waves with wavelengths below the diffraction limit could be enabled using spe-
cialized NV control sequences such as phase encoding schemes [35]. Furthermore, the
techniques presented here are directly transferrable to single-NV scanning probe micro-
scopes with real-space resolution on the 10-nm scale [36].

Our results pave the way for studying spin waves in other magnetic material systems
such as magnetic nanodevices and atomically thin magnets. NV magnetometry works
at cryogenic temperatures [37–39], allowing studies of magnets with low Curie temper-
atures such as complex oxide or van der Waals magnets. Because the dipole density per
unit area Msd = 3.6 · 103 µB/nm2 of the YIG film studied here is only about two orders
of magnitude above the 16 µB/nm2 of the monolayer van der Waals magnet CrI3 [22],
the magnetic stray fields generated by spin waves in such monolayer magnets are within
the sensitivity range of NV-based magnetic imaging. The sensitivity of our technique is
rooted in measuring the sum of a reference field and the spin-wave field. A good strategy
for measuring weak spin-wave fields is to apply a strong reference field and measure the
variations in the Rabi frequency caused by the spin-wave field, because Rabi frequency
variations of ∼ 100 kHz can easily be detected (the average error bar in Fig. 3.4 is 75 kHz).
We can further increase the sensitivity by applying a stronger reference field, which de-
couples the NV spin from noise sources [40]. Increasing the microwave drive current and
reducing the NV-sample distance (for instance, by depositing a van der Waals material
directly onto the diamond [41]) would further increase the detection capability.

3.4. MATERIALS AND METHODS

3.4.1. SAMPLE FABRICATION

The diamond samples used in this work are chemical vapor deposition (CVD)–grown,
electronic-grade type IIa diamonds (Element 6), laser-cut, and polished down to 2 mm
× 2 mm × 0.05 mm chips (Almax easyLab). These chips were cleaned with nitric acid,
and the top ∼ 5 µm were removed using inductively-coupled plasma (ICP) reactive ion
etching (30 min Ar/Cl, 20 min O2) to mitigate polishing damage. The chips were subse-
quently implanted with 15N ions at 6 keV with a dose of 1 ×1013 ions/cm2 (INNOViON),
tri-acid cleaned (mixture of nitric, sulfuric, and perchloric acid, 1:1:1), annealed at 800◦C
for 4 hours at 10−6 mbar, and tri-acid cleaned again to remove possibly graphitized lay-
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ers on the surface, resulting in an estimated density of NV centers of ∼ 1×1011 NV/cm2

at a depth of ∼10 to 20 nm.

The YIG films were 245 nm thick, grown on gadolinium gallium garnet (GGG) substrates
by liquid-phase epitaxy (Matesy GmbH). Before stripline fabrication, the YIG/GGG chips
were sonicated in acetone and cleaned for a few seconds in an O2 descum plasma to
remove contaminants. Striplines for spin-wave excitation were fabricated directly onto
the YIG films by e-beam lithography using a PMMA(A8 495)/PMMA(A3 950) double-layer
resist and subsequent e-beam evaporation of Cr/Au (5 nm/200 nm). To attach an NV-
containing diamond to the YIG film, a small droplet of isopropanol was deposited onto
the YIG, on top of which a diamond chip was placed, with the NV surface facing down.
The diamond chip was gently pressed down until the isopropyl alcohol had evaporated
[42]. The resulting NV-YIG distance was measured to be 1.8(2) µm (see Fig. 3.5).

3.4.2. MEASUREMENT SETUP

The optical setup used for all the measurements was a homebuilt confocal microscope.
A 515-nm laser (Cobolt 06-MLD) was used for optical excitation of the NV centers, fo-
cused to a diffraction-limited spot by an Olympus 50×, numerical aperture = 0.95 objec-
tive. The NV luminescence was collected by the same objective, separated from the ex-
citation light by a Semrock dichroic mirror and long-pass filter (617 nm cutoff), spatially
filtered by a pinhole, and detected using a single-photon counting module (Laser Com-
ponents). The microwaves signals used for driving NVs and spin waves were generated
using Rohde & Schwarz microwave generators (SGS100A). The reference field BREF used
to produce the interference pattern in Fig. 3.2 was generated by a wire located ∼ 200 µm
above the diamond and oriented perpendicularly to the stripline. To simultaneously
drive the pair of striplines in Fig. 3.4, the microwave excitation was split using a Mini-
Circuits power combiner (ZFRSC-123-S+). A National Instruments data acquisition card
was used for triggering the data acquisition, while a SpinCore programmable pulse gen-
erator (PulseBlaster ESR-PRO 500) was used to control the timing sequences of the laser
excitation, microwaves, and detection window. The photons were collected during the
first 300 to 400 ns of the laser readout pulse, which was kept fixed to 1 µs. All measure-
ments were performed at room temperature.

3.4.3. NV MAGNETOMETRY

The NV spins are initialized and read out using nonresonant optical excitation at 515 nm.
To measure NV spin rotations (Rabi oscillations), we first apply a ∼ 1 µs green laser pulse
to polarize the NV spin into the ms = 0 state. A subsequently applied microwave mag-
netic field resonant with an NV ESR frequency drives Rabi oscillations between the cor-
responding NV spin states (ms = 0 and −1 in Fig. 3.2B). The NV spin state is read out
by applying a laser pulse and measuring the spin-dependent photoluminescence that
results from spin-selective nonradiative decay via a metastable singlet state. The ESR
frequencies of the four NV families (Fig. 3.1D) in a magnetic field B0 are determined by
the NV spin Hamiltonian H = DS2

z+γB0 ·S, where γ is the electron gyromagnetic ratio, D
is the zero-field splitting (2.87 GHz), and S(i=x,y,z) is the Pauli spin matrices for a spin 1.
We apply the magnetic field B0 using a small permanent magnet (diameter, 1 cm; height,
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2 cm).

3.4.4. WAVELENGTH OF THE SPIN WAVES DRIVING NV RABI OSCILLATIONS

We excite spin waves at a frequency that matches the ω− ESR transition of the NV spins,
allowing us to detect the spin waves via the resulting NV Rabi oscillations. Hence, for
a given field B0 applied along the NV axis, the wave number of the spin waves driving
Rabi oscillations is determined by equating the NV frequency ω−/2π = D −γB0 to the
spin-wave frequency given by the spin-wave dispersion (eq. 3.14)

ω(B0,k)

γµ0Ms
=

√√√√(
B0 cosθ

µ0Ms
+αexk2 + 1−e−|ky |d

|ky |d

)(
B0 cosθ

µ0Ms
+αexk2 + k2

y

k2

(
1− 1−e−|ky |d

|ky |d

))
(3.4)

where k is the SW wave number; ky is its in-plane component perpendicular to the static
magnetization; µ0 is the magnetic permeability of vacuum; and Ms, αex = 3.0 ·10−16 m2,
and d are the YIG saturation magnetization, exchange constant [23], and thickness, re-
spectively.
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3.5. SUPPLEMENTARY MATERIAL

3.5.1. DETERMINATION OF THE NV-YIG DISTANCE

The distance x0 between the YIG surface and the NV sensing layer is an important pa-
rameter for the reconstruction of spin-wave amplitude from the detected field (Fig. 3.2).
We determined x0 by sending a DC current IDC through the stripline and characterizing
the resulting magnetic field BDC(x0, y) using the NV sensing layer. This field causes spa-
tially dependent shifts in the NV ESR frequencies (Fig. 3.5A-B) from which we can extract
x0 as described next. Considering an infinitely thin stripline of width w with its center at
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x = y = 0, the stripline field is given by

BDC(x0, y) = µ0IDC

2πw

(
1

2
ln

(
x2

0 + (y +w/2)2

x2
0 + (y −w/2)2

)
x̂ +arctan

(
w x0

x2
0 + y2 − (w/2)2

)
ŷ

)
(3.5)

To facilitate the analysis of the ESR spectra, we also applied a small bias field B0 to in-
crease the splitting of the 8 ESR transitions of the 4 NV families. From the total field
B = B0 +BDC, we calculate the ESR frequencies for the 4 NV families by diagonaliz-
ing the NV spin Hamiltonian H = DS2

z +γ(B∥Sz +B⊥Sx ), where B∥ is the projection of

B onto the NV axis and B⊥ =
√

B 2 −B 2
∥ . From the fit to this model (Fig. 3.5C), we ex-

tract B0 = (0.461(3), 3.568(3), 0.626(3)) mT, D = 2.872(1) GHz and x0 = 1.8(2) µm. For
the sample in Fig. 3.4 we used an alternative, optical method to determine the distance,
focusing the excitation laser first on the YIG surface and then on the NV layer, reading
off the change in the position of the microscope objective from its closed-loop piezo-
controller, measuring x0,Sample 2 = 1.0(3) µm.
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Figure 3.5: Determination of the YIG-NV distance. (A) Idea of the measurement. The diamond is located
at a height x above the current-carrying stripline fabricated on the YIG. ESR spectra are measured along a
line perpendicular to the stripline. The current in the stripline generates a magnetic field (dashed black line),
causing a shift of the NV ESR frequencies. (B) NV ESR spectra measured along a line oriented perpendicularly
to the stripline (which is located between y = 0 and y = 30 µm). The eight dips in the photoluminescence (PL)
are caused by the ESR transitions of the four NV families having different orientations in the diamond crystal
lattice. (C) Stripline magnetic field in the NV layer corresponding to the values extracted from the fit.

3.5.2. DETERMINATION OF Ms AND THICKNESS OF YIG WITH VNA MEA-
SUREMENTS

The YIG saturation magnetization Ms and thickness d are important parameters for an-
alyzing the spin-wave dispersion. Here we describe the extraction of these parameters
using vector network analyzer (VNA) measurements.

We flip-chip a YIG chip on the central conductor of a coplanar waveguide (CPW) and
use a VNA to measure the microwave transmission S21 through the CPW as a function
of a magnetic field B0 applied in-plane and parallel to the central conductor of the CPW
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(Fig. 3.6 A). When the frequency matches the YIG FMR, energy is absorbed and S21 de-
creases. We extract Ms = 1.42(1) · 105 A/m by fitting the data with the Kittel equation
ω= γ√

B0(B0 +µ0Ms).

We determine the thickness of the YIG chip from the frequency of the first perpendicu-
lar standing spin-wave mode (PSSW) [43].To extract the frequency of the first PSSW, we
measure the spin-wave mediated transmission of microwaves between two striplines
using the VNA (Fig. 3.6B-C). The PSSW manifests as a small dip in the transmission (in-
dicated by the dashed black line in Fig. 3.6B and the black arrow in Fig. 3.6D). To extract
the thickness d , we calculate the PSSW frequency at each field for fixed Ms and different
values of the thickness using [44]. The best match is reached for d = 245(5) nm.
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3.5.3. EFFECT OF THE SPIN WAVE STRAY FIELD ON THE NV SPINS
In this section we derive the NV Rabi frequency due to the stray fields from spin waves ex-
cited in the YIG by a stripline carrying an oscillating current. In section 3.5.3 we present
the magnetization profile excited by the stripline magnetic field, based on the spin sus-
ceptibility of the YIG. In section 3.5.3 we provide the dipolar field generated by the mag-
netization oscillations at the NV centers and determine their Rabi frequency by eval-
uating the efficiency of the field in driving the NV spins, including the chirality of the
spin-wave field. In section 3.5.3, we extend the results obtained to the case of two ad-
jacent striplines and calculate the interference pattern. Our theoretical framework cap-
tures and explains several effects visible in the data, such as the spin wave focussing and
caustics beams, as well as the interference fringes.

MODEL AND PARAMETERS

We use the reference frame depicted in Fig. 3.1. Additionally, the length, width and thick-
ness of the stripline are referred to as l , w and δ, respectively, the thickness of the yttrium
iron garnet (YIG) film is d , and the NV-YIG distance is x0. The static magnetic field B0

is always applied at a φ= 35◦ angle with respect to the sample plane and parallel to the
striplines. Because B0 in the experiments of Figs. 3.2-3.4 does not exceed 27 mT, which
is much smaller than the YIG saturation magnetization µ0Ms ≈ 178 mT, the static mag-
netization of the film only tilts out of plane by a small angle B0 sinφ/(µ0Ms) ⪅ 5◦. We
therefore disregard the out-of-plane component of the static magnetizaton and mag-
netic field B0 in the calculations. We use the parameters w = 2.5 µm, δ = 200 nm,
l = 88 µm, d = 245 nm and x0 = 1 µm. The striplines in Fig. 3.4E-F are 110 µm apart
and driven with a phase difference of π.

MAGNETIZATION EXCITED BY A MICROWAVE STRIPLINE OF FINITE LENGTH

Stripline magnetic field Two striplines i = {1,2} carrying a current density Ji (r,ω) with
frequency ω generate the vector potentials [45]

Ai (r,ω) = µ0

4π

∫
dr′Ji (r′,ω)

e i k|r−r′|

|r−r′| , (3.6)

parallel to the direction of the current (the z-direction). µ0 is the vacuum permeability
and k =ω/c. Substituting the Weyl identity [46],

e i k
√

(x−x′)2+(y−y ′)2+(z−z ′)2√
(x −x ′)2 + (

y − y ′)2 + (z − z ′)2
= i

2π

∫
dky dkz

e i kx |x−x′|+i ky (y−y ′)+i kz (z−z ′)

kx
, (3.7)

where k =
√

k2
x +k2

y +k2
z (and hence kx =

√
k2 −k2

y −k2
z ), the Fourier components of the

magnetic field µ0(Hx , Hy )(i ) = (∂Az /∂y,−∂Az /∂x)(i ) in reciprocal space are

H (i )
x (x;ky ,kz ) = 2i Ji (ω)

e−i kx x

kx

e i kxδ−1

kx
sin

(
ky

w

2

) sin(kz li /2)

kz
e−i kz zi , (3.8)

H (i )
y (x;ky ,kz ) = 2i Ji (ω)

e−i kx x

kx

e i kxδ−1

ky
sin

(
ky

w

2

) sin(kz li /2)

kz
e−i kz zi , (3.9)
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where kx =
√

(ω/c)2 −k2
y −k2

z , zi are the z-coordinates of the centers of the striplines

and the total current is given by Ji wδ. The generated magnetic field is perpendicular to
the stripline axis, i.e. Hz = 0, and kx Hx (x;ky ,kz ) = ky Hy (x;ky ,kz ). Since l ≫ w , the mag-
netic field oscillates as function of kz with a short period of 4π/l , while it oscillates with
ky with a much longer period of 4π/w (Fig. 3.7A). For a frequency ω/(2π) ∼ 2 GHz, k0 ≡
ω/c = 4.19 rad/m with characteristic wavelengthλ0 = 2π/k0 = 0.15 m. The wavelength of

the excited spin waves is much smaller than this scale, indicating that
√

k2
y +k2

z ≫ω/c.

Thus, kx → i
√

k2
y +k2

z = iκ. With κδ≪ 1:

H (i )
x (x;ky ,kz ) =−2i Ji (ω)eκx e−κδ−1

κ2 sin
(
ky

w

2

) sin(kz li /2)

kz
e−i kz zi ,

H (i )
y (x;ky ,kz ) = 2Ji (ω)eκx e−κδ−1

κky
sin

(
ky

w

2

) sin(kz li /2)

kz
e−i kz zi . (3.10)
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Figure 3.7: Drive field and excited magnetization in reciprocal space. (A) x−component of the magnetic
field generated by the stripline in momentum space. (B)-(C) Resulting transverse magnetization amplitude,
for αG = 1× 10−4, ω = 2.29 GHz, µ0Ms = 0.178 T, and applied magnetic field B0 = 20 mT. Note the different
scales used for plotting |Mx | and |My |.

The magnetic field distribution in k-space is plotted in Fig. 3.7A for the sample dimen-
sions specified above, emphasizing the fast kz oscillations. A microwave excitation with
field components hx =±i hy is circularly polarized. The relation

Hx (x;ky ,kz ) =−i (ky /κ)Hy (x;ky ,kz ). (3.11)

implies that when
∣∣ky

∣∣ ≪ |kz |, |Hx | ≪
∣∣Hy

∣∣ , so the radiation is nearly linearly-polarized
along the ŷ-direction (in momentum space). On the other hand, when

∣∣ky
∣∣ ≫ |kz |,

Hx (x;ky ,kz ) →−i sgn(ky )Hy (x;ky ,kz ) is nearly right- (left-) circularly polarized for posi-
tive (negative) ky . The polarization-momentum locking of the stripline magnetic field is
responsible for the chiral pumping of circularly-polarized spin waves [24, 30, 47].

Excited magnetization The stripline magnetic field excites spin waves in the YIG film.
In the mixed position and momentum space, the dynamic magnetization M(x,k,ω)
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reads in linear response [24, 30, 47]

Mα(x,k,ω) = 1

d

∫ 0

−d
d x ′χαβ(x, x ′,k,ω)Hβ(x ′,k,ω) (3.12)

where we sum over repeated Cartesian indices α,β= {x, y, z}. γ is the electron gyromag-
netic ratio and the spin susceptibility reads [24]

χαβ(x, x ′,k,ω) =−γµ0Ms mk
α(x)mk∗

β (x ′)
1

ω−ωk + iΓk
. (3.13)

Here, mk
α(x) characterize the ellipticity of the magnetization precession associated with

the spin waves (see Eqs. 3.15 and 3.17), and Γk = 2αGωk is the Gilbert damping of the
spin waves with frequency ωk.

For the parameters of our experiments, the spin waves are in the dipolar-exchange regime
with strongly anisotropic dispersion. For the long wavelengths considered here, the
magnetization is homogeneous across the film thickness, which allows for an analyti-
cal treatment. The spin-wave dispersion for free magnetization boundary conditions
reads [24, 30, 47]

ωk = γµ0Ms

√[
ΩH +αexk2 +1− f (|ky |)

][
ΩH +αexk2 + (k2

y /k2) f (|ky |)
]
, (3.14)

where αex is the exchange stiffness,ΩH ≡ B0 cos(φ)/µ0Ms, and

f (|ky |) = 1− 1

|ky |d
+ 1

|ky |d
exp(−|ky |d).

At long wavelengths, mx and my are homogeneous across the film thickness and given
by

mx =
√

D+1

(D−1)
, my = i

√
D−1

(D+1)
, (3.15)

with

D =
1/2− (1/2)

(
1+k2

y /k2
)

f (|ky |)
ωk/(µ0γMs)− (

ΩH +αexk2
y +1/2

)+ (1/2)
(
1−k2

y /k2
)

f (|ky |)
. (3.16)

We define the ellipticity parameter

η= |mx |
|my |

= D+1

D−1
. (3.17)

In the dipolar regime, the spin waves precess elliptically. When k→ 0, f (|ky |) → 0, ωk →
µ0γMs

p
ΩH (ΩH +1) (corresponding to the FMR frequency), D →−1−2ΩH−2

p
ΩH (ΩH +1).

When ΩH → 0 with a small static magnetic field, D →−1−2
p
ΩH , |my | ≫ |mx |, leading

to a (nearly) linearly-polarized Kittel mode. When k is large, the exchange interaction
dominates and the spin waves are right-circularly polarized.
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We plot the calculated excited transverse magnetization amplitude in momentum space
in Fig. 3.7B-C with parameters similar to those in Fig. 3.4F, i.e. Ms = 1.42 · 105 A/m,
αG = 1×10−4, ω/2π = 2.29 GHz. The momentum distribution of the resonantly excited
spin waves reflects the hyperboles formed by the cut through the anisotropic spin wave
dispersion at the given frequency. The excitation becomes unidirectional when the spin
waves are circularly-polarized [24, 47], in which case only those with positive values of
ky are excited. Due to the YIG thickness much smaller than the wavelengths considered,
this chirality is not the intrinsic one of Damon-Eshbach surface modes, which exist only
in much thicker films

The real part of the inverse Fourier transform of Eq. 3.12 gives the observable spatiotem-
poral magnetization

Mα(ρ, t ) = 1

4π2

Ï
dke iρ·k−iωt Mα(x,k) (3.18)

with ρ= (y, z). Using this equation, we calculate a snapshot of the dynamic magnetiza-
tion when spin waves are driven by a stripline as in Fig. 3.4 (Fig. 3.8). We observe inter-
ference of spin waves with frequency ω. Triangular areas of weak and strong excitation
exist at the sides and in front of the stripline, respectively, with a spin-wave focus point
at the vertex of the latter triangle. These features can be understood from the anisotropy
of the spin-wave dispersion that leads to a critical opening angle of available spin-wave
momenta at a given frequency.
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Figure 3.8: Spatial profile of the excited magnetization. Spatial profile of the out-of-plane (A) and in-plane
(B) of the transverse magnetization oscillations excited by a single stripline, located at y = 0 between z/l =−0.5
and z/l =+0.5.

DIPOLAR FIELD AND RABI FREQUENCY

When the frequency of the magnetic stray field generated by a spin wave matches an NV
ESR frequency, it can drive Rabi rotations of the NV spin if it has a circularly polarized
component of the correct handedness. Here we describe the spin-wave induced Rabi
driving of the NV spins.
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Dipolar field generated by an oscillating magnetization The magnetic field generated
by a magnetization pattern can be calculated using Coulomb’s law [45]

Bβ(r, t ) = µ0

4π
∂β∂α

∫
dr′ Mα(r′, t )

|r−r′| . (3.19)

By substituting the magnetization from Eq. (3.18) and using the Coulomb integral∫
dr′

e ik·ρ′
f
(
x ′)

|r−r′| = 2π

k
e ik·ρ

∫
d x ′e−|x−x′|k f

(
x ′) , (3.20)

where k = |k|, we obtain the magnetic field above the film (x > 0) [24, 30, 47]

BSW,x (x,k, t ) = µ0

2
e−kx−iωt (1−e−kd )

(
Mx (k)− i

ky

k
My (k)

)
, (3.21)

with BSW,y (k) =−i (ky /k)BSW,x (k), and BSW,z (k) =−i (kz /k)BSW,x (k). Thus, when |kz | ≪
|ky |, BSW,y (k) = −i sign(ky )BSW,x (k), i.e. the polarization and momentum are locked.
BSW,(x,y) vanishes for negative ky when the spin waves are right circularly-polarized since
Mx (k)− i My (k)ky /k → 0 [24, 47]. The right-forward dipolar field is left-circularly polar-
ized.

In real space, the stray field generated by the spin wave is given by the real part of the
inverse Fourier transform

BSW(x,ρ, t ) = 1

4π2

Ï
e iρ·kBSW(x,k, t )dk. (3.22)

A snapshot of the spin-wave stray field at a distance x0 above the film is plotted in Fig. 3.9.
Since the distance to the film is much smaller than the relevant wavelengths, the interfer-
ence pattern of the spin waves is well resolved. We note that

∣∣BSW,z
∣∣ ≪ ∣∣BSW,x

∣∣ ,
∣∣BSW,y

∣∣
because the excited spin waves propagate almost perpendicular to the stripline. The
strong chirality (unidirectionality) is caused by both the stripline magnetic field (see in
Fig. 3.7) and the stray field from the spin waves [24, 30, 47]. All Cartesian vector compo-
nents exert a torque on the NV center spin, which is oriented at an angle to the film. The
dipolar field shows a focal point with large amplitude, which can be controlled by tun-
ing the magnetic field and stripline frequency, which could be interesting for spintronic
applications.

The field of a spin wave that is characterized by |kz |≪ |ky | (therefore k⊥M, correspond-
ing to a Damon-Eshbach geometry and an effectively one-dimensional configuration) is
given by (x > 0)

BSW(x,k, t ) =−µ0

2
e−kx−iωt (1−e−kd )My (k)

(
1+ sign(ky )η

)(
ŷ + i sign(ky )x̂

)
, (3.23)

where we used Mx =−iηMy . To arrive at the Eqns. 3.2 and 3.3, we calculate the field of
a traveling spin wave given by the real part of m⊥ = m0

⊥e i (k0 y−ωt )(ŷ − iηx̂). The Fourier
transform of the y-component is

My (ky ) = m0
⊥2πδ(ky −k0). (3.24)
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Substituting into Eq. 3.23 and taking the inverse Fourier transform, we get Eq. 3.2

BSW(y) =−Re[
µ0m0

⊥
2

e−|k0|x0 e i (k0 y−ωt )(1−e−|k0|d )(1+ sign(k0)η)(ŷ + i sign(k0)x̂)] (3.25)

=−Re[B 0
SWe i (k0 y−ωt )(ŷ + i sign(k0)x̂)] (3.26)
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Figure 3.9: Spatial profile of the dipolar field generated by spin waves. Snapshot of the stray field in real space
at t = 0 for a microwave driving with a frequency ω= 2.29 GHz and a stripline current of 0.7 mA at a distance
x0 above the film. The stripline is located at y = 0, z ∈ [−40,40] µm. The damping coefficient is αG = 10−4.

Calculation of the Rabi frequency The dynamic magnetic field generated by the spin
waves can induce transitions between the spin states of the NV center when its frequency
matches an NV ESR frequency as described by the NV spin Hamiltonian. We write the
dynamic part of the magnetic field as

BSW(y) = Re[(Bx x̂ +By ŷ +Bz ẑ)e−iωt ] (3.27)

In the local coordinates of the NV center, with the z ′-direction along the applied static
magnetic field (therefore along the NV axis), the field amplitudes becomes

Bx′ = Bx cosφ−Bz sinφ, (3.28)

By ′ = By , (3.29)

Bz ′ = Bz cosφ+Bx sinφ. (3.30)
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The Hamiltonian describing the NV spin dynamics is given by

HNV = DS2
z +γB′ ·S (3.31)

where S = (Sx ,Sy ,Sz ) are the Pauli matrices for a spin 1 and D/2π = 2.87 GHz is the
zero-field frequency. The two magnetic-dipole allowed transitions between the ms = 0
and the ms =±1 states are driven by magnetic fields of opposite handedness. When the
magnetic-field frequencyωmatches one of the NV ESR frequencies D±γB0, the NV spin
will Rabi oscillate between the corresponding ms = 0 and ms = ±1 states with a Rabi
frequency given by

ω±
Rabi =

γp
2

∣∣Bx′ ± i By ′
∣∣ . (3.32)

We use Eq. 3.32 to calculate the spin-wave induced Rabi frequency caused by the spa-
tial magnetization profile shown in Fig. 3.8. The Rabi frequency closely resembles the
spatial magnetization profile, including the presence of caustic beams and a focal point
(Fig. 3.10).
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Figure 3.10: Calculated spatial map of the Rabi frequency for a single stripline. (A) Rabi frequency calculated
from the dipolar field without the (small) direct contribution from the stripline at y = 0 and z/l ∈ [−0.5,0.5].
(B) Schematics indicating the emergence of caustic spin-wave beams and the "hot spot" where energy gets
focussed.

When the NVω− transition is driven by a resonant Damon-Eshbach spin wave with k0 >
0, we get

ω−
Rabi =

p
2γB 0

SW cos2 φ

2
. (3.33)

If the NV spin is also driven by a magnetic field that is given by Re[BREFe−iωt ], we get

ω−
Rabi =

γp
2

∣∣∣∣2B 0
SWe i k0 y cos2 φ

2
+BREF,x′ − i BREF,y′

∣∣∣∣ . (3.34)

from which follows Eq. 3.3. Including a damping parameter into Eq. 3.34, we fit the data
of Fig. 3.2B, from which we extract the spin-wave amplitude m0

⊥ (using the ellipticity
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parameter calculated with Eq. 3.17) and the spin-wave damping:

ω−
Rabi =

γp
2

∣∣∣∣2B 0
SWe i k0 y−y/y0 cos2 φ

2
+e iθBREF

∣∣∣∣ . (3.35)

Here, y0 is the spin-wave decay length from which the Gilbert damping parameter is ex-
tracted using y0 = vg/(2ωαG), with vg the group velocity, leading to αG = 1.2(1) · 10−4.
The main contribution to the uncertainty is caused by the uncertainty in the NV-YIG
distance, which we measured to be 1.8(2) µm (see section 3.5.1) at the location of the
stripline and which increases by about 0.4 µm/mm as estimated from the optical inter-
ference fringes visible in Fig. 3.1B (the distance change between two fringes is given by
λ0/2, with λ0 the wavelength of the light in air). Using Eq. 3.35, we also fitted the data
shown in Fig. 3.3B, with BREF given by Eq. 3.5.

EFFECT OF MAGNETIC FIELD MISALIGNMENT ON THE OBSERVED SPIN-WAVE PATTERNS

To explain the asymmetry along ẑ of the observed spin-wave patterns in Fig. 3.4, we
repeat the calculation of Fig. 3.4C with the introduction of a 5◦ misalignment between
the static field and the stripline (Fig. 3.11). The tilt is from the ẑ toward the −ŷ axis.

Rabi frequency (M
H

z)

0

10

20

20 µm

�0

Figure 3.11: Effect of a small angle between the stripline and the in-plane component of the static field B0.
Calculated spatial map of the Rabi frequency when the in-plane projection of the static field (B0) is oriented at
a 5◦ angle from the stripline.

INFLUENCE OF THE SPIN-WAVE PROPAGATION DIRECTION ON THE FIELD PROFILE

As previously explained (Eq. 3.32), right(left)-propagating spin waves generate a circularly-
polarized field with handedness that drives the ω− (ω+) transition. Moreover, for per-
fectly circular polarization, the right(left)-propagating waves only generate a field above
(below) the film, which can be simply explained by cancellation of the field contribu-
tions of neighbouring spins (Fig. 3.12). For elliptical polarization, the field suppression
is not complete.

INTERFERENCE BETWEEN SPIN WAVES GENERATED BY TWO ADJACENT STRIPLINES

Finally, we calculate the interference pattern generated by two striplines on the YIG film,
with centers separated by 200 µm. With l1 = 100 µm and l2 = −100 µm in Eq. 3.10 and
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kk

m �eld lines

Figure 3.12: Magnetic field generated by spin waves propagating to the left and right. The magnetic stray
field generated by a spin wave is the sum of the fields generated by the individual precessing spins in the
magnet. The phases of the spin waves traveling to the right interfere constructively/destructively above/below
the film, and vice versa for spin waves traveling to the left.

considering the π phase difference between the two striplines

Hx (x;ky ,kz ) =−2i J (ω)eκx e−κδ−1

κ2 sin
(
ky

w

2

) sin(kz l /2)

kz
(e−i kz z1 −e−i kz z2 ), (3.36)

Hy (x;ky ,kz ) = 2J (ω)eκx e−κδ−1

κky
sin

(
ky

w

2

) sin(kz l /2)

kz
(e−i kz z1 −e−i kz z2 ). (3.37)

By substitution into Eqs. 3.12 and 3.21, we obtain the Rabi frequencies of the NV center
in Fig. 3.13. The spin-wave interference is clearly reflected in the Rabi frequency.
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Figure 3.13: Calculated spatial map of the Rabi frequency induced by two adjacent striplines. We observe
interference of spin waves generated by two striplines located at y = 0 for z ∈±[0.5,1.5].
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4
BROADBAND MICROWAVE

DETECTION USING ELECTRON

SPINS IN A HYBRID

DIAMOND-MAGNET SENSOR CHIP

Quantum sensing has developed into a main branch of quantum science and technology.
It aims at measuring physical quantities with high resolution, sensitivity, and dynamic
range. Electron spins in diamond are powerful magnetic field sensors, but their sensitivity
in the microwave regime is limited to a narrow band around their resonance frequency.
Here, we realize broadband microwave detection using spins in diamond interfaced with
a thin-film magnet. A pump field locally converts target microwave signals to the sensor-
spin frequency via the nonlinear spin-wave dynamics of the magnet. Two complementary
conversion protocols enable sensing and high-fidelity spin control over a gigahertz band-
width, allowing characterization of the spin-wave band at multiple gigahertz above the
sensor-spin frequency. The pump-tunable, hybrid diamond-magnet sensor chip opens the
way for spin-based sensing in the 100-gigahertz regime at small magnetic bias fields.

This chapter has been submitted for publication by J. J. Carmiggelt, I. Bertelli, R. W. Mulder, A. Teepe, M.
Elyasi, B. G. Simon, G. E. W. Bauer, Y. M. Blanter, and T. van der Sar.
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4.1. INTRODUCTION
Electron spins associated with nitrogen-vacancy (NV) defects in diamond are magnetic
field sensors that provide high spatial resolution and sensitivity at room temperature [1,
2]. They have been used to study nuclear magnetic resonance at the nanoscale [3, 4],
bio- [5], paleo- [6], and solid-state magnetism [7], and electric currents in quantum ma-
terials [8, 9]. Most of these applications focus on detecting magnetic fields in the 0-
100 megahertz (MHz) frequency range, in which a toolbox of spin-control techniques
enables high sensitivity and a tunable detection frequency without requiring a specific
electron spin resonance (ESR) frequency [1]. In contrast, NV-based sensing in the mi-
crowave regime [1-100 gigahertz (GHz)] currently relies on tuning the ESR to the fre-
quency of interest using a magnetic bias field [10]. This bias field changes the proper-
ties of e.g. magnetic or superconducting samples under study [11, 12], for instance by
altering their excitation spectrum, which limits its application in materials science. Fur-
thermore, the field must be on the Tesla scale for operation in the 10-100 GHz range [13],
making the required magnets large and slow to adjust, precluding the small sensor pack-
aging desired for technological applications.

Here, we enable broadband spin-based microwave sensing by interfacing a diamond
chip containing a layer of NV sensor spins with a thin-film magnet. The central con-
cept is that the nonlinear dynamics of spin waves - the collective spin excitations of the
magnetic film [14] - locally convert a target signal to the NV ESR frequency under the ap-
plication of a pump field (Fig. 4.1A-B). We realize a ∼1-GHz detection bandwidth at fixed
magnetic bias field via four-spin-wave mixing, and microwave detection at multiple GHz
above the ESR frequency via difference-frequency generation. The pump-tunable detec-
tion frequency enables characterizing the spin-wave band structure despite a multi-GHz
detuning and provides insight into the nonlinear spin-wave dynamics limiting the con-
version process. Furthermore, the converted microwaves are highly coherent, enabling
high-fidelity control of the sensor spins via off-resonant drive fields.

Our hybrid diamond-magnet sensor platform consists of an ensemble of near-surface
NV spins in a diamond membrane positioned onto a thin film of yttrium iron garnet
(YIG) - a magnetic insulator with low spin-wave damping [14] (Fig. 4.1B). A stripline
delivers the “two-color” signal and pump microwave fields to the YIG film, in which
they excite spin waves at the signal and pump frequencies, fs and fp, respectively. The
frequency-converted microwaves at the ESR frequency fNV are detected by measuring
the spin-dependent NV photoluminescence under green laser excitation (Methods and
Fig. 4.1C). The ESR frequency is fixed by an external magnetic bias field BNV (Fig. 4.1D).

4.2. RESULTS
Our first detection protocol harnesses degenerate four-spin-wave mixing [15–20] - the
magnetic analogue of optical four-wave mixing (Fig. 4.2A). In the quasiparticle picture,
this process corresponds to the scattering of two “pump” magnons into a “signal” magnon
and an “idler” magnon at frequency fi = 2 fp − fs. This conversion enables the detection
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Figure 4.1: Detecting microwave magnetic fields using spins in diamond via on-chip spin-wave-mediated
frequency conversion. (A) Idea of the experiment. A “spin-wave mixer” uses a pump to convert a microwave
signal at frequency fs to an output frequency fNV that is detectable by nitrogen-vacancy (NV) sensor spins
in diamond. (B) Sketch of the setup. A diamond with NV centers implanted ∼ 10-20 nm below its surface is
placed onto a film of yttrium iron garnet (YIG, thickness: 235 nm). A microstrip delivers the signal and pump
microwaves, which excite spin waves in the YIG. Spin-wave mixing enables detection of the signal field by
converting its frequency to the NV electron spin resonance (ESR) frequency. Inset: Atomic structure of an NV
center in the diamond carbon (C) lattice. (C) Initialization and readout of the NV spins is achieved through
excitation by a green laser and detection of the red photoluminescence (PL). The PL is stronger in the ms = |0〉
state than in the ms = |±1〉 states. (D) NV spin energy levels in the electronic ground state. A magnetic field BNV
along the NV axis splits the ms = |±1〉 states via the Zeeman interaction. From the four possible configurations
in the diamond lattice, we use the NV orientation with in-plane projection parallel to the stripline. fNV denotes
the |0〉↔ |−1〉 ESR transition frequency.

of a microwave signal that is detuned from the ESR frequency, which would be other-
wise invisible in the optical response of the NV centers (Fig. 4.2B). By tuning the fre-
quency of the pump, we enable the detection of signals of specific microwave frequen-
cies (Fig. 4.2C).

We characterize the bandwidth of the four-wave-mixing detection scheme by measur-
ing the NV photoluminescence contrast as a function of the microwave signal frequency
and magnetic bias field. As in Fig. 4.2B, when the pump field is switched off, we only
detect signals resonant with fNV (Fig. 4.2D). In contrast, when the pump is switched on,
a broad band of frequencies becomes detectable (Fig. 4.2E). The bandwidth ∆ f of ∼ 1
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Figure 4.2: Microwave detection via four-spin-wave mixing and frequency combs. (A) Energy diagram of
four-spin-wave mixing. The signal at frequency fs stimulates the conversion of the pump to the idler at fNV. (B)
Normalized NV photoluminescence (PL) versus fs . Without pump (orange data), an ESR dip is only observed
when fs = fNV. With pump at fp = fNV + δ f /2 (blue data), a signal at fs = fNV + δ f becomes detectable.
(C) Tuning the pump (colored arrows) shifts the detectable signal frequency, observed through the shifting
ESR dips (matching colors). (D) Normalized NV PL vs fs and magnetic field in the absence of a pump. Only
signals at fNV (dashed black line) can be detected. Dotted black line: Frequency above which three-magnon
scattering limits the spin-wave amplitude [21]. White line: Ferromagnetic resonance (FMR) frequency. (E)
Applying a pump at fp = ( fs + fNV)/2 opens a detection window from the FMR up to the second node (dashed
red line) in the Fourier spectrum of the stripline field (Fig. 4.7). (Dashed) white line: Signal (Pump) drives
FMR. Black arrow: Line of reduced contrast caused by scattering into the first perpendicular standing spin-
wave mode [11]. (F) Spin-wave comb observed in the PL versus fs and fp. Data is normalized (Fig. 4.5). Upper
inset: Spectrum (sketch) illustrating the detection of idlers I-III (black: pump, orange: signal, blue: idlers).
Lower inset: Linecut along the small black line at the star in the main panel, showing idlers up to the tenth
order.

GHz is limited from below by the ferromagnetic resonance (FMR), the spatially homoge-
nous spin-wave mode below which spin waves cannot be excited in our measurement
geometry, and from above by the limited efficiency of our 5-micron-wide stripline to
excite high-momentum spin waves. As such, the bandwidth can be extended by using
narrower striplines or magnetic coplanar waveguides [22].

At 14 dBm signal and pump power, consecutive mixing processes generate higher-order
idler modes at discrete and equally spaced frequencies (Fig. 4.2F). Motivated by the suc-
cess of their optical counterparts in high-precision spectrometry [23], such “spin-wave
frequency combs” are of great interest because of potential applications in microwave
metrology [20, 24, 25]. We use the spin-wave comb to realize sensitivity to multiple mi-
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crowave frequencies by detecting the n-th order idler frequency,

f n
i = (n +1) fp −n fs (4.1)

when it is resonant with the ESR frequency (Fig. 4.2F, upper inset). An increasing number
of idler modes appears with increasing drive power (Fig. 4.6), such that at large powers
we resolve up to the n = 10th idler order (Fig. 4.2F, bottom inset). The shift of the idler
frequency is amplified by the integer n over the shift of the signal frequency (Eq. 4.1),
leading to a 1/n decrease in the linewidth of the NV ESR response [25] (Fig. 4.2F) and a
correspondingly enhanced ability to resolve closely spaced signal frequencies.

In addition to enabling off-resonant quantum sensing, the idlers also provide a resource
for off-resonant control of spin- or other quantum systems. The resolving of the NV’s
3-MHz hyperfine splitting in the idler-driven ESR spectrum (Fig. 4.3A) evidences the
high coherence of the microwave field emitted by the idler spin wave, implying that the
linewidth is determined by the drive rather than the spin-wave damping [25]. This allows
driving coherent NV spin rotations (Rabi oscillations) by pulsing the pump with varying
duration τ (Fig. 4.3B).

Remarkably, these Rabi oscillations respond to externally applied microwaves that are
detuned by hundreds of MHz from the ESR frequency (Fig. 4.3C). Such magnon-mediated,
off-resonant Rabi control is a new instrument in the toolbox of spin-manipulation tech-
niques, providing universal off-resonant quantum control with potential applications in
quantum information processing. The idler-driven Rabi frequency exceeds the signal-
induced AC Stark shift [26] by about an order of magnitude for the same off-resonant
signal power (Fig. 4.8). The decrease of the Rabi frequency with increasing detuning δ f
(Fig. 4.3C) is the combined result of a reduced spin-wave excitation efficiency at higher
frequency, because the stripline is less efficient in exciting spin waves with short wave-
lengths (Supplementary Information), and a reduced spin-wave scattering strength due
to the increasing momentum mismatch between signal and pump spin waves [17–19].

Since the Rabi frequency depends linearly on the idler amplitude [11], it provides insight
into the magnetization dynamics in the film. As expected, the idler amplitude initially
grows with increasing signal and pump power [15, 20], but then reaches a maximum and
starts to decrease (Fig. 4.3D). We attribute the decrease to Suhl instabilities of the second
type [16]: Both signal and pump modes decay into a pair of high-momentum magnons
beyond a certain threshold amplitude, which drains energy from the idler mode. This
interpretation is supported by a model of the four-wave interactions between the domi-
nant two idler modes, the signal and pump modes, and the two pairs of high-momentum
“Suhl” magnons (Figs. 4.9 and 4.10). The intermode coupling is induced by exchange and
dipolar interactions, as well as crystalline anisotropy, and follows from the leading-order
terms in the Holstein-Primakoff expansion [17]. Based on the interacting eight-mode
Hamiltonian we compute the steady-state dynamics of the idler mode as a function of
pump and signal power (Fig. 4.3E, Supplementary Information), which qualitatively re-
produces the observed power dependence in Fig. 4.3D.
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Figure 4.3: Off-resonant quantum control of NV spins via frequency conversion based on four-spin-wave
mixing. (A) Idler-driven NV ESR spectrum with the ESR frequency at fNV = 2.086 GHz and the pump at fp =
2.2 GHz. The narrow linewidth of the idler allows resolving the 3-MHz hyperfine splitting associated with the
15N nucleus. (B) Pulse sequence for driving coherent NV spin rotations (Rabi oscillations) with an off-resonant
signal field. The pulsed pump and continuous-wave signal generate a pulsed idler at fNV that drives Rabi
oscillations. (C) Optically-detected Rabi oscillations driven by the first-order idler mode for different detuning
δ f = fs − fNV. (D) Frequency of the idler-driven Rabi oscillations versus power of the pump ( fp = 2.2 GHz)
and signal ( fs = 2.314 GHz). The Rabi frequency initially increases with both signal and pump power, but
then decreases because of spin-wave instabilities. This non-monotonic behavior is reproduced by numerical
calculations of the normalized idler amplitude in (E) (details in the Supplementary Information).

Our second detection protocol relies on difference-frequency generation, which enables
down-conversion of GHz signals to MHz frequencies accessible to established quan-
tum sensing techniques [1]. The difference frequency is generated by the longitudinal
component of the magnetization under the driving of two spin waves of different fre-
quencies [27] (Fig. 4.4A). In contrast to the four-wave mixing protocol, the converted fre-
quency does not have to lie within the spin-wave band. By tuning the ESR frequency into
resonance with the difference frequency (Fig. 4.4B), we detect microwave signals that are



4.2. RESULTS

4

81

detuned by several gigahertz when fp − fs = ± fNV (Fig. 4.4C). Alternatively, AC magne-
tometry protocols can provide difference-frequency detection with enhanced sensitivity
at arbitrary bias [1]. We only observe ESR contrast when both fs and fp are above the
FMR (Fig. 4.4D), confirming that the conversion is mediated by spin waves in the YIG.
We anticipate the conversion process can also be applied in other magnetic materials
to characterize high-frequency magnetic band structures that would otherwise be out of
reach for NV magnetometry. Similar to Fig. 4.2E, the conversion is limited by the spin-
wave excitation efficiency, which explains the observation of the largest ESR contrast for
long-wavelength spin waves (i.e. just above the FMR).
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4.3. CONCLUSIONS
We demonstrate magnon-mediated, spin-based sensing of microwave magnetic fields
over a gigahertz bandwidth at fixed magnetic bias field. The frequency of the pump de-
termines the detection frequency, with a detection range that is limited only by the fre-
quencies at which spin waves can be excited efficiently. This range could be extended to
the 10-100 GHz scale using materials with a larger magnetization that increases the spin-
wave group velocity or crystal anisotropies that increase the spin-wave gap (Fig. 4.4E).
The four-spin-wave mixing process, spin-wave frequency combs and oscillations of the
longitudinal magnetization used in our protocols have already been observed in other
magnets, such as permalloy (Py), Fe, and CoFe [18–20, 28]. The increased spin-wave
damping in these materials compared to YIG reduces the spin-wave amplitudes, but this
is partially compensated by a larger saturation magnetization that increases the stray
fields.

The coherent nature of the frequency conversion enables coherent manipulation of solid-
state spins via off-resonant drive fields, as demonstrated here for spins in diamond. This
coherence allows combining with advanced spin-manipulation protocols such as het-
erodyne or dressed-state sensing [29–31] to further enhance the detection capabilities,
and opens the way for applications in hybrid quantum technologies [32]. Wide-field
readout of NV centers in a larger sensing volume would enhance the microwave sensi-
tivity, which is ultimately limited by thermal spin-wave noise. We envision the detection
of free-space microwaves using on-chip microwave-to-spin-wave transducers[33] such
as stripline resonators, and the characterization of local microwave generators such as
spin-torque oscillators by combining with a suitable magnetic material[34] and apply-
ing a pump field. Imaging of the spatial magnetization dynamics generated by spin-
wave mixing using scanning-NV magnetometry could provide insight into the spin-wave
dispersion and interactions with nanoscale sensitivity [2]. The demonstrated hybrid
diamond-magnet sensor platform enables broadband microwave characterization with-
out requiring large magnetic bias fields and opens the way for probing high-frequency
magnetic spectra of new materials, such as van-der-Waals magnets.

4.4. MATERIALS AND METHODS

4.4.1. EXPERIMENTAL SETUP

The NV photoluminescence is read out using a confocal microscope described in Ref. [11].
The NV-YIG chip and its fabrication were described in Ref. [21]. It consists of a 2x2x0.05-
mm3 diamond membrane with an estimated near-surface NV density of 103/µm2 placed
on top of a 235-nm-thick YIG film grown using liquid phase epitaxy on a 500-µm-thick
GGG substrate (Matesy GmbH). The diamond-YIG separation distance is ∼ 2 µm, lim-
ited by small particles (such as dust) between the diamond and the YIG surfaces. The
signal and pump microwaves are generated by two Rohde & Schwarz microwave sources
(SGS100A), combined by a Mini-Circuits power combiner (ZFRSC-123-S+, total loss: ∼
-10 dB) and amplified by an AR amplifier (30S1G6, amplification: ∼ 44 dB). All measure-
ments were performed at room temperature.
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4.4.2. NV MICROWAVE MAGNETOMETRY

The four NV-center families are sensitive to microwave magnetic fields at their electron
spin resonance (ESR) frequencies, which are determined by the magnetic bias field BNV

via the NV spin Hamiltonian H = DS2
z +γBNV ·S, with D = 2.87 GHz the zero-field split-

ting, γ= 28 GHz/T the electron gyromagnetic ratio and Si∈{x,y,z} the i th spin-1 Pauli ma-
trix. In this work, we align the field along one of the NV orientations, such that this “on-
axis” family has |0〉↔ |±1〉 ESR frequencies given by D±γBNV (with BNV = |BNV|). For the
other three “off-axis” families, the bias field is equally misaligned by ∼ 71◦ due to crys-
tal symmetry, leading to the ESR frequency plotted in Fig. 4B (labeled “Off-axis”). The
photoluminescence dips were recorded using continuous-wave microwaves and non-
resonant optical excitation at 515 nm. For the Rabi oscillations we first initialize the NV
spin in the |0〉-state via a ∼ 1-µs green laser pulse, then we drive the spin using an idler
pulse and finally we read out the NV photons in the first 300-400 ns of a second laser
pulse.

4.4.3. DATA PROCESSING

The data presented in Figs. 4.2F and 4.4D is normalized by the median of each row and
column (Fig. 4.5).
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Figure 4.5: Normalization procedure applied for Figs. 4.2F and 4.4D. (A) Raw photoluminescence data of the
measurement. We attribute the fluctuations between columns to drifts of the objective focus and laser power
over the course of the measurement. (B) By dividing the data by the median of each column the spin-wave
comb is revealed. To remove the horizontal line of photoluminescence contrast caused by resonant driving at
the ESR frequency fNV = 2.086 GHz, we divide the data a second time by the median of each row, resulting in
Fig. 4.2F. The same normalization procedure was applied for Fig. 4.4D.
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4.5. SUPPLEMENTARY INFORMATION

4.5.1. DERIVATION OF THE SPIN-WAVE DISPERSION FOR BIAS FIELDS ALONG

THE NV AXIS

Here we derive the spin-wave dispersion for a magnetic film in the x y-plane with per-
pendicular magnetic anisotropy (PMA) and a magnetic bias field BB in an arbitrary direc-
tion. The dispersion is given by the poles of the transverse magnetic susceptibility [21,
35] that relates the transverse magnetization to a drive field BAC. We derive the mag-
netic susceptibility from the Landau-Lifshitz-Gilbert (LLG) equation that describes the
dynamics of the unit magnetization vector m

ṁ=−γm×B−αGṁ×m, (4.2)

whereαG is the Gilbert damping and the “overdot” denotes the time derivative. We solve
this equation in the (x ′,y ′,z ′) magnet frame that is tilted with respect to the (x,y ,z) lab
frame by an angle θ0, such that the equilibrium magnetization points in the ẑ′ direc-
tion and the ŷ(′) axes overlap. B = Beff +BAC, with Beff the effective magnetic field as
derivative of the magnetic free energy density F

Beff,α′ =− 1

Ms

∂F

∂mα′
, (4.3)

where Ms is the saturation magnetization and α′ ∈ {x ′, y ′, z ′} indicates the vector com-
ponents in the magnet frame. The free energy density includes the Zeeman energy, the
demagnetizing field Bd, the PMA energy FA, and the exchange interaction

F =−Msm · (BB + Bd

2
)+FA + D

2

∑
α,β=x,y,z

(
∂mα′

∂β

)2

. (4.4)

In the magnet frame

FA = K

2
m2

z =
K

2
(sinθ0mx′ +cosθ0mz ′ )

2, (4.5)

https://doi.org/10.5281/zenodo.6543615
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such that the x ′ and z ′ components of the anisotropy effective field are

BA,x′ =− 1

Ms

∂F

∂mx′
=− K

Ms
(sin2θ0mx′ +cosθ0 sinθ0mz ′ ),

BA,z ′ =− 1

Ms

∂F

∂mz ′
=− K

Ms
(cosθ0 sinθ0mx′ +cos2θ0mz ′ ).

(4.6)

The contributions of the Zeeman-, demagnetizing- and exchange energy to Beff have
been derived in Refs. [21, 35].
In linear response with mz ′ ≈ 1, the LLG equation describes the transverse magnetization
dynamics. In the frequency domain it reads

− iωmx ′ =−γ(my ′Bz ′ −By ′ )+ iαGωmy ′ ,

− iωmy ′ = γ(mx′Bz ′ −Bx′ )− iαGωmx′ ,
(4.7)

whereω is the angular frequency. Substituting the components of the effective magnetic
field and rewriting the equations in matrix form,(

ω2 − iαGω −ω1 + iω
−ω1 − iω ω3 − iαGω

)(
mx′
my ′

)
= γ

(
BAC,x′
BAC,y ′

)
, (4.8)

where

ω0 =−(ωM −ωK )cos2θ0 +ωB cos(θB −θ0)+ωD k2,

ω1 =ωM f sinφcosφcosθ0,

ω2 =ω0 +ωM f (cos2φcos2θ0 − sin2θ0)+ (ωM −ωK )sin2θ0,

ω3 =ω0 +ωM f sin2φ,

(4.9)

and ωB = γBB , ωM = γµ0Ms, ωD = γD
Ms

and ωK = γK
Ms

. µ0 is the vacuum permeability,
k = |k| is the modulus of the wavevector along an angle φ with respect to the in-plane
projection of the magnetization, θB is the angle of the magnetic bias field with respect to

the plane normal (z axis), and f = 1− 1−e−kt

kt depends on the film thickness t . By inverting
the matrix in Eq. 4.8, we obtain the transverse magnetic susceptibility, which is singular
when

(ω2 − iαGω)(ω3 − iαGω)−ω2
1 −ω2 = 0. (4.10)

AssumingαG ≪ 1, the real part of the solutions of this quadratic equation gives the spin-
wave dispersion as a function of k

ω2 =ω2ω3 −ω2
1. (4.11)

The theoretical lines in Figs. 4.2 and 4.4 are based on Eq. 4.11. We assume that the field
is applied parallel to the NV axis, such that θB = 54.7◦, with in-plane projection along the
stripline. We consider only spin waves with φ= π/2, since these are most efficiently ex-
cited by our 150-micron-long stripline. θ0 minimizes the free energy density and is found
by numerically solving ∂F

∂θ0
= 0. The ferromagnetic resonance (FMR) frequency corre-

sponds to k = 0. Table 4.1 states the values of the saturation magnetization, exchange
and uniaxial anisotropy constants for different magnetic materials used for calculating
the spin-wave dispersions in Fig. 4.4E.
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Material Ms (A/m) D (J/m) K (J/m3) Reference
YIG 1.42 ·105 4.15 ·10−12 0 Ref. [11]

Permalloy (Py) 8.46 ·105 2.4 ·10−12 0
Cobalt (Co) 13 ·105 2.4 ·10−12 0

CrBr3 2.55 ·105 1.2 ·10−12 2.24 ·105 Ref. [36]
CrI3 2.15 ·105 1.35 ·10−12 6.30 ·105 Ref. [36]

Fe3GeTe2 3.76 ·105 9.5 ·10−13 1.46 ·106 Ref. [37]

Table 4.1: Values of the saturation magnetization (Ms), exchange constant (D) and uniaxial anisotropy
constant (K) used to calculate the spin-wave dispersions in Fig. 4.4F.

4.5.2. SPIN-WAVE FREQUENCY COMB VERSUS DRIVE POWER

Po
w

er
 R

F 2 (d
Bm

)

-10

0

10  Photolum
inescence (norm

.)

0.98

1

Frequency RF1 (GHz) 

2.1 2.3

RF2
fNV

fp fs

fpfs

Figure 4.6: Emergence of a spin-wave comb generated by two microwave drives RF1 and RF2. Normalized
NV photoluminescence at BNV = 28 mT as a function of RF1 frequency (RF2 is kept at 2.2 GHz, red dashed
line), and RF2 power (RF1 is kept at 4 dBm). An increasing number of higher-order idlers appear at increased
drive power. RF1 and RF2 function either as pump or signal field depending on which frequency is closer to
the ESR frequency fNV = 2.086 GHz, as is indicated by the labels fs and fp with matching colors.

4.5.3. DEPENDENCE OF THE DETECTION BANDWIDTH ON THE MICROWAVE

DRIVE FIELD
For efficient frequency conversion, the microwaves should excite propagating spin waves
with a significant amplitude. The spin-wave excitation efficiency depends on the mi-
crowave power and the spatial mode overlap between the drive field and the spin waves [11].
In our experiment, a 5-micron-wide stripline creates an inhomogeneous microwave drive
field with a sinc-like amplitude in k-space (Fig. 4.7A). The efficiency drops with decreas-
ing wavelength with nodes at λ= w/n, where w is the stripline width and n is an integer.

To characterize the dependence on the drive field, we measure the bandwidth induced
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by four-wave mixing as a function of the pump power (Fig. 4.7B). As expected, the band-
width increases with microwave power. The photoluminescence contrast is suppressed
at spin-wave frequencies that correspond to the nodes of the drive field in Fig. 4.7A (col-
ored dashed lines). The frequencies of these modes agree with the spin-wave dispersion
derived in the previous section [Eq. 4.11]. The spin-wave excitation antenna is therefore
an important design parameter for hybrid diamond-magnet microwave sensors.
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Figure 4.7: The detection bandwidth is determined by the spin-wave excitation efficiency. (A) Normalized
Fourier amplitude of the out-of-plane (x, gray) and in-plane (y , black) components of the microwave drive
field BAC generated by a 5-micron-wide stripline. The colored dashed lines indicate the first two nodes in the
spectrum. (B) Normalized NV photoluminescence induced by four-wave mixing as a function of signal fre-
quency and pump power at a static magnetic field of BNV = 28 mT. The ESR frequency is at fNV = 2.08 GHz
(black dashed line, labeled fNV) and the dashed (dotted) orange (black) lines indicate the frequencies at which
the signal (pump) spin waves are driving the FMR. The red and pink horizontal dashed lines indicate the fre-
quencies of the spin waves that nominally cannot be excited by the stripline, where colors match the nodes in
(A).

4.5.4. COMPARISON BETWEEN THE IDLER-DRIVEN RABI FREQUENCY AND

DYNAMICAL STARK SHIFT
A strong microwave field detuned by δ f from the NV ESR frequency ( fNV), causes the
latter to shift, an effect known as the AC (or dynamical) Stark shift [26]. The Stark shift
increases with drive power and is inversely proportional to δ f , which allows detecting
the presence of an off-resonant microwave signal. We show here that the idler-driven
Rabi frequency resulting from four-spin-wave mixing is about an order magnitude larger
than the Stark shift at the same off-resonant drive power.

We measure the Stark shift via pump-probe microwave spectroscopy. The high-power
pump is detuned from fNV by 10-1000 MHz, while a low-power probe measures the ESR
frequency. We determine the Stark shift for every detuning by measuring the ESR fre-
quency with and without pump (blue data in Fig. 4.8A).

Next, we measure Rabi oscillations using the four-spin-wave mixing technique. We ex-
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tract the Rabi frequency for signal spin waves detuned from 10 to 710 MHz (red data
in Fig. 4.8A). We attribute the small oscillations in the Rabi frequency and Stark shift to
frequency-dependent (cable) resonances in the microwave transmission of the stripline.
Fig. 4.8B shows that the Rabi frequencies are larger than the Stark shift by about an order
of magnitude over the measurement range.
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Figure 4.8: Comparison of the four-spin-wave mixing and Stark shift off-resonant detection techniques. (A)
Blue: Measured shift in NV ESR frequency due to the AC Stark effect as a function of frequency detuning of
the applied drive field. Red: Frequency of the Rabi oscillations driven by the first-order idler mode using the
four-spin-wave down conversion technique as a function of drive-field detuning. (B) Ratio between the Rabi
frequency and Stark shift as a function of detuning. The measurements were carried out at a magnetic bias
field of BNV = 28 mT.

4.5.5. EIGHT-MODES MODEL

Here we describe the details of the model for the spin-wave dynamics under a two-tone
drive used to calculate the idler amplitude as a function of pump and signal power, as
plotted in Fig. 4.3E.

Fig. 4.9 shows the spin-wave dispersion of a YIG film for θk = 0 (blue line) and θk = π/2
(black line), where θk is the angle between the in-plane spin-wave wavevector k and the
static magnetization for the parameters in Table S1. Since the out-of-plane component
of the applied bias field BNV is small compared to the demagnetizing field of ∼ 178 mT
in YIG, we assume that the static magnetization lies in-plane along ẑ (x̂ is the out-of-
plane axis), parallel to Bẑ, the in-plane component of BNV. The long stripline along ẑ
excites signal and pump spin waves with θk =π/2. Conservation of momentum dictates
that the two created idler spin waves also lie on the θk = π/2 branch with wavevectors
ki = 2kp −ks and ki′ = 2ks −kp (Fig. 4.9).

When the pump mode is strongly driven beyond a certain threshold, the four magnon
scattering term in the spin-wave Hamiltonian c†

kp
c†

kp
ck′ck′′ leads to a Suhl instability.

Here c(†)
k is the annihilation (creation) operator for a magnon with wavevector k, which

is normalized by
p

S, where S = V sn/Vn is the total number of spins, V is the volume,



4.5. SUPPLEMENTARY INFORMATION

4

89

2

-20 200

3

4

θ   = 0

θ   = 0.76

θ   = 0.71
θ   = 0.61

θ   = 0.64

k

x

k

k

k

k

θ   = π/2k

ik

|k| sgn(k ) (μm )

Fr
eq

ue
nc

y 
(G

H
z)

i’kskpk

p,1(2)k s,1(2)k

Figure 4.9: Eight-modes model for the calculation of the idler amplitude. In our model we consider the signal
(blue dot), pump (red dot), idlers (green and black dots), “efficient signal Suhl instability pair” (blue stars) and
“efficient pump Suhl instability pair” (red stars) spin waves. The lines are branches of the spin-wave dispersion
corresponding to different angles θk of the wavevector with respect to the static magnetization (see legend).
The dispersion is symmetric upon rotations of θk by π. Calculations like those presented in Fig. S6 lead to the
wavevectors of the efficient pump and signal pairs. Here Bẑ = 23 mT.

sn is the number of spins per unit cell, and Vn is the unit cell volume. A specific pair of
magnons wins the “instability competition”, k′ = kp,1 and k′′ = kp,2 = 2kp −kp,1, which
we call the “efficient Suhl pair” of the pump mode. The efficient Suhl pair for the signal
ks,1 and ks,2 should also be considered when its mode amplitude is sufficiently large. We
disregard cascades that lead to the weak higher-order idlers in Fig. 4.2F, as well as the
Suhl pairs of the idlers that are safely below their instability threshold at the presently
applied powers. A minimal model should therefore include the eight modes indicated in
Fig. 4.9.

The efficient pump and signal pairs can be identified from the threshold amplitude of
the pump (signal) mode x = |αp,s|2 above which the Suhl instability leads to {k′,k′′} pairs,
which solve [38]

(DSuhl
p(s);k′;k′′

2 −DCK
p(s);k′

2
)x2 −2∆DCK

p(s);k′x −ξ2 −∆2 = 0, (4.12)

where ∆ =ωp(s) − (ωk′ +ωk′′ )/2, with ω an angular frequency, and ξ is a dissipation rate
chosen here to be 10 MHz for all modes. DSuhl

p(s);k′;k′′ (DCK
p(s);k′ ) is the matrix element for

the scattering process c†
kp(s)

c†
kp(s)

ck′ck′′ (c†
kp(s)

ckp(s) c†
k′ck′ ) in the Hamiltonian [17]. First,
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Figure 4.10: Finding the efficient Suhl pair with the lowest excitation threshold. (A) Calculated threshold
amplitude |αp(s)|2 that triggers the Suhl instability of a spin-wave pair with wavevectors k′ and k′′ = 2kp(s) −
k′ as a function of |k′| and θk′ . The amplitude is normalized by the total spin S. In the white regions no
momentum-conserving scattering processes can take place. Here we adopted Bẑ = 24 mT, ωp(s)/2π = 2 GHz
and θkp(s)

= π/2, corresponding to the red dot. (B) Minimal threshold amplitude as a function of |k′| (black

line, left axis) and corresponding θk′ (red line, right axis). (C) Frequencies of the modes corresponding to
the pairs in (C). The pair with the lowest threshold is indicated by the vertical dashed line in (B) and (C), and
defines the “efficient pump (signal) pair” of the Suhl instability.

we numerically calculate the threshold amplitude |αp,s|2 as a function of |k′| and θk′ as
in Fig. 4.10A. We identify the minimum threshold amplitude in the (|k′|,θk′ ) plane of
Fig. 4.10A as a function of modulus |k′| in Fig. 4.10B. The corresponding θk′ and spin-
wave pair frequencies are shown in Figs. 4.10B and 4.10C, respectively. The spin-wave
pair with the lowest threshold amplitude – the effective pump (signal) Suhl pair – turns
out to be at angles θk′ far fromπ/2 (as indicated by the vertical dashed lines in Fig. 4.10B-
C).

Our model Hamiltonian reads

H =∑
X
ωX c†

X cX + [DSuhl
p;p,1;p,2c†

kp
c†

kp
ckp,1 ckp,2+

DSuhl
p;s;i c†

kp
c†

kp
cks cki +DSuhl

s;s,1;s,2c†
ks

c†
ks

cks,1 cks,2+
DSuhl

s;p;i′c
†
ks

c†
ks

ckp cki′ +H.c.]+∑
X

[DSK
X c†

X cX c†
X cX +∑

Y
DCK

X ;Y c†
X cX c†

Y cY ]+

E ′
p(e−iωpt c†

p +H.c.)+E ′
s(e−iωst c†

s +H.c.).

(4.13)

Here X ,Y ∈ {p;s; i; i′;p,1(2);s,1(2)}, and “H.c.” denotes the Hermitian conjugate. E ′
s and

E ′
p are the drive amplitudes of the signal and pump modes, respectively, which are re-

lated to the excitation power of the microstrip by (cf. Fig. 4.7A),

Pp(s) = E 2
p(s)Z (ωp(s))

µ0γ
(
e−|kp(s)|d −1

)
sin

( |kp(s)|W
2

)
W d |kp(s)|2

−2

. (4.14)

Here, µ0 is the vacuum permeability, d is the thickness of the stripline and W is its
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width, Z (ω) is the impedance at ω, and we assumed θkp(s) =π/2. We adopt Z (ωp(s)) = 50

Ω, d = 200 nm, W = 5 µm , Ep(s) = E ′
p(s)

p
L, where L ∼ W is the length of the excited

part of the sample, ωp/2π = 2.2 GHz, ωs/2π = 2.32 GHz and Bẑ = 23 mT, correspond-
ing to BNV ∼ 28 mT. From the four-magnon-scattering parameters DSuhl

p;p,1;p,2/DSuhl
p;s;i ∼

DSuhl
s;s,1;s,2/DSuhl

s;p;i′ ∼ 10, and DSuhl
s;p;i′ ∼ DSuhl

p;s;i = −7.2 GHz, and DSK
p(s,i,i′) ∼ DCK

p(s,i,i′),p(s,i,i′) ∼ DSuhl
p;s;i ,

and DSK
s,1(s,2;p,1;p,2) ∼DCK

p(s),s,1(s,2;p,1;p,2) ∼DSuhl
p;p,1;p,2 we calculate the mean field amplitude of

the idler mode 〈c†
ki

cki〉 = |αi|2 as a function of Ps and Pp. In Fig. 4.3E we plot |αi|, since it
is linearly proportional to the idler-driven Rabi frequency of the NV center [11].

We find an idler amplitude (and thus a Rabi frequency) that initially grows as a function
of pump and signal power. However, above the Suhl instability thresholds, the amplitude
of the idler mode decreases due to the newly opened dissipation channels, as observed
in the experiments in Fig. 4.3D. Since 〈c†

X cX 〉∝ E 2
p(s)/ξ

2, ξ can be scaled by q to achieve
the same phase diagram for Pp(s) shifted by 20 · log(q) dBm. Our current assumption of
ξ= 10 MHz for ωX /2π∼ 2 GHz corresponds to a Gilbert damping of αG = 5 ·10−3.

4.5.6. DIFFERENCE-FREQUENCY GENERATION BY THE LONGITUDINAL COM-
PONENT OF THE MAGNETIZATION

In this section we demonstrate that simultaneous transverse magnetization dynamics at
the signal and pump frequencies ( fs and fp, respectively) causes a beating in the lon-
gitudinal component at the difference frequency | fs − fp|. The normalized transverse
magnetization mT of two propagating circularly-polarized spin waves is the superposi-
tion

mT = mse i (ksx−ωst ) +mpe i (kpx−ωpt ). (4.15)

ki = 2π/λi is the wavevector of the i th spin wave, with i ∈ {s,p}, in terms of the wave-
length λi , ωi = 2π fi is the angular frequency and mi = Mi /Ms is the magnetization
amplitude normalized by the saturation magnetization. The transverse x and y com-
ponents are the real and imaginary parts of mT while the normalized longitudinal com-
ponent of the magnetization reads

mL =
√

1−|mT|2. (4.16)

When driving two spin waves at frequencies ωs and ωp, and amplitudes ms and mp, the
squared modulus

|mT|2 = mTm∗
T = m2

s +m2
p +2msmp cos((ks −kp)x − (ωs −ωp)t ) (4.17)

depends on time. For mi ≪ 1 the longitudinal component oscillates at the difference
frequency

mL ∝ msmp cos((ks −kp)x − (ωs −ωp)t ), (4.18)

as detected in our experiments.
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5
ELECTRICAL SPECTROSCOPY OF

THE SPIN-WAVE DISPERSION AND

BISTABILITY IN GALLIUM-DOPED

YTTRIUM IRON GARNET

Yttrium iron garnet (YIG) is a magnetic insulator with record-low damping, allowing
spin-wave transport over macroscopic distances. Doping YIG with gallium ions greatly re-
duces the demagnetizing field and introduces a perpendicular magnetic anisotropy, which
leads to an isotropic spin-wave dispersion that facilitates spin-wave optics and spin-wave
steering. Here, we characterize the dispersion of a gallium-doped YIG (Ga:YIG) thin film
using electrical spectroscopy. We determine the magnetic anisotropy parameters and Gilbert
damping from the frequency and linewidth of the ferromagnetic resonance (FMR). Next,
we use propagating spin wave spectroscopy in the Damon-Eshbach configuration to de-
tect the small spin-wave magnetic fields of this ultrathin weak magnet over a wide range
of wavevectors, enabling the extraction of the exchange constant αex = 1.3(2) ·10−12 J/m.
We observe foldover of the FMR with increasing drive power, leading to frequency shifts of
the spin-wave modes and a bistable region in the spin-wave spectra. Our results shed light
on isotropic spin-wave transport in Ga:YIG and highlight the potential of electrical spec-
troscopy to map out the dispersion and bistability of propagating spin waves in magnets
with a low saturation magnetization.

This chapter has been published in Applied Physics Letters 119, 202403 (2021) by J. J. Carmiggelt, O. C. Dreijer,
C. Dubs, O. Surzhenko, and T. van der Sar.
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5.1. INTRODUCTION

Yttrium iron garnet (YIG) is a magnetic insulator that is famous for its low Gilbert damp-
ing and long-range spin-wave propagation [1]. At low bias fields the YIG magnetization
is typically pushed in the plane by the demagnetizing field [2], leading to an anisotropic
spin-wave dispersion at microwave frequencies. For applications that rely on spin-wave
optics and spin-wave steering an isotropic spin-wave dispersion is desirable [3, 4], which
can be achieved by introducing gallium dopants in the YIG: The presence of the dopants
reduces the saturation magnetization and thereby the demagnetizing field [5], and in-
duces a perpendicular magnetic anisotropy (PMA) [6, 7], such that the magnetization
points out-of-plane. Isotropic transport of forward-volume spin waves has been ob-
served even at zero bias field [8], opening the door for spin-wave logic devices [9–11].

To harness isotropic spin waves it is essential to know the spin-wave dispersion, which
is dominated by the exchange interaction for magnets with a low saturation magneti-
zation [12]. Here, we use all-electrical spectroscopy of propagating spin waves [13–17]
to characterize the spin-wave dispersion of a 45-nm-thick film of gallium-doped YIG
(Ga:YIG). Rather than looking at the discrete mode numbers of perpendicular standing
spin waves [18], this method enables extracting the exchange constant by monitoring the
spin-wave transmission for a continuously-tunable range of wavevectors. We show that
this technique has sufficient sensitivity to characterize spin waves in nanometer-thick
Ga:YIG films, where perpendicular modes may be challenging to detect due to their high
frequencies and small mode overlap with the stripline drive field.

We extract the anisotropy parameters from the field dependence of the ferromagnetic
resonance (FMR) frequency at different bias field orientations and find that the PMA is
strong enough to lift the magnetization out of the plane. Next, we determine the damp-
ing of our film from the linewidth of the FMR and characterize the spin-wave dispersion
from electrically-detected spin-wave spectra. We measure in the Damon-Eshbach con-
figuration to boost the inductive coupling of the spin waves to the striplines [19], allow-
ing the extraction of the spin-wave group velocity over a wide range of wavevectors from
which we determine the exchange constant. When increasing the microwave excitation
power, we observe clear frequency shifts of the spin-wave modes. The shifts result from
the foldover of the FMR, which we verify by comparing upward and downward frequency
sweeps. These results benchmark propagating spin wave spectroscopy as an accessible
tool to characterize the exchange constant and spin-wave bistability in technologically
attractive thin-film magnetic insulators with low saturation magnetization and PMA.

5.2. RESULTS

We use liquid phase epitaxy to grow a 45-nm-thick film of Ga:YIG on an (111)-oriented
gadolinium gallium garnet (GGG) substrate (see Methods). Using vibrating sample mag-
netometry (VSM) we determine the saturation magnetization Ms = 1.52(6) · 104 A/m
(Fig. 5.1a, the number in parentheses denotes the 95% confidence interval), which is
approximately an order of magnitude smaller than undoped YIG films of similar thick-
nesses [20].
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Figure 5.1: The saturation magnetization, magnetic anisotropies and Gilbert damping of Ga:YIG. (a) Hys-
teresis loop of the magnetization of a 45-nm-thick Ga:YIG film as a function of out-of-plane magnetic field B0
measured using vibrating sample magnetometry and corrected for magnetic background. The arrows denote
the sweep direction of the magnetic field. (b) FMR measurements using an out-of-plane (green) and in-plane
(red) magnetic field B0. From the fits of the FMR frequencies (solid lines) we determine the perpendicular
and cubic anisotropy fields (see text). (c) Frequency dependence of the FMR linewidth. The data points are
obtained from FMR absorption spectra at different in-plane magnetic fields (see the inset for an example mea-
surement). We convert the absorption spectra to the magnetic field scale using Eq. 5.2 and fit them with a
Lorentz function to extract the full-width at half-maximum (FWHM, ∆BFWHM). From the linear fit (solid grey
line) we extract the Gilbert damping αG = 1.0(3) ·10−3.

In addition to PMA, Ga:YIG films also have a cubic magnetic anisotropy due to a cubic
unit cell. We start by determining the cubic and perpendicular anisotropy fields from the
ferromagnetic resonance (FMR) frequencies ωFMR/2π using an out-of-plane (⊥) and in-
plane (||) magnetic bias field B0. For (111)-oriented films the out-of-plane and in-plane
Kittel relations are given by [20, 21]

ωFMR(⊥) = γ⊥(B0 −µ0Ms + 2K2⊥
Ms

− 4

3

K4

Ms
), (5.1)

ωFMR(||) = γ||
√

B0(B0 +µ0Ms − 2K2⊥
Ms

− K4

Ms
). (5.2)

Here γ⊥,|| = g⊥,||µB/ħ is the gyromagnetic ratio with g⊥,|| the anisotropic g-factor, µB the
Bohr magneton and ħ the reduced Planck constant, µ0 is the magnetic permeability of
free space, K2⊥ is the uniaxial out-of-plane anisotropy (e.g. PMA) constant and K4 the
cubic anisotropy constant. During the in-plane FMR measurement we apply the mag-
netic field along the [110] crystallographic axis to minimize the out-of-plane component
of the magnetization (section 5.5.1). We neglect any uniaxial in-plane anisotropy as it is
known to be small in YIG samples [20].

By substituting the value of Ms that we obtained with VSM into Eqns. 5.1 and 5.2, we
can determine K2⊥ and K4 from the FMR frequencies (Fig. 5.1b) [22]. From the fits (solid
lines) we extract the uniaxial out-of-plane anisotropy field 2K2⊥/Ms = 104.7(8) mT and
the cubic anisotropy field 2K4/Ms = −8.2(5) mT (section 5.5.2). Undoped YIG films of
similar thicknesses have comparable cubic anisotropy fields [20], which agrees with pre-
vious work on micrometer-scale films showing that the cubic anisotropy of YIG does not
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depend on gallium concentration [23]. We determine the in-plane and out-of-plane g-
factors to be g || = 2.041(4) and g⊥ = 2.101(3) [24].

We extract the Gilbert dampingαG of our film from the linewidth∆BFWHM of the FMR [25],
which is given by

∆BFWHM =∆B0 + 2αG

γ||
ωFMR(||). (5.3)

Here ∆B0 is the inhomogeneous broadening and the magnetic field is applied in the
plane. By fitting the frequency dependence of the FMR linewidth we find αG = 1.0(3) ·
10−3 (Fig. 5.1c), which is about three times larger than for bismuth-doped YIG films of
similar thickness [26, 27].
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Figure 5.2: All-electrical propagating spin wave spectroscopy. (a) Optical micrograph of a Ga:YIG film with
two gold striplines that are connected to the ports of a vector network analyser (VNA). Port 1 applies a mi-
crowave current (typical excitation power: −35 dBm) that induces a radio-frequency magnetic field BRF at the
injector stripline. This field excites propagating spin waves that couple inductively to the detector stripline
at a distance s. The generated microwave current is amplified and detected at port 2. A static magnetic field
B0 is applied in the Damon-Eshbach configuration and is oriented such that the chirality of BRF favours the
excitation of spin waves propagating towards the detector stripline [28]. (b) Field-derivative of the microwave
transmission |S21| between two striplines (w = 1 µm, s = 6 µm) as a function of B0 and microwave frequency.
The colormap is squeezed, such that also fringes corresponding to low-amplitude spin waves are visible. A
masked background was subtracted to highlight the signal attributed to spin waves (section 5.5.3).

We now use propagating spin wave spectroscopy to characterize the spin-wave disper-
sion in Ga:YIG. We measure the microwave transmission |S21| between two microstrips
fabricated directly on the Ga:YIG as a function of static magnetic field B0 and frequency f
(Fig. 5.2a). The magnetic field is applied in the Damon-Eshbach geometry to maximize
the inductive coupling between the spin waves and the striplines [19]. We measure a
clear Damon-Eshbach spin-wave signal in the microwave transmission spectrum when
B0 overcomes the PMA and pushes the spins in the plane (Fig. 5.2b, section 5.5.3). The
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signal appears at a finite frequency, because the bias field B0 is applied along the [112]
crystallographic axis with a finite out-of-plane angle of ∼ 1◦ (section 5.5.1).
The fringes in the transmission spectra result from the interference between the spin
waves and the microwave excitation field [29, 30]. Each fringe indicates an extra spin-
wavelength λ that fits between the striplines. We can thus use the fringes to determine
the group velocity vg of the spin waves via [14]

vg = ∂ωSW

∂k
≈ 2π∆ f

2π/s
=∆ f s. (5.4)

HereωSW = 2π f and k = 2π/λ are the spin wave’s angular frequency and wavevector, ∆ f
is the frequency difference between two consecutive maxima or minima of the fringes
(Fig. 5.3a) and s is the center-to-center distance between both microstrips.

We extract the exchange constant of our Ga:YIG film by fitting the measured group ve-
locity to an analytical expression derived from the spin-wave dispersion. The Damon-
Eshbach spin-wave dispersion for magnetic thin films with cubic and perpendicular
anisotropy is given by [21] (section 5.5.4)

ωSW(k) =
√
ωB (ωB +ωM −ωK )+ ωM t

2
(ωM −ωK )k +γ||D(2ωB +ωM −ωK )k2 +γ2

||D
2k4.

(5.5)
Here we defined for notational convenience ωB = γ||B0, ωM = γ||µ0Ms, ωD = γ||D

Ms
, and

ωK = γ||(2K2⊥/Ms+K4/Ms), t is the thickness of the film and D = 2α/Ms is the spin stiff-
ness, with α the exchange constant. Differentiating with respect to k gives an analytical
expression for the group velocity

vg(k) = 1

2
√
ωSW(k)

(ωM t

2
(ωM −ωK )+2γ||D(2ωB +ωM −ωK )k +4γ2

||D
2k3). (5.6)

Since we determined Ms and the anisotropy constants from the VSM and FMR mea-
surements, the exchange constant is the only unknown variable in the dispersion. We
determine the exchange constant from spin-wave spectra measured using two sets of
striplines with different widths and line-to-line distances (w = 1 µm, s = 6 µm and
w = 2.5 µm, s = 12.5 µm) at the same static field (Fig. 5.3a,b). First we extract vg as a
function of frequency from the extrema in the spin-wave spectra using Eq. 5.4 (Fig. 5.3c).
By then fitting the measured vg( f ) using Eqns. 5.5 and 5.6 (solid line in Fig. 5.3c), we find
α = 1.3(2)×10−12 J/m and B0 = 117.5(3) mT (section 5.5.2). The determined exchange
constant is about 3 times smaller compared to undoped YIG [18], which is in line with
earlier observations of a decreasing exchange constant with increasing gallium concen-
tration in micrometer-thick YIG films [31]. Simultaneously the spin stiffness is increased
by about 3 times compared to undoped YIG [18] due to the strong reduction of the sat-
uration magnetization. For large wavelengths the group velocity is negative as a result
of the PMA in the sample. Using the extracted exchange constant and Gilbert damp-
ing, we calculate a decay length of ∼ 30 µm for spin waves with a wavelength of 1 µm
(section 5.5.5).
The spin-wave excitation and detection efficiency depends on the absolute value of the
Fourier amplitude of the radio-frequency magnetic field B RF generated by a stripline,



5

102
5. ELECTRICAL SPECTROSCOPY OF THE SPIN-WAVE DISPERSION AND BISTABILITY IN

GALLIUM-DOPED YTTRIUM IRON GARNET

2.121.91.8

-0.1

0

-0.2

0

0.2

Frequency (GHz)

  |
S 21

| (
dB

)

1.9 2
-0.02

0

Freq. (GHz)

Fr
eq

ue
nc

y 
(G

H
z)

1.8

1.9

2

2.1

k (1/μm)
0 2 4 6

a

f

 s = 12.5 μm, w = 2.5 μm  

  |
S 21

| (
dB

)

b

Δf

v g (m
/s

)

Frequency (GHz)
1.91.85 1.95 2

0

200

400
c

Fit

a)
Data from:

b)

1

0

|BRF
y(k)|

|BRF
z(k)|

 s = 6 μm, w = 1 μm  d

k (1/μm)

1

0
0

10

|BRF
y(k)|

|BRF
z(k)|

Fo
ur

ie
r a

m
p.

 (n
or

m
.)

Fo
ur

ie
r a

m
p.

 (n
or

m
.)

e

Δk

Figure 5.3: Extracting the exchange constant from spin-wave transmission spectra. (a,b) Background-
subtracted linetraces of |S21| for two sets of striplines (a: w = 1 µm, s = 6 µm, b: w = 2.5 µm, s = 12.5 µm,
excitation power: −35 dBm). The red circles (a) and green squares (inset of b) mark the extrema of the spin-
wave fringes. (c) From the frequency difference between the extrema ∆ f we determine the group velocity vg
of the spin waves at the center frequency between the extrema. The blue line fits the data with an analytical
expression for vg, extracting the exchange constantα= 1.3(2)×10−12 J/m. (d,e) Normalized Fourier amplitude

of the y and z components of the microwave excitation field BRF for striplines with widths w = 1 µm (d) and
w = 2.5 µm (e). (f) Reconstructed spin-wave dispersion based on the fit in (c). The shaded areas correspond
to the frequencies of the extrema in (a,b). The dashed lines are the same as in (d,e) and indicate the nodes
in |BRF(k)| of the striplines. Only spin waves that are efficiently excited and detected by the striplines are ob-
served in (a,b).
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which oscillates in k with a period given by ∆k = 2π/w (Fig. 5.3e) [29, 30]. To verify
that the spin waves we observe are efficiently excited and detected by our striplines,
we substitute the extracted exchange constant into Eq. 5.5 and plot the spin-wave dis-
persion (Fig. 5.3f). The shaded areas correspond to the frequencies of the spin-wave
fringes (Fig. 5.3a,b) and the dashed lines indicate the nodes in |B RF(k)| of both striplines
(Fig. 5.3d,e). We conclude that the fringes in Fig. 5.3a correspond to spin waves excited
by the first maximum of |B RF(k)| and that the fringes in Fig. 5.3b correspond to spin
waves excited by the second maximum.

Surprisingly, we do not observe fringes in Fig. 5.3b corresponding to the first maximum
of |B RF(k)|, but rather see a dip in this frequency range (arrows in Fig. 5.3b,f). This can be
understood by noting that the average frequency difference between the fringes would
be smaller than the spin-wave linewidth (section 5.5.6). Low-amplitude fringes corre-
sponding to small-wavelength spin waves excited by the second k-space maximum of
the 1-µm-wide stripline are also visible (Fig. 5.2b, section 5.5.7). These results demon-
strate that the spin-wave dispersion in weak magnets can be reliably extracted using
propagating spin wave spectroscopy by combining measurements on striplines with dif-
ferent widths and spacings.

The spin-wave excitation and detection efficiency depends on the absolute value of the
Fourier amplitude of the radio-frequency magnetic field B RF generated by a stripline,
which oscillates in k with a period given by ∆k = 2π/w (Fig. 5.3e) [29, 30]. To verify that
the spin waves we observe are efficiently excited and detected by our striplines, we sub-
stitute the extracted exchange constant into Eq. 5.5 and plot the spin-wave dispersion
(Fig. 5.3f). For small wavevectors the dispersion decreases due to the PMA in the sample,
until the exchange interaction becomes dominant and the dispersion starts increasing.
The shaded areas correspond to the frequencies of the spin-wave fringes (Fig. 5.3a,b)
and the dashed lines indicate the nodes in |B RF(k)| of both striplines (Fig. 5.3d,e). We
conclude that the fringes in Fig. 5.3a correspond to spin waves excited by the first maxi-
mum of |B RF(k)| and that the fringes in Fig. 5.3b correspond to spin waves excited by the
second maximum.

Surprisingly, we do not observe fringes in Fig. 5.3b corresponding to the first maximum
of |B RF(k)|, but rather see a dip in this frequency range (arrows in Fig. 5.3b,f). This can be
understood by noting that the average frequency difference between the fringes would
be smaller than the spin-wave linewidth (section 5.5.6). Low-amplitude fringes corre-
sponding to small-wavelength spin waves excited by the second k-space maximum of
the 1-µm-wide stripline are also visible (Fig. 5.2b, section 5.5.7). These results demon-
strate that the spin-wave dispersion in weak magnets can be reliably extracted using
propagating spin wave spectroscopy by combining measurements on striplines with dif-
ferent widths and spacings.

When strongly driven to large amplitudes, the FMR behaves like a Duffing oscillator with
a bistable response [32]. Such bistability could potentially be harnessed for microwave
switching [33]. Foldover of the FMR and standing spin-wave modes has been studied
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for several decades [32–34], but bistability of propagating spin waves was only observed
before in active feedback rings [35], spin-pumped systems [36] and magnonic ring res-
onators [37]. We show that we can characterize the bistability of propagating spin waves
in Ga:YIG thin films using our spectroscopy technique.

When increasing the drive power we observe frequency shifts of the spin waves (Fig. 5.4a,c).
These nonlinear shifts result from the four-magnon self-interaction term in the spin-
wave Hamiltonian. For an in-plane magnetized thin film, the shifts are given by [38]

ω̃k =ωk +Wkk,kk |ak |2. (5.7)

Here ω̃k (ωk ) is the nonlinear (linear) spin-wave angular frequency, Wkk,kk is the four-
wave frequency-shift parameter and ak is the spin-wave amplitude. In our case Wkk,kk

is positive as a result of the PMA in the sample, leading to positive frequency shifts of the
spin-wave modes and the FMR (section 5.5.8).
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Figure 5.4: Observation of spin-wave frequency shifts and bistability. (a) Spin-wave spectra vs excitation
power P for an upward frequency sweep (w = 1 µm, s = 6 µm). Low-frequency spin waves shift to higher fre-
quencies when the microwave excitation power is increased. (b,c) Spin-wave spectra plotted against P 1/3 for
an upward (b) and downward (c) frequency sweep. The transition frequency, indicated by the dashed lines,
scales linearly with P 1/3. The frequency-sweep direction is indicated by arrows. (d) Sketch of the FMR am-
plitude vs drive frequency at low and high drive power assuming a nonlinear (Duffing) oscillator response. As
a result of the foldover at high drive power the amplitude becomes bistable. The amplitude jumps between
the two stable branches at higher frequencies for upward frequency sweeps (red arrows) than for downward
sweeps (pink arrows). This behaviour and its bistability is also observed in (b) and (c) for P > −30 dBm. (e)
Difference spectra highlighting the bistability region, obtained by subtracting the spectra in (c) from those in
(b). (f) Linetraces from panels (b) and (c) at P = 0 dBm, the black arrow indicates the bistability region. All
dashed lines serve as a guide to the eye.
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At increased microwave power P , we observe an abrupt transition in the spin-wave spec-
trum (Fig. 5.4a) at which the spin waves fall back to their unshifted low-power frequen-
cies. We find that the transition frequency scales linearly with P 1/3 for both upward and
downward frequency sweeps (Fig. 5.4b,c, dashed lines) and that it is larger for the up-
ward sweep. Such a P 1/3 scaling was previously observed for FMR foldover in permalloy,
where it was attributed to a significant nonlinear damping term in the Duffing oscillator
equation used to model the resonance [32]. This model predicts that the FMR ampli-
tude becomes bistable at large drive power (Fig. 5.4d) and abruptly switches between
the high- and low-amplitude states at a transition frequency that scales with P 1/3 for
both up- and downward frequency sweeps.

We extract the bistability region by subtracting the upward and downward frequency
sweeps of Fig. 5.4b,c and plotting the result in Fig. 5.4e. We further highlight the bista-
bility by plotting linetraces of the up- and downward frequency sweeps at P = 0 dBm
(Fig. 5.4f). The foldover starts at a surprisingly low drive power of∼−30 dBm , potentially
caused by reduced spin-wave scattering [34] due to the low density of states associated
with the increased spin stiffness and reduced saturation magnetization of our sample.
The observed frequency shifts provide an extra knob for tuning the dispersion of spin
waves. They give rise to strong nonlinear microwave transmission between the striplines
as a function of excitation power, which may provide opportunities for neuromorphic
computing devices that simulate the spiking of artificial neurons above a certain input
threshold [37, 39].

5.3. CONCLUSIONS
In summary, we used propagating spin wave spectroscopy to characterize the spin-wave
dispersion in a 45-nm-thick film of Ga:YIG. The gallium doping reduces the saturation
magnetization of the YIG and introduces a small PMA that lifts the magnetization out
of the plane and causes the dispersion to be dominated by the exchange constant. We
extract the exchange constant by fitting the group velocity at different frequencies and
demonstrate that the detected spin waves are efficiently excited by the excitation fields
of the striplines. Finally, we observe pronounced power-dependent frequency shifts and
bistability of the spin waves, resulting from the foldover of the FMR. Our results highlight
the potential of all-electrical spectroscopy to shed light on the dispersion and nonlinear
response of propagating spin waves in weakly-magnetic thin films.

5.4. MATERIALS AND METHODS
A film of gallium-doped yttrium iron garnet (Ga:YIG) was grown using liquid phase epi-
taxy on an one-inch (111) gadolinium gallium garnet (GGG) substrate and cut into chips
of 5x5x0.5 mm3. Using X-ray reflectometry (XRR) we determined the film thickness to
be 45(1) nm [20]. Striplines were fabricated on top of the Ga:YIG by e-beam lithog-
raphy using PMMA(A8 495)/PMMA(A3 950) bilayer resist with an Elektra92 coating to
avoid charging, and subsequent evaporation of Ti/Au (10 nm/190 nm). We wirebond
the striplines to a printed circuit board and connect them to our vector network anal-
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yser (VNA, Keysight, P9372A) via small, non-magnetic SMPM connectors (Amphenol RF,
925-169J-51PT) to minimize spurious magnetic-field dependent signals and maximize
the dynamic range of the bias field. Before reaching the VNA, the signals are amplified
by a low noise +20 dB amplifier (Minicircuits, ZX60-83LN-S+) to avoid detection noise on
the order of our signals. We place the sample between two large cylindrical permanent
magnets (Supermagnete, S35-20-N) to apply a strong and homogeneous bias field. The
magnets sit in home-built magnet holders that are mounted on computer-controlled
translation stages (Thorlabs, MTS25-Z8, 25 mm range), which allow sweeping the field.
We calibrate the magnetic field using a Hall probe (Hirst Magnetic Instruments, GM08).
All measurements were performed at room temperature.
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5.5.1. EFFECT OF THE MAGNETIC FIELD ALIGNMENT ON THE FMR FRE-
QUENCY

In this section we show that for (111)-oriented lattices with cubic anisotropy the in-plane
Kittel relation holds when a strong magnetic field B0 is applied along the in-plane [110]
crystallographic axis. We also investigate the effect of a ∼ 1◦ out-of-plane angle of B0 on
the FMR frequency and the magnetization direction. Such a small angle may be present
due to the manual placement of the sample in our setup (see Methods).
The FMR frequency is calculated according to [41]

ω2
FMR = γ2

sin(θM )2 ·
( ∂2F

∂θ2
M

∂2F

∂φ2
M

− ( ∂2F

∂θM∂φM

)2
)
. (5.8)

Here θM is the angle of the magnetization with respect to the film’s normal, φM is the
in-plane angle of the magnetization with respect to the [110] crystallographic axis and
F = F ′

Ms
, with F ′ the free energy density and Ms the saturation magnetization (Fig. 5.5).

γ= gµB
ħ is the gyromagnetic ratio, with µB the Bohr magneton and ħ the reduced Planck

constant. The anisotropic g-factor is given by g =
√

g 2
⊥ cos(θM )2 + g 2

|| sin(θM )2, with g ||
and g⊥ respectively the in-plane and out-of-plane g-factors [24].
For (111)-oriented films with cubic and uniaxial out-of-plane magnetic anisotropies the
normalized free energy density is given by [20, 22]

F =−B0

(
sin(θM )sin(θB )cos(θM −θB )+cos(θM )cos(θB )

)
+ 1

2

(
µ0Ms − 2K2⊥

Ms

)
cos2(θM )

+ 1

2
· 2K4

Ms

(1

3
cos4(θM )+ 1

4
sin4(θM )−

p
2

3
sin3(θM )cos(θM )sin(3φM )

)
,

(5.9)

with θB and φB the angles of B0 with respect to respectively the film’s normal and the
in-plane [110] crystallographic axis (Fig. 5.5) and µ0 the vacuum permeability. 2K2⊥

Ms
and

2K4
Ms

are respectively the uniaxial out-of-plane and cubic anisotropy fields, with K2⊥ and
K4 the perpendicular and cubic anisotropy constants. Note that to calculate the FMR
frequency using Eq. 5.8 at a certain B0, θB and φB , we first need to find θM and φM that
minimize the free energy by numerically solving ∂F

∂θM
(θM ,φM ) = 0 and ∂F

∂φM
(θM ,φM ) = 0.

Using Eqns. 5.8 and 5.9 we can calculate the FMR frequency for an out-of-plane magnetic
field and magnetization (θB = θM = 0◦), which gives

ωFMR(⊥) = γ⊥(B0 −µ0Ms + 2K2⊥
Ms

− 4K4

3Ms
). (5.10)

For an in-plane magnetic field and magnetization (θB = θM = 90◦), we find

ωFMR(||) = γ||
√

B0 ·
(
B0 +µ0Ms − 2K2⊥

Ms
− K4

Ms

)−2
( K4

Ms
cos(3φM )

)2. (5.11)
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The factor 3 in the cosine arises from the triangular in-plane symmetry of a cubic unit
cell with its normal along the [111] direction (Fig. 5.5). In our measurements a large in-
plane magnetic field is needed to overcome the perpendicular anisotropy and push the
magnetization in the plane, such that generally B0 ≫ | 2K4

Ms
| = 8.2 mT and we can ignore

the last term [22]

ωFMR(||) = γ||
√

B0 · (B0 +µ0Ms − 2K2⊥
Ms

− K4

Ms
). (5.12)

Eqns. 5.10 and 5.12 are the same as Eqns. 5.1 and 5.2.

[1,1,1]

[1,1,2]

[1,1,0]Ga:YIG

Unit cell

M
B0 θB

θM
φMφB

Figure 5.5: Coordinate frame and crystallographic axes in Ga:YIG. The [110] axis is slightly displaced to high-
light the triangular symmetry plane (light blue) of the (111)-oriented cubic unit cell. After [22].

FMR FREQUENCY AND MAGNETIZATION DIRECTION AT φB = 0◦
Fig. 5.6a shows a flipchip FMR measurement with the magnetic field applied along the
[110] direction (θB = 90◦, φB = 0◦). The solid white line shows a fit to Eq. 5.12 for mag-
netic fields at which the FMR frequency is increasing. Together with the fitted out-of-
plane FMR, we extract 2K2⊥

Ms
= 104.7 mT, 2K4

Ms
= −8.2 mT and

γ||
2π = 28.56 MHz/mT. The

same fit and data are presented in Fig. 5.1b.

We can calculate the FMR frequency also for low bias fields by substituting the extracted
parameters into Eqns. 5.8 and 5.9. We obtain the black dashed line, which fits reasonably
well to the measured FMR, even when the FMR frequency is decreasing with field. The
red dashed line shows the calculated FMR frequency when B0 has an 1◦ out-of-plane
angle (θB = 89◦), which dramatically increases the minimum FMR frequency. This is
because the magnetization turns only asymptotically into the plane when the angle is
offset, instead of abruptly (Fig. 5.6b, black line: θB = 90◦, red line: θB = 89◦).

We note that in Fig. 5.6a at large bias fields both the black and red dashed lines overlap
with the white fit. Therefore, we conclude that the in-plane FMR at φB = 0◦ is quite
robust to any small out-of-plane component of the static field that might be present in
our experimental setup, validating the white fit using Eq. 5.12 [22].

FMR FREQUENCY AND MAGNETIZATION DIRECTION AT φB = 90◦
Fig. 5.6c shows a similar flipchip FMR measurement as in Fig. 5.6a, but now with the
field applied along the [112] direction (θB = 90◦, φB = 90◦, the white line is the same



5.5. SUPPLEMENTARY MATERIAL

5

109

Magnetic field B
0 
(mT)

10050 150

10050 150

Magnetic field B
0 
(mT)

10050

1

2

150

10050 150

Fr
e

q
u

e
n

cy
 (

G
H

z)

3

0

1

2

3

0

θ M
 (

d
e

g
re

e
s)

0

45

90

0

45

90

φB = 0˚ φB = 90˚

d|S
21

|/dB
0
 (mdB/mT)

5-5

d|S
21

|/dB
0
 (mdB/mT)

5-5

a

b

c

d

θB = 89˚

θB = 90˚

Figure 5.6: Dependence of the FMR frequency on the direction of the external magnetic field B0. (a)
Flipchip FMR measurement with B0 applied parallel to a 180-µm-wide excitation stripline and along the in-
plane [110] crystallographic direction (φB = 0◦). The FMR is extracted from the field-derivative of the mi-
crowave transmission |S21|. The solid white line shows a fit to the Kittel relation (Eq. 5.12). Using the ex-
tracted anisotropy fields and gyromagnetic ratio, the FMR frequency for the entire B0-range was numerically
calculated assuming θB = 90◦ (black dashed line) and θB = 89◦ (red dashed line). (b) The minimum FMR
frequency is raised at θB = 89◦ because the magnetization does not abruptly turn into the plane. (c) Similar
FMR measurement, but with B0 applied along the [112] direction (φB = 90◦). The white line is the same as in
(a). The black and red dashed lines are the calculated FMR frequencies for φB = 90◦ at respectively θB = 90◦
and θB = 89◦ using the parameters extracted in (a). (d) The magnetization maintains a finite out-of-plane
component even when θB = 90◦. The blue dashed line indicates the field at which the exchange constant was
determined from the spin-wave spectra. In (a) and (c) a similar background subtraction was performed as in
Fig. 5.8.



5

110
5. ELECTRICAL SPECTROSCOPY OF THE SPIN-WAVE DISPERSION AND BISTABILITY IN

GALLIUM-DOPED YTTRIUM IRON GARNET

as in Fig. 5.6a and is added as a reference). The FMR reaches a minimum frequency of
about 1 GHz, which is significantly larger than the minimum in the φB = 0◦ geometry.
We reproduce this enhanced frequency minimum by calculating the expected FMR fre-
quency using the parameters extracted in section 5.5.1 (black dashed line, we ignore any
potential in-plane anisotropy of the g-factor). The calculated FMR frequency matches
the measured FMR remarkably well for all magnetic field values, demonstrating the ac-
curacy of the white fit.

Again we attribute the enhanced FMR minimum to the fact that the magnetization only
slowly turns into the plane, even for a perfect in-plane magnetic field θB = 90◦ (Fig. 5.6d,
black line). As a result the FMR frequency asymptotically approaches the in-plane Kittel
relation (Eq. 5.12, white line). Similar to before, a change of 1◦ in θB lifts the minimum
FMR frequency, explaining the minimum FMR frequency of about 1.25 GHz observed
in Fig. 5.2b. Variations on the order of 1◦ in θB are expected in our measurement setup
since we manually place the sample between two permanent magnets (see Methods).

Fig. 5.6d shows that the magnetization does not point exactly in the plane during our
propagating spin wave spectroscopy measurements, even though this is assumed in the
data analysis. We derived the exchange constant from spin-wave spectra taken at ap-
proximately B0 = 117.5 mT, at which the magnetization points ∼3-6 degrees out of the
plane (blue dashed line in Fig. 5.6d). We neglect this small out-of-plane angle, because
we expect the induced error to be negligible compared to the ∼ 15% error obtained from
the fit in Fig. 5.3c.

5.5.2. SYSTEMATIC ERROR IN THE APPLIED BIAS FIELD

In this section we calculate how a systematic error in the applied bias field affects the er-
ror of the anisotropy fields, which we extracted from the FMR frequency (Fig. 5.1b). From
the fits of the FMR frequency we obtain γ⊥

2π = 29.40(3) MHz/mT and α=−µ0Ms + 2K2⊥
Ms

−
2
3

2K4
Ms

= 91.1(2) mT (out-of-plane bias field),
γ||
2π = 28.56(4) MHz/mT andβ=µ0Ms− 2K2⊥

Ms
−

1
2

2K4
Ms

=−81.5(1) mT (in-plane bias field). Since we know from vibrating sample magne-

tometry (VSM) that Ms = 1.52(6) · 104 A/m, we can calculate the magnetic anisotropy
fields

2K4

Ms
=−6

7
(α+β) = 8.2(2) mT,

2K2⊥
Ms

=µ0Ms + 3

7
α− 4

7
β= 104.7(8) mT.

(5.13)

Since we manually place our sample between the magnets (Methods), it may have a
small offset of ∼ 1 mm with respect to the center position. Such an offset would cause
a systematic error in the applied magnetic field B0, which enhances the error of the
anisotropy fields. To obtain a conservative estimate of these errors, we determine the
systematic error in the applied magnetic field via

∆B0(x) = B0(x +1)+B0(x −1)−2 ·B0(x). (5.14)
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B0(x) is the magnetic field of a cylindrical magnet at a distance of x mm along its sym-
metry axis

B0(x) = Br

2

( x +L√
r 2 + (x +L)2

− xp
r 2 +x2

)
. (5.15)

Here Br = 1320 mT is the remanence, L = 20 mm and r = 17.5 mm are the length and
radius of the magnet. Fig. 5.7 shows the calculated error∆B0(x) for a 1-mm-offset against
the magnetic field B0 at the center position between the magnets. Including this error in
the fit of Fig. 5.1b gives α= 91.1(3) mT and β=−81.5(5) mT, resulting in a slight increase
in the error of the cubic anisotropy field 2K4

Ms
= 8.2(5) mT. The errors in the gyromagnetic

ratios and perpendicular anisotropy field do not change significantly. At the magnetic
field B0 = 117.5 mT at which we took the spin-wave spectra the error in the field ∆B0 is
∼ 0.3 mT.
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Figure 5.7: Error in the static magnetic field as a result of a 1 mm offset of the sample with respect to the
center position between the magnets. For magnetic fields between 100 mT and 150 mT an error of ∼ 0.3-0.5
mT is expected.

5.5.3. BACKGROUND-SUBTRACTION PROCEDURES OF THE SPIN-WAVE SPEC-
TRA

For the spin-wave spectra in Fig. 5.3a,b and Fig. 5.4a,b,c,f a background spectrum was
subtracted consisting of the mean |S21| transmission at 100 mT and 138 mT, for which
there are no spin waves in the frequency range of interest. In Fig. 5.2b a background was
subtracted using Gwyddion (Fig. 5.8).

5.5.4. THE SPIN-WAVE DISPERSION OF A MAGNETIC THIN FILM WITH PER-
PENDICULAR AND CUBIC MAGNETIC ANISOTROPY

The spin-wave dispersion for magnetic thin films with perpendicular magnetic anisotropy
(PMA) and cubic anisotropy was derived in reference [21]. Eq. 30 of this work states the
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dispersion for an (111)-oriented film with in-plane magnetization, similar as in our ex-
periment

ωSW(k) =

γ||

√(
B0 +Dk2 +µ0Ms(1− f )− 2K2⊥

Ms
− K4

Ms

) · (B0 +Dk2 +µ0Ms f sin2(φ)
)−2

( K4

Ms
cos(3φM )

)2.

(5.16)

Here ωSW is the angular frequency of a spin wave with wavevector k that propagates at
an angle φ with respect to the magnetization. D = 2αex/Ms is the spin stiffness, with
αex the exchange constant, and f = 1− (1− e−kt )/kt with t the thickness of the film and
φM is the angle of the magnetization with respect to [110] crystallographic direction. We
note that if we set k = 0 in Eq. 5.16, we obtain the in-plane FMR frequency derived before
(Eq. 5.11).
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Figure 5.8: Background-subtraction procedure of the microwave spectrum in Fig. 5.2b. The measured data
(left figure) contains spurious signals attributed to small changes in the microwave transmission of the cables
and connectors that attach the VNA to the striplines as a function of magnetic field. We filter these signals by
first masking the high-curvature part of measured data that contains the spin-wave fringes. Then we fit a fifth-
order polynomial through each horizontal line, excluding the masked data, and subtract it as a background
(middle figure). The resulting spectrum only contains the spin-wave fringes (right figure, same as Fig. 5.2b).
The image processing was performed using Gwyddion (version 2.58).

In our experiment we measure spin waves in the Damon-Eshbach configuration (φ =
π/2), we apply the external field B0 along [112] (φM = π/2) and the wavelengths of the
detected spin waves are much smaller than the thickness of the film (kt ≪ 1), such that
we can approximate f ≈ kt/2. This gives

ωSW(k) =
√(

ωB +γ||Dk2 −ωK +ωM (1−kt/2)
)(
ωB +γ||Dk2 +ωM kt/2

)
, (5.17)
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where we defined ωB = γ||B0, ωM = γ||µ0Ms, and ωK = γ||( 2K2⊥
Ms

+ K4
Ms

) for convenience of
notation. Working out the brackets and rearranging the terms in orders of k gives

ωSW =
√
ωB

(
ωB +ωM −ωK

)+ ωM t

2

(
ωM −ωK

)
k +γ||D

(
2ωB +ωM −ωK − (

ωM t

2
)2

)
k2 +γ2

||D
2k4.

(5.18)
For the spin-wave spectra taken at B0 = 117.5 mT we find (ωM t

2 )2 ≪ 2ωB +ωM −ωK due
to the low saturation magnetization and thickness of our film, such that we can further
approximate

ωSW =
√
ωB (ωB +ωM −ωK )+ ωM t

2
(ωM −ωK )k +γ||D(2ωB +ωM −ωK )k2 +γ2

||D
2k4,

(5.19)
which is Eq. 5.5.

We derive the group velocity vg by differentiating with respect to k

vg = ∂ωSW

∂k
= 1

2
p
ωSW

(ωM t

2
(ωM −ωK )+2γ||D(2ωB +ωM −ωK )k +4γ2

||D
2k3), (5.20)

which is Eq. 5.6.

5.5.5. CALCULATION OF THE SPIN-WAVE DECAY LENGTH
We consider a magnetic film with perpendicular magnetic anisotropy (PMA) in the y z-
plane and a static magnetic field B0 oriented along z, that pushes the unit magnetization
m into the plane in the z-direction. Spin waves are excited by a stripline oriented along

z. The transverse magnetic susceptibility tensor
↔
χ relates the transverse magnetization

to the drive field of the stripline BAC, according to(
mx

my

)
=↔
χ

(
BAC,x

BAC,y

)
. (5.21)

The decay length ydecay is given by the linewidth of
↔
χ in k-space [42], which we derive

from the Landau-Lifshitz-Gilbert (LLG) equation.

THE LLG EQUATION

The LLG equation describes the dynamics of the magnetization and is given by

ṁ=−γm×B−αGṁ×m, (5.22)

where γ is the gyromagnetic ratio, αG is the Gilbert damping and B = Beff +BAC. The
effective magnetic field Beff is derived from the free energy density F of the magnet

Beff,α =− 1

Ms

∂F

∂mα
, (5.23)

where α= x, y, z. The free energy density includes the Zeeman energy, the demagnetiz-
ing field Bd , the PMA energy, and the exchange interaction

F =−Msmz B0 −Msm ·Bd /2− K

2
m2

x +
D

2

∑
α,β=x,y,z

(
∂mα

∂β

)2

, (5.24)
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where D is the spin stifness and K is the uniaxial anisotropy constant perpendicular to
the film. We use a positive sign convention such that a positive K favours an out-of-plane

magnetization. For convenience of notation we defineωB = γB0,ωM = γµ0Ms,ωD = γD
Ms

,

and ωK = γK
Ms

.

THE TOTAL MAGNETIC FIELD

From Eqns. 5.23 and 5.24 we find that the anisotropy contribution to the effective mag-
netic field is given by

B PMA
eff,x =− 1

Ms

∂F PMA

∂mx
= ωK

γ
mx . (5.25)

The contributions of the Zeeman-, demagnetizing- and exchange energy to Beff have
been derived elsewhere [42, 43]. For spin waves propagating in the y-direction as in our
experiments, this results in

γBx =ωM ( f −1)mx −ωD k2mx +ωK mx +γBAC,x ,

γBy =−ωM f my −ωD k2my +γBAC,y ,

γBz =ωB .

(5.26)

Here f = 1− (1−e−kt )/kt , with t the thickness of the film.

THE MAGNETIC SUSCEPTIBILITY

We derive the magnetic susceptibility by rewriting the LLG equation (Eq. 5.22) in the
frequency domain and assuming a small, linear response such that mz ≈ 1:

− iωmx =−γ(Bz my −By )+ iαGωmy ,

− iωmy =−γ(Bx −Bz mx )− iαGωmx .
(5.27)

We can rewrite this in matrix form, according to(
ω1 − iαGω iω

−iω ω2 − iαGω

)(
mx

my

)
= γ

(
BAC,x

BAC,y

)
, (5.28)

in which

ω1 =ωB +ωD k2 −ωK +ωM (1− f ),

ω2 =ωB +ωD k2 +ωM f .
(5.29)

We obtain the susceptibility by inverting Eq. 5.28

↔
χ = γ

(ω1 − iαGω)(ω2 − iαGω)−ω2

(
ω2 − iαGω −iω

iω ω1 − iαGω

)
. (5.30)

The susceptibility becomes singular when

Λ= (ω1 − iαGω)(ω2 − iαGω)−ω2 = 0. (5.31)
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We find the linewidth in k-space by Taylor expanding ω(k) ≈ω(k0)+ vg(k −k0), giving

Λ= 2ω(k)
(
vg(k −k0)− iαG

ω1 +ω2

2

)= 0. (5.32)

Solving this equation gives

k = k0 + iαG
ω1 +ω2

2vg
, (5.33)

such that decay length is given by

ydecay =
2vg

αG(ω1 +ω2)
. (5.34)

Using Eq. 5.34 and the parameters extracted in this study (B0 = 117.5 mT,αex = 1.3·10−12

J/m, 2K2⊥
Ms

= 104.7 mT,
γ||
2π = 28.56 MHz/mT, Ms = 1.52 · 10−4 A/m, t = 45 nm and αG =

1 ·10−3), we obtain a decay length ∼ 30 µm for spin waves with a wavelength of 1 µm.

5.5.6. COMPARING THE FREQUENCY DIFFERENCE BETWEEN FRINGES TO THE

SPIN-WAVE LINEWIDTH
In this section we calculate the expected average frequency difference∆ f between spin-
wave fringes excited by the first maximum of the microwave driving field Fourier am-
plitude (|B RF(k)|) in Fig. 5.3b. The stripline has a width w = 2.5 µm, such that |B RF(k)|
has its first node at kmin = 2π

2.5 µm−1 [29]. Everytime another wavelength fits within the
center-to-center distance s between both striplines another fringe is observed in the sig-
nal. Therefore the condition s = nλ applies for every nth fringe, with λ the spin-wave
wavelength. This means that fringes occur every ∆k = 2π

s = 2π
12.5 µm−1 in k-space. In

the first maximum of the excitation spectrum we would thus expect kmin
∆k = 5 fringes.

According to the reconstructed dispersion (Fig. 5.3f) the frequency difference between
spin waves with wavevector kmin and the minimum of the band is about 20 MHz, lead-
ing to an average frequency difference of 20

5 = 4 MHz between consecutive fringes. This
is on the order of the FMR linewidth of undoped YIG films of similar thicknesses [20].
Assuming that Ga:YIG has a similar or larger linewidth, we argue that we cannot resolve
fringes in the first maximum of the excitation field’s Fourier amplitude because they are
too narrow compared to the intrinsic spin-wave linewidth.
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5.5.7. ZOOMED-IN SPIN-WAVE SPECTRA DISPLAYING LOW-AMPLITUDE FRINGES
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Figure 5.9: Detailed microwave spectrum zoomed-in on the spin-wave fringes. Low-amplitude fringes ex-
cited by the second maximum of the excitation field’s Fourier amplitude are visible at high frequencies. The
actual measured data without any background-subtraction is presented (w = 1 µm, s = 6 µm, excitation power
-35 dBm).

5.5.8. CALCULATION OF THE NONLINEAR FREQUENCY-SHIFT COEFFICIENT

For Damon-Eshbach spin waves with wavevector k and frequency ωk /2π the nonlinear
four-magnon frequency-shift coefficient Wkk,kk is given by [38]

Wkk,kk = 1

2

(2ωB +ωM (Nxx,k +Ny y,k )

2ωk

)2 · (3ωB +ωM (2Nzz,0 +Nzz,2k )
)

− 1

2

(
3ωB +ωM (Nxx,k +Ny y,k +Nzz,2k )

)
,

(5.35)

with Ni j ,k the (i , j )th index of the spin-wave tensor Nk . The three-wave correction term
vanishes since the spin waves propagate perpendicular to the magnetization. The pre-
cessional x y z-frame is defined such that z points in the plane along the magnetization,
x along the film normal and y points in-plane perpendicular to z and parallel to the
wavevector of the spin waves.

Nk is the Fourier transform of the tensorial Green’s function N (r,r ′) = N (r,r ′)dip+N (r,r ′)ex+
N (r,r ′)ani, which has components due to uniaxial anisotropy and the dipolar and ex-
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change interactions

Nk e i kr =
∫

N (r,r ′)e i kr ′d 3r ′ =
∫ (

N (r,r ′)dip +N (r,r ′)ex
)
e i kr ′d 3r ′+

∫
N (r,r ′)anie

i kr ′d 3r ′.
(5.36)

The contribution to Nk from the N (r,r ′)dip and N (r,r ′)ex components in the thin-film
limit were derived earlier [38]. Following this work, N (r,r ′)ani due to uniaxial anisotropy
in the out-of-plane x-direction is given by

N (r,r ′)ani =− B2⊥
µ0Ms

δ(r − r ′)x̂ ⊗ x̂. (5.37)

Here B2⊥ = 2K2⊥
Ms

is the uniaxial out-of-plane anisotropy field, ⊗ denotes a dyadic unit

vector product and δ(r − r ′) is the Dirac delta function. As a result of the dyadic product
only the (x, x) index of N (r,r ′)ani is non-zero, leading to a contribution on Nxx,k

Nxx,k e i kr =
∫

− B2⊥
µ0Ms

δ(r − r ′)e i kr ′d 3r ′ =− B2⊥
µ0Ms

e i kr . (5.38)

By adding this contribution to the other components, we find that the diagonal elements
of Nk in the Damon-Eshbach configuration are given by

Nxx,k = D

µ0Ms
k2 +1− f − B2⊥

µ0Ms
,

Ny y,k = D

µ0Ms
k2 + f ,

Nxx,k = D

µ0Ms
k2,

(5.39)

with f = 1−(1−e−kt )/kt and t the thickness of the film as before. We neglected the cubic
anisotropy since it is small relative to the uniaxial anisotropy.

By substituting Eqns. 5.39 into Eq. 5.35 we can calculate Wkk,kk for the wavevectors rel-
evant for this work (Fig. 5.10). For all these wavevectors Wkk,kk is positive, explaining
the positive frequency shifts of the spin waves that we observe when increasing the drive
power. This is in contrast to the frequency shift caused by the reduction of the saturation
magnetization as a result of strong driving or heating. In this simple picture a downward
frequency shift is expected for in-plane magnetization (Fig. 5.11), highlighting the value
of the Hamiltonian formalism that was used to calculate the nonlinear frequency-shift
coefficient [38].
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Figure 5.10: Nonlinear frequency-shift coefficient Wkk ,kk for Damon-Eshbach spin waves in Ga:YIG. We
used the dispersion in Fig. 5.3f as an input, together with the extracted parameters B0 = 117.5 mT, αex = 1.3 ·
10−12 J/m,

2K2⊥
Ms

= 104.7 mT,
γ||
2π = 28.56 MHz/mT, Ms = 1.52·10−4 A/m and t = 45 nm. The cubic anisotropy is

neglected. The positive sign of the calculated frequency-shift coefficient matches the positive frequency shifts
observed in the experiment.
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Figure 5.11: Expected downward frequency shift upon reduction of the saturation magnetization. Field
dependence of the FMR frequency of Ga:YIG for unreduced saturation magnetization (Ms = 1.52 · 104 A/m,
black line) and for 10%-reduced saturation magnetization (Ms = 1.37 · 104 A/m, red line). The bias field is
applied in the [112] direction and the magnetic anisotropy fields are the same for both curves. The dashed
line indicates the field at which we performed our spin-wave spectroscopy measurements. Clearly a negative
frequency shift is expected upon decreasing the saturation magnetization, which is in contrast to the positive
frequency shifts we observe.



BIBLIOGRAPHY

1A. A. Serga, A. Chumak, and B. Hillebrands, “YIG magnonics”, Journal of Physics D:
Applied Physics 43, 264002 (2010).

2K. Y. Guslienko and A. N. Slavin, “Magnetostatic Green’s functions for the description
of spin waves in finite rectangular magnetic dots and stripes”, Journal of Magnetism
and Magnetic Materials 323, 2418 (2011).

3P. Pirro, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, “Advances in coherent magnon-
ics”, Nature Reviews Materials (2021).

4A. Barman et al., “The 2021 Magnonics Roadmap”, Journal of Physics: Condensed
Matter 33, 413001 (2021).

5P. Hansen et al., “Saturation magnetization of gallium-substituted yttrium iron gar-
net”, Journal of Applied Physics 45, 2728 (1974).

6J. E. Mee, G. R. Pulliam, D. M. Heinz, J. M. Owens, and P. J. Besser, “Mobile cylindrical
domains in epitaxial Ga:YIG films”, Applied Physics Letters 18, 60 (1971).

7D. M. Heinz, P. J. Besser, J. M. Owens, J. E. Mee, and G. R. Pulliam, “Mobile cylindri-
cal magnetic domains in epitaxial garnet films”, Journal of Applied Physics 42, 1243
(1971).

8A. Haldar, C. Tian, and A. O. Adeyeye, “Isotropic transmission of magnon spin infor-
mation without a magnetic field”, Science Advances 3, e1700638 (2017).

9A. B. Ustinov, B. A. Kalinikos, and E. Lähderanta, “Nonlinear phase shifters based on
forward volume spin waves”, Journal of Applied Physics 113, 113904 (2013).

10S. Klingler et al., “Spin-wave logic devices based on isotropic forward volume magne-
tostatic waves”, Applied Physics Letters 106, 212406 (2015).

11N. Kanazawa et al., “Demonstration of a robust magnonic spin wave interferometer”,
Scientific Reports 6, 30268 (2016).

12B. A. Kalinikos and A. N. Slavin, “Theory of dipole-exchange spin wave spectrum for
ferromagnetic films with mixed exchange boundary conditions”, Journal of Physics C:
Solid State Physics 19, 7013 (1986).

13V. Vlaminck and M. Bailleul, “Current-Induced Spin-Wave Doppler Shift”, Science
322, 410 (2008).

14S. Neusser et al., “Anisotropic propagation and damping of spin waves in a nanopat-
terned antidot lattice”, Physical Review Letters 105, 1 (2010).

15J. Chen et al., “Spin wave propagation in ultrathin magnetic insulators with perpen-
dicular magnetic anisotropy”, Applied Physics Letters 114, 212401 (2019).

119

https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1016/j.jmmm.2011.05.020
https://doi.org/10.1016/j.jmmm.2011.05.020
http://www.nature.com/articles/s41578-021-00332-w
https://doi.org/10.1088/1361-648X/abec1a
https://doi.org/10.1088/1361-648X/abec1a
https://doi.org/10.1063/1.1663657
https://doi.org/10.1063/1.1653564
https://doi.org/10.1063/1.1660200
https://doi.org/10.1063/1.1660200
https://doi.org/10.1126/sciadv.1700638
https://doi.org/10.1063/1.4795165
https://doi.org/10.1063/1.4921850
https://doi.org/10.1038/srep30268
https://doi.org/10.1088/0022-3719/19/35/014
https://doi.org/10.1088/0022-3719/19/35/014
https://doi.org/10.1126/science.1162843
https://doi.org/10.1126/science.1162843
https://doi.org/10.1103/PhysRevLett.105.067208
https://doi.org/10.1063/1.5093265


5

120 BIBLIOGRAPHY

16H. Qin, S. J. Hämäläinen, K. Arjas, J. Witteveen, and S. van Dijken, “Propagating spin
waves in nanometer-thick yttrium iron garnet films: Dependence on wave vector,
magnetic field strength, and angle”, Physical Review B 98, 224422 (2018).

17J. Chen et al., “Excitation of unidirectional exchange spin waves by a nanoscale mag-
netic grating”, Physical Review B 100, 104427 (2019).

18S. Klingler et al., “Measurements of the exchange stiffness of YIG films using broad-
band ferromagnetic resonance techniques”, Journal of Physics D: Applied Physics 48,
015001 (2015).

19U. K. Bhaskar, G. Talmelli, F. Ciubotaru, C. Adelmann, and T. Devolder, “Backward vol-
ume vs Damon–Eshbach: A traveling spin wave spectroscopy comparison”, Journal of
Applied Physics 127, 33902 (2020).

20C. Dubs et al., “Low damping and microstructural perfection of sub-40nm-thin yt-
trium iron garnet films grown by liquid phase epitaxy”, Physical Review Materials 4,
024416 (2020).

21B. A. Kalinikos, M. P. Kostylev, N. V. Kozhus, and A. N. Slavin, “The dipole-exchange
spin wave spectrum for anisotropic ferromagnetic films with mixed exchange bound-
ary conditions”, Journal of Physics: Condensed Matter 2, 9861 (1990).

22S. A. Manuilov, S. I. Khartsev, and A. M. Grishin, “Pulsed laser deposited Y3Fe5O12

films: Nature of magnetic anisotropy I”, Journal of Applied Physics 106, 123917 (2009).
23V. B. Bobkov, I. Zavislyak, and V. F. Romanyuk, “Microwave spectroscopy of magne-

tostatic waves in epitaxial ferrite films”, Journal of Communications Technology and
Electronics 48, 196 (2003).

24M. Farle, “Ferromagnetic resonance of ultrathin metallic layers”, Reports on Progress
in Physics 61, 755 (1998).

25C. Dubs et al., “Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic
resonance losses”, Journal of Physics D: Applied Physics 50, 204005 (2017).

26L. Soumah et al., “Ultra-low damping insulating magnetic thin films get perpendicu-
lar”, Nature Communications 9, 3355 (2018).

27M. Evelt et al., “Emission of Coherent Propagating Magnons by Insulator-Based Spin-
Orbit-Torque Oscillators”, Physical Review Applied 10, 041002 (2018).

28T. Yu, Y. M. Blanter, and G. E. W. Bauer, “Chiral Pumping of Spin Waves”, Physical
Review Letters 123, 247202 (2019).

29F. Ciubotaru, T. Devolder, M. Manfrini, C. Adelmann, and I. P. Radu, “All electrical
propagating spin wave spectroscopy with broadband wavevector capability”, Applied
Physics Letters 109, 012403 (2016).

30I. Bertelli et al., “Magnetic resonance imaging of spin-wave transport and interference
in a magnetic insulator”, Science Advances 6, eabd3556 (2020).

31J. W. Boyle et al., “Investigations of epitaxial Ga : YIG(111) films by Brillouin light scat-
tering and microwave spectroscopy”, Le Journal de Physique IV 07, C1–497–C1 (1997).

32Y. S. Gui, A. Wirthmann, and C.-M. Hu, “Foldover ferromagnetic resonance and damp-
ing in permalloy microstrips”, Physical Review B 80, 184422 (2009).

https://doi.org/10.1103/PhysRevB.98.224422
https://doi.org/10.1103/PhysRevB.100.104427
https://doi.org/10.1088/0022-3727/48/1/015001
https://doi.org/10.1088/0022-3727/48/1/015001
https://doi.org/10.1063/1.5125751
https://doi.org/10.1063/1.5125751
https://doi.org/10.1103/PhysRevMaterials.4.024416
https://doi.org/10.1103/PhysRevMaterials.4.024416
https://doi.org/10.1088/0953-8984/2/49/012
https://doi.org/10.1063/1.3272731
https://doi.org/10.1088/0034-4885/61/7/001
https://doi.org/10.1088/0034-4885/61/7/001
https://doi.org/10.1088/1361-6463/aa6b1c
https://doi.org/10.1038/s41467-018-05732-1
https://doi.org/10.1103/PhysRevApplied.10.041002
https://doi.org/10.1103/PhysRevLett.123.247202
https://doi.org/10.1103/PhysRevLett.123.247202
https://doi.org/10.1063/1.4955030
https://doi.org/10.1063/1.4955030
https://doi.org/10.1126/sciadv.abd3556
https://doi.org/10.1051/jp4:19971203
https://doi.org/10.1103/PhysRevB.80.184422


BIBLIOGRAPHY

5

121

33Y. Fetisov, C. Patton, and V. Synogach, “Nonlinear ferromagnetic resonance and foldover
in yttrium iron garnet thin films-inadequacy of the classical model”, IEEE Transac-
tions on Magnetics 35, 4511 (1999).

34Y. Li et al., “Nutation Spectroscopy of a Nanomagnet Driven into Deeply Nonlinear
Ferromagnetic Resonance”, Physical Review X 9, 041036 (2019).

35P. A. P. Janantha, B. Kalinikos, and M. Wu, “Foldover of nonlinear eigenmodes in mag-
netic thin film based feedback rings”, Physical Review B 95, 064422 (2017).

36K. Ando and E. Saitoh, “Spin Pumping Driven by Bistable Exchange Spin Waves”, Phys.
Rev. Lett. 109, 26602 (2012).

37Q. Wang et al., “A nonlinear magnonic nano-ring resonator”, npj Computational Ma-
terials 6, 192 (2020).

38P. Krivosik and C. E. Patton, “Hamiltonian formulation of nonlinear spin-wave dy-
namics: Theory and applications”, Physical Review B 82, 184428 (2010).

39J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-
optical spiking neurosynaptic networks with self-learning capabilities”, Nature 569,
208 (2019).

40J. J. Carmiggelt, O. C. Dreijer, C. Dubs, O. Surzhenko, and T. van der Sar, Electrical
spectroscopy of the spin-wave dispersion and bistability in gallium-doped yttrium iron
garnet (Zenodo, 2021).

41H. Suhl, “Ferromagnetic Resonance in Nickel Ferrite Between One and Two Kilomega-
cycles”, Physical Review 97, 555 (1955).

42I. Bertelli et al., “Imaging Spin-Wave Damping Underneath Metals Using Electron
Spins in Diamond”, Advanced Quantum Technologies 4, 2100094 (2021).

43A. Rustagi, I. Bertelli, T. van der Sar, and P. Upadhyaya, “Sensing chiral magnetic noise
via quantum impurity relaxometry”, Phys. Rev. B 102, 220403 (2020).

https://doi.org/10.1109/20.809144
https://doi.org/10.1109/20.809144
https://doi.org/10.1103/PhysRevX.9.041036
https://doi.org/10.1103/PhysRevB.95.064422
https://doi.org/10.1103/PhysRevLett.109.026602
https://doi.org/10.1103/PhysRevLett.109.026602
https://doi.org/10.1038/s41524-020-00465-6
https://doi.org/10.1038/s41524-020-00465-6
https://doi.org/10.1103/PhysRevB.82.184428
https://doi.org/10.1038/s41586-019-1157-8
https://doi.org/10.1038/s41586-019-1157-8
https://doi.org/10.1103/PhysRev.97.555.2
https://doi.org/10.1002/qute.202100094
https://doi.org/10.1103/PhysRevB.102.220403




6
EXCITON-TO-TRION CONVERSION

AS A CONTROL MECHANISM FOR

VALLEY POLARIZATION IN

ROOM-TEMPERATURE MONOLAYER

WS2

Transition metal dichalcogenide (TMD) monolayers are two-dimensional semiconduc-
tors with two valleys in their band structure that can be selectively addressed using circu-
larly polarized light. Their photoluminescence spectrum is characterized by neutral and
charged excitons (trions) that form a chemical equilibrium governed by the net charge
density. Here, we use chemical doping to drive the conversion of excitons into trions in WS2

monolayers at room temperature, and study the resulting valley polarization via photo-
luminescence measurements under valley-selective optical excitation. We show that the
doping causes the emission to become dominated by trions with a strong valley polar-
ization associated with rapid non-radiative recombination. Simultaneously, the doping
results in strongly quenched but highly valley-polarized exciton emission due to the en-
hanced conversion into trions. A rate equation model explains the observed valley po-
larization in terms of the doping-controlled exciton-trion equilibrium. Our results shed
light on the important role of exciton-trion conversion on valley polarization in mono-
layer TMDs.

This chapter has been published in Scientific Reports 10, 17389 (2020) by J. J. Carmiggelt*, M. Borst*, and T. van
der Sar.
* indicates equal contribution.
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6. EXCITON-TO-TRION CONVERSION AS A CONTROL MECHANISM FOR VALLEY

POLARIZATION IN ROOM-TEMPERATURE MONOLAYER WS2

6.1. INTRODUCTION
Transition metal dichalcogenide (TMD) monolayers are direct-bandgap semiconduc-
tors of which the conduction and valence band extrema consist of two valleys [1, 2]. The
broken inversion symmetry of the lattice gives rise to optical selection rules that enable
valley-selective, inter-band excitation of electrons using circularly polarized light [3–5].
A strong Coulomb interaction results in the subsequent formation of excitons [6], which
maintain a valley polarization that is determined by the ratio between the intervalley
scattering time and the exciton lifetime [3, 7]. Such valley-polarized excitons have been
proposed as carriers of information and play a central role in the field of valleytronics
[8, 9]. As such, understanding the processes that govern the exciton lifetime and asso-
ciated valley polarization is important for assessing the potential applicability of valley-
polarized excitons in devices.

Under optical excitation, a charge-density-controlled chemical equilibrium between neu-
tral and charged excitons (trions) forms in a TMD monolayer [10–12]. The conversion
into trions reduces the exciton lifetime [13] and may therefore be expected to lead to a
large valley polarization of excitons that are created via valley-selective optical pumping,
but demonstrating this effect has thus far remained elusive.

The charge density of TMD monolayers can be controlled via electrostatic gating or
chemical doping [10, 11, 14–20]. While electrostatic gating is a flexible technique that
allows a continuous change of the charge density [10, 11, 14], chemical doping provides
a convenient alternative that requires no microfabrication and is well suited for achiev-
ing high doping levels [15–20]. Here, we study the valley polarization of excitons and
trions in monolayer WS2 and show that chemical doping via aromatic anisole (methoxy-
benzene) quenches the exciton photoluminescence and causes the spectrum to become
dominated by trions with a strong valley polarization. A spatial study of the remaining
exciton emission shows that also the excitons attain a strong valley polarization, which
we attribute to the rapid doping-induced conversion into trions. We extend a rate equa-
tion model describing exciton-trion conversion [10] to include the two valleys and use it
to explain the observed valley polarization in terms of the doping-controlled chemical
equilibrium between excitons and trions.

6.2. RESULTS
When doping a TMD monolayer using aromatic molecules such as anisole, Hard Soft
Acid Base (HSAB) theory allows predicting whether the dopant will be n- or p-type [16].
Electrons hop between the adsorbed molecules (A) and the monolayer (B) to compen-
sate for the difference in chemical potential µ between both systems [21]. The chemical
hardness η of the materials determines how quickly an equilibrium is reached, leading
to an average number of transferred electrons per molecule ∆N :

∆N = µA −µB

ηA +ηB
. (6.1)

For both anisole and monolayer WS2, the chemical potential and chemical hardness
has been calculated using density functional theory [22, 23]. Using these values (sec-
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tion 6.5.1) we find ∆N = 0.22, such that we expect the monolayer to be n-doped upon
physisorption of anisole molecules (Fig. 6.1a).

To study the effect of chemical doping with anisole on the valley polarization properties
of WS2, we start by characterizing the photoluminescence of exfoliated WS2 monolay-
ers on 280 nm Si/SiO2 substrates. The emission spectrum of an as-prepared monolayer
shows the characteristic bright exciton resonance at 2.01 eV (Fig. 6.1b, black line) [24].
After chemical doping by a two-hour treatment in liquid anisole at 70 C◦, the bright exci-
ton resonance is strongly quenched and only a weak emission peak that is red-shifted by
∆E = 23 meV remains (Fig. 6.1b, red line). Because the increased binding energy of trions
compared to excitons should lead to such a red shift [14] and the expected n-type doping
by the anisole molecules should favour trion formation, we attribute this peak to emis-
sion associated with trions. This conclusion is further supported by spatial studies of
emission spectra showing both exciton and trion components that we will describe be-
low. As expected, the trion emission is weak due to its long radiative lifetime and strong
non-radiative decay attributed to Auger recombination [10, 25, 26].

Doping by adsorbed carbon-hydrogen groups [27] was previously shown to result in an
increase of the longitudinal acoustic LA(M) and LA(K) modes in the Raman spectrum
of WS2 monolayers. Our treatment causes a similar increase of the LA(M) Raman mode
(Fig. 6.1c), which we therefore attribute to the adsorption of anisole molecules. We do
not observe an associated increase of the LA(K) mode at about 190 cm−1, which may
be due to the different nature of the adsorbates resulting in different lattice deforma-
tions and/or defects in the monolayer. We note that a similar behaviour was observed
in previous work on WS2 monolayers [7], which showed an increasing intensity of the
LA(M) Raman mode without an associated increase in the LA(K) mode as a function of
the defect concentration. In addition, we find that the double-resonance 2LA(M) mode
remains unaffected by the doping, indicating that our treatment does not significantly
change the monolayer’s electronic structure [28].

To study the valley polarization of chemically-doped WS2 monolayers, we use near-resonant
excitation with a 594 nm circularly polarized, continuous-wave laser that is focussed to
a diffraction-limited spot. The resulting photoluminescence is polarization filtered and
collected using a home-built confocal microscope (see Methods). Before detecting the
emission with an avalanche photodiode (APD), we apply a spectral bandpass filter with
a transmission window centred around the exciton and trion resonances (see the shaded
area in Fig. 6.1b).

We quantify the valley polarization ρ via polarization-resolved photoluminescence mea-
surements according to

ρ = Iσ+ − Iσ−

Iσ+ + Iσ−
. (6.2)

Here, Iσ+ and Iσ− represent the intensities of the right- and left-handed emission by the
sample under σ+ excitation and the total photoluminescence is given by I = Iσ+ + Iσ− .
By scanning the sample while detecting its emission using the APD, we make photolu-
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Figure 6.1: Controlling the photoluminescence properties of monolayer WS2 via chemical doping. (a) WS2
monolayers on Si/SiO2 substrates become n-doped by treating them with anisole for 2 hours at 70 ◦C. The
insets show the chemical structures of WS2 and anisole. (b) Photoluminescence spectrum of a monolayer
WS2 before and after the anisole treatment. The treatment quenches the neutral exciton resonance, leading
to the emergence of the trion resonance. The spectrum before (after) treatment was taken at 4 µW (40 µW)
off-resonant laser excitation (E = 2.331 eV, λ= 532 nm). The shaded area indicates the transmission window of
the bandpass filter used for the maps in Fig. 6.2. (c) Raman spectra before and after the treatment of the same
monolayer as in (b), at 514 nm laser excitation. The inset shows the enhanced intensity of the longitudinal
acoustic LA(M) phonon mode, attributed to the adsorption of the anisole molecules. Both spectra are averages
over multiple positions of the flake, which all show the same mode enhancement.

minescence and valley-polarization maps of our flakes, before and after treating them.

Before the anisole treatment, the photoluminescence is characterized by bright exciton
emission (Fig. 6.2a, left panel) with no valley polarization (Fig. 6.2b, left panel). Strik-
ingly, the trion emission that remains after chemical doping (Fig. 6.2a, right panel) has
a valley polarization of about 25% (Fig. 6.2b, right panel). We consistently observe the
emergence of strong valley polarization after anisole treatment in multiple samples (sec-
tion 6.5.2).

Next, we demonstrate the substrate independence of the effect of our treatment by re-
peating the measurements on an yttrium iron garnet (YIG) substrate. YIG is a magnetic
insulator that was shown to effectively negatively dope MoS2 monolayers at low temper-
atures, possibly due to dangling oxygen bonds at the YIG surface [29]. As such, the total
level of doping could be larger for monolayers on YIG due to additional doping from the
substrate.

We exfoliated monolayers WS2 onto polydimethylsiloxane (PDMS) stamps and deposited
them onto the YIG substrates [30]. As before, the emission of the monolayers is strongly
quenched after chemical doping and a valley polarization of about 20%-40% emerges
(Fig. 6.3, section 6.5.2). Compared to the monolayers on Si/SiO2 substrates we conclude
that these data do not indicate significant additional doping from the YIG substrate.

To assess the spatial homogeneity of the doping, we characterize the photoluminescence
and valley polarization of a relatively large-area monolayer flake on YIG (Fig. 6.3a,b). In
most parts of the flake, we observe a valley polarization of about 40%. In addition, at
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a

b

Figure 6.2: Spatial maps of the photoluminescence (a) and valley polarization (b) of a monolayer WS2 before
and after chemical doping with anisole. The treatment quenches the brightness of the flake and gives rise to
strongly valley-polarized emission. The flake was exfoliated on a Si/SiO2 substrate and excited near-resonance
(E = 2.087 eV, λ= 594 nm, 4 µW). Scale bar: 2 µm.

multiple spots in the monolayer, we observe an enhanced photoluminescence and re-
duced valley polarization. A comparison with an atomic force microscope topography
image (Fig. 6.3c) shows that these spots are associated with wrinkles in the flake. Spec-
trally, the spots are characterized by the simultaneous presence of an exciton resonance
and a trion resonance, with the exciton resonance rapidly vanishing as we move off the
spot and the trion resonance remaining approximately constant (Fig. 6.3d). We extract
the valley polarization and brightness of the exciton and trion resonances by fitting sim-
ilar emission spectra near multiple wrinkles with an exciton and trion component (sec-
tion 6.5.3). The extracted trion brightness and valley polarization is independent of the
local exciton emission (Fig. 6.3e), highlighting their spatial homogeneity. In particu-
lar, the trion valley polarization of about 40% is similar to that in the flat areas of the
flake (Fig. 6.3b,f). The stronger exciton emission at wrinkles indicates that the doping is
less effective, possibly resulting from the restricted physical access to the monolayer at
wrinkles or from a decreased substrate-induced doping due to the increased substrate-
monolayer distance. In addition, the exciton and trion formation could be altered at the
wrinkles as a result of local strain [31].

Strikingly, the excitons at the wrinkles also attained a strong valley polarization, as can
be seen from the spectra in Fig. 6.3d. We extend an existing rate equation model [10]
to argue that this is the result of the doping-induced conversion of excitons into trions
(Fig. 6.4a). This conversion acts as a decay channel for the excitons, enhancing their
valley polarization and quenching their photoluminescence. The model predicts that
the excitonic valley polarization starts to increase strongly when the conversion rate
into trions ΓT←X becomes comparable to the intervalley scattering rate Γiv,X (Fig. 6.4b,
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a b c d e

f

Figure 6.3: Spatial characterization of the exciton and trion emission of a chemically-doped monolayer WS2
on an yttrium iron garnet (YIG) substrate. (a-b) Spatial maps of the photoluminescence and valley polariza-
tion under near-resonant excitation (594 nm, 200 µW) after chemical doping. The sample was submerged
in liquid anisole for 12 hours at room temperature and vacuum-annealed for 6 hours (400 ◦C, <1 mTorr) to
remove contaminants. Multilayer areas of the flake surrounding the monolayer are identified by their low
brightness due to their indirect bandgap [2] and large polarization [32]. A comparison with the atomic force
microscope image in (c) shows that spots with increased photoluminescence and reduced valley polarization
occur at wrinkles of the monolayer. (d) Emission spectra at different locations close to a wrinkle indicated
by the black arrow in the inset of (c). Lorentzian fits of the trion (red) and exciton (green) resonances reveal
the simultaneous presence of trion and exciton emission at wrinkles. (e) Average trion brightness and valley
polarization plotted against the local exciton photoluminescence at different wrinkles. (f) Typical σ+ and σ−
emission spectra of trions in flat parts of the flake, obtained at the location indicated by the triangle in the inset
of (c), corresponding to a valley polarization of about 40%. Scale bar: 5 µm.

green line). Since ΓT←X is proportional to the electron density as described by a law of
mass-action [11, 12], indeed an emergent exciton polarization is expected when doping
is strong.

Strongly valley-polarized excitons are expected in the limit of large doping (Fig. 6.4b).
For our flakes, doping is strongest in the flat areas away from the wrinkles as reflected
by the low photoluminescence in these areas. Because we are unable to spectrally dis-
tinguish the weak exciton emission from the dominant trion emission in these areas, we
analyse the valley polarization of the integrated photoluminescence spectrum using our
APD. When plotting the local valley polarization against the local photoluminescence
(Fig. 6.4c), we observe a non-monotonous behaviour with a maximum at low photolu-
minescence. According to our model, this maximum occurs because the exciton valley
polarization (green line in Fig. 6.4b) increases with doping while the exciton photolumi-
nescence vanishes. As a result, the trion contribution (red line) starts to dominate the
total signal (black line). These results highlight that the exciton valley polarization be-
comes large because of the rapid conversion into trions.

On wrinkles, we observe that the excitons have a lower valley polarization than the tri-
ons (Fig. 6.3d). In contrast, our model predicts that the local valley polarization of the
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trions cannot exceed that of the excitons even at low doping (Fig. 6.4b, section 6.5.4).
This indicates that the observed spectra on wrinkles are a result of spatial averaging over
less-doped, wrinkled areas with a strong exciton contribution and strongly-doped sur-
rounding areas with a dominant trion emission (section 6.5.5). Such averaging is ex-
pected from the diffraction-limited optical spotsize of our confocal microscope (diame-
ter: ∼ 500 nm).

K valley

K’ valley

TrionExciton

TrionExciton

Pump laser
Radiative rec.
Non-radiative rec.

a b

c

Figure 6.4: Doping-controlled valley polarization of excitons and trions. (a) Schematic depiction of the rate
equation model used to describe the optically detected valley polarization. Excitons are created by valley-
selective optical excitation, after which they can decay radiatively, scatter between the valleys at a rate Γiv,X, or
change into trions at a doping-controlled rate ΓT←X. The trions can scatter between the valleys, decay radia-
tively or non-radiatively, and change back into excitons. (b) Valley polarization of excitons, trions, and their
photoluminescence-weighted average as a function of ΓT←X/Γiv,X calculated using the rate equation model
shown in (a). (c) Valley polarization versus photoluminescence extracted by averaging data from individual
pixels in the monolayer area of Fig. 6.3a,b.

6.3. CONCLUSIONS
In summary, we have demonstrated that chemical doping with anisole is an effective
method to generate highly valley-polarized excitons and trions in monolayer WS2 at
room temperature. The emission spectrum of as-prepared monolayers is characterized
by a bright exciton resonance that exhibits no valley polarization. After chemical dop-
ing, a trion resonance appears with a polarization up to 40%. The doping is less efficient
at wrinkled areas, which are marked by the simultaneous presence of exciton and trion
resonances. The excitons have a robust valley polarization, which we attribute to the
rapid conversion into trions induced by the doping. A rate equation model captures the
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quenching-induced valley polarization, indicating the presence of excitons with a higher
polarization than trions in the limit of maximal quenching. Our results shed light on the
effect of the doping-controlled conversion between excitons and trions on the valley po-
larization in single layers of WS2 and highlight that valley polarization by itself does not
necessarily reflect optovalleytronic potential, since a strongly-quenched carrier lifetime
and emission may constrain its application in devices.

6.4. MATERIALS AND METHODS

6.4.1. EXPERIMENTAL SETUP
A schematic overview of the setup is presented in Fig. 6.5. Our samples are excited by
a lowpass-filtered 594 nm OBIS laser (Coherent) of which we control the polarization
using achromatic half- and quarter-wave plates (Thorlabs). A 50X, NA=0.95 (Olympus)
objective focuses the laser to a diffraction-limited spot and collects the emission from
the sample. The emission is separated from the excitation by a 10:90 beam splitter (R:T,
Thorlabs). The handedness of the excitation and detection is controlled by a second
quarter-wave plate, which projects both circular polarizations of the photoluminescence
onto two orthogonal linear polarizations of which we select one with the polarizer. The
emission is longpass filtered (2x Semrock, BLP01-594R-25) to eliminate the laser reflec-
tion. We use a mirror on a computer-controlled flipmount to switch between a fiber-
coupled spectrometer (Kymera 193 spectrograph with a cooled iVac 324 CCD detector)
and an avalanche photodiode (APD, Laser Components) for the detection of the photo-
luminescence. Before the emission is detected by the APD, it is filtered with a pinhole
and bandpass filter (Semrock, FF01-623/32-25). The sample is mounted on an xyz-piezo
stage (Mad City Labs, Nano-3D200FT) to allow nanoscale positioning of the sample. An
ADwin Gold II was used to control the piezo stage and read out the APD. The grating in
the Raman microscope (Renishaw inVia Reflex, 514 nm laser) had 1600 lines per mm,
giving a spectral resolution of ∼2 cm−1 per pixel. All measurements were performed at
room temperature.

6.4.2. SAMPLE FABRICATION
The WS2 monolayers were exfoliated from commercially-purchased bulk crystals (HQ
Graphene) on PDMS stamps, and were transferred to Si/SiO2 and YIG chips. The 245
nm thick YIG films were grown on a gadolinium gallium garnet (GGG) substrate via liq-
uid phase epitaxy and were purchased at Matesy gmbh. YIG samples were sonicated in
acetone and cleaned in IPA before stamping.
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Figure 6.5: Overview of the measurement setup used in our experiments. The first quarter-lambda plate
(λ/4) corrects for imperfections in the laser polarization and makes it perfectly linear, such that the excitation
polarization can be controlled by turning the half-lambda plate (λ/2). A 10:90 beamsplitter (R:T) seperates the
excitation from the detection. The polarization of the detection is controlled by the orientation of the second
quarter-lambda plate relative to the transmission axis of the polarizer. The objective focusses the laser and col-
lects the photoluminesence of the sample, which is positioned using an XYZ piezo stage. Two longpass filters
eliminate the laser reflection. Depending on the orientation of a mirror on a computer-controlled flipmount
(indicated by the V) the photoluminesence is detected by an avalange photodiode (APD) or spectrometer. Be-
fore the emission is detected by the APD, it is filtered with a pinhole and bandpass filter.
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6.5. SUPPLEMENTARY MATERIAL

6.5.1. LITERATURE VALUES OF THE CHEMICAL POTENTIAL AND HARDNESS

WS2 monolayer [23] Anisole [22]
Chemical potential µ (eV) -4.79 -3.17
Chemical hardness η (eV) 2.64 4.88

Chemical potential and chemical hardness of anisole and monolayer WS2 calculated using density func-
tional theory.

6.5.2. REPRODUCABLE QUENCHING-INDUCED VALLEY POLARIZATION
We repeat the anisole treatment as specified before on five more WS2 monolayer flakes,
presented in Fig. 6.6, all of which show a strong dimming and emergent room-temperature
valley polarization after doping. Of these, three have a Si/SiO2 substrate and two an yt-
trium iron garnet (YIG) substrate. Variations in photoluminescence and valley polariza-
tion between the flakes are attributed to differences in defect density and unintentional
doping prior to the treatment. Furthermore, we confirm the absence of valley polar-
ization before the anisole treatment by presenting spectra of untreated monolayers for
different excitation and detection helicities in Fig. 6.7.

0.5x 2x 4x

2x 2x 8x 8x 8x

Before

After

Before

After

YIG YIG Si Si Si

Figure 6.6: Additional photoluminescence and valley polarization maps of WS2 monolayer flakes before
and after anisole treatment. The first two monolayers were stamped on yttrium iron garnet (YIG) and the
remaining three on Si/SiO2. All maps were made using a 594 nm excitation laser at a power of 4 µW before the
doping and 40 µW after doping. Scale bar: 2 µm.
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Figure 6.7: σ+ and σ− emission spectra under σ+ and σ− near-resonance excitation (E =2.087 eV, λ= 594
nm) of untreated WS2 monolayers on Si/SiO2 and YIG substrates. In each panelσ+ andσ− emission spectra
are overlapping, which confirms the absence of valley polarization in these flakes. At about 2.04 eV the spectra
are cut by the longpass filters that filter out the excitation laser.

6.5.3. EMERGENCE OF EXCITON EMISSION AT WRINKLES
Here, we plot additional σ+ emission spectra along spatial traces over wrinkles in the
WS2 flake presented in Fig. 6.3. As demonstrated in Fig. 6.8, each trace is characterized by
the emergence of a strong exciton resonance at the center of the wrinkle, highlighted by
the asymmetry of the spectra. The central wavelength of both trions and excitons varies
slightly over the different wrinkles, which we attribute to local variations in strain [31,
34] and doping [14]. From this, we extract spatially-varying energy splittings between
the excitons and trions within the range of 22 meV − 32 meV, in agreement with reported
literature values [35]. Additional σ− emission spectra were taken along the same spa-
tial traces to determine the valley polarization and brightness of the exciton and trion
resonances near wrinkles, which were plotted in Fig. 6.3e.

6.5.4. MODELLING DOPING-CONTROLLED VALLEY DYNAMICS

MODEL OVERVIEW

To calculate the expected valley polarization as a function of doping level we extend the
rate equation model of Lien et al. [10] by incorporating the valleys (Fig. 6.9). The model
assumes that excitons are excited in the K valley at a rate ΓK, scatter to the K’ valley at
a rate Γiv,X, decay radiatively at a rate Γr,X, or decay to trions via ΓT←X while preserving
their valley. The trions then scatter between the valleys at a rate Γiv,T, decay radiatively
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Figure 6.8: Recurrent emergence of exciton emission at wrinkles. σ+ emission spectra are plotted along
spatial traces over multiple wrinkles on the sample of Fig. 6.3. Labels above the spectra correspond to wrinkles
in the atomic force microscope map in the right panel. Emission spectra at label 1 are depicted in Fig. 6.3c. All
spectra were taken at near-resonance excitation (E = 2.087 eV, λ= 594 nm, 40 µW).

via Γr,T, non-radiatively via Γnr, or back to excitons via ΓX←T while preserving their valley.

A law of mass-action states that ΓT←X is linearly proportional to the electron density ne ,
while ΓX←T is fixed [10–12]. As described previously, we expect that ΓT←X is spatially fluc-
tuating due to local variations in doping level. Since the samples are strongly doped, we
assume that ΓT←X is much larger than any other non-radiative decay rate of the excitons,
which we therefore neglect.

We define the probability for the system to be in the ground state as G , the probability
to have formed an exciton in the K(’) valley as XK(’) , and the probability to have formed a
trion in the K(’) valley as T K(’) . The time evolution of the system is then governed by the
following master equations:

dG

d t
=−ΓKG +Γr,X(XK +XK’)+ (Γr,T +Γnr)(TK +TK’) = 0, (6.3)

d XK

d t
= ΓKG − (Γiv,X +ΓT←X +Γr,X)XK +Γiv,XXK’ +ΓX←TTK = 0, (6.4)

d XK’

d t
=−(Γiv,X +ΓT←X +Γr,X)XK’ +Γiv,XXK +ΓX←TTK’ = 0, (6.5)

dTK

d t
=−(Γiv,T +ΓX←T +Γnr +Γr,T)TK +Γiv,TTK’ +ΓT←XXK = 0, (6.6)



6.5. SUPPLEMENTARY MATERIAL

6

135

dTK’

d t
=−(Γiv,T +ΓX←T +Γnr +Γr,T)TK’ +Γiv,TTK +ΓT←XXK’ = 0, (6.7)

G +XK +XK’ +TK +TK’ = 1. (6.8)

Here, we set the time derivatives to zero to consider a steady state and finally normalize
the probabilities in the last line.

K valley

K’ valley

TrionExciton

TrionExciton

Pump laser
Radiative rec.
Non-radiative rec.

Figure 6.9: Schematic overview of the rate equation model. The closed system can either be in the ground
state, or be an exciton or trion in the K or K’ valley. By considering its steady state solutions, we model the
valley polarization of excitons and trions under continuous-wave illumination.

CALCULATION OF THE TRION AND EXCITON VALLEY POLARIZATION

The valley polarization of the exciton and trion are respectively denoted by ρX and ρT,
and are defined as the normalized asymmetry in valley occupation,

ρX = XK −XK’

XK +XK’
,

ρT = TK −TK’

TK +TK’
.

(6.9)

By combining Eqns. 6.6-6.7 we derive a relation between ρX and ρT, demonstrating that
the valley polarization of excitons is always larger than that of trions [36]

ρT = ΓX←T +Γnr +Γr,T

2Γiv,T +ΓX←T +Γnr +Γr,T
ρX. (6.10)
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We can express ρX in terms of the rates by combining Eqns. 6.3-6.7

ρX =
Γr,X

2Γiv,X
+ Γr,T+Γnr

2(ΓX←T+Γnr+Γr,T)
ΓT←X
Γiv,X

1+ Γr,X
2Γiv,X

+ 2Γiv,T+Γnr+Γr,T
2(2Γiv,T+ΓX←T+Γnr+Γr,T)

ΓT←X
Γiv,X

≈
Γnr

2(ΓX←T+Γnr)
ΓT←X
Γiv,X

1+ 2Γiv,T+Γnr
2(2Γiv,T+ΓX←T+Γnr)

ΓT←X
Γiv,X

. (6.11)

Since the radiative decay rates are known to be low at room temperature [10, 37, 38], we
assumed in the last step that Γiv,X >> Γr,X and Γnr >> Γr,T. We thus conclude that the val-
ley polarization of the excitons is parametrized by ΓT←X

Γiv,X
, and that it reaches a maximum

ρmax
X when ΓT←X >> Γiv,X

ρmax
X = Γnr(2Γiv,T +ΓX←T +Γnr)

(Γnr +2Γiv,T)(Γnr +ΓX←T)
. (6.12)

ANALYSIS OF THE VALLEY POLARIZATION VERSUS PHOTOLUMINESCENCE

Using Eqns. 6.6, 6.7 and 6.11 we can calculate the valley polarization ρ as it detected by
the avalanche photodiode (APD) in the experiment, by summing the exciton and trion
emission

ρ = Γr,T(TK −TK’)+Γr,X(XK −XK’)

Γr,T(TK +TK’)+Γr,X(XK +XK’)

=
Γr,T

Γr,X(2Γiv,T+ΓX←T+Γnr)ΓT←X +1

Γr,T
Γr,X(ΓX←T+Γnr)ΓT←X +1

Γnr
2Γiv,X(ΓX←T+Γnr)ΓT←X

2Γiv,T+Γnr
2Γiv,X(2Γiv,T+ΓX←T+Γnr)ΓT←X +1

.

(6.13)

To find a relation between the valley polarization and total photoluminescence I = IT +
IX, we express I in terms of the rates by combining Eqns. 6.3 and 6.6-6.8, and find that it
is inversely related to ΓT←X

I =αN
(
Γr,T(TK +TK’)+Γr,X(XK +XK’)

)≈αNΓK(
Γr,T

Γnr
+
Γr,X(ΓX←T

Γnr
+1)

ΓT←X
). (6.14)

Here 0 <α< 1 represents the finite detection efficiency of the confocal microscope and
N is the number of electrons in the system. To simplify this expression, we made use of
the previous assumptions, and assumed that the system is weakly excited and strongly
doped, such that ΓK is small and ΓT←X >> Γr,X. By inverting this equation and substi-
tuting it into Eq. 6.13, we find ρ as a function of I for a sample with a varying doping
level

ρ = a0I +1

b0I 2 + c0I
. (6.15)

Here the constants are given by

a0 =− Γnr

2αNΓKΓiv,TΓr,T
(2Γiv,T +ΓX←T +Γnr),

b0 =− ΓnrΓiv,X

α2N 2Γ2
KΓr,XΓr,TΓiv,T

(2Γiv,T +ΓX←T +Γnr),

c0 =− 1

2αNΓKΓiv,TΓr,T
(ΓX←T +Γnr)(2Γiv,T +Γnr)− 2Γiv,XΓr,T

Γr,XΓnr
a0.

(6.16)
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In agreement to our data, the valley polarization should thus be inversely related to the
photoluminescence at high I

ρ ≈ a0

b0I + c0
. (6.17)

This inverse relation is reinforced by the spatial averaging of our diffraction-limited op-
tical spot (see section 6.5.5). At low I , a local maximum in the valley polarization is ex-
perimentally observed, only if

Γnr

2Γr,T
(
Γr,X

Γiv,X
− Γr,T

Γiv,T
)+ Γr,XΓiv,T

Γiv,XΓr,T
− ΓX←T

2Γiv,T
> 1. (6.18)

This is only true, if
Γr,X
Γiv,X

> Γr,T
Γiv,T

, provided that Γiv,T >> ΓX←T. We thus conclude that rela-

tively bright excitons with a significantly higher polarization than trions are required for
the observation of a local maximum in the total valley polarization versus photolumi-
nescence.

COMPARISON BETWEEN MODEL AND EXPERIMENT

To better assess the correspondence between the model and the experimental data in
Fig. 6.4c, we make a basic estimate of the valley polarization using MoS2 literature values
for the radiative and non-radiative rates [10] (1/Γr,X = 8 ns, 1/Γr,T = 110 ns and 1/Γnr = 50
ps). For a rough approximation, we assume that ΓX←T is much smaller than the other
rates. As a result, the exciton valley polarization approaches unity at strong doping via
Eq. 6.12, while the trion polarization is parametrized by Γiv,T via Eq. 6.10. Following the
experimental results in Fig. 6.4c, we tune the trion polarization at maximal doping to
about 40%, which gives 1/Γiv,T = 60 ps. At this stage only Γiv,X remains as a free parame-
ter and it determines whether the valley polarization has a local maximum as a function
of photoluminescence via Eq. 6.18.

In Fig. 6.4b we demonstrate that for 1/Γiv,X = 10 ps a small local maximum in valley polar-
ization can be observed. In contrast, at an enhanced intervalley scattering of 1/Γiv,X = 2

ps the local maximum disappears (Fig. 6.10, left panel), because
Γr,X
Γiv,X

< Γr,T
Γiv,T

.

To compare the model and experiment, we plot the valley polarization versus photolu-
minescence using Eq. 6.15 for different values of Γiv,X (Fig. 6.10, right panel). We note
that we obtain similar plots when increasing ΓX←T, which merely lowers the exciton val-
ley polarization below unity at strong doping and decreases the difference between the
trion and exciton polarization, making the presence of a local maximum less likely.

6.5.5. CALCULATION OF THE SPATIALLY-AVERAGED VALLEY POLARIZATION

OF ADJACENT REGIONS WITH DIFFERENT DOPING LEVELS
In this section we calculate the valley polarization versus photoluminescence when aver-
aging the emission of two regions with different doping levels. In particular, we consider
a strongly-doped region with weak and highly polarized trion emission and a weakly-
doped region with strong and weakly polarized exciton emission, similar to the emis-
sion detected on wrinkles in Fig. 6.3. The emission from both regions is collected by our
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a b

Figure 6.10: Modelling valley polarization as a function of trion-to-exciton conversion and total lumines-
cence. (a) Modelled valley polarization versus ΓT←X/Γiv,X using the same rates as in Fig. 6.4b, demonstrating
that a different choice of Γiv,X can yield absence of a local maximum. (b) Simulated valley polarization versus
photoluminescence using the same rates as in (a), but with logarithmically spaced values for 1/Γiv,X ranging
between 1 and 100 ps. The inset highlights the presence (absence) of a local maximum at low brightness for
low (high) Γiv,X.

diffraction-limited optical spot, leading to a spatially-averaged valley polarization of

ρ = Γr,T(TK −TK’)+Γr,X(XK −XK’)

Γr,T(TK +TK’)+Γr,X(XK +XK’)
= ρTIT +ρXIX

IT + IX
. (6.19)

Here the valley polarization of the trions ρT and excitons ρX are constant and their in-
tensities IT and IX vary with the area of the weakly-doped region compared to the optical
spotsize (0 ≤ A ≤ 1), according to

IX = A · I0,X,

IT = (1− A) · I0,T.
(6.20)

Here I0,T and I0,X are constants that indicate the trion and exciton photoluminescence
when their associated regions would fill an entire optical spot. The total photolumines-
cence is given by

I = IT + IX = I0,T + A(I0,X − I0,T). (6.21)

By substituting this expression into Eq. 6.19, we find that the ρ is inversely related to I
for varying

ρ = ρXI0,X −ρTI0,T

I0,X − I0,T
+ I0,XI0,T(ρT −ρX)

I0,X − I0,T
· 1

I
. (6.22)

This is a similar inverse relation as the one in Eq. 6.17 for a varying doping level. Note that
this relation is exclusively inverse, and cannot explain any local maximum. However,
it is likely that the inverse decay of valley polarization in Fig. 6.4c is a combination of
1) spatial averaging due to a diffraction limited optical spot and 2) local variations in
doping.
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7
CONCLUSION AND OUTLOOK

In this chapter we provide an overview of the main results described in this dissertation.
At the end we look ahead and identify opportunities for future research.

Spin-wave microscopy techniques are crucial for the development of magnonic devices
and improving our fundamental understanding of magnetism. Nitrogen-vacancy (NV)
centers in diamond enable magnetic imaging of microscopic spin waves, which can pro-
vide important insights in spin-wave transport and dynamics. In chapter 3 we use NV
centers to image coherent spin waves in a thin film of yttrium iron garnet (YIG). The
microwave magnetic fields of these spin waves drive coherent rotations of the NV spins
("Rabi oscillations") when their frequency matches the NV electron spin resonance (ESR)
frequency. We quantitatively determine the amplitude of the spin-wave stray field from
the measured Rabi frequency, allowing spatial imaging of spin-wave wavefronts.

The measured spin-wave images give insight in the magnetic dispersion, which is an
important material property that relates the spin-wave wavelength to its frequency. We
reconstruct the spin-wave dispersion resonant with the NV sensors by extracting the
spin-wave wavelength while tuning the bias field. In addition, we observe autofocussing
of spin waves due to enhanced spin-wave transport along caustic directions. This be-
haviour results from the anisotropy of the spin-wave dispersion and is reproduced by
analytical calculations of the expected real-space spin-wave profile.

Furthermore, our results suggest that:

1. NV magnetometry is sensitive enough to detect spin waves in monolayer van-der-
Waals magnets.

2. Scanning NV microscopes could image spin waves with wavelengths smaller than
the optical diffraction limit. Recently, our group imaged spin waves in YIG using
a scanning single-NV microscope with wavelengths down to 360 nm [1]. Previous
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scanning NV experiments imaged spin waves with wavelengths of 660 nm [2] and
500 nm [3].

3. NV magnetometry could detect spin waves, even when the magnet is buried un-
derneath optically opaque materials. Our group harnessed this property to image
the enhanced damping of spin waves underneath metal electrodes as a result of
additional dissipation due to inductively-driven Eddy currents [4].

A key limitation of NV-based microwave sensors is that they are only sensitive to a nar-
row frequency range around the NV ESR frequency. Circumventing the resonance con-
dition of NV quantum sensing is desirable, since the spin-wave band of many interest-
ing magnets does not overlap with the ESR frequencies as a result of strong magnetic
anisotropies. In chapter 4 we demonstrate NV-based detection of spin waves that are
detuned from the ESR detection frequency.

Importantly, the demonstrated hybrid sensing platform enhances the versatility of NV
centers as microwave detectors by increasing their functional bandwidth. We present
two detection schemes that convert the frequencies of two spin waves (called "pump"
and "signal") to the NV ESR frequency using the nonlinear magnetization dynamics in
YIG. The first scheme relies on four-spin-wave mixing, where the pump and signal cre-
ate an "idler" spin wave resonant with the NV. Excitingly, this scheme allows high-fidelity
Rabi driving of the NV spin with off-resonant microwaves. The second scheme relies on
difference frequency generation by the longitudinal component of the magnetization.
It enables characterizing the spin-wave bandstructure at multiple gigahertz detuning,
even when the ESR frequency lies within the spin-wave gap. As such, this detection pro-
tocol offers promising opportunities for detecting high-frequency spin waves in van-der-
Waals magnets with NV centers.

In addition to its ultralow spin-wave damping, YIG is an attractive magnonic material
due to the tunability of its magnetic properties via doping. In chapter 5 we study a
gallium-doped YIG (Ga:YIG) thin film of which the saturation magnetization is about
10 times reduced compared to undoped YIG, making it a promising material for spin-
wave optics. We determine the frequency dependence of the spin-wave group velocity
by measuring the spin-wave-mediated microwave transmission between two striplines
fabricated on top of the film. By fitting the data with an analytical expression, we ob-
tain a quantitative estimate for the exchange constant of Ga:YIG. This constant deter-
mines the spin-wave dispersion together with the saturation magnetization and mag-
netic anisotropy constants, which we retrieve from vibrating sample magnetometry and
broadband ferromagnetic resonance (FMR) measurements, respectively. Finally, we ob-
serve foldover of the FMR at increased drive powers, resulting in bistability of the de-
tected spin-wave modes.

Chapter 6 focuses on excitons in transition metal dichalogenide (TMD) monolayers,
which have been proposed as data carriers in valleytronic devices. Excitons can be se-
lectively excited in one of the two TMD bandstructure valleys using circularly polarized
light, but are rapidly redistributed among both valleys due to strong intervalley scatter-
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ing. We use chemical doping to drive the conversion of excitons into trions (negatively-
charged excitons), which reduces the exciton lifetime compared to the intervalley scat-
tering time and thus induces a finite valley polarization. Since a magnetic moment is
associated to each exciton with a sign depending on its valley index, an imbalance in
the valley occupation yields a finite steady-state exciton magnetization. In future exper-
iments the magnetic field generated by this light-induced magnetization could poten-
tially be detected using NV centers.

In the following sections we suggest directions for future research based on the results
obtained in this thesis.

7.1. NV MAGNETOMETRY OF HIGH-FREQUENCY SPIN WAVES
One of the most exciting opportunities of NV magnetometry is the possibility of exploit-
ing its sensitivity to detect nanoscale spin waves in atomically-thin van-der-Waals mag-
nets. These magnets typically have strong magnetic anisotropies, such that they have a
large spin-wave gap in the 100-GHz range at zero bias field (c.f. Fig. 4.4E). To detect the
high-frequency spin waves in these materials with NV centers, a Tesla-scale bias field
could be applied that tunes the NV ESR frequencies into the spin-wave band. Alter-
natively, the difference frequency generation detection scheme developed in chapter 4
could enable detection at small bias fields.

The difference-frequency scheme could also provide insight in the group velocity of off-
resonant spin waves. As derived in section 4.5.6, the longitudinal component of the mag-
netization is a traveling wave in the presence of pump and signal spin waves, with a fre-
quency and wavevector given by

fL =∆ f = | fp − fs|,
kL = 2π

λL
=∆k = |kp −ks|.

(7.1)

Here fp(s) and kp(s) correspond to the frequency and wavevector of the pump (signal)
spin wave. Clearly, the longitudinal magnetization does not only down-convert the tem-
poral frequencies of the pump and signal spin waves, but also the spatial frequencies
(i.e. kL can be small while kp and ks are large).

We envision that the longitudinal wavelengthλL could be measured by applying a phase-
locked, spatially homogeneous reference field at the frequency difference fL (e.g., by
mixing the signal and pump microwaves before sending them through the excitation
stripline). Similar as in chapter 3, this should create a standing-wave magnetic-field pat-
tern with a frequency and wavelength equal to fL and λL, which could be imaged using
NV magnetometry. We note that the evanescent field of the longitudinal magnetization
could extend far above the film as it decays on the scale of λL.

The spin-wave group velocity vg at frequency f = fp+ fs

2 can be extracted from the mea-
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sured longitudinal wavelength, according to

vg = ∂ω

∂k
≈ 2π

∆ f

∆k
= fLλL. (7.2)

The frequency dependence of the group velocity could be measured by sweeping fp and
fs, from which the dispersion of the spin waves could be reconstructed (as is demon-
strated in chapter 5).

When the longitudinal wavelength is larger than the optical diffraction limit, it can be
imaged with an NV ensemble as the one used in chapters 3 and 4, even while the pump
and signal spin waves themselves have nanoscale wavelengths. As such, the difference-
frequency scheme could allow characterizing the dispersion of nanoscale spin waves
using diffraction-limited NV microscopy.

The sensitivity of the difference-frequency protocol could be greatly enhanced by de-
tecting megahertz frequency differences using AC magnetometry techniques. Since the
generated field at the difference frequency scales with spin-wave amplitude, it could po-
tentially be enhanced by nanopatterning the magnet. The spatial confinement modu-
lates the magnon density of states, which may suppress the decay into unwanted spin-
wave modes and thereby allow larger pump and signal amplitudes [5].

The dispersion of off-resonant spin waves could also be measured via the Stark shift by
relying on the pump-probe detection scheme described in section 4.5.4. A reference
field at the spin-wave frequency should create a standing-wave magnetic-field pattern
above the film, such that the measured Stark shift should oscillate over space with the
wavelength of the spin wave. This approach is particularly promising for imaging spin
waves with frequencies close to the ESR, since the Stark shift is inversely proportional to
the spin-wave frequency detuning from the ESR (see section 2.1.3).

7.2. NV MAGNETOMETRY OF GLOBAL MICROWAVES
The detection of global microwaves is essential for a wide range of wireless communi-
cation technologies (e.g., WiFi operates at 2.4 and 5 GHz). We expect that global mi-
crowaves can be detected with high sensitivity by measuring spin waves in a widefield
NV microscopy setup. Instead of scanning a focused, diffraction-limited laser spot pixel-
by-pixel over a diamond, such a setup detects ∼ 106 pixels at once by combining wide-
field illumination and camera readout of the NV centers [6].

Target microwaves at the ESR frequency can be measured by converting them first into
spin waves (e.g., using a long stripline on top of a magnet), after which the spin-wave
fields can be detected with enhanced sensitivity by reading out NV centers in a large
sensing area. For example, widefield readout of an NV ensemble in an 1x1 mm2 area
should increase the collected NV photoluminescence by as much as 60 dB compared
to readout of a diffraction-limited spot. We expect that spin-wave excitation assists the
detection of small-amplitude microwaves, as the spin waves (1) confine the microwave
radiation (the spin-wave wavelength is much smaller than free-space microwaves) and
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(2) store microwave energy by acting as a cavity.

Global microwaves detuned from the ESR could be detected using the off-resonant mea-
surement schemes presented in chapter 4. Since the sensitivity of these schemes de-
pends on the spin-wave excitation efficiency at a target frequency, we envision a wide-
band spectrum analyzer covering the 0-100 GHz range could be realized by reading out
pixel-like patches of different magnetic materials that are sensitive to complementary
frequency bands (c.f. Fig. 4.4E). We expect that the sensitivity is ultimately limited by
thermal spin-wave noise, which could be reduced by cooling down the detector.

7.3. NV MAGNETOMETRY OF VALLEY EXCITONS
NV magnetometry could provide a new window on valley-polarized excitons in TMD
monolayers by giving insight in exciton distributions and valley dynamics at the nanoscale.
Room-temperature NV experiments aiming for detecting the magnetic moment of TMD
excitons could achieve a large valley polarization by driving the conversion of excitons to
trions via gating. Alternatively, measurements could be done at cryogenic temperatures,
which generally results in a finite valley polarization even without gating.

The highest sensitivity could be obtained by harnessing AC magnetometry protocols
where the polarization handedness of an excitation laser is switched in sinc with a train
of NV π-pulses [7]. The NV emission should be separated from the exciton emission
using bandpass filters that maximize the signal-to-noise ratio [8]. Since a uniform mag-
netization generates the largest magnetic fields at sharp boundaries, the largest signals
are expected at the edges of the flake.

7.4. ALTERNATIVES TO NV CENTERS
Apart from NV centers in diamond, also other solid-state spin defects could act as magnetic-
field sensors for detecting spin waves and excitons. For example, very recently it was
demonstrated that spin defects in silicon carbide (SiC) can detect magnon scattering
processes in a permalloy disk [9]. SiC is technologically a more appealing material than
diamond, as established wafer scale fabrication protocols allow its integration in scal-
able magnon-quantum systems [10].

Recently, sensor spins in two-dimensional hexagonal boron nitride (hBN) are also gain-
ing increasing attention [11–13]. Van-der-Waals heterostructures consisting of an hBN
sensor-flake and e.g. a TMD/magnetic monolayer can be assembled using accessible
and routine fabrication techniques. They could serve as a natural sensing platform, in
which the sensor spins have a minimal stand-off distance to the target material. It is
challenging to achieve such a small stand-off distance in our measurement geometry as
a result of dust between the sample and the millimeter-sized diamond platelet. The NV
stand-off distance could be decreased by etching micron-scale sensor membranes from
a diamond platelet or by integrating an NV scanning probe in an atomic force micro-
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scope. Even in these geometries the stand-off distance will likely be larger than what
could be achieved using hBN-heterostructures, although it should first be demonstrated
that spin defects can stably exist in monolayer hBN before the ultimate defect proximity
can be reached.
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