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Challenges in Virtual Testing of Autonomous Vehicles

Andrea Piazzoni1,2 Roshan Vijay2, Jim Cherian2,
Lyu Chen3, Senior Member, IEEE, Justin Dauwels4, Senior Member, IEEE.

Abstract— The worldwide development of Autonomous Vehi-
cles (AVs) has also encouraged the use of software simulators
for virtual testing of AVs. However, the effectiveness of the
AV simulators is constrained by numerous challenges, such as
their computational cost and lack of fidelity in specific areas.
In this paper, we describe the modality of virtual testing and
its benefits for AV development and validation. Moreover, we
summarize and provide an overview of the state-of-the-art AV
simulators, their limitations, and the current directions toward
improvement.

I. INTRODUCTION

As Autonomous Vehicles (AVs) are becoming more preva-
lent around the world, many startups and experienced vehicle
manufacturers alike are deeply involved and invested in
developing them. Ensuring the safety of AVs operating and
testing in the real world is challenging, and requires a rigorous
and joint testing, verification, and validation efforts between
the AV developers, government regulators and third-party
regulatory agencies.

Some estimations [1] have concluded that to demonstrate
with 95% confidence and 80% power that an AV’s failure
rate is 20% better than an optimistic human driver failure
rate of 1.09 fatalities per 100 million miles, it may need to
be tested over a distance of at least 11 billion miles. Surely,
this is impossible to achieve even for the most well funded
and staffed AV developers. Simulation based virtual testing is
a viable and pragmatic alternative to make AVs safer simply
by allowing them to be driven across longer distances and
test against more conditions.

Vehicles with varying degrees of automation have been
prevalent in the market since the end of the 20th century.
Automated features, e.g., cruise control, were first introduced
to reduce driving stress and improve driver comfort. Today,
they have become part of a car’s active safety systems.
More recently, automotive OEMs have started to introduce
conditional SAE L3 [2] semi-automated driving under low
speed stop-and-go traffic conditions on expressways [3].

OEMs have been using simulation testing extensively
in the pursuit of software quality and to ensure safety of
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ADAS systems and it is an important step in the product
development lifecycle as it provides a safe and relatively
inexpensive avenue to test safety critical vehicle systems
before they are deployed in the real world. There are
a variety of general purpose and task-specific tools, test
methodologies and modalities to enable in-depth virtual
testing of all vehicular electronic, electrical, electromechanical
and mechanical systems.

Even though the vast majority of these tools were conceived
with ADAS testing in mind, many of them have evolved
to tackle the challenges specific to simulation-based virtual
testing of AVs. Most of these tools are highly modular
and allow for extensive modification by the end user to
enable communication with automated driving system (ADS)
software or other task-specific simulation tools.

Considering the many advantages of virtual testing as well
as the numerous free, open source and commercial AV and
ADAS testing tools available in the market today, virtual
testing has proven to be a valuable asset, making it possible
to test AVs in a safe, convenient and cost-effective manner.

However, significant technological and scientific challenges
hinder AV simulators’ effectiveness and widespread employ-
ment. In this paper, we aim to provide an overview of AV
simulation tools, their applications, and their limitations and
we make the following contributions:

• In section II, we illustrate standard methodologies and
the benefits of employing AV virtual testing. This section
explains why the effort to improve AV simulators is
valuable and needed.

• In section III, we present notable AV simulators, both
commercial and open source. Moreover, we identify their
strengths and weaknesses.

• In section IV, we focus on the major scientific limi-
tation, i.e., the fidelity and validation of the simulator
components.

• In section V, we introduce upcoming solutions aimed
at improving various aspects of AV simulators.

II. VIRTUAL TESTING

Virtual testing is a crucial step in assessing the perfor-
mance and safety of Autonomous Vehicles (AV). Virtual
testing of AVs can be achieved using a variety of different
modalities. These include, commonly, Software-in-the-Loop
(SiL), Hardware-in-the-Loop (HiL), and Vehicle-in-the-Loop
(ViL). Other testing modalities may also be considered, such
as Driver-in-the-Loop (DiL). Still, these may serve different
testing purposes, such as studying the response and reactions
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of a human driver rather than validating the functional safety
of the Automated Driving System (ADS) software.

A. Virtual testing modalities

While different testing modalities have a different scope
and offer different advantages, they usually share common
disadvantages and limitations:

• Environment modeling is a time-consuming process;
• Complex simulations of physically accurate sensors are

computationally expensive;
• In some situations, real-time performance may not be

guaranteed, and this may affect the dynamic response
of the ADS under test;

• Perfect fidelity is almost impossible to achieve, and there
will always be a mismatch between the simulated world
and its physical. counterpart.

X-in-the-loop (XIL) refers to the virtual simulation-based
testing setup where the reaction (response) of X being
tested (in the virtual environment) will influence the virtual
environment itself. X refers to the exact entity (e.g., the
Models, Software, Hardware, Vehicle, Human driver etc.)
which is in a closed loop with the environment around, and
the environment responds to with appropriate actions, leading
to a closed loop test. Few of the most common XiL paradigms
are listed below.

1) Software-in-the-Loop (SiL): Software-in-the-Loop is a
method of testing and validating an ADS’s various subsystems,
modules, and software packages in a simulated environment.
The ADS, its modules and/or subsystems, and the simulated
environment run as separate processes on the same computing
hardware or distributed across various systems connected over
a common network protocol.

A typical SiL simulation environment will contain the
following modules as seen in Fig. 1:

1) Environment model – A 3D of the test environment
and road networks with high fidelity [4].

2) Environmental effects – The ability to generate various
environmental conditions which may affect the func-
tioning of the sensors of the AV, such as rain, fog, haze,
and so on.

3) Sensor models – A physically accurate representation
of the sensors installed on the VUT

4) Traffic model – An accurate and configurable simulation
of other road users.

5) Vehicle model – A 3D recreation of the Vehicle-Under-
Test (VUT) with multiple degrees of freedom.

These modules directly communicate with the various
modules of the ADS under test such as the sensing &
perception and control.

SiL simulation is an important aspect of virtual AV testing
due to its many advantages, such as:

• SiL simulation can be used to test the ADS with
automated DevOps pipelines on standard computing
hardware.

• Different types of system-level tests can be performed,
including but not limited to scenario-based testing,

functional safety tests, tests of specific subsystems
such as sensing and perception, or the decision-making
module of the ADS.

• Multiple instances of simulations can be tested together,
even faster than real-time provided the hardware is
powerful enough.

SiL SimulationADS Under Test

Sensing & Perception

Control Vehicle Model

Environment Model

Sensor Models

Traffic Model

Decision Making

Planning,

Prediction &

Routing

Behavioral

Response

Fig. 1: SiL simulation setup for testing an ADS

2) Hardware-in-the-Loop (HiL): HiL is similar to SiL but
with the added complexity of the process-actuator system
added into the loop. This may include various hardware
submodules handling ADS components such as sensing and
perception. This may even include the actual sensors being
fed synthetic data such as the camera system being shown a
simulated world on a large display. HiL can be considered the
next step of the ADS development process after SiL testing.
However, even HiL is not a perfect testing solution and may
exhibit issues such as those shown by SiL testing, including
problems with real-time performance, environment modeling,
and fidelity. HiL does not include all the process-actuator
systems in the loop and as such may be limited depending on
which hardware components are included in the simulation
chain.

3) Vehicle-in-the-Loop (ViL): ViL solves the inherent
problems faced by HiL by integrating the entire vehicle and all
its subsystems and modules in the simulation loop. A physical
vehicle with its many different ECUs, CAN interfaces, sensors
and computing hardware is integrated directly with the
simulation toolchain which generates synthetic information
required by the ADS allowing it to operate as if installed in
the actual vehicle. ViL can be considered the final step in
the virtual testing and validation process before the AV is
tested physically, either through controlled or uncontrolled
testing on real test circuits or private/public roads. Using this
testing modality, we can implement a hard real-time solution
which tests the temporal response of the ADS as well.

There are other test modalities such as Driver-in-the-Loop
(DiL) but these may not be directly relevant for AV testing.
DiL refers to when a human driver is in control of the vehicle
under test and the world around them is synthesised using
simulation tools. For the purposes of this review, we will be
focusing solely on Software-in-the-Loop (SiL) testing.

B. Test types
Tests for virtual safety validation of an ADS can be

classified based on if they are controlled or uncontrolled.
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• Controlled testing – Typically conducted using prede-
fined scenarios in a controlled space such as a virtual
test track with closed boundaries and where sensory
conditions are controlled.

• Uncontrolled testing – Typically conducted on virtual
roads modelled after real-world locales with randomized
but realistic traffic models and sensory conditions.

For both types of testing, specific test scenarios can be
defined and implemented in the Virtual Testing Toolchain
(VTT). Scenario based testing is an important method within
the context of AV virtual testing and validation and helps
the tester to study the behavioural response, safety and
determinism of the ADS under test. Scenarios can be defined
based on the work done in [5] as:

1) Functional scenarios / Scenario categories: Functional
scenarios, otherwise referred to as scenario categories, give
a high level description of the scenario to be tested. For
example, these may give an abstract and verbal description
of the road network, its structure, the different stationary and
movable objects in a scene, overall weather conditions of the
scene and so on.

2) Logical scenarios / Scenario variants: Logical scenarios
attempt to parameterize functional scenarios by assigning
a range of parameter values to quantifiable aspects of the
scenario. For example, a logical scenario may describe a
range of lane widths, curve radii and positions of traffic signs
for the road network. It may also specify a range of values
for the travelling velocities of the various dynamic objects
in the scene. However, a logical scenario is still not enough
to describe a specific test case which can be used to test an
AV’s behavioural response.

3) Concrete scenarios / Test cases: A test case or concrete
scenario is when specific parameter values are selected
from the range of parameters values described in a logical
scenario/scenario variant. Each test case may be different
based on if any of the individual parameters differ. Test cases
are the final step in defining a scenario to be tested in a
virtual testing toolchain where it can be implemented based
on the decided parameters. For example, the test case would
have well defined parameters such as the location and/or
dimensions of the road network, position of the various static
and dynamic objects, their velocities among other values.

III. SIMULATORS

In this section, we report the most common AV simulators
employed in the AV community. Each simulator has pros and
cons from economic, ergonomic, and technological points of
view. In this paper, we focus on technological features and
omit the rest.

A. Open Source

There are two notable Open Source AV Simulators avail-
able: CARLA and SVL. They are respectively developed in
the Unreal Engine [6], and in the Unity Engine [7]. This
approach has a high potential for custom extensions and
innovative solutions that expand their functionalities.

• CARLA [8] – CARLA is the primary choice for
academic research. It offers a powerful API to control
all aspects of a simulation and free assets (maps and
vehicles). Moreover, it has ROS integration and supports
co-simulation with many external modules.

• SVL [9] – SVL has been discontinued by the original
developer (June 31st, 2022), but it remains Open Source
and is available to the community. The main strength
is the integrated bridge towards Baidu Apollo [10] or
Autoware [11], as well as providing a framework for
sharing assets such as maps, vehicles, and sensors.

B. Commercial

Many commercial vehicle simulators are available that may
be used to facilitate the testing of ADAS or AV modules. Most
if not all of these tools were initially conceived specifically for
automotive OEMs to develop and refine the driving assistance
systems of their vehicles. These tools are meant to be end-to-
end solutions incorporating many of the modules integral to
SiL testing as mentioned in Section II-A.1, while also being
able to support other testing modalities.

• MSC VIRES Virtual Test Drive (VTD) [12] – Orig-
inally developed by VIRES Simulationstechnologie
GmbH, VTD is a powerful end-to-end vehicle simulation
tool that integrates environment design, vehicle dynam-
ics, high-quality weather and environmental effects along
with sensor simulation. Even though it is a standalone
software, it is quite modular. It can integrate well with
other simulation plugins, e.g., those dedicated to vehicle
dynamics, such as MSC’s own Adams. VTD supports
multiple testing modalities such as SiL, HiL, ViL and
DiL (Driver-in-the-loop).

• IPG CarMaker [13] – CarMaker is another general-
purpose end-to-end vehicle simulation tool focusing
slightly more on accurate vehicle dynamics. CarMaker
promises real-time capable, realistic vehicle dynamics
models. As a result, it is frequently used as a dedicated
vehicle dynamics simulator in addition to being used as
a general-purpose vehicle simulator.

• Siemens Simcenter Prescan [14] – Prescan is a general
purpose vehicle simulator with specific emphasis on
delivering accurate sensor simulation. It is able to accu-
rately model and simulate sensors such as LiDAR, radar
and cameras. It has deep integration with MathWorks
MATLAB and Simulink. MATLAB/Simulink are well
defined and highly documented software with many ways
to read and write data from a simulation model, thereby
making Prescan quite modular and open to integrate
with other simulation tools.

• AB Dynamics rFPro [15] – rFPro was originally known
as rFactor Pro and is widely used by many of the
top racing constructors around the world for driver
improvement and testing. It is also used extensively
by automotive OEMs for the development of ADAS
assistance features with a specific focus on simulating
accurate vehicle dynamics with physically accurate road
models. rFPro’s in-built rigid body vehicle dynamics
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Simulator Accessibility Sensor simulation Vehicle dynamics Traffic simulation Scripting /
modularity

OpenDRIVE
support

CARLA Open source ✓ ✓ Limited Python ✓
SVL Open source ✓ ✓ Limited Python ✓
VTD Commercial ✓ ✓ Limited C++, SCP commands ✓
CarMaker Commercial ✓ ✓ ✗ C ✓
Prescan Commercial ✓ ✓ Limited Simulink and C++ ✓
RFPro Commercial ✓ ✓ ✓ MATLAB/Simulink ✓
Nvidia Drive Sim Commercial ✓ ✓ ✓ Omniverse kit ✓
SUMO Open source N/A N/A ✓ Python ✓
VISSIM Commercial N/A N/A ✓ Python ✓
Ansys AVxcelerate Commercial ✓ N/A N/A Python N/A
Adams Commercial N/A ✓ N/A C++ N/A
CarSim Commercial N/A ✓ N/A MATLAB, VB, C/C++ ✓

TABLE I: A comparison of different simulation tools

samples various vehicle systems such as the suspension
and the drivetrain at very high refresh rates. It also
includes a C++ API as well as integration with Simulink.

• NVIDIA DRIVE Sim [16] – NVIDIA, being at the fore-
front of computer graphics, has led the massive adoption
of Graphics Processing Unit (GPU) and CUDA, which
has enabled large-scale machine learning. Automated
driving is one of its important application focus areas,
for which NVIDIA has made a general-purpose ADS so-
lution called DRIVE and a general-purpose AV simulator
called DRIVE Sim. This simulator uses NVIDIA’s own
Omniverse graphical rendering and simulation backend.
It supports distributed computing across many nodes
and GPUs for multi-sensor simulations. DRIVE Sim
also leverages NVIDIA’s hardware expertise by utilizing
their RTX real-time raytracing solution in order to render
physically accurate sensor models. The Omniverse kit
allows for DRIVE Sim to be modular and extensible to
integrate with many other tools.

C. External Tools

Beside the general purpose simulators previously men-
tioned, some tools have been developed to focus on specific
areas on the simulation pipeline.

• Eclipse SUMO [17] – SUMO stands for Simulation of
Urban MObility and it is an open-source microscopic
traffic simulator. SUMO allows for the modelling of
various kinds of traffic systems such as public transport
vehicles and other road users including pedestrians.
Many of the end-to-end simulation tools previously
mentioned only possess simplistic traffic models which
may not be representative of certain real-world road
networks. External traffic simulators are useful in these
cases whereby an AV has to be simulated in a realistic
environment with significant entropy from other road
users.

• PTV VISSIM [18] – VISSIM is a commercial micro-
scopic traffic simulator with similar functionalities to
SUMO but with some notable differences [19]. The
car following model used is different along with more
realistic vehicle dynamics. There is also support for
two-wheeled vehicles along with trams and pedestrians.

• Ansys AVxcelerate Sensors [20] – AVxcelerate is
a sensor simulation software which enables realistic
physics-accurate modelling of AV sensors such as
LiDAR, camera and RADAR. Sensors can be modelled
according to the respective manufacturer’s specifications
and AVxcelerate will be able to simulate their response
when placed in a 3D environment However, AVxcelerate
is not a standalone tool and will need to be used in
conjunction with a main simulator such as CARLA.

• MSC Adams [21] – Adams is a multibody dynamics
simulation tool. Unlike many rigid body vehicle dynam-
ics tools which are commonly available and/or integrated
with AV simulation tools, Adams allows for complex
multibody physics. It is more general purpose than most
vehicle simulators and hence is quite powerful from a
system engineering standpoint. Being under the MSC
software umbrella, Adams integrates well with VTD.

• Mechanical Simulation CarSim [22] – CarSim uses
parametric math models to reproduce system-level ve-
hicle dynamics behavior for passenger cars and light
trucks. It is a standalone vehicle dynamics simulation
tool which can integrate with other simulators such as
CARLA. CarSim supports built-in scripting apart from
integration with MATLAB, Visual Basic and C/C++.

IV. FIDELITY

The primary scientific challenge that simulators face is
their fidelity. A virtual simulation can provide an insight
into the real world if, and only if, the tools employed are
high-fidelity surrogates of the real counterpart.

A. Components

AV simulators are complex systems, and many of their
different components are affected by this challenge.

a) HD Maps: Digital twins are beneficial for a few
applications, such as testing the AV deployment in specific
areas and ViL testing. Nevertheless, many other testing
modalities are still feasible in maps not based on real roads.

b) Vehicle Dynamics - Road surface: The interaction
of car momentum, tire rolling resistance coefficient, engine
power, and asphalt surface is a complex system. An accurate
model is required to properly validate any component that
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interacts with the vehicle controls, i.e., any active safety
feature and AVs.

c) Sensors: Sensor models are employed to generate
Synthetic Data (e.g., images or point clouds). This component
is also exploited in many applications to augment the learning
procedure of the Perception Algorithm.

d) 3D Models and Materials: Sensors generate data by
reacting to the physical properties of the surrounding. For
example, cameras generate images by employing photosensi-
tive sensors that respond to light. Similarly, Virtual Sensors
react to the Virtual Environment. It follows that the resulting
synthetic data’s quality, fidelity, and value inherently rely on
the virtual environment’s quality.

B. Sensor Physics

Each sensor detects different physical aspects of the sur-
rounding. Thus, each sensor type presents unique challenges
due to its physics. In this subsection, we briefly present the
phenomena that differentiate the most common AV sensors.

a) Camera: Camera images are affected by many arti-
facts and alterations. Lens distortions, chromatic aberrations,
and vignetting are some of the optical effects. Moreover,
since images provide direct visualization of the objects in
the environment, even minor details are captured. 3D models,
environmental lighting, shadows, and surfaces’ textures and
materials are crucial elements that determine the quality of
an image.

b) LiDAR: LiDAR generates point clouds by measuring
depth via the time of flight of laser pulses. Thus, the ray
tracing framework is a natural solution to model LiDARs.
LiDARs are very sensitive to weather conditions such as rain
or fog [23].

c) RADAR: RADAR in the physical domain relies on
radio waves, but a real-time virtual implementation of the
RADAR equation is computationally expensive. Thus, ray
tracing is often adopted to emulate radar physics. The most
relevant physical phenomena are multipath reflections and
interference. These weaknesses may lead to ghost objects
and clutter. Moreover, the Radar cross-section (RCS) of the
targets, i.e., a measure of how detectable they are, is affected
by many physical properties of each target: the material, the
size, the shape, and the relative angles of the wave [23].

C. Validation

While developing a high fidelity component is an ongoing
challenge, their validation is also not trivial. A virtual
simulation always has to deal with a trade-off between
optimization and realism. The abstractions, models, and
equations that govern the unfolding of simulation steps
are simplifications of the real world. Thus, a degree of
approximations is expected, accepted, and understood.

In literature, this problem is often approached by statisti-
cally comparing the output of the real component against the
model’s output. [24], [25]. Sensor specific examples can be
found for RADAR [26] and LiDAR [27], [28].

V. RECENT TRENDS

In this section, we present solutions that are not yet fully
adopted by mainstream simulators.

A. Open interoperability standards

Given the fact that different AV simulators and their
modules have unique strengths and weaknesses that can be
collectively exploited, purpose-driven co-simulation solutions
are increasingly being adopted. However, such approaches
often require significant engineering effort to achieve good
interoperability.

The Association for Standardization of Automation and
Measuring Systems (ASAM) is a non-profit organization
which promotes standardization for toolchains in automotive
development and testing. The ASAM Open standards span
the major areas where work still needs to be done for
interoperability between simulation tools. The standards are
described in detail below:

• OpenDRIVE [29] – OpenDRIVE is a format that
semantically describes the road networks of the AV’s
static driving environment, with an extensible markup
language (XML) schema. OpenDRIVE files (.xodr)
can be generated using various tools, both commercial
and open-source, and can be used as input to simulation
tools.

• OpenSCENARIO [30] – OpenSCENARIO defines a file
format to describe complex scenarios involving multiple
actors. These may include their movements, trajectories,
velocities, and so on. The data for maneuver descriptions
are organized in a hierarchical structure and serialized
in an XML file format (.xosc).

• OpenCRG [31] – CRG stands for Curved Regular Grid
which is a format to describe road surfaces. CRG files
(.crg) can store high-precision elevation data from road
surface scans and allows for the realistic rendering of
3D road surfaces. This is particularly useful for virtual
simulations requiring a high fidelity of vehicle dynamics.

• OpenODD [32] – OpenODD aims to provide a format
which can describe the Operational Design Domain
(ODD) of an AV. It is a concept and not a finalized
standard yet.

• OpenLABEL [33] – OpenLABEL is a standard currently
under development, that proposes a standardized JSON
schema for multi-sensor data labeling as well as for
scenario tagging. It is expected to include definitions
for labeling different kinds of data such as 2D and 3D
bounding boxes, the rotation of 3D bounding boxes,
semantic segmentation of images and point clouds.

• Open Simulation Interface (OSI) [34] – OSI aims to
provide direct compatibility between simulation tools
and automated driving software and/or functions. It
defines standard interfaces for the connection of sensors
and exchange of data. OSI utilizes an object-based
environment description using the message format of the
Protocol Buffers [35] library developed and maintained
by Google.
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B. Perception Error Models

Perception Error Models (PEMs) [36] are models that
describe, and generate, the perception errors that affect an
AV. This tool can be integrated into a simulation pipeline to
inject perception errors without requiring physics-based sensor
models, high-fidelity 3D environments, and object models.
Thus, this approach is less computationally expensive and
allows more control over the injected perception errors. PEMs
model errors at the object list level, i.e., object detections
and the noise on their parameters. Hoss et al. [37] provide an
extensive review of methodologies suitable for the modeling
task. This field is still under-explored, but a few relevant
examples are [38], [39] for the modeling part. Instead, we
can find a demonstration of their employment in a simulation
pipeline for virtual testing in [36], [40], [41].

PEMs, however, do not substitute the other primary
application of sensor models and synthetic sensor data, i.e.,
augmenting the learning task of perception algorithms.

VI. CONCLUSIONS

In this paper, we have discussed the major challenges
in AV virtual testing. To focus on challenges unique to
virtual testing, we omit discussion on the well-known general
testing challenges, such as test outcome evaluation, safety met-
rics, or acceptance thresholds. AV simulators provide many
advantages, but their limitations reduce their convenience
and effectiveness in AV validation. However, availability of
open standards and improvements in fidelity can potentially
facilitate their larger-scale adoption. In fact, enhanced and
easier interoperability may help overcome the weaknesses
of individual simulators, so that we can employ different
high-fidelity tools dedicated to specific system components.

REFERENCES

[1] N. Kalra and S. M. Paddock, Driving to Safety: How Many Miles of
Driving Would It Take to Demonstrate Autonomous Vehicle Reliability?
Santa Monica, CA: RAND Corporation, 2016.

[2] SAE, “J3016 standard: Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles,” 2021.

[3] M. Benz, “Mercedes Drive Pilot 2, group.mercedes-benz.com/
innovation/case/autonomous/drive-pilot-2.html,” 2021.

[4] D. C. Gross et al., “Report from the fidelity implementation study
group,” in Fall Simulation Interoperability Workshop Papers, 1999.

[5] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development,
test and validation of automated vehicles,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 1821–1827.

[6] Epic Games, “Unreal Engine 4, unrealengine.com,” 2020.
[7] Unity Technologies, “Unity Engine, unity.com,” 2022.
[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,

“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[9] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta et al., “Lgsvl simulator: A
high fidelity simulator for autonomous driving,” arXiv:2005.03778,
2020.

[10] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu,
H. Li, and Q. Kong, “Baidu Apollo EM Motion Planner,” arXiv:
807.08048, 2018.

[11] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,” in
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2018, pp. 287–296.

[12] MSC, “Vires VTD, vires.mscsoftware.com,” 2022.

[13] IPG, “IPG CarMaker, ipg-automotive.com/en/products-solutions/
software/carmaker/,” 2022.

[14] Siemens, “Siemens Simcenter Prescan, plm.automation.siemens.com/
global/en/products/simcenter/prescan.html,” 2022.

[15] rFPro, “rFPro, rfpro.com,” 2022.
[16] NVIDIA, “NVIDIA DRIVE Sim and Omniverse, nvidia.com/en-sg/

self-driving-cars/simulation/,” 2022.
[17] Eclipse, “Eclipse SUMO, eclipse.org/sumo/,” 2022.
[18] PTV, “PTV VISSIM, myptv.com/en/ptv-vissim,” 2022.
[19] M. Maciejewski, “A comparison of microscopic traffic flow simulation

systems for an urban area,” Transport Problems : an International
Scientific Journal, vol. 5, 01 2010.

[20] Ansys, “Ansys AVxcelerate Sensors, ansys.com/products/av-simulation/
ansys-avxcelerate-sensors,” 2022.

[21] MSC, “MSC Adams, mscsoftware.com/product/adams,” 2022.
[22] Mechanical-Simulation, “CarSim, carsim.com/products/carsim/index.

php,” 2022.
[23] E. D. Marti, M. A. de Miguel, F. Garcia, and J. Perez, “A Review

of Sensor Technologies for Perception in Automated Driving,” IEEE
Intelligent Transportation Systems Magazine, 2019.

[24] A. Schaermann, A. Rauch, N. Hirsenkorn, T. Hanke, R. Rasshofer, and
E. Biebl, “Validation of vehicle environment sensor models,” in 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 405–411.

[25] P. Rosenberger, J. T. Wendler, M. F. Holder, C. Linnhoff, M. Berghöfer,
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