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A B S T R A C T

Extracting the cerebral anterior vessel tree of patients with an intracranial large vessel occlusion (LVO) is
relevant to investigate potential biomarkers that can contribute to treatment decision making. The purpose
of our work is to develop a method that can achieve this from routinely acquired computed tomography
angiography (CTA) and computed tomography perfusion (CTP) images.

To this end, we regard the anterior vessel tree as a set of bifurcations and connected centerlines. The
method consists of a proximal policy optimization (PPO) based deep reinforcement learning (DRL) approach
for tracking centerlines, a convolutional neural network based bifurcation detector, and a breadth-first vessel
tree construction approach taking the tracking and bifurcation detection results as input. We experimentally
determine the added values of various components of the tracker. Both DRL vessel tracking and CNN bifurcation
detection were assessed in a cross validation experiment using 115 subjects. The anterior vessel tree formation
was evaluated on an independent test set of 25 subjects, and compared to interobserver variation on a small
subset of images.

The DRL tracking result achieves a median overlapping rate until the first error (1.8 mm off the reference
standard) of 100, [46, 100] % on 8032 vessels over 115 subjects. The bifurcation detector reaches an average
recall and precision of 76% and 87% respectively during the vessel tree formation process. The final vessel
tree formation achieves a median recall of 68% and precision of 70%, which is in line with the interobserver
agreement.
1. Introduction

1.1. Clinical background

The cerebral vessel network is a complex network that feeds the
brain tissue. Diseases affecting the cerebral vessel network, such as an
intracranial ischemic stroke caused by a large vessel occlusion, may
have severe consequences. In patients with an intracranial large vessel
occlusion (LVO), the occlusion often occurs in the anterior circulation,
which consists of the middle cerebral artery (MCA) vessel tree and
anterior cerebral artery (ACA) vessel tree. Knowing the precise anterior
vessel tree with its topology could provide additional information for
the treatment planning of LVO and potentially contribute to the treat-
ment decision making process. The complete cerebral vessel centerline
annotation with anterior vessel trees is shown in Fig. 1.

In clinical practice, 3D modalities such as magnetic resonance an-
giography (MRA) and computed tomography angiography (CTA) are
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commonly used to visualize cerebral vasculature. In this manuscript, we
are focusing on CT-based imaging, which is a common modality for the
workup of stroke patients. CT imaging techniques for cerebral vessels
in clinical practice are CTA (both single phase and multiphase) and
computed tomography perfusion (CTP) (Potter et al., 2019). CTP is an
imaging protocol where a series of 3D CTA images is acquired.

The purpose of our work is to extract the anterior vessel trees as
distal as possible given the initial direction vectors of each tree.

1.2. Related work

Traditionally, vessel tree extraction starts with obtaining a vessel
segmentation or geometric model (Damseh et al., 2020). Extensive
reviews on vessel segmentation and vessel shape extraction methods
have been presented by Kirbas and Quek (2004), Lesage et al. (2009),
vailable online 9 December 2022
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Nomenclature

2D Two dimensional
3D Three dimensional
A1 Proximal segment of Anterior Cerebral

Artery tree
A2C Advantage Actor Critic
ACA Anterior Cerebral Artery
Bf Bifurcation
CCS Curve to Curve Similarity
CNN Convolutional Neural Network
CT Computed Tomography
CTA Computed Tomography Angiography
CTP Computed Tomography Perfusion
CTT Correct Tree Topology
DQN Deep Q-network
DRL Deep Reinforcement Learning
GAE Generalized Advantage Estimation
HU Hounsfield Units
IQR Interquartile Range
JS Jiahang Su
LSTM Long Short-Term Memory
LVO Large Vessel Occlusion
M Medical student
M1 Proximal segment of Middle Cerebral Artery

tree
MCA Middle Cerebral Artery
MDP Markov Decision Process
MRA Magnetic Resonance Angiography
OR Overlap Rate
PPO Proximal Policy Optimization
PReLU Parametric Rectified Linear Unit
RCNN Region-based Convolutional Neural Net-

works
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SLO Scanning Laser Ophthalmoscopy
TRPO Trust Region Policy Optimization

and Moccia et al. (2018). After obtaining a vessel segmentation from
the input image, various methods can be used to obtain the vessel
tree. Lee et al. (1994) used a thinning algorithm, Moriconi et al. (2018)
used geodesics in combination with a minimum spanning tree, Robben
et al. (2016) used a graph-based tracking approach to obtain the Circle
of Willis and the proximal segment of each arterial trees from 3D
MRA images and Zhang et al. (2021) utilize the general confluence
constraint with minimal arborescence on a directed graph. Others build
the tree in a more explicit way from a set of bifurcations and connected
centerlines, an approach followed by Zhang et al. (2020) and Jeon
(2021). In these approaches, vessel tracking and bifurcation detection
are two essential ingredients.

1.2.1. Tracking
In conventional methods, vessel segmentation approaches start with

centerline tracking. Many tracking methods have been described in
the previously mentioned reviews. Nowadays, deep learning based
methods have replaced conventional approaches for many image pro-
cessing problems. Also, combinations of convolutional neural net-
works (CNNs) and conventional approaches have become popular. For
example, Wolterink et al. (2019) extract the coronary artery centerline
with an iterative tracking approach utilizing a 3D CNN to estimate the
2

orientation and radius from cardiac CT angiography, Guo et al. (2019)
use a multi-task CNN method to obtain an estimate of a centerline
distance map and an endpoint confidence map from coronary CTA
images and subsequently a minimal path method is used to compute
the centerline.

Reinforcement learning is a branch of machine learning algorithms
that have been studied in domains such as gaming and control. Deep
reinforcement learning (DRL), which is the fusion of reinforcement
learning and deep learning, has been shown to be able to solve complex
image processing challenges by exploiting image features (Arulku-
maran et al., 2017). Such DRL based methods are gradually entering
the medical imaging field (Zhou et al., 2021). Tracking is a preferred
application direction for DRL approaches, as DRL learns the optimal
policy by maximizing the accumulated reward over time, which maps
nicely to the problem of finding a path through an nD image. The
optimal policy determines the best actions for an agent in each state
over time.

There are two main streams in DRL methods, value-based and policy
gradient based. In value-based methods e.g. deep Q network (Mnih
et al., 2013) the policy 𝜋 is directly obtained by approximating the
state–action value 𝑄𝜃(𝑠, 𝑎) as a function of state 𝑠 and action 𝑎 or
state value 𝑉𝜃(𝑠) as a function of a state 𝑠. Here, 𝜃 represents the
network parameters. For example, Zhang et al. (2018) apply a deep
Q network (Mnih et al., 2013) (DQN) approach with a discrete action
space given by a six-connected neighborhood as action space and a
point-to-curve reward function for thoracic aorta centerline tracking in
3D contrast-enhanced and none contrast-enhanced CT images. Zhang
et al. (2020) similarly utilizes a double-DQN (Van Hasselt et al., 2016)
with a discrete 26-connected neighborhood as the action space to track
the coronary centerline. In this work, the bifurcations were detected
using a standalone detector. Li et al. (2021) utilize the DQN approach
with predefined orientation as discrete action space to track coronary
centerlines. In addition, the value-based methods are known to often
lead to an overestimation of the action value (Van Hasselt et al., 2016).

In policy gradient methods, a parameterized policy is learned di-
rectly using a stochastic optimization algorithm (Sutton and Barto,
2018). Trust region policy optimization (TRPO) (Schulman et al.,
2015a) and proximal policy optimization (PPO) (Schulman et al.,
2017) are two well-known methods for such optimization. Dai et al.
(2019) utilize PPO for learning the policy for neuronal tracking in 2D
neuronal microscopy images. The above-mentioned DRL-based tracking
approach has demonstrated superior performance in comparison with
a benchmark using CNN based methods.

1.2.2. Bifurcation detection
Bifurcation detection plays an important role in determining the

vessel tree. Some feature based machine learning methods have been
presented in the past. For example, Baboiu and Hamarneh (2012)
utilized the scale-space features of vessel structures to construct a
bifurcation detector on 2D and 3D synthetic images. Kalaie and Gooya
(2017) used Gaussian profiles in cross sections of bifurcation points to
discriminate vessels from bifurcation points in 2D retinal images. Jeon
(2021) performs bifurcation detection using intensity based spatial
clustering methods for 3D coronary arteries extraction from CTA im-
ages. Recently, deep learning methods have been presented by Zheng
et al. (2015), who utilized a two-stage CNN approach to detect carotid
artery bifurcations from 3D CTA images, and Hervella et al. (2020),
who used a multi-instance heat map with a U-net architecture Ron-
neberger et al. (2015) to estimate vessel crossings and bifurcation
points from 2D retina images. The latter application was also addressed
by Zhao et al. (2020) utilizing a two-stage refinement approach, in
which an RCNN (Girshick et al., 2014) based network first obtained a
rough estimation of bifurcations and in a 2nd stage, the same network

architecture was applied to address the errors from the first network.
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Fig. 1. Example of brain vessel annotation with colored anterior vessel trees for a subject with a large vessel occlusion in the left M2 segment. White represents veins and posterior
cerebral artery trees, red is the right MCA tree, yellow is the right ACA tree, green is the left ACA tree, blue is the left MCA tree, a: the right sagittal view; b: the coronal view;
c: the left sagittal view.
1.3. Contribution and organization of our work

Our aim is to extract the anterior vessel tree from 3D CT images,
independent of the acquisition protocol. For such a task, to the best of
our knowledge, most vessel tree extraction methods and the subsequent
tracking and bifurcation steps have focused on coronary artery tree
extraction from 3D cardiac CTA images and vessel tree extraction from
2D retina scanning laser ophthalmoscope (SLO) images. None of the
existing works presents a method to extract the cerebral anterior vessel
tree from 3D CTA images or methods that perform tree extraction
beyond the proximal anterior vessel tree.

Our work has several contributions. First, we assess a DRL approach
that, to the best of our knowledge, has not been applied yet for cerebral
vessel tracking approaches. Second, the DRL method was adapted to
this application. More specifically, we introduce a novel curve-to-curve
distance based reward function and a network architecture (CNN with
recurrent neural network (RNN)) for cerebral vessel tracking, and we
assess the impact of various features of the methods in an ablation
study. In addition, we performed a comparison with an existing base-
line method. Finally, all experiments have been performed with a large
set of clinical data.

The remainder of this manuscript is organized as follows. In Sec-
tion 2, we first present a DRL PPO based directed vessel centerline
tracking model, followed by a CNN-based bifurcation detection, and
breadth-first tree formation methods. The data set, data annotations,
and prepossessing are described in Section 3. The implementation,
hyperparameter optimizations and experimental results can be found
in Section 4, followed by discussion in Section 5 and conclusions in
Section 6.

2. Method

The proposed cerebral anterior vessel tree extraction method starts
with a DRL centerline tracking approach starting from the root of
the tree (with an initial direction vector). Along the tracked path
(agent path), a CNN based bifurcation detector is used to identify
the bifurcation points. New tracks are generated from the bifurcation
points detected along the tracks. In the tree formation, stopping criteria
are applied to remove the spurious parts of the tracked paths, and a
breadth-first approach is used to construct the tree from the tracked
paths and the bifurcation points.

2.1. Directed vessel tracking

A reinforcement learning problem can be modeled as a Markov De-
cision Process (MDP) (Bertsekas et al., 2011). We, therefore, introduce
the key ingredients of our DRL tracker as the components of an MDP.
The environment in our case is the normalized 3D CTA image. The
other components, such as state and action, are introduced below.
3

2.1.1. State and action
The agent at time 𝑡 has an associated state, denoted as 𝑠𝑡. Next

to the current position in the image, the agent state contains image
information from previous steps and the corresponding displacement
vector array. Let 𝑝 be any discrete 3D position in a CTA volume.
The image information in the state consists of three 21 × 21 × 21
sub-volumes centered at respectively the agent position at 𝑝𝑡 and two
previous agent positions 𝑝𝑡−1, 𝑝𝑡−2. This size is sufficient to capture the
local neighborhood, even for large vessels and bifurcations. In addition,
the state contains a sub-volume of the binary agent path centered at 𝑝𝑡,
which represents the voxels the agent went through. As a vessel can
be viewed as a tubular structure with varying radius, any independent
point in the track through a vessel can be tracked in two directions.
Using the image information from the three previous steps and the
binary agent path can help the agent track the vessel in a directed
way. The dynamic displacement vector array at time 𝑡 consists of the
directional vectors (steps of the agent) from the current position till
the initial position [𝑎𝑡, 𝑎𝑡−1,… , 𝑎0]. The dynamic displacement vector
provides additional directional information on previous steps.

The agent discrete action space is defined as the 26 connected
neighboring voxels of the current position 𝑝𝑡 in an agent path.

We represent the set of actions by scaled displacement vectors as
follows:

𝛥𝑝𝑡 = 𝛼 × {𝑥, 𝑦, 𝑧 | 𝑥, 𝑦, 𝑧 ∈ {−1, 0, 1}}, (1)

As a consequence, an agent action 𝑎𝑡 can make a step of at least two
voxels per episode step if 𝛼 = 2.

2.1.2. Reward
The reward function is an essential component for the network to

achieve the optimal policy. The ultimate goal of the vessel tracking
training task is to learn the agent tracking the vessel centerline by
maximizing 𝑅, the accumulated discounted instant reward 𝑟𝑡:

𝑅 =
𝑇−1
∑

𝑡=0
𝛾 𝑡𝑟𝑡+1 (2)

The instant reward 𝑟𝑡 is used to measure the policy performance of
the agent at time 𝑡, and thus is relevant for policy optimization. We
would like the agent to follow the reference path 𝐺𝑡, which in our case
is a voxelized representation of the annotated vessel track.

We, therefore, use the difference of the curve-to-curve distance
between the agent path and reference standard between time 𝑡 and
𝑡 − 1 to measure the reward of the corresponding action. The curve-
to-curve distance was introduced in Walsum et al. (2008) to quantify
the distance between coronary centerlines. The curve-to-curve distance
is computed by approximating the surface area spanned between two
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Fig. 2. Example of curve-to-curve distance and CCS metric, the red dotted line is the reference standard and the blue dotted line is the actual track, the summation of lengths of
the red lines between the reference standard and track is the computed surface distance; a: the anterior vessel tree with highlighted color-coded vessel centerline (corresponding
to the colored frame). b: example of 𝐿0. c: example of success tracked case, CCS = 0.87, OR = 1. d: example track at time 𝑡, CCS = 0.58, OR = 0.5. e: example of miss tracked
case, CCS = 0.58, OR = 0.09.
curves via the summation of the Euclidean length of all corresponding
point-to-point connections. The optimal (minimal area) correspondence
between two curves was determined via a Dijkstra minimum cost
algorithm (Dijkstra et al., 1959). Fig. 2 shows examples of surface area
computation (the summation of red lines) in various scenarios.

In addition, we would like to enforce the agent to follow the refer-
ence standard 𝐺𝑡. Therefore, a binary overlap metric, which measures
the overlap between the reference path 𝐺𝑡 and the agent path, is part
of the instant reward.

We propose an instant reward function that combines binary over-
lap and the curve-to-curve distance. The binary overlap metric provides
extra positive (+1) feedback when the agent path and ground truth are
overlapping at position 𝑝𝑡. Denoting the surface distance in position 𝑝𝑡
as 𝐿𝑡, and the binary overlap at position 𝑝𝑡 as 𝐵𝑡, the proposed instant
reward is defined as follows:

𝑟𝑡 =

{

𝐵𝑡 − log(𝜖 + |𝐿𝑡 − 𝐿𝑡−1|), if 𝐿𝑡 − 𝐿𝑡−1 < 0;
𝐵𝑡 + log(𝜖 + |𝐿𝑡 − 𝐿𝑡−1|), otherwise.

(3)

2.1.3. Policy
In our vessel tracking application, the optimal policy is obtained us-

ing the PPO method with the advantage actor critic (A2C) (Mnih et al.,
2016) framework. The A2C architecture consists of two networks: an
actor network and a critic network. The critic network 𝑉𝑣(𝑠) estimates
the state value and actor network 𝑄𝑤(𝑠, 𝑎) learns the state–action value
suggested by the critic. The advantage function 𝐴(𝑠𝑡, 𝑎𝑡) (Eq. (4)) is
introduced to measure the state action pair at time 𝑡:

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄𝑤(𝑠𝑡, 𝑎𝑡) − 𝑉𝑣(𝑠𝑡) . (4)

It determines how much better a selected action is compared to the
expected value of all possible actions. In this application, generalized
advantage estimation (GAE) (Schulman et al., 2015b) is applied to
further reduce the variance of the temporal difference error of the
advantage function.

In policy gradient DRL methods, stochastic optimization algorithms
such as gradient ascent are sensitive to the gradient update step
size. To accommodate for the step size issue, trust region policy
optimization (TRPO) (Schulman et al., 2015a) was introduced using
KL-divergence (Kullback and Leibler, 1951) constraints to stabilize the
gradient update step between old and new policies. However, the use
of KL-divergence yields costly computations on multiple Hessian-vector
products (Engstrom et al., 2020). The PPO method (Schulman et al.,
2017) which was later developed to approximate the KL-divergence
4

constraints by a simple but efficient regularization mechanism in
objective function as follows:

𝐽 (𝜃) = E[min(𝜌(𝑡)𝐴(𝑠𝑡, 𝑎𝑡), clip(𝜌(𝑡), 1 − 𝜀, 1 + 𝜀)𝐴(𝑠𝑡, 𝑎𝑡))] , (5)

where 𝜌(𝑡) is defined as the likelihood ratio between policies at two
time points:

𝜌(𝑡) =
𝜋𝑡(𝑠𝑡, 𝑎𝑡)

𝜋𝑡−1(𝑠𝑡−1, 𝑎𝑡−1)
. (6)

2.1.4. Network architecture
The proposed network architecture is shown in Fig. 3. The archi-

tecture consists of an actor network and a critic network. The critic
network helps the agent (actor) with learning the optimal state–action
value during the training process. Assuming that the policy is optimal
after training, only actor network is required for obtaining the tracks
in the inference stage.

The agent state consists of sub-volumes sampled from three consec-
utive points along the agent path and one sub-volume containing the
binary agent path. In the CNN part, the three sub-volumes generally
cannot cover the whole path of the agent. A recurrent neural net-
work (RNN) (Hochreiter and Schmidhuber, 1997) was therefore used
to provide extra temporal information along the agent path.

The architecture of the actor and critic networks are similar, they
both consist of a CNN and an RNN. The CNN model is similar to the
architecture proposed by Wolterink et al. (2019) but with a parametric
rectified linear activation function (PReLU) (He et al., 2015) instead
of a rectified linear activation function (ReLU) (Maas et al., 2013).
The proposed CNN architecture is based on a dilated network (Yu
and Koltun, 2015) architecture. Each CNN block consists of a series of
dilated convolutions, with dilation kernels of size 1. For each convo-
lutional layer, instance normalization was applied. The detailed CNN
architecture of the actor and critic can be found in Table 1. The
critic CNN takes a ternary ground truth sub-volume centered at 𝑝𝑡 as
additional input. The dimension of this sub-volume is 21 × 21 × 21
voxels, and each voxel has a value of −1, 0, or 1: the paired ground
truth centerline for the current episode has value 1, other centerlines
are labeled as −1, and the remaining voxels have value 0. This setup
ensures a decrease in instant reward if the agent moves to the wrong
vessel.

The RNN in both the actor and critic network consists of two LSTM
cells. The input of the RNN in the actor network is the action history
vector; the input vector 𝑥 of the RNN in the critic network at time
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Fig. 3. The architecture of the advantage actor critic (A2C) network. Both actor and critic networks consist of CNN and an RNN. The RNN part consists of two LSTM cells. The
input of the actor CNN (A) consists of three CTA cubes and one binary agent path cube (21 × 21 × 21 voxels). The three CTA cubes are centered at the current position 𝑝𝑡 and
two previous positions 𝑝𝑡−1 , 𝑝𝑡−2. The binary agent path cube is centered in the current position 𝑝𝑡. The CNN input of the critic network (𝐴⊕𝐵) consists of A and a ternary ground
truth cube (B) that is centered at the current position 𝑝𝑡. The RNN input of the critic network is a vector array (x) that consists of paired local features along the track. The RNN
input of the actor network is a vector [𝑎𝑡 , 𝑎𝑡−1 ,… , 𝑎1 , 𝑎0] that contains the action history.
Table 1
The network architecture of actor/critic CNN. The actor’s input is 21×21×21×4 and the critic’s input is 21×21×21×5. Each
convolutional layer is followed by an instance normalization and PReLU.
Layer 1 2 3 4 5 6 7

Kernel width 3 3 3 3 1 1 7
Dilation rate 1 1 2 3 4 1 1
Channels 32 32 32 32 64 64 26
point 𝑡 consists of the paired instant rewards (𝑟𝑡), the log of instant
reward (𝑙𝑜𝑔(𝑟𝑡)), the intensity value of agent path (𝐼𝑡) and the mean
intensity value of a two voxel wide region around the agent path (𝐼 𝑡):

𝑥 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟𝑡 𝑙𝑜𝑔(𝑟𝑡) 𝐼𝑡 𝐼 𝑡
𝑟𝑡−1 𝑙𝑜𝑔(𝑟𝑡−1) 𝐼𝑡−1 𝐼 𝑡−1
⋮ ⋮ ⋮ ⋮
𝑟0 𝑙𝑜𝑔(𝑟0) 𝐼0 𝐼0

⎞

⎟

⎟

⎟

⎟

⎠

(7)

The outputs of the CNN and RNN are concatenated and fed into
a fully connected layer. The final output of the actor network is a
(log) softmax layer, which determines the direction of the agent in the
next state. The final output of the critic network is a scalar value, which
approximates the value of the input state.

The final fully connected layer in the actor network is absent in the
critic network. As the latter network needs to learn the state value, the
final fully connected layer is not necessary.

2.2. Bifurcation detection

To be able to build a vascular tree, a bifurcation detector was
developed that can be applied to each path that was generated by the
tracker; from bifurcations, new paths can be tracked.

We approach bifurcation detection as a binary classification prob-
lem. The structure of the model used for bifurcation detection is similar
to the dilated network architecture in the CNN blocks of the A2C
networks, but with only one image cube 𝑝𝑡 as input. Each convolutional
layer is followed by switchable normalization (Luo et al., 2018) and a
dropout rate of 0.2; we use binary cross-entropy as the loss function.
The detailed architecture of the bifurcation detector can be found in
Table 2.
5

2.3. Tree formation

The anterior vessel tree can be viewed as an arborescence with a
given root. We apply a breadth-first tree formation for the anterior
vessel tree extraction. The tracking agent and bifurcation detector
described in the previous paragraph can be applied to obtain a series
of tracks and bifurcation points. Starting from the root, we obtain
the first track. Subsequently, we prune the tracked path based on
stopping criteria, and recursively and in a breadth-first manner, find
bifurcations along this pruned tracked path, and start new tracks from
these bifurcations. In this latter step, new paths are tracked from the
bifurcation point in several directions, and then failed or overlapping
tracks are removed.

In an attempt to get a more robust approach, increasing the true
positive tracks, while reducing the missed ones and false positives, we
also introduce an ensemble method with five different vessel tracking
models.

2.3.1. Stopping criteria
Stopping criteria are used to determine the termination point of a

track; i.e. the track will be pruned if one of the following conditions is
met:

• the track runs into the brain tissue
• the track runs into the dilated skull,
• the length of the track exceeds a maximal length.
• the track reaches the border of images in z-axis (for half brain

coverage cases).
• the track runs into a different arterial territory. e.g. forming ACA

tree but running to MCA territory.

Fig. 4b shows the example of the relationship between the anterior
vessel trees and the arterial territory map.
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Table 2
The network architecture of bifurcation CNN. The input size is 21×21×21. Each convolutional layer is followed by a switchable
normalization, a dropout rate of 0.2, and a PReLU activation function.
Layer 1 2 3 4 5 6 7

Kernel width 3 3 3 3 1 1 7
Dilation rate 1 1 2 3 4 1 1
Channels 32 32 32 32 64 64 26
Fig. 4. Processing of the anterior vessel trees data preparation; a. shows the example of the anterior vessel tree structure, the MCA tree is presented in blue and ACA trees are
presented in green; b. shows the anterior vessel trees and thresholded (0.5) MCA and ACA mask, the green mask is the MCA mask, the red mask is the ACA mask; c. shows the
segment labels. The proximal segments are in red, the middle segments are in blue, the distal segments are in green and the skull segments are in yellow.
2.3.2. Bifurcation inference
Application of the bifurcation detection model (Section 2.2) for all

the voxels of a tracked path yields a probability of a bifurcation being
present at each voxel of the track. The detector may already give some
probability to voxels that are close to a bifurcation, The probabilities
in voxels from near a bifurcation to the bifurcation increase, and have
a peak at the bifurcation. We, therefore, extract the bifurcation points
by taking the max probability voxel from a consecutive series of voxels
that consists of at least two voxels with a probability larger than 0.5.
The threshold allows for smaller bifurcations to be detected.

2.3.3. Bifurcation path tracking
After bifurcation detection, new paths must be tracked from the

bifurcation. This may be done using an estimate of the candidate
directions based on the vessel features. We take a two-step approach. In
the first step, we start a tracker in all candidate directions regardless of
the presence of vessels. Then, we remove unwanted tracks that do not
satisfy the eligibility criteria. The candidate directions are determined
from 26 connected neighborhoods. In order to prevent the tracked
paths from following the original track backward, tracks are only
started in the forward direction with regard to the current position
(i.e. if the inner product of the current path and direction vector of
the new path is positive). After tracking these candidate directions,
spurious tracks will be removed based on the amount of overlap with
existing tracks and the length of the track. If the track has an overlap
with a previously tracked path that is larger than or equal to 95 %, the
tracked path will be ignored. Short tracked paths (less than 4.5 mm)
will also be ignored.

2.3.4. Ensemble method
In addition to tracking with one model, the combined policy and

models ensemble method aims to further improve the performance by
combining results from multiple tracking models in two different ways.
The first track of each tree is essential for tree formation. To ensure a
good initial track, we use majority voting for the first track: at each
tracking step, we initiate five agents to generate the candidate actions
and select the action (i.e. next voxel) that is closest to the average of
the actions of each of the models. After the first track, the output of all
models is used to reduce missed vessels in bifurcations. The trackers
in the ensemble method use the same stopping criteria as the other
trackers (see Section 2.3.1).
6

3. Data

3.1. Data overview

In our study, we used CTA and CTP image data from two sources:
MR CLEAN registry (Jansen et al., 2018) and Erasmus MC. The MR
CLEAN registry is an ongoing multi-center registry for stroke patients
that underwent endovascular treatment for LVO in The Netherlands
since March 2014. Seventeen centers are involved in this study. Data
selection criteria applied when selecting the images were: (𝑖) slice
thickness ≤ 1.5 mm; (𝑖𝑖) slice spacing ≤ 1.5 mm; (𝑖𝑖𝑖) for CTA, the
contrast acquisition phase has to be peak arterial, equilibrium or early
venous phase according to the definition of Rodriguez-Luna et al.
(2014); (𝑖𝑣) brain coverage has to be at least half of the brain, the
insula region needs to present in both hemispheres; (𝑣) no large motion
artifact along the time axis for CTP data; (𝑣𝑖) CTP data has to contain
full cardiac cycle from early arterial phase to late venous phase.

1594 subjects were included in the MR CLEAN registry from March
2014 to June 2016. In a previous study (Su et al., 2020), we selected
270 images from this set that matched the inclusion criteria. Of these,
49 were manually selected such that there is variation in vendor, image
quality, and acquisition phase. In our study, we used these 49 images
(with annotations), and we randomly selected another 26 from the 270
images.

From the 63 registry subjects with CTP images matching our se-
lection criteria, we randomly selected 35 subjects. In addition, from
58 stroke patients with an LVO that were admitted from Jan. 2018
to March 2020 at the Erasmus MC, we randomly selected 15 subjects
from the 58 subjects (out of a total of 335) that matched our selection
criteria.

More detailed information on the data selected is presented in
Table 3.

3.2. Data annotation

The tracks of the anterior vessel tree for training the DRL were
manually annotated by the first author of this manuscript (JS) for
all 125 subjects. This annotation was done under the supervision of
an experienced radiologist (20 years of experience) and a physician
(5 years of experience). The annotation task was defined as labeling the
track of every anterior vessel from the ICA-top to the most distal part
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Table 3
The data distribution of 125 subjects.

Properties Data division (n = 125)

Set A
(n = 20)

Set B
(n = 20)

Set C
(n = 20)

Set D
(n = 20)

Set E
(n = 20)

Validation
(n = 10)

Test
(n = 15)

Image modalities Numbers of CTA (n = 75) 13 10 14 15 12 2 9
Numbers of CTP (n = 50) 7 10 6 5 8 8 6

Brain coverage More than half (n = 25) 2 6 3 5 5 2 2
Complete (n = 100) 18 14 17 15 15 8 13

Slice thickness [0.50-0.75)mm (n = 59) 10 9 9 11 8 6 6
[0.75-1.00)mm (n = 32) 5 5 7 3 6 1 5
[1.00-1.50]mm (n = 34) 5 6 4 6 6 3 4

Acquisition phase Early arterial phase (n = 19) 4 3 3 1 3 0 5
Peak arterial phase (n =37) 6 6 4 11 6 1 3
Equilibrium phase (n = 69) 10 11 13 8 11 9 7

Occlusion location ICA (n = 20) 4 4 5 2 2 2 1
M1 (n = 60) 9 12 11 7 10 4 7
M2 and above (n = 38) 6 3 3 9 8 3 6
Others (n = 7) 1 1 1 2 0 1 1

Complexity Low: < 50 (n = 40) 7 5 8 7 7 1 5
Medium:[50-100) (n = 65) 12 12 10 9 9 6 7
High: ≥ 100 (n = 20) 1 3 2 4 4 3 3

Proximal segments Numbers (n = 417) 67 65 65 70 64 34 52
Intensity (HU) 311 ±94 306 ±84 280 ±87 312 ±92 321 ±120 256 ±105 274 ±77
Length (mm) 26 ±17 24 ±15 26 ±14 25 ±15 24 ±13 21 ±12 24 ±16

Middle segments Number (n = 3814) 607 693 577 650 564 288 435
Intensity (HU) 161 ±76 161 ±70 152 ±68 153 ±68 167 ±80 153 ±73 143 ±61
Length (mm) 29 ±23 29 ±26 29 ±26 31 ±25 31 ±24 29 ±25 31 ±24

Distal segments Number (n = 2436) 343 390 336 432 410 200 325
Intensity (HU) 129 ±66 134 ±61 130 ±64 121 ±54 148 ±84 116 ±51 127 ±65
Length (mm) 27 ±22 29 ±26 25 ±22 28 ±24 28 ±23 27 ±25 28 ±27

Near skull segments Number (n = 1404) 170 237 216 220 255 112 194
Intensity (HU) 153 ±60 149 ±61 144 ±47 139 ±45 149 ±56 128 ±46 127 ±38
Length (mm) 63 ±40 64 ±40 61 ±39 62 ±38 61 ±37 61 ±40 57 ±39

Near skull segments Numbers (n = 595) 121 171 147 94 62 0 0
(Added extra) Intensity(HU) 204 ±81 140 ±56 173 ±83 148 ±63 181 ±95 NA NA

Length(mm) 65 ±30 60 ±30 67 ±39 63 ±30 57 ±26 NA NA
of the MCA and ACA vessel tree in the CTA or CTP maximal intensity
projection (MIP) images. Each tree always starts from the ICA-top of
the corresponding side, if there is no ICA-top occlusion. The annotation
of a track was discontinued when the artery was not clearly visible
anymore. In our study, the vessel diameter varies from 3.6 ± 0.45 mm
at the ICA top (Rai et al., 2013) to 0.45 mm in the most distal vessels.
For this annotation task, we used an in-house developed annotation tool
used in Su et al. (2020). In order to increase the number of segments
near the skull (which are difficult vessels to track), veins near the skull
were annotated in 10 out of 75 subjects (randomly selected). These
veins have an appearance that is similar to arteries.

3.3. Interobserver variation on annotation

For such a difficult annotation task, it is relevant to assess the in-
terobserver variation in the annotation. To this end, a second observer,
a medical student (M) was asked to perform the same annotation. For
this, three subjects from the CTP category were selected, two subjects
with middle complexity and one with high complexity. The tree overlap
was calculated using a dilated binary spherical shape with a radius of
four voxels with observer M as the reference standard, in the same way
as the overlap is computed for the method. For the three subjects, the
tree overlap was 0.50, 0.70, and 0.88 respectively, with an average
overlap of 0.69. The vessels where the annotation differed were mainly
low intensity vessels, and vessels close to the skull.

3.4. Data preparation

In this study, we use both the CTA and the frame with maximal
7

vessel volume from the CTP series. In order to minimize the variation
in spatial resolution, all CTA and CTP images were resampled to a
0.45 mm isotropic grid using cubic B-spline interpolation and were
normalized to a range of 0 to 1 using min–max normalization.

The annotated vessel tracks were transformed into an arborescence
structure from the root based on the connectivity as shown in Fig. 4a.
In this way, all the bifurcations and the connected segments (vessel
segment) are known. During this transformation process, two adjacent
bifurcations with a distance of less than 1.8 mm were merged into
one trifurcation. The vessel segment representation was subsequently
transformed into a voxelized 26-connected representation for use in the
training process of the directed vessel tracking model. The bifurcations
were used for the bifurcation models. For the tree formation, the initial
direction vectors were generated from two manually annotated starting
points from the ICA top to the proximal points of each tree. The user
has to click two points for the initial direction vector.

3.5. Segment label generation

To permit an analysis of the results (i.e. distal versus proximal), we
define four categories (labels) for the vessels. proximal, near skull seg-
ments, middle segments (majority of the segment inside the MCA/ACA
mask), and distal segments (remaining segments). The proximal seg-
ments consisted of M1 and A1, which are defined as the segments
between the given root till the first bifurcation. Near skull segments
were defined as the vessel segments falling into the dilated skull
(thresholded at 1000 HU, dilated with a 5 × 5 × 5 kernel) for con-
secutive five points. The middle segments were defined using the MCA
and ACA mask, i.e. those segments where the majority of the points in
the segment were inside these masks. The above-mentioned segments

labels and the thresholded MCA and ACA maps are shown in Figs. 4b,
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4c. The segment labels are only used in the analysis of the proposed
method.

3.6. Experimental setup

The data in this study is used for training and testing DRL directed
vessel tracking and bifurcation detection model, and for assessing tree
formation. In the directed vessel tracking and bifurcation detection
experiments, we use the same data distribution: in both cases, we
use 100 images in a five-fold cross validation setup, where the data
was stratified on complexity (defined as the number of segments per
subject). The ten subjects with extra annotations of segments near the
skull were evenly distributed over each fold. The validation set in the
cross-validation consisted of another ten subjects (from the remaining
25), and this set was kept the same for all cross-validation experiments.
The remaining fifteen subjects were used as an independent test set. The
tree formation assessments were performed on the validation and test
sets. 1.8 mm means 4 voxels, and with a scaling (stepsize) of 2, we thus
allow an error of maximal two steps.

The image characteristics and segment labels of each fold, valida-
tion, and test set are listed in Table 3. In the following, we will name the
models based on the fold. For instance, Set A is the test set of tracking
model Tr-A and Bifurcation model (Bf-A) in 5 fold cross validation
setting. The tracking model Tr-S and bifurcation model (Bf-S) use set
A to E for training, and a test set (n = 15) for testing. The validation
et (n = 10) is the same for all models.

. Experiments and results

.1. Implementation

.1.1. Directed vessel centerline tracking
The proposed PPO based directed vessel tracking approach was

mplemented in PyTorch (Paszke et al., 2019). The model training and
alidation were done on NVIDIA A40 GPUs.

The PPO training uses episodic learning with a random start position
rom the first position to five voxels before a bifurcation point of a
egment. The length of each episode was therefore arbitrary with a
inimal length of five voxels. Each mini batch consists of 8 episodes,

n which one episode corresponds to one segment. The training was
topped when one of the following criteria was met: (1) the total length
f the track exceeds 1.5 × the length of the reference standard, (2) the
gent is off the reference standard segment for a distance of 1.8 mm,
3) the target was reached (4) at the beginning of the training, if the
gent has gone into the direction that is opposite to the direction of the
nitial vector.

The hyper-parameters of the PPO were: discount factor 𝛾 = 0.9; PPO
lip value 𝜖 = 0.2; GAE parameter 𝜆 = 0.95. The model weights were
pdated 10 times per mini batch. The initial learning rate for Adam
as 1e−5. The learning rate is halved when the validation score does
ot improve for five epochs in a row. The lower bound of the learning
ate was 1e−6. During training, the only augmentation applied is the
andom flipping of both 3D CTA image and centerline segments along
he x- and 𝑦-axis with a probability of 0.5. We use a two-stage training:

first, the data from the anterior vessel tree for learning the general
anterior vessel tree track is used until the model stops converging;
in this stage, the target of a track was a bifurcation. In the second
stage, we added the extra segments close to the skull to better learn
to track vessels running in the vicinity of the skull. Also, the target
is set to five points beyond the bifurcation with both branches with
equal probability. In this way, the agent could learn to track beyond
bifurcations.

To monitor the episodic training process, we use a curve-to-curve
imilarity (CCS) metric, defined as follows:

𝐶𝑆 = 1 −
𝐿𝑡 (8)
8

𝐿0
ith 𝐿0 as the max surface distance at the initial point of the reference
tandard curve, see also Fig. 2b. This metric is 1 in case of complete
verlap and is negative when the track runs in the opposite position.

.1.2. Bifurcation detection
The model implementation and training for bifurcation detection

ere similar to the PPO, both using Pytorch and the same GPU. The
raining samples are sub-volumes that are at randomly shifted positions
long the reference centerlines. This random offset is to simulate a track
esulting from the vessel tracking. The random offsets were ranging
rom 1 to 3 voxels. The training label was obtained by dilating the
round-truth bifurcation points with a binary spherical kernel with a
adius of four voxels, in order to increase the size of true positives
nd make the classification problem less imbalanced. During training,
he number of true positive samples was equal to the number of true
egative samples. In the training phase, the initial learning rate was
e−3 for the Adam optimizer. The learning rate reduction scheme was
dentical to the PPO training. The learning rate lower bound was 1e−6
s well.

.1.3. Tree formation
The tree formation method was implemented in python. For the

topping criteria, tracking into brain tissue was defined as an intensity
alue along the track less than 50 HU for three consecutive points, and
racking into the skull is defined as tracking into a dilated skull (thresh-
ld at 1000 HU, dilated with 5 × 5 × 5 kernel) for three consecutive

points. The maximum length for a track was 330 mm, which is 1.2
times the maximal length of root-to-leaf distance in the training set of
100 subjects.

Probability density maps of the MCA and ACA regions, as well as a
hemisphere map, were obtained using earlier described atlases (Peter
et al., 2017) that were registered to the images. After transformation
to the CTA or CTP images, the MCA and ACA arterial territory maps
were thresholded at 0.5 to obtain a binary mask. The hemisphere map
consists of three values, indicating the left and right brain hemispheres
and the background.

4.2. Directed vessel tracking assessment

The assessment of the directed vessel tracking consists of an ablation
study, comparisons with a baseline DQN model and the baseline DQN
with our own reward function. In addition, we assess the impact of
using all data. For the final model, we also present an analysis per
vessel category. We use overlap rate and average distance as metrics,
where the overlap rate (OR) is defined as the part of the track that
matches the reference standard until the first error (distance larger
than 1.8 mm). The average distance refers to the average curve-to-
curve distance in world coordinates between the overlapping part of the
tracking path and the reference standard. Statistical significance was
assessed using a paired t-test on all metrics, and a value lower than
𝑝 = 0.05 was considered statistically significant. The vessel tracking
esults are reported using a median with an interquartile range (IQR).

.2.1. Ablation study
In the ablation study, we investigate the importance of our network

rchitecture design choices, training scheme, and reward function. In
ddition, we compare our reward function with an existing reward
rom Li et al. (2021). We, therefore, divided our ablation study into
wo parts. In part one, the ablation study focused on investigating the
dded value of network architecture and training schemes. In part two,
he ablation study investigates the impact of the reward functions.

The network architecture may have a substantial impact on the
erformance of DRL methods, and similarly, the activation function has
een shown to have an impact on the performance (Henderson et al.,
018). The ablation study part one focuses therefore on investigating
he added value of:
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Table 4
Evaluation result of ablation in network architecture and training scheme (part one) and proposed method
on set A.
Model CCS

(%)
Average distance
(mm)

Overlap rate
(%)

CNN only 75 [29, 91] 0.64 [0.57, 0.74] 100 [36, 100]
One time point 78 [40, 93] 0.63 [0.56, 0.72] 100 [46, 100]
No scaling 38 [ 3, 80] 0.56 [0.49, 0.66] 72 [18, 100]
ReLU 79 [40, 93] 0.62 [0.55, 0.72] 100 [44, 100]
Single stage 80 [36, 93] 0.61 [0.54, 0.72] 100 [41, 100]
Model Tr-A 82 [44, 93] 0.65 [0.58, 0.75] 100 [50, 100]
Table 5
Evaluation result of reward function ablation study(CC distance and Li reward), baseline DQN, DQN with
our reward function(DQN + ours) and proposed method on set A.
Model CCS

(%)
Average distance
(mm)

Overlap rate
(%)

CC distance 71 [34, 88] 0.75 [0.66, 0.85] 100 [40, 100]
Li reward 53 [21, 85] 0.64 [0.56, 0.73] 61 [28, 100]
Baseline DQN 26 [13, 53] 0.69 [0.59, 0.78] 29 [13, 58]
DQN + ours 44 [15, 79] 0.73 [0.63, 0.85] 44 [16, 100]
Model Tr-A 82 [44, 93] 0.65 [0.58, 0.75] 100 [50, 100]
• the RNN module, by comparing the complete model with a model
that uses only a CNN part in the A2C network (CNN only model),

• the RNN module with less image information, by training a model
that uses image information from only one time point with RNN
module (One time point model),

• scaled action space, by removing the scaling factor, (No scaling
model)

• PReLU instead of ReLU (ReLU model),
• two-stage training, by adding all data and bifurcation extension

throughout the training process (Single stage model).

For reference, we also train a model that contains all compo-
nents model Tr-A.

The ablation study part two investigates the impact of various
reward functions with the same model configuration as model Tr-A,
by comparing our model with the following rewards:

• curve-to-curve distance only, by using the log curve-to-curve
distance function (CC distance model),

• the point to curve distance reward of Li et al. (2021) (Li reward)

Fig. 5 shows the learning curves with CCS metric and Table 4 con-
tains the test results for the ablation study of network architecture
and the training scheme. The median OR values in the ablation study
are 100 %, but the variation in Q1 values demonstrates that the
distributions are different. The Q3 CCS of most models is above 90 %,
except the No scaling model (83%). The difference between Tr-A and
the other configurations is statistically significant for both CCS and
OR metrics. In addition, statistically significant differences were found
between the No scaling configuration and the other configurations in
terms of average distance.

Fig. 6 shows the learning curves and Table 5 contains the results of
the reward functions ablation study. Statistically significant differences
were found between the Tr-A and the other configurations in all of the
cases except for the average distance of Li reward.

4.2.2. Comparison with DQN baseline
We also compared our method with a popular DQN method. Our

baseline model was introduced by Li et al. (2021). This method uses the
same network architecture as Wolterink et al. (2019), which is similar
to the CNN architecture of our actor network but with one time point
and ReLU activation function. To do a fair comparison, we limit the
action space of the baseline DQN methods to the same action space (26
connected neighborhoods). The hyperparameters and optimizer settings
are the same as for the PPO training. The data used is the same as in the
9

Fig. 5. Curve to curve similarity (CCS) metrics of the ablation study models on network
architecture and training scheme (part one) and model Tr-A (All models are trained
using set B to E, validated on set validation and tested on set A).

ablation study. In addition, we also used a baseline architecture with
our own reward function(DQN + ours) to further assess the added value
of this reward function in a different DRL method. The performance of
baseline DQN and (DQN + ours) are shown in Table 5 and the learning
curves are shown in Fig. 6.

4.2.3. Amount of training data
We also investigated whether the current amount data training

data is sufficient for our application. For this purpose, we trained a
model (model S) with all 100 subjects from set A to E with the same
training scheme as was used in the five fold cross validation setup.
Table 6 shows the test results of model S and five models on the same
independent test set. None of the differences is statistically significant.

4.2.4. Directed vessel tracking performance
The last tracking experiment focuses on the generalizability of the

tracking model and further analysis of the tracking performance. For



Medical Image Analysis 84 (2023) 102724J. Su et al.

D

Table 6
The evaluation result of the five models and model S from bifurcation to bifurcation on 15 independent
test subjects.
Model Tr CCS

(%)
Average distance
(mm)

Overlap rate
(%)

Model Tr-A 83 [44, 93] 0.60 [0.54, 0.70] 100 [46, 100]
Model Tr-B 82 [40, 93] 0.60 [0.54, 0.72] 100 [46, 100]
Model Tr-C 84 [49, 93] 0.60 [0.54, 0.70] 100 [47, 100]
Model Tr-D 82 [34, 92] 0.60 [0.54, 0.70] 100 [41, 100]
Model Tr-E 84 [41, 93] 0.61 [0.55, 0.71] 100 [46, 100]
Model Tr-S 85 [50, 93] 0.59 [0.54, 0.70] 100 [46, 100]
Table 7
The evaluation result of the directed tracking from bifurcation to bifurcation using five fold cross validation
over 100 subjects.
Model Tr CCS

(%)
Average distance
(mm)

Overlap rate
(%)

Model Tr-A 82 [44, 93] 0.65 [0.58, 0.75] 100 [50, 100]
Model Tr-B 76 [32, 92] 0.65 [0.56, 0.76] 100 [38, 100]
Model Tr-C 81 [37, 93] 0.65 [0.56, 0.76] 100 [44, 100]
Model Tr-D 78 [35, 92] 0.66 [0.57, 0.75] 100 [44, 100]
Model Tr-E 85 [46, 94] 0.64 [0.56, 0.74] 100 [55, 100]
Fig. 6. Curve to curve similarity (CCS) metrics of the rewards ablation study, baseline
QN, DQN with our reward function(DQN + ours) and model Tr-A. All models are

trained using set B to E, validated on set validation and tested on set A.

this, we used 100 images from the five fold cross validation. The
learning curves of the five fold cross validation are shown in Fig. 7.
The test result of the models with their corresponding set is listed in
Table 7. Variations in the results may be caused by differences in the
validation datasets. Therefore, we compute the result for all models
with the same independent test set. These results are listed in Table 6.
It shows only minor differences between the results, and there are no
statistically significant differences between all listed models (including
model S).

For the same test set and models, we also analyze the tracking
performance with regard to the segment labels. The result can be found
in Table 8. They show that the performance of directed vessel tracking
depends on how distal the vessels are.

4.3. Bifurcation detection assessment

The bifurcation detection was tested in two ways. First, the per-
formance was assessed in the training setup with a dilated reference
10
Fig. 7. Curve to curve similarity metrics for 5 fold cross validation.

standard, with random samples from the randomly shifted voxels along
the annotated tracks (see. Section 4.1.2). This was done in a five fold
cross validation setup (models Bf-A – Bf-E), and the results are shown in
Fig. 8. The test accuracy of all five models with different sets converges
to about 0.82. The accuracy on the validation set was 0.79, slightly
lower than the test performance.

The second assessment focused on bifurcation detection on paths
that were obtained from the DRL-based tracker. For this, 100 subjects
from the five fold cross validation and 15 subjects from the independent
test set were used.

The directed vessel tracking model was combined with the corre-
sponding bifurcation detection model. e.g. for the testing set A, tracking
model A and bifurcation model A were used. In addition to the five fold
cross validation models, we trained a bifurcation model Bf-S with 100
subjects. The average precision and recall for the different sets with
corresponding models are listed in Table 9. The recall and precision of
bifurcation detection during tree formation are around 76% and 87%
respectively, and there is no statistically significant difference between

the models.
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Table 8
Analysis based on the different segment labels on 115 independent subjects.
Segments
(type)

CCS
(%)

Average distance
(mm)

Overlap rate
(%)

Proximal 91 [84, 94] 0.61 [0.55, 0.69] 100 [100, 100]
Middle 88 [62, 94] 0.63 [0.55, 0.73] 100 [84, 100]
Distal 80 [44, 91] 0.65 [0.56, 0.74] 100 [59, 100]
Near skull 44 [12, 82] 0.68 [0.59, 0.79] 46 [18, 81]
Table 9
The evaluation result of bifurcation detection and bifurcation inference for tree formation over 115 subjects.
Model Bf Bf-A Bf-B Bf-C Bf-D Bf-E Bf-S

Precision (%) 86 87 88 87 86 87
Recall (%) 78 77 76 76 75 77
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Fig. 8. Learning curve of bifurcation model 5 fold cross validation with 100 subjects.

.4. Tree formation

In the tree formation evaluation, we assess the performance of the
ombined tracker and bifurcation detector. In addition, we investigate
hether the ensemble method would improve over the single model
ethod, and the consistency of the tree formation method and we as-

ess the impact of image characteristics. We performed a visual analysis
f the false positive and false negative branches. Also, we performed
nterobserver analysis of tree formation between two annotators as
hown in Table 10.

Two features are relevant for the tree formation method: (1) the
ompleteness of the tree and (2) the topology of the tree (whether
onnectivity is correct). The completeness of the tree is measured with
recision and recall. To this end, the reference standard and extracted
ree were dilated using a binary spherical shape with a radius of
our voxels (allowing a maximum distance of 1.8 mm). True positives
re points along the extracted tree that are in the dilated reference
tandard, false positives are points of the extracted tree that are not
eing covered in dilated reference standard, and false negatives are
oints along the reference standard that are not in the dilated extracted
ree.

The topology was assessed using the correct tree topology (CTT)
atio, which quantifies the fraction of points of the tree for which the
ath to the root is similar (i.e. within 1.8 mm distance everywhere)
o the path to the root of the corresponding point in the reference
tandard.

.4.1. Single model vs ensemble method
For the comparison of the single model (Model Tr–S, trained on

00 images) and the ensemble method (using the five cross-validation
11

t

models) both the 10 validation and 15 test images were used. The tree
formation results are shown in the top row of Table 11. The precision
and recall are reported with median and IQR. However, the CTT was
reported using the mean and standard deviation since the median and
IQR in almost all items are 100, [100, 100], except near skull segments.
In general, the performance of the ensemble model is better than the
performance of the single model, in terms of precision and recall. When
compared with a single model, the true positive rate of the ensemble
model increases by 14, [6, 30] %.

In addition, we determined the intensity distribution of false pos-
itive and false negative vessels with regard to our reference standard
for the ensemble method over 25 subjects. The example results of the
ensemble method can be found in Fig. 9. The false positives have a
mean and standard deviation of 134 ±91 HU, and the false negatives
have a mean and standard deviation of 114 ±62 HU.

4.4.2. Consistency test of ensemble method
We also perform a consistency test with our final tree formation en-

semble method, to assess the impact of changes in the starting positions.
For this experiment, we used images with moderate complexity (n = 13)
rom the test and validation set. The input of the methods was varied
y randomly shifting the starting position within a range of five voxels
long the given starting centerline. We ran the methods five times with
randomly shifted initial vector. The first result is used as the baseline
f the tree formation consistency test. We then compute the precision
nd recall for the other four results. Both average precision and recall
re above 99%.

.4.3. Interobserver analysis on tree formation
For the interobserver analysis part, we would like to compare the

ree formation result for the three subjects that were annotated by
oth observers with the annotated versions. The precision and recall
egarding to the different observers were shown in Table 10.

.4.4. Impact of imaging characteristics on tree formation
To get more insight into the performance of the methods, and how

hese depend on the properties of the images (CTA vs CTP, acquisition
hase, number of vessels, etc.), we present the tree formation results for
ach of these categories in Table 11. It shows that the method performs
etter in the CTA images compared to CTP and that proximal vessels are
etter detected than distal vessels. For the other categories (acquisition
hase, tree type, or complexity), there are no apparent differences in
he results.

. Discussion

In this work, we developed and assessed a method to construct tree
odels of the anterior vessel arteries from 3D CTA and CTP images

f the brain. The method consists of a deep reinforcement learning
racking approach, a CNN-based classifier to detect bifurcations along

he tracks, and a breadth-first tree construction algorithm that uses the
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Fig. 9. Examples of ensemble method tree formation result in the test set. Those subjects were selected based on the median value of recall. Green denotes true positive segments,
blue is false positive, and yellow is false negative. a&b: frontal and sagittal view of a subject with middle complexity, a precision of 0.85, and recall of 0.77. c&d: frontal and
sagittal view of a subject with high complexity, a precision of 0.83, and recall of 0.76.
Table 10
The tree formation result using different reference standard.

Observer JS Observer M Agreement

Precision Recall Precision Recall
(%) (%) (%) (%)

Subject 1 0.78 0.57 0.45 0.49 0.50
Subject 2 0.59 0.72 0.53 0.68 0.70
Subject 3 0.71 0.76 0.71 0.54 0.88
Table 11
The evaluation result of tree formation. The precision and recall are reported with median and IQR. However, the CTT were reported using the mean and standard deviation since
the median and IQR in almost all items are 100, [100, 100], except near skull segments.

Properties Single Model Ensemble

Precision
(%)

Recall
(%)

CTT
(%)

Precision
(%)

Recall
(%)

CTT
(%)

Overall 63 [52, 74] 59 [46, 70] 90 ±31 70 [57, 81] 68 [54, 81] 87 ±34

Image modalities CTA 66 [52, 79] 64 [51, 73] 95 ±22 72 [58, 83] 77 [63, 86] 92 ±27
CTP 62 [52, 71] 51 [41, 63] 85 ±35 69 [57, 72] 61 [47, 78] 82 ±38

Acquisition phase Early arterial phase 77 [67, 87] 67 [64, 73] 94 ±23 82 [77, 86] 77 [70, 81] 94 ±23
Peak arterial phase 66 [57, 78] 58 [49, 68] 95 ±22 70 [58, 84] 80 [58, 85] 90 ±30
Equilibrium phase 60 [51, 69] 52 [42, 67] 87 ±34 66 [55, 74] 62 [48, 81] 83 ±38

Complexity Low 57 [48, 71] 73 [62, 83] 95 ±22 62 [56, 73] 77 [63, 87] 88 ±33
Middle 64 [56, 78] 62 [52, 81] 86 ±35 72 [56, 82] 66 [48, 81] 85 ±36
High 68 [58, 72] 58 [41, 64] 94 ±25 71 [67, 78] 66 [57, 76] 90 ±31

Tree type MCA 62 [51, 72] 57 [43, 67] 88 ±33 73 [64, 83] 60 [52, 78] 84 ±37
ACA 66 [56, 79] 59 [48, 72] 92 ±28 65 [55, 80] 70 [60, 86] 89 ±31

Segment label Proximal 99 [68, 100] 99 [68, 100] 100 ±0 92 [71, 100] 90 [69, 100] 100 ±0
Middle 60 [42, 76] 59 [45, 70] 97 ±16 69 [54, 79] 67 [57, 84] 98 ±16
Distal 61 [45, 82] 47 [38, 64] 80 ±41 74 [59, 88] 67 [49, 79] 78 ±42
Near skull 39 [27, 59] 43 [18, 75] 63 ±49 66 [48, 87] 64 [35, 75] 50 ±51
tracker and bifurcation detector to construct the tree from the tracking
and bifurcation detection results. When evaluated on a test set of 25
subjects, the median precision and recall w.r.t. the manual annotation
is 68% and 69%.

For the tracking, we investigate the policy gradient based proximal
policy optimization DRL approach to perform the directed tracking. The
average tracking performance on directed tracking from bifurcation to
bifurcation over 100 subjects with 7026 vessels was 100 [46, 100].
Bifurcation detection is another essential ingredient, it was tested both
in the training scenario and during the single model tree formation with
the same 100 subjects. The accuracy of bifurcation detection over 100
test subjects was 82%. During the single model tree formation setting,
the precision and recall were on average 87% and 76% respectively.
At the final ensemble tree formation method test on 25 independent
subjects, the overall precision and recall were 68 [54, 81] and 70 [57,
81].

An ablation study was performed to assess the added value of
various design choices made. From the results, it follows that most of
the choices (including time information via RNN and multiple time
points, activation function, and training strategy) have a small but
statistically significant impact on the final tracking results. Both RNN
12
and multiple time points serve as a means to include information from
previous steps in the model. From the results it is clear that using RNN
with one CNN time point has a better result than CNN only with more
time points; apparently, these elements of the model permit to focus
on different temporal aspects relevant for the tracking. Adding an RNN
module would enhance the tracking ability.

Excluding the scaling of the step size (i.e. taking smaller steps)
yields improved accumulated reward but lower CCS and OR. An ex-
planation could be that, first, the frequency of calculating the instant
reward is at least two times more than the rest of the configuration.
Furthermore, in the no scaling variant, the distance between 𝑝𝑡 and
𝑝𝑡−2 is 0.9 mm. This leads to very similar image information at the
three time points, which hampers the full exploitation of temporal
information. The performance of this no scaling model is similar to the
DQN with our reward function(DQN+ours), which is the configuration
using CNN with one time point.

In the reward ablation study, CC distance performed second best,
by comparing the result of CC distance and our proposed method Tr-A
model, adding binary overlap in the reward function would improve
the average distance. The point-to-curve distance reward has a higher
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average distance but lower CCS and OR in comparison with our pro-
posed reward. This result can be observed from both DQN methods and
PPO methods. The curve-to-curve distance reward aims to optimize the
surface area between the reference standard and agent path at 𝑡 and
− 1, whereas the point-to-curve distance used by the work of Zhang
t al. (2018) and Li et al. (2021) aim to optimize the distance between
he agent position and corresponding curves. Using the curve-to-curve
istance reward function, the instant reward at 𝑡 is approximated by

the difference in surface area between the agent path at 𝑡 and 𝑡−1 with
regard to the complete reference standard. Therefore, the agent moves
along the centerline because it minimizes the surface distance between
the agent path and reference standard. This is particularly handy in
the cases of sharp turning vessel structures, e.g helix shape, where the
correspondence between agent position and corresponding reference
standard point, such as used in other approaches, cannot be found in
an accurate way using the closest Euclidean distance (e.g using point to
curve distance). Therefore, the curve-to-curve distance fits better with
our application.

Most existing DRL tracking methods use a DQN approach with a
customized reward function; for instance, Li et al. (2021) utilize a DQN
tracking approach with the same network architecture as the state-of-
art method of Wolterink et al. (2019) and a point-to-curve distance
based instance reward for coronary tracking in a 3D CTA image. The
tracking performance of the method by Li et al. (2021) outperforms the
CNN tracking result of Wolterink et al. (2019). We, therefore, used this
method as our baseline method. The baseline methods perform less well
in our application. Zhang et al. (2018) utilize the CNN with one time
point (different architecture) to track the thoracic aorta. The reward
function is similar to Li et al. (2021). Zhang et al. (2020) utilize the
same CNN architecture with double-DQN methods and the dot product
between the reference standard and agent path of 𝑡 and 𝑡 − 1 as the
reward function for coronary centerline tracking. The corresponding
point between the reference standard and the corresponding agent
location was determined based on the shortest distance. The above-
mentioned architectures are less complex and are sufficient for tracking
the coronary arteries and aorta. The brain vasculature, as shown in
Fig. 1, is different from coronary arteries and aorta, e.g. there is more
bending and there is a large variety in curvatures in cerebral vessels
compared to coronary vessels, and they are much smaller than the
aorta. As a consequence, during tracking, a CNN with one time point
only might not be able to provide sufficient information for the network
to make accurate direction estimation. In addition, the agent might
have difficulty finding the correspondence between the agent’s position
and the reference standard.

While we were finalizing this manuscript, the work of Chen et al.
(2021) demonstrated the possibility of walking outside of the classical
reinforcement learning problem formulation, which is either value-
based or policy-based. In contrast, they regard the reinforcement learn-
ing problem as a sequence prediction problem. Similarly, we could use
our trained agent and our reward with the sequential framework in an
offline reinforcement learning fashion, which may improve our tracking
performance. To what extent and whether the transformer would be
the best sequential model for our reward function could be further
investigated.

When training DL models, data is essential: both the amount of data
and the quality. To investigate whether adding may further improve the
results, we compared the results of the cross-validation models with a
model trained on the full dataset. The results show that the additional
25% of data does not significantly improve the results, suggesting that
the amount of data is sufficient for the task.

Annotation of anterior vessel trees in brain CT images is a tedious
and difficult task, among others caused by the coexistence of arterial
and venous structures in the whole brain. In Fig. 1, the anterior vessel
tree is only a small part of the complete brain vessel annotation. Un-
der such circumstances, kissing vessels, i.e. locations (mostly distally)
13

where vessels (almost) touch are common. This explains the moderate
average interobserver overlap of 0.69. The intensity distribution in
the branches where the observers disagree is in the range of the
low intensity vessels that consist of distal and near skull segments.
Though the annotations are not perfect, we assume that for the training,
because of the large number of vessels, the errors in the annotations
would not greatly impact the models, which is also suggested by the
results. Errors in the annotation also impact the quantitative results. We
therefore also compare the tree formation results with the annotations
from two different observers in three datasets. The differences again
are mainly in the vessels that have a low intensity, which is harder
to annotate, and often are distal vessels. Also, there was a variation
in vessels close to the skull. These errors are similar to the errors of
the automated method, suggesting that these low-intensity vessels are
difficult for both humans and the automated method.

From the analysis of the tree formation result with respect to several
imaging characteristics, it followed that only the imaging modality
has a significant impact on the quantitative results: the tree formation
method on CTP performs less than on CTA. The difference between
the validation and test set (the performance on the validation set was
always worse than on the test set), may therefore be caused by the
higher percentage of CTP images in the validation set. The worse
performance may be caused by the use of the maximum volume image
for the tracking, whereas the annotation was done in the MIP image,
and the blurring was caused by the interpolation after the alignment
to the first frame. After annotating the vessels of the CTP in the MIP
image, we decided to use the maximum volume CTP image for training
and tracking instead of the MIP. Whereas the MIP is convenient for
annotation, its appearance is different from CTA images, because of the
higher background intensities and more noisy appearance caused by the
MIP. This is a limitation of our study, we however preferred including
the (suboptimal) annotations over leaving out the CTP, or redoing the
annotation.

The final result of the method is a tree representation of the brain
vasculature, and this tree representation will be the basis for subse-
quent works. We intend to use this tree to e.g. find lesions (occlusions in
more distal arteries, such as M2, which is still a challenging task Luijten
et al., 2021), better quantification of collateral status, and possibly
also linking/registering the 3D vascular information from CTA and CTP
to interventional DSA images for improving image guidance during
endovascular treatment. The tree formation method performed reason-
ably well in the proximal and middle segments. In the distal and near
skull segments, the performances were also in the interobserver ranges.
For the DSA to CTA mapping and distal occlusion detection, it is likely
that such tree formation performance is sufficient.

6. Conclusion

In this study, we developed and assessed a method to construct
a brain vessel tree from a CTA or CTP image, using a starting point
and direction vector. The method consists of a DRL-based tracker, a
CNN-based bifurcation detector, and a breadth-first tree building. The
tracker performance on segments from bifurcation to bifurcation has
a median overlap of 100 %, and the bifurcation detector has a mean
accuracy of 82 %. The combination of both components in an ensemble
tree building algorithm yields trees that have a 69 % overlap with
manual annotations, which is in the interobserver variation range.
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